1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/uuid.h>
9 #include "transaction.h"
11 #include "print-tree.h"
13 #include "space-info.h"
16 * Read a root item from the tree. In case we detect a root item smaller then
17 * sizeof(root_item), we know it's an old version of the root structure and
18 * initialize all new fields to zero. The same happens if we detect mismatching
19 * generation numbers as then we know the root was once mounted with an older
20 * kernel that was not aware of the root item structure change.
22 static void btrfs_read_root_item(struct extent_buffer
*eb
, int slot
,
23 struct btrfs_root_item
*item
)
28 len
= btrfs_item_size_nr(eb
, slot
);
29 read_extent_buffer(eb
, item
, btrfs_item_ptr_offset(eb
, slot
),
30 min_t(u32
, len
, sizeof(*item
)));
31 if (len
< sizeof(*item
))
33 if (!need_reset
&& btrfs_root_generation(item
)
34 != btrfs_root_generation_v2(item
)) {
35 if (btrfs_root_generation_v2(item
) != 0) {
36 btrfs_warn(eb
->fs_info
,
37 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
42 memset(&item
->generation_v2
, 0,
43 sizeof(*item
) - offsetof(struct btrfs_root_item
,
46 generate_random_guid(item
->uuid
);
51 * btrfs_find_root - lookup the root by the key.
52 * root: the root of the root tree
53 * search_key: the key to search
54 * path: the path we search
55 * root_item: the root item of the tree we look for
56 * root_key: the root key of the tree we look for
58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
59 * of the search key, just lookup the root with the highest offset for a
62 * If we find something return 0, otherwise > 0, < 0 on error.
64 int btrfs_find_root(struct btrfs_root
*root
, const struct btrfs_key
*search_key
,
65 struct btrfs_path
*path
, struct btrfs_root_item
*root_item
,
66 struct btrfs_key
*root_key
)
68 struct btrfs_key found_key
;
69 struct extent_buffer
*l
;
73 ret
= btrfs_search_slot(NULL
, root
, search_key
, path
, 0, 0);
77 if (search_key
->offset
!= -1ULL) { /* the search key is exact */
81 BUG_ON(ret
== 0); /* Logical error */
82 if (path
->slots
[0] == 0)
89 slot
= path
->slots
[0];
91 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
92 if (found_key
.objectid
!= search_key
->objectid
||
93 found_key
.type
!= BTRFS_ROOT_ITEM_KEY
) {
99 btrfs_read_root_item(l
, slot
, root_item
);
101 memcpy(root_key
, &found_key
, sizeof(found_key
));
103 btrfs_release_path(path
);
107 void btrfs_set_root_node(struct btrfs_root_item
*item
,
108 struct extent_buffer
*node
)
110 btrfs_set_root_bytenr(item
, node
->start
);
111 btrfs_set_root_level(item
, btrfs_header_level(node
));
112 btrfs_set_root_generation(item
, btrfs_header_generation(node
));
116 * copy the data in 'item' into the btree
118 int btrfs_update_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
119 *root
, struct btrfs_key
*key
, struct btrfs_root_item
122 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
123 struct btrfs_path
*path
;
124 struct extent_buffer
*l
;
130 path
= btrfs_alloc_path();
134 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
140 "unable to find root key (%llu %u %llu) in tree %llu",
141 key
->objectid
, key
->type
, key
->offset
,
142 root
->root_key
.objectid
);
144 btrfs_abort_transaction(trans
, ret
);
149 slot
= path
->slots
[0];
150 ptr
= btrfs_item_ptr_offset(l
, slot
);
151 old_len
= btrfs_item_size_nr(l
, slot
);
154 * If this is the first time we update the root item which originated
155 * from an older kernel, we need to enlarge the item size to make room
156 * for the added fields.
158 if (old_len
< sizeof(*item
)) {
159 btrfs_release_path(path
);
160 ret
= btrfs_search_slot(trans
, root
, key
, path
,
163 btrfs_abort_transaction(trans
, ret
);
167 ret
= btrfs_del_item(trans
, root
, path
);
169 btrfs_abort_transaction(trans
, ret
);
172 btrfs_release_path(path
);
173 ret
= btrfs_insert_empty_item(trans
, root
, path
,
176 btrfs_abort_transaction(trans
, ret
);
180 slot
= path
->slots
[0];
181 ptr
= btrfs_item_ptr_offset(l
, slot
);
185 * Update generation_v2 so at the next mount we know the new root
188 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
190 write_extent_buffer(l
, item
, ptr
, sizeof(*item
));
191 btrfs_mark_buffer_dirty(path
->nodes
[0]);
193 btrfs_free_path(path
);
197 int btrfs_insert_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
198 const struct btrfs_key
*key
, struct btrfs_root_item
*item
)
201 * Make sure generation v1 and v2 match. See update_root for details.
