1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
6 #include <linux/bsearch.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
29 * Maximum number of references an extent can have in order for us to attempt to
30 * issue clone operations instead of write operations. This currently exists to
31 * avoid hitting limitations of the backreference walking code (taking a lot of
32 * time and using too much memory for extents with large number of references).
34 #define SEND_MAX_EXTENT_REFS 64
37 * A fs_path is a helper to dynamically build path names with unknown size.
38 * It reallocates the internal buffer on demand.
39 * It allows fast adding of path elements on the right side (normal path) and
40 * fast adding to the left side (reversed path). A reversed path can also be
41 * unreversed if needed.
50 unsigned short buf_len
:15;
51 unsigned short reversed
:1;
55 * Average path length does not exceed 200 bytes, we'll have
56 * better packing in the slab and higher chance to satisfy
57 * a allocation later during send.
62 #define FS_PATH_INLINE_SIZE \
63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66 /* reused for each extent */
68 struct btrfs_root
*root
;
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79 struct file
*send_filp
;
85 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
86 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
88 struct btrfs_root
*send_root
;
89 struct btrfs_root
*parent_root
;
90 struct clone_root
*clone_roots
;
93 /* current state of the compare_tree call */
94 struct btrfs_path
*left_path
;
95 struct btrfs_path
*right_path
;
96 struct btrfs_key
*cmp_key
;
99 * infos of the currently processed inode. In case of deleted inodes,
100 * these are the values from the deleted inode.
105 int cur_inode_new_gen
;
106 int cur_inode_deleted
;
110 u64 cur_inode_last_extent
;
111 u64 cur_inode_next_write_offset
;
112 bool ignore_cur_inode
;
116 struct list_head new_refs
;
117 struct list_head deleted_refs
;
119 struct radix_tree_root name_cache
;
120 struct list_head name_cache_list
;
123 struct file_ra_state ra
;
126 * We process inodes by their increasing order, so if before an
127 * incremental send we reverse the parent/child relationship of
128 * directories such that a directory with a lower inode number was
129 * the parent of a directory with a higher inode number, and the one
130 * becoming the new parent got renamed too, we can't rename/move the
131 * directory with lower inode number when we finish processing it - we
132 * must process the directory with higher inode number first, then
133 * rename/move it and then rename/move the directory with lower inode
134 * number. Example follows.
136 * Tree state when the first send was performed:
148 * Tree state when the second (incremental) send is performed:
157 * The sequence of steps that lead to the second state was:
159 * mv /a/b/c/d /a/b/c2/d2
160 * mv /a/b/c /a/b/c2/d2/cc
162 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 * before we move "d", which has higher inode number.
165 * So we just memorize which move/rename operations must be performed
166 * later when their respective parent is processed and moved/renamed.
169 /* Indexed by parent directory inode number. */
170 struct rb_root pending_dir_moves
;
173 * Reverse index, indexed by the inode number of a directory that
174 * is waiting for the move/rename of its immediate parent before its
175 * own move/rename can be performed.
177 struct rb_root waiting_dir_moves
;
180 * A directory that is going to be rm'ed might have a child directory
181 * which is in the pending directory moves index above. In this case,
182 * the directory can only be removed after the move/rename of its child
183 * is performed. Example:
203 * Sequence of steps that lead to the send snapshot:
204 * rm -f /a/b/c/foo.txt
206 * mv /a/b/c/x /a/b/YY
209 * When the child is processed, its move/rename is delayed until its
210 * parent is processed (as explained above), but all other operations
211 * like update utimes, chown, chgrp, etc, are performed and the paths
212 * that it uses for those operations must use the orphanized name of
213 * its parent (the directory we're going to rm later), so we need to
214 * memorize that name.
216 * Indexed by the inode number of the directory to be deleted.
218 struct rb_root orphan_dirs
;
221 struct pending_dir_move
{
223 struct list_head list
;
227 struct list_head update_refs
;
230 struct waiting_dir_move
{
234 * There might be some directory that could not be removed because it
235 * was waiting for this directory inode to be moved first. Therefore
236 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
243 struct orphan_dir_info
{
247 u64 last_dir_index_offset
;
250 struct name_cache_entry
{
251 struct list_head list
;
253 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 * more then one inum would fall into the same entry, we use radix_list
256 * to store the additional entries. radix_list is also used to store
257 * entries where two entries have the same inum but different
260 struct list_head radix_list
;
266 int need_later_update
;
272 #define ADVANCE_ONLY_NEXT -1
274 enum btrfs_compare_tree_result
{
275 BTRFS_COMPARE_TREE_NEW
,
276 BTRFS_COMPARE_TREE_DELETED
,
277 BTRFS_COMPARE_TREE_CHANGED
,
278 BTRFS_COMPARE_TREE_SAME
,
282 static void inconsistent_snapshot_error(struct send_ctx
*sctx
,
283 enum btrfs_compare_tree_result result
,
286 const char *result_string
;
289 case BTRFS_COMPARE_TREE_NEW
:
290 result_string
= "new";
292 case BTRFS_COMPARE_TREE_DELETED
:
293 result_string
= "deleted";
295 case BTRFS_COMPARE_TREE_CHANGED
:
296 result_string
= "updated";
298 case BTRFS_COMPARE_TREE_SAME
:
300 result_string
= "unchanged";
304 result_string
= "unexpected";
307 btrfs_err(sctx
->send_root
->fs_info
,
308 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
309 result_string
, what
, sctx
->cmp_key
->objectid
,
310 sctx
->send_root
->root_key
.objectid
,
312 sctx
->parent_root
->root_key
.objectid
: 0));
315 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
);
317 static struct waiting_dir_move
*
318 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
);
320 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
, u64 gen
);
322 static int need_send_hole(struct send_ctx
*sctx
)
324 return (sctx
->parent_root
&& !sctx
->cur_inode_new
&&
325 !sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
&&
326 S_ISREG(sctx
->cur_inode_mode
));
329 static void fs_path_reset(struct fs_path
*p
)
332 p
->start
= p
->buf
+ p
->buf_len
- 1;
342 static struct fs_path
*fs_path_alloc(void)
346 p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
350 p
->buf
= p
->inline_buf
;
351 p
->buf_len
= FS_PATH_INLINE_SIZE
;
356 static struct fs_path
*fs_path_alloc_reversed(void)
368 static void fs_path_free(struct fs_path
*p
)
372 if (p
->buf
!= p
->inline_buf
)
377 static int fs_path_len(struct fs_path
*p
)
379 return p
->end
- p
->start
;
382 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
390 if (p
->buf_len
>= len
)
393 if (len
> PATH_MAX
) {
398 path_len
= p
->end
- p
->start
;
399 old_buf_len
= p
->buf_len
;
402 * First time the inline_buf does not suffice
404 if (p
->buf
== p
->inline_buf
) {
405 tmp_buf
= kmalloc(len
, GFP_KERNEL
);
407 memcpy(tmp_buf
, p
->buf
, old_buf_len
);
409 tmp_buf
= krealloc(p
->buf
, len
, GFP_KERNEL
);
415 * The real size of the buffer is bigger, this will let the fast path
416 * happen most of the time
418 p
->buf_len
= ksize(p
->buf
);
421 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
422 p
->end
= p
->buf
+ p
->buf_len
- 1;
423 p
->start
= p
->end
- path_len
;
424 memmove(p
->start
, tmp_buf
, path_len
+ 1);
427 p
->end
= p
->start
+ path_len
;
432 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
,
438 new_len
= p
->end
- p
->start
+ name_len
;
439 if (p
->start
!= p
->end
)
441 ret
= fs_path_ensure_buf(p
, new_len
);
446 if (p
->start
!= p
->end
)
448 p
->start
-= name_len
;
449 *prepared
= p
->start
;
451 if (p
->start
!= p
->end
)
462 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
467 ret
= fs_path_prepare_for_add(p
, name_len
, &prepared
);
470 memcpy(prepared
, name
, name_len
);
476 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
481 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
, &prepared
);
484 memcpy(prepared
, p2
->start
, p2
->end
- p2
->start
);
490 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
491 struct extent_buffer
*eb
,
492 unsigned long off
, int len
)
497 ret
= fs_path_prepare_for_add(p
, len
, &prepared
);
501 read_extent_buffer(eb
, prepared
, off
, len
);
507 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
511 p
->reversed
= from
->reversed
;
514 ret
= fs_path_add_path(p
, from
);
520 static void fs_path_unreverse(struct fs_path
*p
)
529 len
= p
->end
- p
->start
;
531 p
->end
= p
->start
+ len
;
532 memmove(p
->start
, tmp
, len
+ 1);
536 static struct btrfs_path
*alloc_path_for_send(void)
538 struct btrfs_path
*path
;
540 path
= btrfs_alloc_path();
543 path
->search_commit_root
= 1;
544 path
->skip_locking
= 1;
545 path
->need_commit_sem
= 1;
549 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
555 ret
= kernel_write(filp
, buf
+ pos
, len
- pos
, off
);
556 /* TODO handle that correctly */
557 /*if (ret == -ERESTARTSYS) {
571 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
573 struct btrfs_tlv_header
*hdr
;
574 int total_len
= sizeof(*hdr
) + len
;
575 int left
= sctx
->send_max_size
- sctx
->send_size
;
577 if (unlikely(left
< total_len
))
580 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
581 put_unaligned_le16(attr
, &hdr
->tlv_type
);
582 put_unaligned_le16(len
, &hdr
->tlv_len
);
583 memcpy(hdr
+ 1, data
, len
);
584 sctx
->send_size
+= total_len
;
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
597 TLV_PUT_DEFINE_INT(64)
599 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
600 const char *str
, int len
)
604 return tlv_put(sctx
, attr
, str
, len
);
607 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
610 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
613 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
614 struct extent_buffer
*eb
,
615 struct btrfs_timespec
*ts
)
617 struct btrfs_timespec bts
;
618 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
619 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
623 #define TLV_PUT(sctx, attrtype, data, attrlen) \
625 ret = tlv_put(sctx, attrtype, data, attrlen); \
627 goto tlv_put_failure; \
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
634 goto tlv_put_failure; \
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
645 goto tlv_put_failure; \
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
652 goto tlv_put_failure; \
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
658 goto tlv_put_failure; \
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
664 goto tlv_put_failure; \
667 static int send_header(struct send_ctx
*sctx
)
669 struct btrfs_stream_header hdr
;
671 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
672 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
674 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
679 * For each command/item we want to send to userspace, we call this function.
681 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
683 struct btrfs_cmd_header
*hdr
;
685 if (WARN_ON(!sctx
->send_buf
))
688 BUG_ON(sctx
->send_size
);
690 sctx
->send_size
+= sizeof(*hdr
);
691 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
692 put_unaligned_le16(cmd
, &hdr
->cmd
);
697 static int send_cmd(struct send_ctx
*sctx
)
700 struct btrfs_cmd_header
*hdr
;
703 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
704 put_unaligned_le32(sctx
->send_size
- sizeof(*hdr
), &hdr
->len
);
705 put_unaligned_le32(0, &hdr
->crc
);
707 crc
= btrfs_crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
708 put_unaligned_le32(crc
, &hdr
->crc
);
710 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
713 sctx
->total_send_size
+= sctx
->send_size
;
714 sctx
->cmd_send_size
[get_unaligned_le16(&hdr
->cmd
)] += sctx
->send_size
;
721 * Sends a move instruction to user space
723 static int send_rename(struct send_ctx
*sctx
,
724 struct fs_path
*from
, struct fs_path
*to
)
726 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
729 btrfs_debug(fs_info
, "send_rename %s -> %s", from
->start
, to
->start
);
731 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
735 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
736 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
738 ret
= send_cmd(sctx
);
746 * Sends a link instruction to user space
748 static int send_link(struct send_ctx
*sctx
,
749 struct fs_path
*path
, struct fs_path
*lnk
)
751 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
754 btrfs_debug(fs_info
, "send_link %s -> %s", path
->start
, lnk
->start
);
756 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
760 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
761 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
763 ret
= send_cmd(sctx
);
771 * Sends an unlink instruction to user space
773 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
775 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
778 btrfs_debug(fs_info
, "send_unlink %s", path
->start
);
780 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
784 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
786 ret
= send_cmd(sctx
);
794 * Sends a rmdir instruction to user space
796 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
798 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
801 btrfs_debug(fs_info
, "send_rmdir %s", path
->start
);
803 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
807 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
809 ret
= send_cmd(sctx
);
817 * Helper function to retrieve some fields from an inode item.
819 static int __get_inode_info(struct btrfs_root
*root
, struct btrfs_path
*path
,
820 u64 ino
, u64
*size
, u64
*gen
, u64
*mode
, u64
*uid
,
824 struct btrfs_inode_item
*ii
;
825 struct btrfs_key key
;
828 key
.type
= BTRFS_INODE_ITEM_KEY
;
830 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
837 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
838 struct btrfs_inode_item
);
840 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
842 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
844 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
846 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
848 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
850 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
855 static int get_inode_info(struct btrfs_root
*root
,
856 u64 ino
, u64
*size
, u64
*gen
,
857 u64
*mode
, u64
*uid
, u64
*gid
,
860 struct btrfs_path
*path
;
863 path
= alloc_path_for_send();
866 ret
= __get_inode_info(root
, path
, ino
, size
, gen
, mode
, uid
, gid
,
868 btrfs_free_path(path
);
872 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
882 * path must point to the INODE_REF or INODE_EXTREF when called.
884 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
885 struct btrfs_key
*found_key
, int resolve
,
886 iterate_inode_ref_t iterate
, void *ctx
)
888 struct extent_buffer
*eb
= path
->nodes
[0];
889 struct btrfs_item
*item
;
890 struct btrfs_inode_ref
*iref
;
891 struct btrfs_inode_extref
*extref
;
892 struct btrfs_path
*tmp_path
;
896 int slot
= path
->slots
[0];
903 unsigned long name_off
;
904 unsigned long elem_size
;
907 p
= fs_path_alloc_reversed();
911 tmp_path
= alloc_path_for_send();
918 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
919 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
920 struct btrfs_inode_ref
);
921 item
= btrfs_item_nr(slot
);
922 total
= btrfs_item_size(eb
, item
);
923 elem_size
= sizeof(*iref
);
925 ptr
= btrfs_item_ptr_offset(eb
, slot
);
926 total
= btrfs_item_size_nr(eb
, slot
);
927 elem_size
= sizeof(*extref
);
930 while (cur
< total
) {
933 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
934 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
935 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
936 name_off
= (unsigned long)(iref
+ 1);
937 index
= btrfs_inode_ref_index(eb
, iref
);
938 dir
= found_key
->offset
;
940 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
941 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
942 name_off
= (unsigned long)&extref
->name
;
943 index
= btrfs_inode_extref_index(eb
, extref
);
944 dir
= btrfs_inode_extref_parent(eb
, extref
);
948 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
952 ret
= PTR_ERR(start
);
955 if (start
< p
->buf
) {
956 /* overflow , try again with larger buffer */
957 ret
= fs_path_ensure_buf(p
,
958 p
->buf_len
+ p
->buf
- start
);
961 start
= btrfs_ref_to_path(root
, tmp_path
,
966 ret
= PTR_ERR(start
);
969 BUG_ON(start
< p
->buf
);
973 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
979 cur
+= elem_size
+ name_len
;
980 ret
= iterate(num
, dir
, index
, p
, ctx
);
987 btrfs_free_path(tmp_path
);
992 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
993 const char *name
, int name_len
,
994 const char *data
, int data_len
,
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1002 * path must point to the dir item when called.