203 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
204 return btrfs_insert_item(trans
, root
, key
, item
, sizeof(*item
));
207 int btrfs_find_orphan_roots(struct btrfs_fs_info
*fs_info
)
209 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
210 struct extent_buffer
*leaf
;
211 struct btrfs_path
*path
;
212 struct btrfs_key key
;
213 struct btrfs_root
*root
;
217 path
= btrfs_alloc_path();
221 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
222 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
228 ret
= btrfs_search_slot(NULL
, tree_root
, &key
, path
, 0, 0);
234 leaf
= path
->nodes
[0];
235 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
236 ret
= btrfs_next_leaf(tree_root
, path
);
241 leaf
= path
->nodes
[0];
244 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
245 btrfs_release_path(path
);
247 if (key
.objectid
!= BTRFS_ORPHAN_OBJECTID
||
248 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
251 root_objectid
= key
.offset
;
254 root
= btrfs_get_fs_root(fs_info
, root_objectid
, false);
255 err
= PTR_ERR_OR_ZERO(root
);
256 if (err
&& err
!= -ENOENT
) {
258 } else if (err
== -ENOENT
) {
259 struct btrfs_trans_handle
*trans
;
261 btrfs_release_path(path
);
263 trans
= btrfs_join_transaction(tree_root
);
265 err
= PTR_ERR(trans
);
266 btrfs_handle_fs_error(fs_info
, err
,
267 "Failed to start trans to delete orphan item");
270 err
= btrfs_del_orphan_item(trans
, tree_root
,
272 btrfs_end_transaction(trans
);
274 btrfs_handle_fs_error(fs_info
, err
,
275 "Failed to delete root orphan item");
281 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
));
282 if (btrfs_root_refs(&root
->root_item
) == 0) {
283 set_bit(BTRFS_ROOT_DEAD_TREE
, &root
->state
);
284 btrfs_add_dead_root(root
);
286 btrfs_put_root(root
);
289 btrfs_free_path(path
);
293 /* drop the root item for 'key' from the tree root */
294 int btrfs_del_root(struct btrfs_trans_handle
*trans
,
295 const struct btrfs_key
*key
)
297 struct btrfs_root
*root
= trans
->fs_info
->tree_root
;
298 struct btrfs_path
*path
;
301 path
= btrfs_alloc_path();
304 ret
= btrfs_search_slot(trans
, root
, key
, path
, -1, 1);
310 ret
= btrfs_del_item(trans
, root
, path
);
312 btrfs_free_path(path
);
316 int btrfs_del_root_ref(struct btrfs_trans_handle
*trans
, u64 root_id
,
317 u64 ref_id
, u64 dirid
, u64
*sequence
, const char *name
,
321 struct btrfs_root
*tree_root
= trans
->fs_info
->tree_root
;
322 struct btrfs_path
*path
;
323 struct btrfs_root_ref
*ref
;
324 struct extent_buffer
*leaf
;
325 struct btrfs_key key
;
330 path
= btrfs_alloc_path();
334 key
.objectid
= root_id
;
335 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
338 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
341 leaf
= path
->nodes
[0];
342 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
343 struct btrfs_root_ref
);
344 ptr
= (unsigned long)(ref
+ 1);
345 if ((btrfs_root_ref_dirid(leaf
, ref
) != dirid
) ||
346 (btrfs_root_ref_name_len(leaf
, ref
) != name_len
) ||
347 memcmp_extent_buffer(leaf
, name
, ptr
, name_len
)) {
351 *sequence
= btrfs_root_ref_sequence(leaf
, ref
);
353 ret
= btrfs_del_item(trans
, tree_root
, path
);
361 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
362 btrfs_release_path(path
);
363 key
.objectid
= ref_id
;
364 key
.type
= BTRFS_ROOT_REF_KEY
;
365 key
.offset
= root_id
;
370 btrfs_free_path(path
);
375 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
376 * or BTRFS_ROOT_BACKREF_KEY.
378 * The dirid, sequence, name and name_len refer to the directory entry
379 * that is referencing the root.
381 * For a forward ref, the root_id is the id of the tree referencing
382 * the root and ref_id is the id of the subvol or snapshot.
384 * For a back ref the root_id is the id of the subvol or snapshot and
385 * ref_id is the id of the tree referencing it.