1004 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
1005 iterate_dir_item_t iterate
, void *ctx
)
1008 struct extent_buffer
*eb
;
1009 struct btrfs_item
*item
;
1010 struct btrfs_dir_item
*di
;
1011 struct btrfs_key di_key
;
1024 * Start with a small buffer (1 page). If later we end up needing more
1025 * space, which can happen for xattrs on a fs with a leaf size greater
1026 * then the page size, attempt to increase the buffer. Typically xattr
1030 buf
= kmalloc(buf_len
, GFP_KERNEL
);
1036 eb
= path
->nodes
[0];
1037 slot
= path
->slots
[0];
1038 item
= btrfs_item_nr(slot
);
1039 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1042 total
= btrfs_item_size(eb
, item
);
1045 while (cur
< total
) {
1046 name_len
= btrfs_dir_name_len(eb
, di
);
1047 data_len
= btrfs_dir_data_len(eb
, di
);
1048 type
= btrfs_dir_type(eb
, di
);
1049 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1051 if (type
== BTRFS_FT_XATTR
) {
1052 if (name_len
> XATTR_NAME_MAX
) {
1053 ret
= -ENAMETOOLONG
;
1056 if (name_len
+ data_len
>
1057 BTRFS_MAX_XATTR_SIZE(root
->fs_info
)) {
1065 if (name_len
+ data_len
> PATH_MAX
) {
1066 ret
= -ENAMETOOLONG
;
1071 if (name_len
+ data_len
> buf_len
) {
1072 buf_len
= name_len
+ data_len
;
1073 if (is_vmalloc_addr(buf
)) {
1077 char *tmp
= krealloc(buf
, buf_len
,
1078 GFP_KERNEL
| __GFP_NOWARN
);
1085 buf
= kvmalloc(buf_len
, GFP_KERNEL
);
1093 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
1094 name_len
+ data_len
);
1096 len
= sizeof(*di
) + name_len
+ data_len
;
1097 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
1100 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
1101 data_len
, type
, ctx
);
1117 static int __copy_first_ref(int num
, u64 dir
, int index
,
1118 struct fs_path
*p
, void *ctx
)
1121 struct fs_path
*pt
= ctx
;
1123 ret
= fs_path_copy(pt
, p
);
1127 /* we want the first only */
1132 * Retrieve the first path of an inode. If an inode has more then one
1133 * ref/hardlink, this is ignored.
1135 static int get_inode_path(struct btrfs_root
*root
,
1136 u64 ino
, struct fs_path
*path
)
1139 struct btrfs_key key
, found_key
;
1140 struct btrfs_path
*p
;
1142 p
= alloc_path_for_send();
1146 fs_path_reset(path
);
1149 key
.type
= BTRFS_INODE_REF_KEY
;
1152 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1159 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1160 if (found_key
.objectid
!= ino
||
1161 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1162 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1167 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1168 __copy_first_ref
, path
);
1178 struct backref_ctx
{
1179 struct send_ctx
*sctx
;
1181 /* number of total found references */
1185 * used for clones found in send_root. clones found behind cur_objectid
1186 * and cur_offset are not considered as allowed clones.
1191 /* may be truncated in case it's the last extent in a file */
1194 /* data offset in the file extent item */
1197 /* Just to check for bugs in backref resolving */
1201 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1203 u64 root
= (u64
)(uintptr_t)key
;
1204 struct clone_root
*cr
= (struct clone_root
*)elt
;
1206 if (root
< cr
->root
->root_key
.objectid
)
1208 if (root
> cr
->root
->root_key
.objectid
)
1213 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1215 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1216 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1218 if (cr1
->root
->root_key
.objectid
< cr2
->root
->root_key
.objectid
)
1220 if (cr1
->root
->root_key
.objectid
> cr2
->root
->root_key
.objectid
)
1226 * Called for every backref that is found for the current extent.
1227 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1229 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1231 struct backref_ctx
*bctx
= ctx_
;
1232 struct clone_root
*found
;
1234 /* First check if the root is in the list of accepted clone sources */
1235 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1236 bctx
->sctx
->clone_roots_cnt
,
1237 sizeof(struct clone_root
),
1238 __clone_root_cmp_bsearch
);
1242 if (found
->root
== bctx
->sctx
->send_root
&&
1243 ino
== bctx
->cur_objectid
&&
1244 offset
== bctx
->cur_offset
) {
1245 bctx
->found_itself
= 1;
1249 * Make sure we don't consider clones from send_root that are
1250 * behind the current inode/offset.
1252 if (found
->root
== bctx
->sctx
->send_root
) {
1254 * If the source inode was not yet processed we can't issue a
1255 * clone operation, as the source extent does not exist yet at
1256 * the destination of the stream.
1258 if (ino
> bctx
->cur_objectid
)
1261 * We clone from the inode currently being sent as long as the
1262 * source extent is already processed, otherwise we could try
1263 * to clone from an extent that does not exist yet at the
1264 * destination of the stream.
1266 if (ino
== bctx
->cur_objectid
&&
1267 offset
+ bctx
->extent_len
>
1268 bctx
->sctx
->cur_inode_next_write_offset
)
1273 found
->found_refs
++;
1274 if (ino
< found
->ino
) {
1276 found
->offset
= offset
;
1277 } else if (found
->ino
== ino
) {
1279 * same extent found more then once in the same file.
1281 if (found
->offset
> offset
+ bctx
->extent_len
)
1282 found
->offset
= offset
;
1289 * Given an inode, offset and extent item, it finds a good clone for a clone
1290 * instruction. Returns -ENOENT when none could be found. The function makes
1291 * sure that the returned clone is usable at the point where sending is at the
1292 * moment. This means, that no clones are accepted which lie behind the current
1295 * path must point to the extent item when called.
1297 static int find_extent_clone(struct send_ctx
*sctx
,
1298 struct btrfs_path
*path
,
1299 u64 ino
, u64 data_offset
,
1301 struct clone_root
**found
)
1303 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
1309 u64 extent_item_pos
;
1311 struct btrfs_file_extent_item
*fi
;
1312 struct extent_buffer
*eb
= path
->nodes
[0];
1313 struct backref_ctx
*backref_ctx
= NULL
;
1314 struct clone_root
*cur_clone_root
;
1315 struct btrfs_key found_key
;
1316 struct btrfs_path
*tmp_path
;
1317 struct btrfs_extent_item
*ei
;
1321 tmp_path
= alloc_path_for_send();
1325 /* We only use this path under the commit sem */
1326 tmp_path
->need_commit_sem
= 0;
1328 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_KERNEL
);
1334 if (data_offset
>= ino_size
) {
1336 * There may be extents that lie behind the file's size.
1337 * I at least had this in combination with snapshotting while
1338 * writing large files.
1344 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1345 struct btrfs_file_extent_item
);
1346 extent_type
= btrfs_file_extent_type(eb
, fi
);
1347 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1351 compressed
= btrfs_file_extent_compression(eb
, fi
);
1353 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1354 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1355 if (disk_byte
== 0) {
1359 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1361 down_read(&fs_info
->commit_root_sem
);
1362 ret
= extent_from_logical(fs_info
, disk_byte
, tmp_path
,
1363 &found_key
, &flags
);
1364 up_read(&fs_info
->commit_root_sem
);
1368 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1373 ei
= btrfs_item_ptr(tmp_path
->nodes
[0], tmp_path
->slots
[0],
1374 struct btrfs_extent_item
);
1376 * Backreference walking (iterate_extent_inodes() below) is currently
1377 * too expensive when an extent has a large number of references, both
1378 * in time spent and used memory. So for now just fallback to write
1379 * operations instead of clone operations when an extent has more than
1380 * a certain amount of references.
1382 if (btrfs_extent_refs(tmp_path
->nodes
[0], ei
) > SEND_MAX_EXTENT_REFS
) {
1386 btrfs_release_path(tmp_path
);
1389 * Setup the clone roots.
1391 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1392 cur_clone_root
= sctx
->clone_roots
+ i
;
1393 cur_clone_root
->ino
= (u64
)-1;
1394 cur_clone_root
->offset
= 0;
1395 cur_clone_root
->found_refs
= 0;
1398 backref_ctx
->sctx
= sctx
;
1399 backref_ctx
->found
= 0;
1400 backref_ctx
->cur_objectid
= ino
;
1401 backref_ctx
->cur_offset
= data_offset
;
1402 backref_ctx
->found_itself
= 0;
1403 backref_ctx
->extent_len
= num_bytes
;
1405 * For non-compressed extents iterate_extent_inodes() gives us extent
1406 * offsets that already take into account the data offset, but not for
1407 * compressed extents, since the offset is logical and not relative to
1408 * the physical extent locations. We must take this into account to
1409 * avoid sending clone offsets that go beyond the source file's size,
1410 * which would result in the clone ioctl failing with -EINVAL on the
1413 if (compressed
== BTRFS_COMPRESS_NONE
)
1414 backref_ctx
->data_offset
= 0;
1416 backref_ctx
->data_offset
= btrfs_file_extent_offset(eb
, fi
);
1419 * The last extent of a file may be too large due to page alignment.
1420 * We need to adjust extent_len in this case so that the checks in
1421 * __iterate_backrefs work.
1423 if (data_offset
+ num_bytes
>= ino_size
)
1424 backref_ctx
->extent_len
= ino_size
- data_offset
;
1427 * Now collect all backrefs.
1429 if (compressed
== BTRFS_COMPRESS_NONE
)
1430 extent_item_pos
= logical
- found_key
.objectid
;
1432 extent_item_pos
= 0;
1433 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1434 extent_item_pos
, 1, __iterate_backrefs
,
1435 backref_ctx
, false);
1440 if (!backref_ctx
->found_itself
) {
1441 /* found a bug in backref code? */
1444 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1445 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1449 btrfs_debug(fs_info
,
1450 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1451 data_offset
, ino
, num_bytes
, logical
);
1453 if (!backref_ctx
->found
)
1454 btrfs_debug(fs_info
, "no clones found");
1456 cur_clone_root
= NULL
;
1457 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1458 if (sctx
->clone_roots
[i
].found_refs
) {
1459 if (!cur_clone_root
)
1460 cur_clone_root
= sctx
->clone_roots
+ i
;
1461 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1462 /* prefer clones from send_root over others */
1463 cur_clone_root
= sctx
->clone_roots
+ i
;
1468 if (cur_clone_root
) {
1469 *found
= cur_clone_root
;
1476 btrfs_free_path(tmp_path
);
1481 static int read_symlink(struct btrfs_root
*root
,
1483 struct fs_path
*dest
)
1486 struct btrfs_path
*path
;
1487 struct btrfs_key key
;
1488 struct btrfs_file_extent_item
*ei
;
1494 path
= alloc_path_for_send();
1499 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1501 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1506 * An empty symlink inode. Can happen in rare error paths when
1507 * creating a symlink (transaction committed before the inode
1508 * eviction handler removed the symlink inode items and a crash
1509 * happened in between or the subvol was snapshoted in between).
1510 * Print an informative message to dmesg/syslog so that the user
1511 * can delete the symlink.
1513 btrfs_err(root
->fs_info
,
1514 "Found empty symlink inode %llu at root %llu",
1515 ino
, root
->root_key
.objectid
);
1520 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1521 struct btrfs_file_extent_item
);
1522 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1523 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1524 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1525 BUG_ON(compression
);
1527 off
= btrfs_file_extent_inline_start(ei
);
1528 len
= btrfs_file_extent_ram_bytes(path
->nodes
[0], ei
);
1530 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1533 btrfs_free_path(path
);
1538 * Helper function to generate a file name that is unique in the root of
1539 * send_root and parent_root. This is used to generate names for orphan inodes.
1541 static int gen_unique_name(struct send_ctx
*sctx
,
1543 struct fs_path
*dest
)
1546 struct btrfs_path
*path
;
1547 struct btrfs_dir_item
*di
;
1552 path
= alloc_path_for_send();
1557 len
= snprintf(tmp
, sizeof(tmp
), "o%llu-%llu-%llu",
1559 ASSERT(len
< sizeof(tmp
));
1561 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1562 path
, BTRFS_FIRST_FREE_OBJECTID
,
1563 tmp
, strlen(tmp
), 0);
1564 btrfs_release_path(path
);
1570 /* not unique, try again */
1575 if (!sctx
->parent_root
) {
1581 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1582 path
, BTRFS_FIRST_FREE_OBJECTID
,
1583 tmp
, strlen(tmp
), 0);
1584 btrfs_release_path(path
);
1590 /* not unique, try again */
1598 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1601 btrfs_free_path(path
);
1606 inode_state_no_change
,
1607 inode_state_will_create
,
1608 inode_state_did_create
,
1609 inode_state_will_delete
,
1610 inode_state_did_delete
,
1613 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1621 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1623 if (ret
< 0 && ret
!= -ENOENT
)
1627 if (!sctx
->parent_root
) {
1628 right_ret
= -ENOENT
;
1630 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1631 NULL
, NULL
, NULL
, NULL
);
1632 if (ret
< 0 && ret
!= -ENOENT
)
1637 if (!left_ret
&& !right_ret
) {
1638 if (left_gen
== gen
&& right_gen
== gen
) {
1639 ret
= inode_state_no_change
;
1640 } else if (left_gen
== gen
) {
1641 if (ino
< sctx
->send_progress
)
1642 ret
= inode_state_did_create
;
1644 ret
= inode_state_will_create
;
1645 } else if (right_gen
== gen
) {
1646 if (ino
< sctx
->send_progress
)
1647 ret
= inode_state_did_delete
;
1649 ret
= inode_state_will_delete
;
1653 } else if (!left_ret
) {
1654 if (left_gen
== gen
) {
1655 if (ino
< sctx
->send_progress
)
1656 ret
= inode_state_did_create
;
1658 ret
= inode_state_will_create
;
1662 } else if (!right_ret
) {
1663 if (right_gen
== gen
) {
1664 if (ino
< sctx
->send_progress
)
1665 ret
= inode_state_did_delete
;
1667 ret
= inode_state_will_delete
;
1679 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1683 if (ino
== BTRFS_FIRST_FREE_OBJECTID
)
1686 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1690 if (ret
== inode_state_no_change
||
1691 ret
== inode_state_did_create
||
1692 ret
== inode_state_will_delete
)
1702 * Helper function to lookup a dir item in a dir.
1704 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1705 u64 dir
, const char *name
, int name_len
,
1710 struct btrfs_dir_item
*di
;
1711 struct btrfs_key key
;
1712 struct btrfs_path
*path
;
1714 path
= alloc_path_for_send();
1718 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1719 dir
, name
, name_len
, 0);
1720 if (IS_ERR_OR_NULL(di
)) {
1721 ret
= di
? PTR_ERR(di
) : -ENOENT
;
1724 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1725 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1729 *found_inode
= key
.objectid
;
1730 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1733 btrfs_free_path(path
);
1738 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1739 * generation of the parent dir and the name of the dir entry.
1741 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1742 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1745 struct btrfs_key key
;
1746 struct btrfs_key found_key
;
1747 struct btrfs_path
*path
;
1751 path
= alloc_path_for_send();
1756 key
.type
= BTRFS_INODE_REF_KEY
;
1759 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1763 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1765 if (ret
|| found_key
.objectid
!= ino
||
1766 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1767 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1772 if (found_key
.type
== BTRFS_INODE_REF_KEY
) {
1773 struct btrfs_inode_ref
*iref
;
1774 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1775 struct btrfs_inode_ref
);
1776 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1777 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1778 (unsigned long)(iref
+ 1),
1780 parent_dir
= found_key
.offset
;
1782 struct btrfs_inode_extref
*extref
;
1783 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1784 struct btrfs_inode_extref
);
1785 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1786 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1787 (unsigned long)&extref
->name
, len
);
1788 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1792 btrfs_release_path(path
);
1795 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
,
1804 btrfs_free_path(path
);
1808 static int is_first_ref(struct btrfs_root
*root
,
1810 const char *name
, int name_len
)
1813 struct fs_path
*tmp_name
;
1816 tmp_name
= fs_path_alloc();
1820 ret
= get_first_ref(root
, ino
, &tmp_dir
, NULL
, tmp_name
);
1824 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1829 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1832 fs_path_free(tmp_name
);
1837 * Used by process_recorded_refs to determine if a new ref would overwrite an
1838 * already existing ref. In case it detects an overwrite, it returns the
1839 * inode/gen in who_ino/who_gen.
1840 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1841 * to make sure later references to the overwritten inode are possible.
1842 * Orphanizing is however only required for the first ref of an inode.
1843 * process_recorded_refs does an additional is_first_ref check to see if
1844 * orphanizing is really required.
1846 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1847 const char *name
, int name_len
,
1848 u64
*who_ino
, u64
*who_gen
, u64
*who_mode
)
1852 u64 other_inode
= 0;
1855 if (!sctx
->parent_root
)
1858 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1863 * If we have a parent root we need to verify that the parent dir was
1864 * not deleted and then re-created, if it was then we have no overwrite
1865 * and we can just unlink this entry.
1867 if (sctx
->parent_root
&& dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1868 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1870 if (ret
< 0 && ret
!= -ENOENT
)
1880 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1881 &other_inode
, &other_type
);
1882 if (ret
< 0 && ret
!= -ENOENT
)
1890 * Check if the overwritten ref was already processed. If yes, the ref
1891 * was already unlinked/moved, so we can safely assume that we will not
1892 * overwrite anything at this point in time.
1894 if (other_inode
> sctx
->send_progress
||
1895 is_waiting_for_move(sctx
, other_inode
)) {
1896 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1897 who_gen
, who_mode
, NULL
, NULL
, NULL
);
1902 *who_ino
= other_inode
;
1912 * Checks if the ref was overwritten by an already processed inode. This is
1913 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1914 * thus the orphan name needs be used.
1915 * process_recorded_refs also uses it to avoid unlinking of refs that were
1918 static int did_overwrite_ref(struct send_ctx
*sctx
,
1919 u64 dir
, u64 dir_gen
,
1920 u64 ino
, u64 ino_gen
,
1921 const char *name
, int name_len
)
1928 if (!sctx
->parent_root
)
1931 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1935 if (dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1936 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &gen
, NULL
,
1938 if (ret
< 0 && ret
!= -ENOENT
)
1948 /* check if the ref was overwritten by another ref */
1949 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1950 &ow_inode
, &other_type
);
1951 if (ret
< 0 && ret
!= -ENOENT
)
1954 /* was never and will never be overwritten */
1959 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1964 if (ow_inode
== ino
&& gen
== ino_gen
) {
1970 * We know that it is or will be overwritten. Check this now.
1971 * The current inode being processed might have been the one that caused
1972 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1973 * the current inode being processed.
1975 if ((ow_inode
< sctx
->send_progress
) ||
1976 (ino
!= sctx
->cur_ino
&& ow_inode
== sctx
->cur_ino
&&
1977 gen
== sctx
->cur_inode_gen
))
1987 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1988 * that got overwritten. This is used by process_recorded_refs to determine
1989 * if it has to use the path as returned by get_cur_path or the orphan name.
1991 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1994 struct fs_path
*name
= NULL
;
1998 if (!sctx
->parent_root
)
2001 name
= fs_path_alloc();
2005 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
2009 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
2010 name
->start
, fs_path_len(name
));
2018 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2019 * so we need to do some special handling in case we have clashes. This function
2020 * takes care of this with the help of name_cache_entry::radix_list.
2021 * In case of error, nce is kfreed.
2023 static int name_cache_insert(struct send_ctx
*sctx
,
2024 struct name_cache_entry
*nce
)
2027 struct list_head
*nce_head
;
2029 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2030 (unsigned long)nce
->ino
);
2032 nce_head
= kmalloc(sizeof(*nce_head
), GFP_KERNEL
);
2037 INIT_LIST_HEAD(nce_head
);
2039 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
2046 list_add_tail(&nce
->radix_list
, nce_head
);
2047 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2048 sctx
->name_cache_size
++;
2053 static void name_cache_delete(struct send_ctx
*sctx
,
2054 struct name_cache_entry
*nce
)
2056 struct list_head
*nce_head
;
2058 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2059 (unsigned long)nce
->ino
);
2061 btrfs_err(sctx
->send_root
->fs_info
,
2062 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2063 nce
->ino
, sctx
->name_cache_size
);
2066 list_del(&nce
->radix_list
);
2067 list_del(&nce
->list
);
2068 sctx
->name_cache_size
--;
2071 * We may not get to the final release of nce_head if the lookup fails
2073 if (nce_head
&& list_empty(nce_head
)) {
2074 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
2079 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
2082 struct list_head
*nce_head
;
2083 struct name_cache_entry
*cur
;
2085 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
2089 list_for_each_entry(cur
, nce_head
, radix_list
) {
2090 if (cur
->ino
== ino
&& cur
->gen
== gen
)
2097 * Removes the entry from the list and adds it back to the end. This marks the
2098 * entry as recently used so that name_cache_clean_unused does not remove it.
2100 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
2102 list_del(&nce
->list
);
2103 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2107 * Remove some entries from the beginning of name_cache_list.
2109 static void name_cache_clean_unused(struct send_ctx
*sctx
)
2111 struct name_cache_entry
*nce
;
2113 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
2116 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
2117 nce
= list_entry(sctx
->name_cache_list
.next
,
2118 struct name_cache_entry
, list
);
2119 name_cache_delete(sctx
, nce
);
2124 static void name_cache_free(struct send_ctx
*sctx
)
2126 struct name_cache_entry
*nce
;
2128 while (!list_empty(&sctx
->name_cache_list
)) {
2129 nce
= list_entry(sctx
->name_cache_list
.next
,
2130 struct name_cache_entry
, list
);
2131 name_cache_delete(sctx
, nce
);
2137 * Used by get_cur_path for each ref up to the root.
2138 * Returns 0 if it succeeded.
2139 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2140 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2141 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2142 * Returns <0 in case of error.
2144 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
2148 struct fs_path
*dest
)
2152 struct name_cache_entry
*nce
= NULL
;
2155 * First check if we already did a call to this function with the same
2156 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2157 * return the cached result.
2159 nce
= name_cache_search(sctx
, ino
, gen
);
2161 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
2162 name_cache_delete(sctx
, nce
);
2166 name_cache_used(sctx
, nce
);
2167 *parent_ino
= nce
->parent_ino
;
2168 *parent_gen
= nce
->parent_gen
;
2169 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
2178 * If the inode is not existent yet, add the orphan name and return 1.
2179 * This should only happen for the parent dir that we determine in
2182 ret
= is_inode_existent(sctx
, ino
, gen
);
2187 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2195 * Depending on whether the inode was already processed or not, use
2196 * send_root or parent_root for ref lookup.
2198 if (ino
< sctx
->send_progress
)
2199 ret
= get_first_ref(sctx
->send_root
, ino
,
2200 parent_ino
, parent_gen
, dest
);
2202 ret
= get_first_ref(sctx
->parent_root
, ino
,
2203 parent_ino
, parent_gen
, dest
);
2208 * Check if the ref was overwritten by an inode's ref that was processed
2209 * earlier. If yes, treat as orphan and return 1.
2211 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2212 dest
->start
, dest
->end
- dest
->start
);
2216 fs_path_reset(dest
);
2217 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2225 * Store the result of the lookup in the name cache.
2227 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_KERNEL
);
2235 nce
->parent_ino
= *parent_ino
;
2236 nce
->parent_gen
= *parent_gen
;
2237 nce
->name_len
= fs_path_len(dest
);
2239 strcpy(nce
->name
, dest
->start
);
2241 if (ino
< sctx
->send_progress
)
2242 nce
->need_later_update
= 0;
2244 nce
->need_later_update
= 1;
2246 nce_ret
= name_cache_insert(sctx
, nce
);
2249 name_cache_clean_unused(sctx
);
2256 * Magic happens here. This function returns the first ref to an inode as it
2257 * would look like while receiving the stream at this point in time.
2258 * We walk the path up to the root. For every inode in between, we check if it
2259 * was already processed/sent. If yes, we continue with the parent as found
2260 * in send_root. If not, we continue with the parent as found in parent_root.
2261 * If we encounter an inode that was deleted at this point in time, we use the
2262 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2263 * that were not created yet and overwritten inodes/refs.
2265 * When do we have orphan inodes:
2266 * 1. When an inode is freshly created and thus no valid refs are available yet
2267 * 2. When a directory lost all it's refs (deleted) but still has dir items
2268 * inside which were not processed yet (pending for move/delete). If anyone
2269 * tried to get the path to the dir items, it would get a path inside that
2271 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2272 * of an unprocessed inode. If in that case the first ref would be
2273 * overwritten, the overwritten inode gets "orphanized". Later when we
2274 * process this overwritten inode, it is restored at a new place by moving
2277 * sctx->send_progress tells this function at which point in time receiving
2280 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2281 struct fs_path
*dest
)
2284 struct fs_path
*name
= NULL
;
2285 u64 parent_inode
= 0;
2289 name
= fs_path_alloc();
2296 fs_path_reset(dest
);
2298 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2299 struct waiting_dir_move
*wdm
;
2301 fs_path_reset(name
);
2303 if (is_waiting_for_rm(sctx
, ino
, gen
)) {
2304 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2307 ret
= fs_path_add_path(dest
, name
);
2311 wdm
= get_waiting_dir_move(sctx
, ino
);
2312 if (wdm
&& wdm
->orphanized
) {
2313 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2316 ret
= get_first_ref(sctx
->parent_root
, ino
,
2317 &parent_inode
, &parent_gen
, name
);
2319 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2329 ret
= fs_path_add_path(dest
, name
);
2340 fs_path_unreverse(dest
);
2345 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2347 static int send_subvol_begin(struct send_ctx
*sctx
)
2350 struct btrfs_root
*send_root
= sctx
->send_root
;
2351 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2352 struct btrfs_path
*path
;
2353 struct btrfs_key key
;
2354 struct btrfs_root_ref
*ref
;
2355 struct extent_buffer
*leaf
;
2359 path
= btrfs_alloc_path();
2363 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_KERNEL
);
2365 btrfs_free_path(path
);
2369 key
.objectid
= send_root
->root_key
.objectid
;
2370 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2373 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2382 leaf
= path
->nodes
[0];
2383 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2384 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2385 key
.objectid
!= send_root
->root_key
.objectid
) {
2389 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2390 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2391 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2392 btrfs_release_path(path
);
2395 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2399 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2404 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2406 if (!btrfs_is_empty_uuid(sctx
->send_root
->root_item
.received_uuid
))
2407 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2408 sctx
->send_root
->root_item
.received_uuid
);
2410 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2411 sctx
->send_root
->root_item
.uuid
);
2413 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2414 btrfs_root_ctransid(&sctx
->send_root
->root_item
));
2416 if (!btrfs_is_empty_uuid(parent_root
->root_item
.received_uuid
))
2417 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2418 parent_root
->root_item
.received_uuid
);
2420 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2421 parent_root
->root_item
.uuid
);
2422 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2423 btrfs_root_ctransid(&sctx
->parent_root
->root_item
));
2426 ret
= send_cmd(sctx
);
2430 btrfs_free_path(path
);
2435 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2437 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2441 btrfs_debug(fs_info
, "send_truncate %llu size=%llu", ino
, size
);
2443 p
= fs_path_alloc();
2447 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2451 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2454 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2455 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2457 ret
= send_cmd(sctx
);
2465 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2467 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2471 btrfs_debug(fs_info
, "send_chmod %llu mode=%llu", ino
, mode
);
2473 p
= fs_path_alloc();
2477 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2481 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2484 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2485 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2487 ret
= send_cmd(sctx
);
2495 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2497 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2501 btrfs_debug(fs_info
, "send_chown %llu uid=%llu, gid=%llu",
2504 p
= fs_path_alloc();
2508 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2512 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2515 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2516 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2517 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2519 ret
= send_cmd(sctx
);
2527 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2529 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2531 struct fs_path
*p
= NULL
;
2532 struct btrfs_inode_item
*ii
;
2533 struct btrfs_path
*path
= NULL
;
2534 struct extent_buffer
*eb
;
2535 struct btrfs_key key
;
2538 btrfs_debug(fs_info
, "send_utimes %llu", ino
);
2540 p
= fs_path_alloc();
2544 path
= alloc_path_for_send();
2551 key
.type
= BTRFS_INODE_ITEM_KEY
;
2553 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2559 eb
= path
->nodes
[0];
2560 slot
= path
->slots
[0];
2561 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2563 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2567 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2570 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2571 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
, &ii
->atime
);
2572 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
, &ii
->mtime
);
2573 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
, &ii
->ctime
);
2574 /* TODO Add otime support when the otime patches get into upstream */
2576 ret
= send_cmd(sctx
);
2581 btrfs_free_path(path
);
2586 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2587 * a valid path yet because we did not process the refs yet. So, the inode
2588 * is created as orphan.