387 * Will return 0, -ENOMEM, or anything from the CoW path
389 int btrfs_add_root_ref(struct btrfs_trans_handle
*trans
, u64 root_id
,
390 u64 ref_id
, u64 dirid
, u64 sequence
, const char *name
,
393 struct btrfs_root
*tree_root
= trans
->fs_info
->tree_root
;
394 struct btrfs_key key
;
396 struct btrfs_path
*path
;
397 struct btrfs_root_ref
*ref
;
398 struct extent_buffer
*leaf
;
401 path
= btrfs_alloc_path();
405 key
.objectid
= root_id
;
406 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
409 ret
= btrfs_insert_empty_item(trans
, tree_root
, path
, &key
,
410 sizeof(*ref
) + name_len
);
412 btrfs_abort_transaction(trans
, ret
);
413 btrfs_free_path(path
);
417 leaf
= path
->nodes
[0];
418 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
419 btrfs_set_root_ref_dirid(leaf
, ref
, dirid
);
420 btrfs_set_root_ref_sequence(leaf
, ref
, sequence
);
421 btrfs_set_root_ref_name_len(leaf
, ref
, name_len
);
422 ptr
= (unsigned long)(ref
+ 1);
423 write_extent_buffer(leaf
, name
, ptr
, name_len
);
424 btrfs_mark_buffer_dirty(leaf
);
426 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
427 btrfs_release_path(path
);
428 key
.objectid
= ref_id
;
429 key
.type
= BTRFS_ROOT_REF_KEY
;
430 key
.offset
= root_id
;
434 btrfs_free_path(path
);
439 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
440 * for subvolumes. To work around this problem, we steal a bit from
441 * root_item->inode_item->flags, and use it to indicate if those fields
442 * have been properly initialized.
444 void btrfs_check_and_init_root_item(struct btrfs_root_item
*root_item
)
446 u64 inode_flags
= btrfs_stack_inode_flags(&root_item
->inode
);
448 if (!(inode_flags
& BTRFS_INODE_ROOT_ITEM_INIT
)) {
449 inode_flags
|= BTRFS_INODE_ROOT_ITEM_INIT
;
450 btrfs_set_stack_inode_flags(&root_item
->inode
, inode_flags
);
451 btrfs_set_root_flags(root_item
, 0);
452 btrfs_set_root_limit(root_item
, 0);
456 void btrfs_update_root_times(struct btrfs_trans_handle
*trans
,
457 struct btrfs_root
*root
)
459 struct btrfs_root_item
*item
= &root
->root_item
;
460 struct timespec64 ct
;
462 ktime_get_real_ts64(&ct
);
463 spin_lock(&root
->root_item_lock
);
464 btrfs_set_root_ctransid(item
, trans
->transid
);
465 btrfs_set_stack_timespec_sec(&item
->ctime
, ct
.tv_sec
);
466 btrfs_set_stack_timespec_nsec(&item
->ctime
, ct
.tv_nsec
);
467 spin_unlock(&root
->root_item_lock
);
471 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
472 * root: the root of the parent directory
473 * rsv: block reservation
474 * items: the number of items that we need do reservation
475 * use_global_rsv: allow fallback to the global block reservation
477 * This function is used to reserve the space for snapshot/subvolume
478 * creation and deletion. Those operations are different with the
479 * common file/directory operations, they change two fs/file trees
480 * and root tree, the number of items that the qgroup reserves is
481 * different with the free space reservation. So we can not use
482 * the space reservation mechanism in start_transaction().
484 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
485 struct btrfs_block_rsv
*rsv
, int items
,
488 u64 qgroup_num_bytes
= 0;
491 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
492 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
494 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
495 /* One for parent inode, two for dir entries */
496 qgroup_num_bytes
= 3 * fs_info
->nodesize
;
497 ret
= btrfs_qgroup_reserve_meta_prealloc(root
,
498 qgroup_num_bytes
, true);
503 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, items
);
504 rsv
->space_info
= btrfs_find_space_info(fs_info
,
505 BTRFS_BLOCK_GROUP_METADATA
);
506 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
507 BTRFS_RESERVE_FLUSH_ALL
);
509 if (ret
== -ENOSPC
&& use_global_rsv
)
510 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, true);
512 if (ret
&& qgroup_num_bytes
)
513 btrfs_qgroup_free_meta_prealloc(root
, qgroup_num_bytes
);
516 spin_lock(&rsv
->lock
);
517 rsv
->qgroup_rsv_reserved
+= qgroup_num_bytes
;
518 spin_unlock(&rsv
->lock
);
523 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
524 struct btrfs_block_rsv
*rsv
)
526 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
527 u64 qgroup_to_release
;
529 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1, &qgroup_to_release
);
530 btrfs_qgroup_convert_reserved_meta(root
, qgroup_to_release
);