2590 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2592 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2600 btrfs_debug(fs_info
, "send_create_inode %llu", ino
);
2602 p
= fs_path_alloc();
2606 if (ino
!= sctx
->cur_ino
) {
2607 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
,
2612 gen
= sctx
->cur_inode_gen
;
2613 mode
= sctx
->cur_inode_mode
;
2614 rdev
= sctx
->cur_inode_rdev
;
2617 if (S_ISREG(mode
)) {
2618 cmd
= BTRFS_SEND_C_MKFILE
;
2619 } else if (S_ISDIR(mode
)) {
2620 cmd
= BTRFS_SEND_C_MKDIR
;
2621 } else if (S_ISLNK(mode
)) {
2622 cmd
= BTRFS_SEND_C_SYMLINK
;
2623 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2624 cmd
= BTRFS_SEND_C_MKNOD
;
2625 } else if (S_ISFIFO(mode
)) {
2626 cmd
= BTRFS_SEND_C_MKFIFO
;
2627 } else if (S_ISSOCK(mode
)) {
2628 cmd
= BTRFS_SEND_C_MKSOCK
;
2630 btrfs_warn(sctx
->send_root
->fs_info
, "unexpected inode type %o",
2631 (int)(mode
& S_IFMT
));
2636 ret
= begin_cmd(sctx
, cmd
);
2640 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2644 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2645 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2647 if (S_ISLNK(mode
)) {
2649 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2652 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2653 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2654 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2655 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2656 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2659 ret
= send_cmd(sctx
);
2671 * We need some special handling for inodes that get processed before the parent
2672 * directory got created. See process_recorded_refs for details.
2673 * This function does the check if we already created the dir out of order.
2675 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2678 struct btrfs_path
*path
= NULL
;
2679 struct btrfs_key key
;
2680 struct btrfs_key found_key
;
2681 struct btrfs_key di_key
;
2682 struct extent_buffer
*eb
;
2683 struct btrfs_dir_item
*di
;
2686 path
= alloc_path_for_send();
2693 key
.type
= BTRFS_DIR_INDEX_KEY
;
2695 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2700 eb
= path
->nodes
[0];
2701 slot
= path
->slots
[0];
2702 if (slot
>= btrfs_header_nritems(eb
)) {
2703 ret
= btrfs_next_leaf(sctx
->send_root
, path
);
2706 } else if (ret
> 0) {
2713 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2714 if (found_key
.objectid
!= key
.objectid
||
2715 found_key
.type
!= key
.type
) {
2720 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2721 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2723 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2724 di_key
.objectid
< sctx
->send_progress
) {
2733 btrfs_free_path(path
);
2738 * Only creates the inode if it is:
2739 * 1. Not a directory
2740 * 2. Or a directory which was not created already due to out of order
2741 * directories. See did_create_dir and process_recorded_refs for details.
2743 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2747 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2748 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2757 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2765 struct recorded_ref
{
2766 struct list_head list
;
2768 struct fs_path
*full_path
;
2774 static void set_ref_path(struct recorded_ref
*ref
, struct fs_path
*path
)
2776 ref
->full_path
= path
;
2777 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2778 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2782 * We need to process new refs before deleted refs, but compare_tree gives us
2783 * everything mixed. So we first record all refs and later process them.
2784 * This function is a helper to record one ref.
2786 static int __record_ref(struct list_head
*head
, u64 dir
,
2787 u64 dir_gen
, struct fs_path
*path
)
2789 struct recorded_ref
*ref
;
2791 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
2796 ref
->dir_gen
= dir_gen
;
2797 set_ref_path(ref
, path
);
2798 list_add_tail(&ref
->list
, head
);
2802 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2804 struct recorded_ref
*new;
2806 new = kmalloc(sizeof(*ref
), GFP_KERNEL
);
2810 new->dir
= ref
->dir
;
2811 new->dir_gen
= ref
->dir_gen
;
2812 new->full_path
= NULL
;
2813 INIT_LIST_HEAD(&new->list
);
2814 list_add_tail(&new->list
, list
);
2818 static void __free_recorded_refs(struct list_head
*head
)
2820 struct recorded_ref
*cur
;
2822 while (!list_empty(head
)) {
2823 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2824 fs_path_free(cur
->full_path
);
2825 list_del(&cur
->list
);
2830 static void free_recorded_refs(struct send_ctx
*sctx
)
2832 __free_recorded_refs(&sctx
->new_refs
);
2833 __free_recorded_refs(&sctx
->deleted_refs
);
2837 * Renames/moves a file/dir to its orphan name. Used when the first
2838 * ref of an unprocessed inode gets overwritten and for all non empty
2841 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2842 struct fs_path
*path
)
2845 struct fs_path
*orphan
;
2847 orphan
= fs_path_alloc();
2851 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2855 ret
= send_rename(sctx
, path
, orphan
);
2858 fs_path_free(orphan
);
2862 static struct orphan_dir_info
*add_orphan_dir_info(struct send_ctx
*sctx
,
2863 u64 dir_ino
, u64 dir_gen
)
2865 struct rb_node
**p
= &sctx
->orphan_dirs
.rb_node
;
2866 struct rb_node
*parent
= NULL
;
2867 struct orphan_dir_info
*entry
, *odi
;
2871 entry
= rb_entry(parent
, struct orphan_dir_info
, node
);
2872 if (dir_ino
< entry
->ino
)
2874 else if (dir_ino
> entry
->ino
)
2875 p
= &(*p
)->rb_right
;
2876 else if (dir_gen
< entry
->gen
)
2878 else if (dir_gen
> entry
->gen
)
2879 p
= &(*p
)->rb_right
;
2884 odi
= kmalloc(sizeof(*odi
), GFP_KERNEL
);
2886 return ERR_PTR(-ENOMEM
);
2889 odi
->last_dir_index_offset
= 0;
2891 rb_link_node(&odi
->node
, parent
, p
);
2892 rb_insert_color(&odi
->node
, &sctx
->orphan_dirs
);
2896 static struct orphan_dir_info
*get_orphan_dir_info(struct send_ctx
*sctx
,
2897 u64 dir_ino
, u64 gen
)
2899 struct rb_node
*n
= sctx
->orphan_dirs
.rb_node
;
2900 struct orphan_dir_info
*entry
;
2903 entry
= rb_entry(n
, struct orphan_dir_info
, node
);
2904 if (dir_ino
< entry
->ino
)
2906 else if (dir_ino
> entry
->ino
)
2908 else if (gen
< entry
->gen
)
2910 else if (gen
> entry
->gen
)
2918 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
, u64 gen
)
2920 struct orphan_dir_info
*odi
= get_orphan_dir_info(sctx
, dir_ino
, gen
);
2925 static void free_orphan_dir_info(struct send_ctx
*sctx
,
2926 struct orphan_dir_info
*odi
)
2930 rb_erase(&odi
->node
, &sctx
->orphan_dirs
);
2935 * Returns 1 if a directory can be removed at this point in time.
2936 * We check this by iterating all dir items and checking if the inode behind
2937 * the dir item was already processed.
2939 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
2943 struct btrfs_root
*root
= sctx
->parent_root
;
2944 struct btrfs_path
*path
;
2945 struct btrfs_key key
;
2946 struct btrfs_key found_key
;
2947 struct btrfs_key loc
;
2948 struct btrfs_dir_item
*di
;
2949 struct orphan_dir_info
*odi
= NULL
;
2952 * Don't try to rmdir the top/root subvolume dir.
2954 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2957 path
= alloc_path_for_send();
2962 key
.type
= BTRFS_DIR_INDEX_KEY
;
2965 odi
= get_orphan_dir_info(sctx
, dir
, dir_gen
);
2967 key
.offset
= odi
->last_dir_index_offset
;
2969 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2974 struct waiting_dir_move
*dm
;
2976 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2977 ret
= btrfs_next_leaf(root
, path
);
2984 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2986 if (found_key
.objectid
!= key
.objectid
||
2987 found_key
.type
!= key
.type
)
2990 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2991 struct btrfs_dir_item
);
2992 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2994 dm
= get_waiting_dir_move(sctx
, loc
.objectid
);
2996 odi
= add_orphan_dir_info(sctx
, dir
, dir_gen
);
3002 odi
->last_dir_index_offset
= found_key
.offset
;
3003 dm
->rmdir_ino
= dir
;
3004 dm
->rmdir_gen
= dir_gen
;
3009 if (loc
.objectid
> send_progress
) {
3010 odi
= add_orphan_dir_info(sctx
, dir
, dir_gen
);
3016 odi
->last_dir_index_offset
= found_key
.offset
;
3023 free_orphan_dir_info(sctx
, odi
);
3028 btrfs_free_path(path
);
3032 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
)
3034 struct waiting_dir_move
*entry
= get_waiting_dir_move(sctx
, ino
);
3036 return entry
!= NULL
;
3039 static int add_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
, bool orphanized
)
3041 struct rb_node
**p
= &sctx
->waiting_dir_moves
.rb_node
;
3042 struct rb_node
*parent
= NULL
;
3043 struct waiting_dir_move
*entry
, *dm
;
3045 dm
= kmalloc(sizeof(*dm
), GFP_KERNEL
);
3051 dm
->orphanized
= orphanized
;
3055 entry
= rb_entry(parent
, struct waiting_dir_move
, node
);
3056 if (ino
< entry
->ino
) {
3058 } else if (ino
> entry
->ino
) {
3059 p
= &(*p
)->rb_right
;
3066 rb_link_node(&dm
->node
, parent
, p
);
3067 rb_insert_color(&dm
->node
, &sctx
->waiting_dir_moves
);
3071 static struct waiting_dir_move
*
3072 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
3074 struct rb_node
*n
= sctx
->waiting_dir_moves
.rb_node
;
3075 struct waiting_dir_move
*entry
;
3078 entry
= rb_entry(n
, struct waiting_dir_move
, node
);
3079 if (ino
< entry
->ino
)
3081 else if (ino
> entry
->ino
)
3089 static void free_waiting_dir_move(struct send_ctx
*sctx
,
3090 struct waiting_dir_move
*dm
)
3094 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
3098 static int add_pending_dir_move(struct send_ctx
*sctx
,
3102 struct list_head
*new_refs
,
3103 struct list_head
*deleted_refs
,
3104 const bool is_orphan
)
3106 struct rb_node
**p
= &sctx
->pending_dir_moves
.rb_node
;
3107 struct rb_node
*parent
= NULL
;
3108 struct pending_dir_move
*entry
= NULL
, *pm
;
3109 struct recorded_ref
*cur
;
3113 pm
= kmalloc(sizeof(*pm
), GFP_KERNEL
);
3116 pm
->parent_ino
= parent_ino
;
3119 INIT_LIST_HEAD(&pm
->list
);
3120 INIT_LIST_HEAD(&pm
->update_refs
);
3121 RB_CLEAR_NODE(&pm
->node
);
3125 entry
= rb_entry(parent
, struct pending_dir_move
, node
);
3126 if (parent_ino
< entry
->parent_ino
) {
3128 } else if (parent_ino
> entry
->parent_ino
) {
3129 p
= &(*p
)->rb_right
;
3136 list_for_each_entry(cur
, deleted_refs
, list
) {
3137 ret
= dup_ref(cur
, &pm
->update_refs
);
3141 list_for_each_entry(cur
, new_refs
, list
) {
3142 ret
= dup_ref(cur
, &pm
->update_refs
);
3147 ret
= add_waiting_dir_move(sctx
, pm
->ino
, is_orphan
);
3152 list_add_tail(&pm
->list
, &entry
->list
);
3154 rb_link_node(&pm
->node
, parent
, p
);
3155 rb_insert_color(&pm
->node
, &sctx
->pending_dir_moves
);
3160 __free_recorded_refs(&pm
->update_refs
);
3166 static struct pending_dir_move
*get_pending_dir_moves(struct send_ctx
*sctx
,
3169 struct rb_node
*n
= sctx
->pending_dir_moves
.rb_node
;
3170 struct pending_dir_move
*entry
;
3173 entry
= rb_entry(n
, struct pending_dir_move
, node
);
3174 if (parent_ino
< entry
->parent_ino
)
3176 else if (parent_ino
> entry
->parent_ino
)
3184 static int path_loop(struct send_ctx
*sctx
, struct fs_path
*name
,
3185 u64 ino
, u64 gen
, u64
*ancestor_ino
)
3188 u64 parent_inode
= 0;
3190 u64 start_ino
= ino
;
3193 while (ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
3194 fs_path_reset(name
);
3196 if (is_waiting_for_rm(sctx
, ino
, gen
))
3198 if (is_waiting_for_move(sctx
, ino
)) {
3199 if (*ancestor_ino
== 0)
3200 *ancestor_ino
= ino
;
3201 ret
= get_first_ref(sctx
->parent_root
, ino
,
3202 &parent_inode
, &parent_gen
, name
);
3204 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
3214 if (parent_inode
== start_ino
) {
3216 if (*ancestor_ino
== 0)
3217 *ancestor_ino
= ino
;
3226 static int apply_dir_move(struct send_ctx
*sctx
, struct pending_dir_move
*pm
)
3228 struct fs_path
*from_path
= NULL
;
3229 struct fs_path
*to_path
= NULL
;
3230 struct fs_path
*name
= NULL
;
3231 u64 orig_progress
= sctx
->send_progress
;
3232 struct recorded_ref
*cur
;
3233 u64 parent_ino
, parent_gen
;
3234 struct waiting_dir_move
*dm
= NULL
;
3241 name
= fs_path_alloc();
3242 from_path
= fs_path_alloc();
3243 if (!name
|| !from_path
) {
3248 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3250 rmdir_ino
= dm
->rmdir_ino
;
3251 rmdir_gen
= dm
->rmdir_gen
;
3252 is_orphan
= dm
->orphanized
;
3253 free_waiting_dir_move(sctx
, dm
);
3256 ret
= gen_unique_name(sctx
, pm
->ino
,
3257 pm
->gen
, from_path
);
3259 ret
= get_first_ref(sctx
->parent_root
, pm
->ino
,
3260 &parent_ino
, &parent_gen
, name
);
3263 ret
= get_cur_path(sctx
, parent_ino
, parent_gen
,
3267 ret
= fs_path_add_path(from_path
, name
);
3272 sctx
->send_progress
= sctx
->cur_ino
+ 1;
3273 ret
= path_loop(sctx
, name
, pm
->ino
, pm
->gen
, &ancestor
);
3277 LIST_HEAD(deleted_refs
);
3278 ASSERT(ancestor
> BTRFS_FIRST_FREE_OBJECTID
);
3279 ret
= add_pending_dir_move(sctx
, pm
->ino
, pm
->gen
, ancestor
,
3280 &pm
->update_refs
, &deleted_refs
,
3285 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3287 dm
->rmdir_ino
= rmdir_ino
;
3288 dm
->rmdir_gen
= rmdir_gen
;
3292 fs_path_reset(name
);
3295 ret
= get_cur_path(sctx
, pm
->ino
, pm
->gen
, to_path
);
3299 ret
= send_rename(sctx
, from_path
, to_path
);
3304 struct orphan_dir_info
*odi
;
3307 odi
= get_orphan_dir_info(sctx
, rmdir_ino
, rmdir_gen
);
3309 /* already deleted */
3314 ret
= can_rmdir(sctx
, rmdir_ino
, gen
, sctx
->cur_ino
);
3320 name
= fs_path_alloc();
3325 ret
= get_cur_path(sctx
, rmdir_ino
, gen
, name
);
3328 ret
= send_rmdir(sctx
, name
);
3334 ret
= send_utimes(sctx
, pm
->ino
, pm
->gen
);
3339 * After rename/move, need to update the utimes of both new parent(s)
3340 * and old parent(s).
3342 list_for_each_entry(cur
, &pm
->update_refs
, list
) {
3344 * The parent inode might have been deleted in the send snapshot
3346 ret
= get_inode_info(sctx
->send_root
, cur
->dir
, NULL
,
3347 NULL
, NULL
, NULL
, NULL
, NULL
);
3348 if (ret
== -ENOENT
) {
3355 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3362 fs_path_free(from_path
);
3363 fs_path_free(to_path
);
3364 sctx
->send_progress
= orig_progress
;
3369 static void free_pending_move(struct send_ctx
*sctx
, struct pending_dir_move
*m
)
3371 if (!list_empty(&m
->list
))
3373 if (!RB_EMPTY_NODE(&m
->node
))
3374 rb_erase(&m
->node
, &sctx
->pending_dir_moves
);
3375 __free_recorded_refs(&m
->update_refs
);
3379 static void tail_append_pending_moves(struct send_ctx
*sctx
,
3380 struct pending_dir_move
*moves
,
3381 struct list_head
*stack
)
3383 if (list_empty(&moves
->list
)) {
3384 list_add_tail(&moves
->list
, stack
);
3387 list_splice_init(&moves
->list
, &list
);
3388 list_add_tail(&moves
->list
, stack
);
3389 list_splice_tail(&list
, stack
);
3391 if (!RB_EMPTY_NODE(&moves
->node
)) {
3392 rb_erase(&moves
->node
, &sctx
->pending_dir_moves
);
3393 RB_CLEAR_NODE(&moves
->node
);
3397 static int apply_children_dir_moves(struct send_ctx
*sctx
)
3399 struct pending_dir_move
*pm
;
3400 struct list_head stack
;
3401 u64 parent_ino
= sctx
->cur_ino
;
3404 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3408 INIT_LIST_HEAD(&stack
);
3409 tail_append_pending_moves(sctx
, pm
, &stack
);
3411 while (!list_empty(&stack
)) {
3412 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3413 parent_ino
= pm
->ino
;
3414 ret
= apply_dir_move(sctx
, pm
);
3415 free_pending_move(sctx
, pm
);
3418 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3420 tail_append_pending_moves(sctx
, pm
, &stack
);
3425 while (!list_empty(&stack
)) {
3426 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3427 free_pending_move(sctx
, pm
);
3433 * We might need to delay a directory rename even when no ancestor directory
3434 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3435 * renamed. This happens when we rename a directory to the old name (the name
3436 * in the parent root) of some other unrelated directory that got its rename
3437 * delayed due to some ancestor with higher number that got renamed.
3443 * |---- a/ (ino 257)
3444 * | |---- file (ino 260)
3446 * |---- b/ (ino 258)
3447 * |---- c/ (ino 259)
3451 * |---- a/ (ino 258)
3452 * |---- x/ (ino 259)
3453 * |---- y/ (ino 257)
3454 * |----- file (ino 260)
3456 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3457 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3458 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3461 * 1 - rename 259 from 'c' to 'x'
3462 * 2 - rename 257 from 'a' to 'x/y'
3463 * 3 - rename 258 from 'b' to 'a'
3465 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3466 * be done right away and < 0 on error.
3468 static int wait_for_dest_dir_move(struct send_ctx
*sctx
,
3469 struct recorded_ref
*parent_ref
,
3470 const bool is_orphan
)
3472 struct btrfs_fs_info
*fs_info
= sctx
->parent_root
->fs_info
;
3473 struct btrfs_path
*path
;
3474 struct btrfs_key key
;
3475 struct btrfs_key di_key
;
3476 struct btrfs_dir_item
*di
;
3480 struct waiting_dir_move
*wdm
;
3482 if (RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
))
3485 path
= alloc_path_for_send();
3489 key
.objectid
= parent_ref
->dir
;
3490 key
.type
= BTRFS_DIR_ITEM_KEY
;
3491 key
.offset
= btrfs_name_hash(parent_ref
->name
, parent_ref
->name_len
);
3493 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
3496 } else if (ret
> 0) {
3501 di
= btrfs_match_dir_item_name(fs_info
, path
, parent_ref
->name
,
3502 parent_ref
->name_len
);
3508 * di_key.objectid has the number of the inode that has a dentry in the
3509 * parent directory with the same name that sctx->cur_ino is being
3510 * renamed to. We need to check if that inode is in the send root as
3511 * well and if it is currently marked as an inode with a pending rename,
3512 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3513 * that it happens after that other inode is renamed.
3515 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &di_key
);
3516 if (di_key
.type
!= BTRFS_INODE_ITEM_KEY
) {
3521 ret
= get_inode_info(sctx
->parent_root
, di_key
.objectid
, NULL
,
3522 &left_gen
, NULL
, NULL
, NULL
, NULL
);
3525 ret
= get_inode_info(sctx
->send_root
, di_key
.objectid
, NULL
,
3526 &right_gen
, NULL
, NULL
, NULL
, NULL
);
3533 /* Different inode, no need to delay the rename of sctx->cur_ino */
3534 if (right_gen
!= left_gen
) {
3539 wdm
= get_waiting_dir_move(sctx
, di_key
.objectid
);
3540 if (wdm
&& !wdm
->orphanized
) {
3541 ret
= add_pending_dir_move(sctx
,
3543 sctx
->cur_inode_gen
,
3546 &sctx
->deleted_refs
,
3552 btrfs_free_path(path
);
3557 * Check if inode ino2, or any of its ancestors, is inode ino1.
3558 * Return 1 if true, 0 if false and < 0 on error.
3560 static int check_ino_in_path(struct btrfs_root
*root
,
3565 struct fs_path
*fs_path
)
3570 return ino1_gen
== ino2_gen
;
3572 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3577 fs_path_reset(fs_path
);
3578 ret
= get_first_ref(root
, ino
, &parent
, &parent_gen
, fs_path
);
3582 return parent_gen
== ino1_gen
;
3589 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3590 * possible path (in case ino2 is not a directory and has multiple hard links).
3591 * Return 1 if true, 0 if false and < 0 on error.
3593 static int is_ancestor(struct btrfs_root
*root
,
3597 struct fs_path
*fs_path
)
3599 bool free_fs_path
= false;
3601 struct btrfs_path
*path
= NULL
;
3602 struct btrfs_key key
;
3605 fs_path
= fs_path_alloc();
3608 free_fs_path
= true;
3611 path
= alloc_path_for_send();
3617 key
.objectid
= ino2
;
3618 key
.type
= BTRFS_INODE_REF_KEY
;
3621 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3626 struct extent_buffer
*leaf
= path
->nodes
[0];
3627 int slot
= path
->slots
[0];
3631 if (slot
>= btrfs_header_nritems(leaf
)) {
3632 ret
= btrfs_next_leaf(root
, path
);
3640 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3641 if (key
.objectid
!= ino2
)
3643 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
3644 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
3647 item_size
= btrfs_item_size_nr(leaf
, slot
);
3648 while (cur_offset
< item_size
) {
3652 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
3654 struct btrfs_inode_extref
*extref
;
3656 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
3657 extref
= (struct btrfs_inode_extref
*)
3659 parent
= btrfs_inode_extref_parent(leaf
,
3661 cur_offset
+= sizeof(*extref
);
3662 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
3665 parent
= key
.offset
;
3666 cur_offset
= item_size
;
3669 ret
= get_inode_info(root
, parent
, NULL
, &parent_gen
,
3670 NULL
, NULL
, NULL
, NULL
);
3673 ret
= check_ino_in_path(root
, ino1
, ino1_gen
,
3674 parent
, parent_gen
, fs_path
);
3682 btrfs_free_path(path
);
3684 fs_path_free(fs_path
);
3688 static int wait_for_parent_move(struct send_ctx
*sctx
,
3689 struct recorded_ref
*parent_ref
,
3690 const bool is_orphan
)
3693 u64 ino
= parent_ref
->dir
;
3694 u64 ino_gen
= parent_ref
->dir_gen
;
3695 u64 parent_ino_before
, parent_ino_after
;
3696 struct fs_path
*path_before
= NULL
;
3697 struct fs_path
*path_after
= NULL
;
3700 path_after
= fs_path_alloc();
3701 path_before
= fs_path_alloc();
3702 if (!path_after
|| !path_before
) {
3708 * Our current directory inode may not yet be renamed/moved because some
3709 * ancestor (immediate or not) has to be renamed/moved first. So find if
3710 * such ancestor exists and make sure our own rename/move happens after
3711 * that ancestor is processed to avoid path build infinite loops (done
3712 * at get_cur_path()).
3714 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3715 u64 parent_ino_after_gen
;
3717 if (is_waiting_for_move(sctx
, ino
)) {
3719 * If the current inode is an ancestor of ino in the
3720 * parent root, we need to delay the rename of the
3721 * current inode, otherwise don't delayed the rename
3722 * because we can end up with a circular dependency
3723 * of renames, resulting in some directories never
3724 * getting the respective rename operations issued in
3725 * the send stream or getting into infinite path build
3728 ret
= is_ancestor(sctx
->parent_root
,
3729 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3735 fs_path_reset(path_before
);
3736 fs_path_reset(path_after
);
3738 ret
= get_first_ref(sctx
->send_root
, ino
, &parent_ino_after
,
3739 &parent_ino_after_gen
, path_after
);
3742 ret
= get_first_ref(sctx
->parent_root
, ino
, &parent_ino_before
,
3744 if (ret
< 0 && ret
!= -ENOENT
) {
3746 } else if (ret
== -ENOENT
) {
3751 len1
= fs_path_len(path_before
);
3752 len2
= fs_path_len(path_after
);
3753 if (ino
> sctx
->cur_ino
&&
3754 (parent_ino_before
!= parent_ino_after
|| len1
!= len2
||
3755 memcmp(path_before
->start
, path_after
->start
, len1
))) {
3758 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
,
3759 &parent_ino_gen
, NULL
, NULL
, NULL
,
3763 if (ino_gen
== parent_ino_gen
) {
3768 ino
= parent_ino_after
;
3769 ino_gen
= parent_ino_after_gen
;
3773 fs_path_free(path_before
);
3774 fs_path_free(path_after
);
3777 ret
= add_pending_dir_move(sctx
,
3779 sctx
->cur_inode_gen
,
3782 &sctx
->deleted_refs
,
3791 static int update_ref_path(struct send_ctx
*sctx
, struct recorded_ref
*ref
)
3794 struct fs_path
*new_path
;
3797 * Our reference's name member points to its full_path member string, so
3798 * we use here a new path.
3800 new_path
= fs_path_alloc();
3804 ret
= get_cur_path(sctx
, ref
->dir
, ref
->dir_gen
, new_path
);
3806 fs_path_free(new_path
);
3809 ret
= fs_path_add(new_path
, ref
->name
, ref
->name_len
);
3811 fs_path_free(new_path
);
3815 fs_path_free(ref
->full_path
);
3816 set_ref_path(ref
, new_path
);
3822 * When processing the new references for an inode we may orphanize an existing
3823 * directory inode because its old name conflicts with one of the new references
3824 * of the current inode. Later, when processing another new reference of our
3825 * inode, we might need to orphanize another inode, but the path we have in the
3826 * reference reflects the pre-orphanization name of the directory we previously
3827 * orphanized. For example:
3829 * parent snapshot looks like:
3832 * |----- f1 (ino 257)
3833 * |----- f2 (ino 258)
3834 * |----- d1/ (ino 259)
3835 * |----- d2/ (ino 260)
3837 * send snapshot looks like:
3840 * |----- d1 (ino 258)
3841 * |----- f2/ (ino 259)
3842 * |----- f2_link/ (ino 260)
3843 * | |----- f1 (ino 257)
3845 * |----- d2 (ino 258)
3847 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3848 * cache it in the name cache. Later when we start processing inode 258, when
3849 * collecting all its new references we set a full path of "d1/d2" for its new
3850 * reference with name "d2". When we start processing the new references we
3851 * start by processing the new reference with name "d1", and this results in
3852 * orphanizing inode 259, since its old reference causes a conflict. Then we
3853 * move on the next new reference, with name "d2", and we find out we must
3854 * orphanize inode 260, as its old reference conflicts with ours - but for the
3855 * orphanization we use a source path corresponding to the path we stored in the
3856 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3857 * receiver fail since the path component "d1/" no longer exists, it was renamed
3858 * to "o259-6-0/" when processing the previous new reference. So in this case we
3859 * must recompute the path in the new reference and use it for the new
3860 * orphanization operation.
3862 static int refresh_ref_path(struct send_ctx
*sctx
, struct recorded_ref
*ref
)
3867 name
= kmemdup(ref
->name
, ref
->name_len
, GFP_KERNEL
);
3871 fs_path_reset(ref
->full_path
);
3872 ret
= get_cur_path(sctx
, ref
->dir
, ref
->dir_gen
, ref
->full_path
);
3876 ret
= fs_path_add(ref
->full_path
, name
, ref
->name_len
);
3880 /* Update the reference's base name pointer. */
3881 set_ref_path(ref
, ref
->full_path
);
3888 * This does all the move/link/unlink/rmdir magic.
3890 static int process_recorded_refs(struct send_ctx
*sctx
, int *pending_move
)
3892 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
3894 struct recorded_ref
*cur
;
3895 struct recorded_ref
*cur2
;
3896 struct list_head check_dirs
;
3897 struct fs_path
*valid_path
= NULL
;
3901 int did_overwrite
= 0;
3903 u64 last_dir_ino_rm
= 0;
3904 bool can_rename
= true;
3905 bool orphanized_dir
= false;
3906 bool orphanized_ancestor
= false;
3908 btrfs_debug(fs_info
, "process_recorded_refs %llu", sctx
->cur_ino
);
3911 * This should never happen as the root dir always has the same ref
3912 * which is always '..'
3914 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
3915 INIT_LIST_HEAD(&check_dirs
);
3917 valid_path
= fs_path_alloc();
3924 * First, check if the first ref of the current inode was overwritten
3925 * before. If yes, we know that the current inode was already orphanized
3926 * and thus use the orphan name. If not, we can use get_cur_path to
3927 * get the path of the first ref as it would like while receiving at
3928 * this point in time.
3929 * New inodes are always orphan at the beginning, so force to use the
3930 * orphan name in this case.
3931 * The first ref is stored in valid_path and will be updated if it
3932 * gets moved around.
3934 if (!sctx
->cur_inode_new
) {
3935 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
3936 sctx
->cur_inode_gen
);
3942 if (sctx
->cur_inode_new
|| did_overwrite
) {
3943 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
3944 sctx
->cur_inode_gen
, valid_path
);
3949 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3956 * Before doing any rename and link operations, do a first pass on the
3957 * new references to orphanize any unprocessed inodes that may have a
3958 * reference that conflicts with one of the new references of the current
3959 * inode. This needs to happen first because a new reference may conflict
3960 * with the old reference of a parent directory, so we must make sure
3961 * that the path used for link and rename commands don't use an
3962 * orphanized name when an ancestor was not yet orphanized.
3969 * |----- testdir/ (ino 259)
3970 * | |----- a (ino 257)
3972 * |----- b (ino 258)
3977 * |----- testdir_2/ (ino 259)
3978 * | |----- a (ino 260)
3980 * |----- testdir (ino 257)
3981 * |----- b (ino 257)
3982 * |----- b2 (ino 258)
3984 * Processing the new reference for inode 257 with name "b" may happen
3985 * before processing the new reference with name "testdir". If so, we
3986 * must make sure that by the time we send a link command to create the
3987 * hard link "b", inode 259 was already orphanized, since the generated
3988 * path in "valid_path" already contains the orphanized name for 259.
3989 * We are processing inode 257, so only later when processing 259 we do
3990 * the rename operation to change its temporary (orphanized) name to
3993 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
3994 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3997 if (ret
== inode_state_will_create
)
4001 * Check if this new ref would overwrite the first ref of another
4002 * unprocessed inode. If yes, orphanize the overwritten inode.
4003 * If we find an overwritten ref that is not the first ref,
4006 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
4007 cur
->name
, cur
->name_len
,
4008 &ow_inode
, &ow_gen
, &ow_mode
);
4012 ret
= is_first_ref(sctx
->parent_root
,
4013 ow_inode
, cur
->dir
, cur
->name
,
4018 struct name_cache_entry
*nce
;
4019 struct waiting_dir_move
*wdm
;
4021 if (orphanized_dir
) {
4022 ret
= refresh_ref_path(sctx
, cur
);
4027 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
4031 if (S_ISDIR(ow_mode
))
4032 orphanized_dir
= true;
4035 * If ow_inode has its rename operation delayed
4036 * make sure that its orphanized name is used in
4037 * the source path when performing its rename
4040 if (is_waiting_for_move(sctx
, ow_inode
)) {
4041 wdm
= get_waiting_dir_move(sctx
,
4044 wdm
->orphanized
= true;
4048 * Make sure we clear our orphanized inode's
4049 * name from the name cache. This is because the
4050 * inode ow_inode might be an ancestor of some
4051 * other inode that will be orphanized as well
4052 * later and has an inode number greater than
4053 * sctx->send_progress. We need to prevent
4054 * future name lookups from using the old name
4055 * and get instead the orphan name.
4057 nce
= name_cache_search(sctx
, ow_inode
, ow_gen
);
4059 name_cache_delete(sctx
, nce
);
4064 * ow_inode might currently be an ancestor of
4065 * cur_ino, therefore compute valid_path (the
4066 * current path of cur_ino) again because it
4067 * might contain the pre-orphanization name of
4068 * ow_inode, which is no longer valid.
4070 ret
= is_ancestor(sctx
->parent_root
,
4072 sctx
->cur_ino
, NULL
);
4074 orphanized_ancestor
= true;
4075 fs_path_reset(valid_path
);
4076 ret
= get_cur_path(sctx
, sctx
->cur_ino
,
4077 sctx
->cur_inode_gen
,
4083 ret
= send_unlink(sctx
, cur
->full_path
);
4091 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
4093 * We may have refs where the parent directory does not exist
4094 * yet. This happens if the parent directories inum is higher
4095 * than the current inum. To handle this case, we create the
4096 * parent directory out of order. But we need to check if this
4097 * did already happen before due to other refs in the same dir.
4099 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
4102 if (ret
== inode_state_will_create
) {
4105 * First check if any of the current inodes refs did
4106 * already create the dir.
4108 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
4111 if (cur2
->dir
== cur
->dir
) {
4118 * If that did not happen, check if a previous inode
4119 * did already create the dir.
4122 ret
= did_create_dir(sctx
, cur
->dir
);
4126 ret
= send_create_inode(sctx
, cur
->dir
);
4132 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
) {
4133 ret
= wait_for_dest_dir_move(sctx
, cur
, is_orphan
);
4142 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
&&
4144 ret
= wait_for_parent_move(sctx
, cur
, is_orphan
);
4154 * link/move the ref to the new place. If we have an orphan
4155 * inode, move it and update valid_path. If not, link or move
4156 * it depending on the inode mode.
4158 if (is_orphan
&& can_rename
) {
4159 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
4163 ret
= fs_path_copy(valid_path
, cur
->full_path
);
4166 } else if (can_rename
) {
4167 if (S_ISDIR(sctx
->cur_inode_mode
)) {
4169 * Dirs can't be linked, so move it. For moved
4170 * dirs, we always have one new and one deleted
4171 * ref. The deleted ref is ignored later.
4173 ret
= send_rename(sctx
, valid_path
,
4176 ret
= fs_path_copy(valid_path
,
4182 * We might have previously orphanized an inode
4183 * which is an ancestor of our current inode,
4184 * so our reference's full path, which was
4185 * computed before any such orphanizations, must
4188 if (orphanized_dir
) {
4189 ret
= update_ref_path(sctx
, cur
);
4193 ret
= send_link(sctx
, cur
->full_path
,
4199 ret
= dup_ref(cur
, &check_dirs
);
4204 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
4206 * Check if we can already rmdir the directory. If not,
4207 * orphanize it. For every dir item inside that gets deleted
4208 * later, we do this check again and rmdir it then if possible.
4209 * See the use of check_dirs for more details.
4211 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4216 ret
= send_rmdir(sctx
, valid_path
);
4219 } else if (!is_orphan
) {
4220 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
4221 sctx
->cur_inode_gen
, valid_path
);
4227 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
4228 ret
= dup_ref(cur
, &check_dirs
);
4232 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
4233 !list_empty(&sctx
->deleted_refs
)) {
4235 * We have a moved dir. Add the old parent to check_dirs
4237 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
4239 ret
= dup_ref(cur
, &check_dirs
);
4242 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
4244 * We have a non dir inode. Go through all deleted refs and
4245 * unlink them if they were not already overwritten by other
4248 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
4249 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
4250 sctx
->cur_ino
, sctx
->cur_inode_gen
,
4251 cur
->name
, cur
->name_len
);
4256 * If we orphanized any ancestor before, we need
4257 * to recompute the full path for deleted names,
4258 * since any such path was computed before we
4259 * processed any references and orphanized any
4262 if (orphanized_ancestor
) {
4263 ret
= update_ref_path(sctx
, cur
);
4267 ret
= send_unlink(sctx
, cur
->full_path
);
4271 ret
= dup_ref(cur
, &check_dirs
);
4276 * If the inode is still orphan, unlink the orphan. This may
4277 * happen when a previous inode did overwrite the first ref
4278 * of this inode and no new refs were added for the current
4279 * inode. Unlinking does not mean that the inode is deleted in
4280 * all cases. There may still be links to this inode in other
4284 ret
= send_unlink(sctx
, valid_path
);
4291 * We did collect all parent dirs where cur_inode was once located. We
4292 * now go through all these dirs and check if they are pending for
4293 * deletion and if it's finally possible to perform the rmdir now.
4294 * We also update the inode stats of the parent dirs here.
4296 list_for_each_entry(cur
, &check_dirs
, list
) {
4298 * In case we had refs into dirs that were not processed yet,
4299 * we don't need to do the utime and rmdir logic for these dirs.
4300 * The dir will be processed later.
4302 if (cur
->dir
> sctx
->cur_ino
)
4305 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
4309 if (ret
== inode_state_did_create
||
4310 ret
== inode_state_no_change
) {
4311 /* TODO delayed utimes */
4312 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
4315 } else if (ret
== inode_state_did_delete
&&
4316 cur
->dir
!= last_dir_ino_rm
) {
4317 ret
= can_rmdir(sctx
, cur
->dir
, cur
->dir_gen
,
4322 ret
= get_cur_path(sctx
, cur
->dir
,
4323 cur
->dir_gen
, valid_path
);
4326 ret
= send_rmdir(sctx
, valid_path
);
4329 last_dir_ino_rm
= cur
->dir
;
4337 __free_recorded_refs(&check_dirs
);
4338 free_recorded_refs(sctx
);
4339 fs_path_free(valid_path
);
4343 static int record_ref(struct btrfs_root
*root
, u64 dir
, struct fs_path
*name
,
4344 void *ctx
, struct list_head
*refs
)
4347 struct send_ctx
*sctx
= ctx
;
4351 p
= fs_path_alloc();
4355 ret
= get_inode_info(root
, dir
, NULL
, &gen
, NULL
, NULL
,
4360 ret
= get_cur_path(sctx
, dir
, gen
, p
);
4363 ret
= fs_path_add_path(p
, name
);
4367 ret
= __record_ref(refs
, dir
, gen
, p
);
4375 static int __record_new_ref(int num
, u64 dir
, int index
,
4376 struct fs_path
*name
,
4379 struct send_ctx
*sctx
= ctx
;
4380 return record_ref(sctx
->send_root
, dir
, name
, ctx
, &sctx
->new_refs
);
4384 static int __record_deleted_ref(int num
, u64 dir
, int index
,
4385 struct fs_path
*name
,
4388 struct send_ctx
*sctx
= ctx
;
4389 return record_ref(sctx
->parent_root
, dir
, name
, ctx
,
4390 &sctx
->deleted_refs
);
4393 static int record_new_ref(struct send_ctx
*sctx
)
4397 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4398 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
4407 static int record_deleted_ref(struct send_ctx
*sctx
)
4411 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4412 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
4421 struct find_ref_ctx
{
4424 struct btrfs_root
*root
;
4425 struct fs_path
*name
;
4429 static int __find_iref(int num
, u64 dir
, int index
,
4430 struct fs_path
*name
,
4433 struct find_ref_ctx
*ctx
= ctx_
;
4437 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
4438 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
4440 * To avoid doing extra lookups we'll only do this if everything
4443 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
4447 if (dir_gen
!= ctx
->dir_gen
)
4449 ctx
->found_idx
= num
;
4455 static int find_iref(struct btrfs_root
*root
,
4456 struct btrfs_path
*path
,
4457 struct btrfs_key
*key
,
4458 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
4461 struct find_ref_ctx ctx
;
4465 ctx
.dir_gen
= dir_gen
;
4469 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
4473 if (ctx
.found_idx
== -1)
4476 return ctx
.found_idx
;
4479 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
4480 struct fs_path
*name
,
4485 struct send_ctx
*sctx
= ctx
;
4487 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
4492 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
4493 sctx
->cmp_key
, dir
, dir_gen
, name
);
4495 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
4502 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
4503 struct fs_path
*name
,
4508 struct send_ctx
*sctx
= ctx
;
4510 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
4515 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4516 dir
, dir_gen
, name
);
4518 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
4525 static int record_changed_ref(struct send_ctx
*sctx
)
4529 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4530 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
4533 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4534 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
4544 * Record and process all refs at once. Needed when an inode changes the
4545 * generation number, which means that it was deleted and recreated.
4547 static int process_all_refs(struct send_ctx
*sctx
,
4548 enum btrfs_compare_tree_result cmd
)
4551 struct btrfs_root
*root
;
4552 struct btrfs_path
*path
;
4553 struct btrfs_key key
;
4554 struct btrfs_key found_key
;
4555 struct extent_buffer
*eb
;
4557 iterate_inode_ref_t cb
;
4558 int pending_move
= 0;
4560 path
= alloc_path_for_send();
4564 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
4565 root
= sctx
->send_root
;
4566 cb
= __record_new_ref
;
4567 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
4568 root
= sctx
->parent_root
;
4569 cb
= __record_deleted_ref
;
4571 btrfs_err(sctx
->send_root
->fs_info
,
4572 "Wrong command %d in process_all_refs", cmd
);
4577 key
.objectid
= sctx
->cmp_key
->objectid
;
4578 key
.type
= BTRFS_INODE_REF_KEY
;
4580 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4585 eb
= path
->nodes
[0];
4586 slot
= path
->slots
[0];
4587 if (slot
>= btrfs_header_nritems(eb
)) {
4588 ret
= btrfs_next_leaf(root
, path
);
4596 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4598 if (found_key
.objectid
!= key
.objectid
||
4599 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
4600 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
4603 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
4609 btrfs_release_path(path
);
4612 * We don't actually care about pending_move as we are simply
4613 * re-creating this inode and will be rename'ing it into place once we
4614 * rename the parent directory.
4616 ret
= process_recorded_refs(sctx
, &pending_move
);
4618 btrfs_free_path(path
);
4622 static int send_set_xattr(struct send_ctx
*sctx
,
4623 struct fs_path
*path
,
4624 const char *name
, int name_len
,
4625 const char *data
, int data_len
)
4629 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
4633 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4634 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4635 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
4637 ret
= send_cmd(sctx
);
4644 static int send_remove_xattr(struct send_ctx
*sctx
,
4645 struct fs_path
*path
,
4646 const char *name
, int name_len
)
4650 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
4654 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4655 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4657 ret
= send_cmd(sctx
);
4664 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
4665 const char *name
, int name_len
,
4666 const char *data
, int data_len
,
4670 struct send_ctx
*sctx
= ctx
;
4672 struct posix_acl_xattr_header dummy_acl
;
4674 /* Capabilities are emitted by finish_inode_if_needed */
4675 if (!strncmp(name
, XATTR_NAME_CAPS
, name_len
))
4678 p
= fs_path_alloc();
4683 * This hack is needed because empty acls are stored as zero byte
4684 * data in xattrs. Problem with that is, that receiving these zero byte
4685 * acls will fail later. To fix this, we send a dummy acl list that
4686 * only contains the version number and no entries.
4688 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
4689 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
4690 if (data_len
== 0) {
4691 dummy_acl
.a_version
=
4692 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
4693 data
= (char *)&dummy_acl
;
4694 data_len
= sizeof(dummy_acl
);
4698 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4702 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
4709 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4710 const char *name
, int name_len
,
4711 const char *data
, int data_len
,
4715 struct send_ctx
*sctx
= ctx
;
4718 p
= fs_path_alloc();
4722 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4726 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
4733 static int process_new_xattr(struct send_ctx
*sctx
)
4737 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4738 __process_new_xattr
, sctx
);
4743 static int process_deleted_xattr(struct send_ctx
*sctx
)
4745 return iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4746 __process_deleted_xattr
, sctx
);
4749 struct find_xattr_ctx
{
4757 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
4758 const char *name
, int name_len
,
4759 const char *data
, int data_len
,
4760 u8 type
, void *vctx
)
4762 struct find_xattr_ctx
*ctx
= vctx
;
4764 if (name_len
== ctx
->name_len
&&
4765 strncmp(name
, ctx
->name
, name_len
) == 0) {
4766 ctx
->found_idx
= num
;
4767 ctx
->found_data_len
= data_len
;
4768 ctx
->found_data
= kmemdup(data
, data_len
, GFP_KERNEL
);
4769 if (!ctx
->found_data
)
4776 static int find_xattr(struct btrfs_root
*root
,
4777 struct btrfs_path
*path
,
4778 struct btrfs_key
*key
,
4779 const char *name
, int name_len
,
4780 char **data
, int *data_len
)
4783 struct find_xattr_ctx ctx
;
4786 ctx
.name_len
= name_len
;
4788 ctx
.found_data
= NULL
;
4789 ctx
.found_data_len
= 0;
4791 ret
= iterate_dir_item(root
, path
, __find_xattr
, &ctx
);
4795 if (ctx
.found_idx
== -1)
4798 *data
= ctx
.found_data
;
4799 *data_len
= ctx
.found_data_len
;
4801 kfree(ctx
.found_data
);
4803 return ctx
.found_idx
;
4807 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
4808 const char *name
, int name_len
,
4809 const char *data
, int data_len
,
4813 struct send_ctx
*sctx
= ctx
;
4814 char *found_data
= NULL
;
4815 int found_data_len
= 0;
4817 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
4818 sctx
->cmp_key
, name
, name_len
, &found_data
,
4820 if (ret
== -ENOENT
) {
4821 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
4822 data_len
, type
, ctx
);
4823 } else if (ret
>= 0) {
4824 if (data_len
!= found_data_len
||
4825 memcmp(data
, found_data
, data_len
)) {
4826 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
4827 data
, data_len
, type
, ctx
);
4837 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4838 const char *name
, int name_len
,
4839 const char *data
, int data_len
,
4843 struct send_ctx
*sctx
= ctx
;
4845 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4846 name
, name_len
, NULL
, NULL
);
4848 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
4849 data_len
, type
, ctx
);
4856 static int process_changed_xattr(struct send_ctx
*sctx
)
4860 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4861 __process_changed_new_xattr
, sctx
);
4864 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4865 __process_changed_deleted_xattr
, sctx
);
4871 static int process_all_new_xattrs(struct send_ctx
*sctx
)
4874 struct btrfs_root
*root
;
4875 struct btrfs_path
*path
;
4876 struct btrfs_key key
;
4877 struct btrfs_key found_key
;
4878 struct extent_buffer
*eb
;
4881 path
= alloc_path_for_send();
4885 root
= sctx
->send_root
;
4887 key
.objectid
= sctx
->cmp_key
->objectid
;
4888 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4890 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4895 eb
= path
->nodes
[0];
4896 slot
= path
->slots
[0];
4897 if (slot
>= btrfs_header_nritems(eb
)) {
4898 ret
= btrfs_next_leaf(root
, path
);
4901 } else if (ret
> 0) {
4908 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4909 if (found_key
.objectid
!= key
.objectid
||
4910 found_key
.type
!= key
.type
) {
4915 ret
= iterate_dir_item(root
, path
, __process_new_xattr
, sctx
);
4923 btrfs_free_path(path
);
4927 static inline u64
max_send_read_size(const struct send_ctx
*sctx
)
4929 return sctx
->send_max_size
- SZ_16K
;
4932 static int put_data_header(struct send_ctx
*sctx
, u32 len
)
4934 struct btrfs_tlv_header
*hdr
;
4936 if (sctx
->send_max_size
- sctx
->send_size
< sizeof(*hdr
) + len
)
4938 hdr
= (struct btrfs_tlv_header
*)(sctx
->send_buf
+ sctx
->send_size
);
4939 put_unaligned_le16(BTRFS_SEND_A_DATA
, &hdr
->tlv_type
);
4940 put_unaligned_le16(len
, &hdr
->tlv_len
);
4941 sctx
->send_size
+= sizeof(*hdr
);
4945 static int put_file_data(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4947 struct btrfs_root
*root
= sctx
->send_root
;
4948 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4949 struct inode
*inode
;
4952 pgoff_t index
= offset
>> PAGE_SHIFT
;
4954 unsigned pg_offset
= offset_in_page(offset
);
4957 ret
= put_data_header(sctx
, len
);
4961 inode
= btrfs_iget(fs_info
->sb
, sctx
->cur_ino
, root
);
4963 return PTR_ERR(inode
);
4965 last_index
= (offset
+ len
- 1) >> PAGE_SHIFT
;
4967 /* initial readahead */
4968 memset(&sctx
->ra
, 0, sizeof(struct file_ra_state
));
4969 file_ra_state_init(&sctx
->ra
, inode
->i_mapping
);
4971 while (index
<= last_index
) {
4972 unsigned cur_len
= min_t(unsigned, len
,
4973 PAGE_SIZE
- pg_offset
);
4975 page
= find_lock_page(inode
->i_mapping
, index
);
4977 page_cache_sync_readahead(inode
->i_mapping
, &sctx
->ra
,
4978 NULL
, index
, last_index
+ 1 - index
);
4980 page
= find_or_create_page(inode
->i_mapping
, index
,
4988 if (PageReadahead(page
)) {
4989 page_cache_async_readahead(inode
->i_mapping
, &sctx
->ra
,
4990 NULL
, page
, index
, last_index
+ 1 - index
);
4993 if (!PageUptodate(page
)) {
4994 btrfs_readpage(NULL
, page
);
4996 if (!PageUptodate(page
)) {
5005 memcpy(sctx
->send_buf
+ sctx
->send_size
, addr
+ pg_offset
,
5013 sctx
->send_size
+= cur_len
;
5020 * Read some bytes from the current inode/file and send a write command to
5023 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
5025 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
5029 p
= fs_path_alloc();
5033 btrfs_debug(fs_info
, "send_write offset=%llu, len=%d", offset
, len
);
5035 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
5039 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
5043 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
5044 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
5045 ret
= put_file_data(sctx
, offset
, len
);
5049 ret
= send_cmd(sctx
);
5058 * Send a clone command to user space.
5060 static int send_clone(struct send_ctx
*sctx
,
5061 u64 offset
, u32 len
,
5062 struct clone_root
*clone_root
)
5068 btrfs_debug(sctx
->send_root
->fs_info
,
5069 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5070 offset
, len
, clone_root
->root
->root_key
.objectid
,
5071 clone_root
->ino
, clone_root
->offset
);
5073 p
= fs_path_alloc();
5077 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
5081 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
5085 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
5086 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
5087 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
5089 if (clone_root
->root
== sctx
->send_root
) {
5090 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
5091 &gen
, NULL
, NULL
, NULL
, NULL
);
5094 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
5096 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
5102 * If the parent we're using has a received_uuid set then use that as
5103 * our clone source as that is what we will look for when doing a
5106 * This covers the case that we create a snapshot off of a received
5107 * subvolume and then use that as the parent and try to receive on a
5110 if (!btrfs_is_empty_uuid(clone_root
->root
->root_item
.received_uuid
))
5111 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
5112 clone_root
->root
->root_item
.received_uuid
);
5114 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
5115 clone_root
->root
->root_item
.uuid
);
5116 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
5117 btrfs_root_ctransid(&clone_root
->root
->root_item
));
5118 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
5119 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
5120 clone_root
->offset
);
5122 ret
= send_cmd(sctx
);
5131 * Send an update extent command to user space.
5133 static int send_update_extent(struct send_ctx
*sctx
,
5134 u64 offset
, u32 len
)
5139 p
= fs_path_alloc();
5143 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
5147 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
5151 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
5152 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
5153 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
5155 ret
= send_cmd(sctx
);
5163 static int send_hole(struct send_ctx
*sctx
, u64 end
)
5165 struct fs_path
*p
= NULL
;
5166 u64 read_size
= max_send_read_size(sctx
);
5167 u64 offset
= sctx
->cur_inode_last_extent
;
5171 * A hole that starts at EOF or beyond it. Since we do not yet support
5172 * fallocate (for extent preallocation and hole punching), sending a
5173 * write of zeroes starting at EOF or beyond would later require issuing
5174 * a truncate operation which would undo the write and achieve nothing.
5176 if (offset
>= sctx
->cur_inode_size
)
5180 * Don't go beyond the inode's i_size due to prealloc extents that start
5183 end
= min_t(u64
, end
, sctx
->cur_inode_size
);
5185 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
5186 return send_update_extent(sctx
, offset
, end
- offset
);
5188 p
= fs_path_alloc();
5191 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
5193 goto tlv_put_failure
;
5194 while (offset
< end
) {
5195 u64 len
= min(end
- offset
, read_size
);
5197 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
5200 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
5201 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
5202 ret
= put_data_header(sctx
, len
);
5205 memset(sctx
->send_buf
+ sctx
->send_size
, 0, len
);
5206 sctx
->send_size
+= len
;
5207 ret
= send_cmd(sctx
);
5212 sctx
->cur_inode_next_write_offset
= offset
;
5218 static int send_extent_data(struct send_ctx
*sctx
,
5222 u64 read_size
= max_send_read_size(sctx
);
5225 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
5226 return send_update_extent(sctx
, offset
, len
);
5228 while (sent
< len
) {
5229 u64 size
= min(len
- sent
, read_size
);
5232 ret
= send_write(sctx
, offset
+ sent
, size
);
5241 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5242 * found, call send_set_xattr function to emit it.
5244 * Return 0 if there isn't a capability, or when the capability was emitted
5245 * successfully, or < 0 if an error occurred.
5247 static int send_capabilities(struct send_ctx
*sctx
)
5249 struct fs_path
*fspath
= NULL
;
5250 struct btrfs_path
*path
;
5251 struct btrfs_dir_item
*di
;
5252 struct extent_buffer
*leaf
;
5253 unsigned long data_ptr
;
5258 path
= alloc_path_for_send();
5262 di
= btrfs_lookup_xattr(NULL
, sctx
->send_root
, path
, sctx
->cur_ino
,
5263 XATTR_NAME_CAPS
, strlen(XATTR_NAME_CAPS
), 0);
5265 /* There is no xattr for this inode */
5267 } else if (IS_ERR(di
)) {
5272 leaf
= path
->nodes
[0];
5273 buf_len
= btrfs_dir_data_len(leaf
, di
);
5275 fspath
= fs_path_alloc();
5276 buf
= kmalloc(buf_len
, GFP_KERNEL
);
5277 if (!fspath
|| !buf
) {
5282 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, fspath
);
5286 data_ptr
= (unsigned long)(di
+ 1) + btrfs_dir_name_len(leaf
, di
);
5287 read_extent_buffer(leaf
, buf
, data_ptr
, buf_len
);
5289 ret
= send_set_xattr(sctx
, fspath
, XATTR_NAME_CAPS
,
5290 strlen(XATTR_NAME_CAPS
), buf
, buf_len
);
5293 fs_path_free(fspath
);
5294 btrfs_free_path(path
);
5298 static int clone_range(struct send_ctx
*sctx
,
5299 struct clone_root
*clone_root
,
5300 const u64 disk_byte
,
5305 struct btrfs_path
*path
;
5306 struct btrfs_key key
;
5308 u64 clone_src_i_size
= 0;
5311 * Prevent cloning from a zero offset with a length matching the sector
5312 * size because in some scenarios this will make the receiver fail.
5314 * For example, if in the source filesystem the extent at offset 0
5315 * has a length of sectorsize and it was written using direct IO, then
5316 * it can never be an inline extent (even if compression is enabled).
5317 * Then this extent can be cloned in the original filesystem to a non
5318 * zero file offset, but it may not be possible to clone in the
5319 * destination filesystem because it can be inlined due to compression
5320 * on the destination filesystem (as the receiver's write operations are
5321 * always done using buffered IO). The same happens when the original
5322 * filesystem does not have compression enabled but the destination
5325 if (clone_root
->offset
== 0 &&
5326 len
== sctx
->send_root
->fs_info
->sectorsize
)
5327 return send_extent_data(sctx
, offset
, len
);
5329 path
= alloc_path_for_send();
5334 * There are inodes that have extents that lie behind its i_size. Don't
5335 * accept clones from these extents.
5337 ret
= __get_inode_info(clone_root
->root
, path
, clone_root
->ino
,
5338 &clone_src_i_size
, NULL
, NULL
, NULL
, NULL
, NULL
);
5339 btrfs_release_path(path
);
5344 * We can't send a clone operation for the entire range if we find
5345 * extent items in the respective range in the source file that
5346 * refer to different extents or if we find holes.
5347 * So check for that and do a mix of clone and regular write/copy
5348 * operations if needed.
5352 * mkfs.btrfs -f /dev/sda
5353 * mount /dev/sda /mnt
5354 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5355 * cp --reflink=always /mnt/foo /mnt/bar
5356 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5357 * btrfs subvolume snapshot -r /mnt /mnt/snap
5359 * If when we send the snapshot and we are processing file bar (which
5360 * has a higher inode number than foo) we blindly send a clone operation
5361 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5362 * a file bar that matches the content of file foo - iow, doesn't match
5363 * the content from bar in the original filesystem.
5365 key
.objectid
= clone_root
->ino
;
5366 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5367 key
.offset
= clone_root
->offset
;
5368 ret
= btrfs_search_slot(NULL
, clone_root
->root
, &key
, path
, 0, 0);
5371 if (ret
> 0 && path
->slots
[0] > 0) {
5372 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0] - 1);
5373 if (key
.objectid
== clone_root
->ino
&&
5374 key
.type
== BTRFS_EXTENT_DATA_KEY
)
5379 struct extent_buffer
*leaf
= path
->nodes
[0];
5380 int slot
= path
->slots
[0];
5381 struct btrfs_file_extent_item
*ei
;
5385 u64 clone_data_offset
;
5387 if (slot
>= btrfs_header_nritems(leaf
)) {
5388 ret
= btrfs_next_leaf(clone_root
->root
, path
);
5396 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5399 * We might have an implicit trailing hole (NO_HOLES feature
5400 * enabled). We deal with it after leaving this loop.
5402 if (key
.objectid
!= clone_root
->ino
||
5403 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5406 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5407 type
= btrfs_file_extent_type(leaf
, ei
);
5408 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5409 ext_len
= btrfs_file_extent_ram_bytes(leaf
, ei
);
5410 ext_len
= PAGE_ALIGN(ext_len
);
5412 ext_len
= btrfs_file_extent_num_bytes(leaf
, ei
);
5415 if (key
.offset
+ ext_len
<= clone_root
->offset
)
5418 if (key
.offset
> clone_root
->offset
) {
5419 /* Implicit hole, NO_HOLES feature enabled. */
5420 u64 hole_len
= key
.offset
- clone_root
->offset
;
5424 ret
= send_extent_data(sctx
, offset
, hole_len
);
5432 clone_root
->offset
+= hole_len
;
5433 data_offset
+= hole_len
;
5436 if (key
.offset
>= clone_root
->offset
+ len
)
5439 if (key
.offset
>= clone_src_i_size
)
5442 if (key
.offset
+ ext_len
> clone_src_i_size
)
5443 ext_len
= clone_src_i_size
- key
.offset
;
5445 clone_data_offset
= btrfs_file_extent_offset(leaf
, ei
);
5446 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
) {
5447 clone_root
->offset
= key
.offset
;
5448 if (clone_data_offset
< data_offset
&&
5449 clone_data_offset
+ ext_len
> data_offset
) {
5452 extent_offset
= data_offset
- clone_data_offset
;
5453 ext_len
-= extent_offset
;
5454 clone_data_offset
+= extent_offset
;
5455 clone_root
->offset
+= extent_offset
;
5459 clone_len
= min_t(u64
, ext_len
, len
);
5461 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
&&
5462 clone_data_offset
== data_offset
) {
5463 const u64 src_end
= clone_root
->offset
+ clone_len
;
5464 const u64 sectorsize
= SZ_64K
;
5467 * We can't clone the last block, when its size is not
5468 * sector size aligned, into the middle of a file. If we
5469 * do so, the receiver will get a failure (-EINVAL) when
5470 * trying to clone or will silently corrupt the data in
5471 * the destination file if it's on a kernel without the
5472 * fix introduced by commit ac765f83f1397646
5473 * ("Btrfs: fix data corruption due to cloning of eof
5476 * So issue a clone of the aligned down range plus a
5477 * regular write for the eof block, if we hit that case.
5479 * Also, we use the maximum possible sector size, 64K,
5480 * because we don't know what's the sector size of the
5481 * filesystem that receives the stream, so we have to
5482 * assume the largest possible sector size.
5484 if (src_end
== clone_src_i_size
&&
5485 !IS_ALIGNED(src_end
, sectorsize
) &&
5486 offset
+ clone_len
< sctx
->cur_inode_size
) {
5489 slen
= ALIGN_DOWN(src_end
- clone_root
->offset
,
5492 ret
= send_clone(sctx
, offset
, slen
,
5497 ret
= send_extent_data(sctx
, offset
+ slen
,
5500 ret
= send_clone(sctx
, offset
, clone_len
,
5504 ret
= send_extent_data(sctx
, offset
, clone_len
);
5513 offset
+= clone_len
;
5514 clone_root
->offset
+= clone_len
;
5515 data_offset
+= clone_len
;
5521 ret
= send_extent_data(sctx
, offset
, len
);
5525 btrfs_free_path(path
);
5529 static int send_write_or_clone(struct send_ctx
*sctx
,
5530 struct btrfs_path
*path
,
5531 struct btrfs_key
*key
,
5532 struct clone_root
*clone_root
)
5535 u64 offset
= key
->offset
;
5537 u64 bs
= sctx
->send_root
->fs_info
->sb
->s_blocksize
;
5539 end
= min_t(u64
, btrfs_file_extent_end(path
), sctx
->cur_inode_size
);
5543 if (clone_root
&& IS_ALIGNED(end
, bs
)) {
5544 struct btrfs_file_extent_item
*ei
;
5548 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5549 struct btrfs_file_extent_item
);
5550 disk_byte
= btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
);
5551 data_offset
= btrfs_file_extent_offset(path
->nodes
[0], ei
);
5552 ret
= clone_range(sctx
, clone_root
, disk_byte
, data_offset
,
5553 offset
, end
- offset
);
5555 ret
= send_extent_data(sctx
, offset
, end
- offset
);
5557 sctx
->cur_inode_next_write_offset
= end
;
5561 static int is_extent_unchanged(struct send_ctx
*sctx
,
5562 struct btrfs_path
*left_path
,
5563 struct btrfs_key
*ekey
)
5566 struct btrfs_key key
;
5567 struct btrfs_path
*path
= NULL
;
5568 struct extent_buffer
*eb
;
5570 struct btrfs_key found_key
;
5571 struct btrfs_file_extent_item
*ei
;
5576 u64 left_offset_fixed
;
5584 path
= alloc_path_for_send();
5588 eb
= left_path
->nodes
[0];
5589 slot
= left_path
->slots
[0];
5590 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5591 left_type
= btrfs_file_extent_type(eb
, ei
);
5593 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
5597 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5598 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5599 left_offset
= btrfs_file_extent_offset(eb
, ei
);
5600 left_gen
= btrfs_file_extent_generation(eb
, ei
);
5603 * Following comments will refer to these graphics. L is the left
5604 * extents which we are checking at the moment. 1-8 are the right
5605 * extents that we iterate.
5608 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5611 * |--1--|-2b-|...(same as above)
5613 * Alternative situation. Happens on files where extents got split.
5615 * |-----------7-----------|-6-|
5617 * Alternative situation. Happens on files which got larger.
5620 * Nothing follows after 8.
5623 key
.objectid
= ekey
->objectid
;
5624 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5625 key
.offset
= ekey
->offset
;
5626 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
5635 * Handle special case where the right side has no extents at all.
5637 eb
= path
->nodes
[0];
5638 slot
= path
->slots
[0];
5639 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5640 if (found_key
.objectid
!= key
.objectid
||
5641 found_key
.type
!= key
.type
) {
5642 /* If we're a hole then just pretend nothing changed */
5643 ret
= (left_disknr
) ? 0 : 1;
5648 * We're now on 2a, 2b or 7.
5651 while (key
.offset
< ekey
->offset
+ left_len
) {
5652 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5653 right_type
= btrfs_file_extent_type(eb
, ei
);
5654 if (right_type
!= BTRFS_FILE_EXTENT_REG
&&
5655 right_type
!= BTRFS_FILE_EXTENT_INLINE
) {
5660 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5661 right_len
= btrfs_file_extent_ram_bytes(eb
, ei
);
5662 right_len
= PAGE_ALIGN(right_len
);
5664 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5668 * Are we at extent 8? If yes, we know the extent is changed.
5669 * This may only happen on the first iteration.
5671 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
5672 /* If we're a hole just pretend nothing changed */
5673 ret
= (left_disknr
) ? 0 : 1;
5678 * We just wanted to see if when we have an inline extent, what
5679 * follows it is a regular extent (wanted to check the above
5680 * condition for inline extents too). This should normally not
5681 * happen but it's possible for example when we have an inline
5682 * compressed extent representing data with a size matching
5683 * the page size (currently the same as sector size).
5685 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5690 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5691 right_offset
= btrfs_file_extent_offset(eb
, ei
);
5692 right_gen
= btrfs_file_extent_generation(eb
, ei
);
5694 left_offset_fixed
= left_offset
;
5695 if (key
.offset
< ekey
->offset
) {
5696 /* Fix the right offset for 2a and 7. */
5697 right_offset
+= ekey
->offset
- key
.offset
;
5699 /* Fix the left offset for all behind 2a and 2b */
5700 left_offset_fixed
+= key
.offset
- ekey
->offset
;
5704 * Check if we have the same extent.
5706 if (left_disknr
!= right_disknr
||
5707 left_offset_fixed
!= right_offset
||
5708 left_gen
!= right_gen
) {
5714 * Go to the next extent.
5716 ret
= btrfs_next_item(sctx
->parent_root
, path
);
5720 eb
= path
->nodes
[0];
5721 slot
= path
->slots
[0];
5722 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5724 if (ret
|| found_key
.objectid
!= key
.objectid
||
5725 found_key
.type
!= key
.type
) {
5726 key
.offset
+= right_len
;
5729 if (found_key
.offset
!= key
.offset
+ right_len
) {
5737 * We're now behind the left extent (treat as unchanged) or at the end
5738 * of the right side (treat as changed).
5740 if (key
.offset
>= ekey
->offset
+ left_len
)
5747 btrfs_free_path(path
);
5751 static int get_last_extent(struct send_ctx
*sctx
, u64 offset
)
5753 struct btrfs_path
*path
;
5754 struct btrfs_root
*root
= sctx
->send_root
;
5755 struct btrfs_key key
;
5758 path
= alloc_path_for_send();
5762 sctx
->cur_inode_last_extent
= 0;
5764 key
.objectid
= sctx
->cur_ino
;
5765 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5766 key
.offset
= offset
;
5767 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 0, 1);
5771 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
5772 if (key
.objectid
!= sctx
->cur_ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5775 sctx
->cur_inode_last_extent
= btrfs_file_extent_end(path
);
5777 btrfs_free_path(path
);
5781 static int range_is_hole_in_parent(struct send_ctx
*sctx
,
5785 struct btrfs_path
*path
;
5786 struct btrfs_key key
;
5787 struct btrfs_root
*root
= sctx
->parent_root
;
5788 u64 search_start
= start
;
5791 path
= alloc_path_for_send();
5795 key
.objectid
= sctx
->cur_ino
;
5796 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5797 key
.offset
= search_start
;
5798 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5801 if (ret
> 0 && path
->slots
[0] > 0)
5804 while (search_start
< end
) {
5805 struct extent_buffer
*leaf
= path
->nodes
[0];
5806 int slot
= path
->slots
[0];
5807 struct btrfs_file_extent_item
*fi
;
5810 if (slot
>= btrfs_header_nritems(leaf
)) {
5811 ret
= btrfs_next_leaf(root
, path
);
5819 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5820 if (key
.objectid
< sctx
->cur_ino
||
5821 key
.type
< BTRFS_EXTENT_DATA_KEY
)
5823 if (key
.objectid
> sctx
->cur_ino
||
5824 key
.type
> BTRFS_EXTENT_DATA_KEY
||
5828 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5829 extent_end
= btrfs_file_extent_end(path
);
5830 if (extent_end
<= start
)
5832 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0) {
5833 search_start
= extent_end
;
5843 btrfs_free_path(path
);
5847 static int maybe_send_hole(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5848 struct btrfs_key
*key
)
5852 if (sctx
->cur_ino
!= key
->objectid
|| !need_send_hole(sctx
))
5855 if (sctx
->cur_inode_last_extent
== (u64
)-1) {
5856 ret
= get_last_extent(sctx
, key
->offset
- 1);
5861 if (path
->slots
[0] == 0 &&
5862 sctx
->cur_inode_last_extent
< key
->offset
) {
5864 * We might have skipped entire leafs that contained only
5865 * file extent items for our current inode. These leafs have
5866 * a generation number smaller (older) than the one in the
5867 * current leaf and the leaf our last extent came from, and
5868 * are located between these 2 leafs.
5870 ret
= get_last_extent(sctx
, key
->offset
- 1);
5875 if (sctx
->cur_inode_last_extent
< key
->offset
) {
5876 ret
= range_is_hole_in_parent(sctx
,
5877 sctx
->cur_inode_last_extent
,
5882 ret
= send_hole(sctx
, key
->offset
);
5886 sctx
->cur_inode_last_extent
= btrfs_file_extent_end(path
);
5890 static int process_extent(struct send_ctx
*sctx
,
5891 struct btrfs_path
*path
,
5892 struct btrfs_key
*key
)
5894 struct clone_root
*found_clone
= NULL
;
5897 if (S_ISLNK(sctx
->cur_inode_mode
))
5900 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
5901 ret
= is_extent_unchanged(sctx
, path
, key
);
5909 struct btrfs_file_extent_item
*ei
;
5912 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5913 struct btrfs_file_extent_item
);
5914 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5915 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
5916 type
== BTRFS_FILE_EXTENT_REG
) {
5918 * The send spec does not have a prealloc command yet,
5919 * so just leave a hole for prealloc'ed extents until
5920 * we have enough commands queued up to justify rev'ing
5923 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5928 /* Have a hole, just skip it. */
5929 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
5936 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
5937 sctx
->cur_inode_size
, &found_clone
);
5938 if (ret
!= -ENOENT
&& ret
< 0)
5941 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
5945 ret
= maybe_send_hole(sctx
, path
, key
);
5950 static int process_all_extents(struct send_ctx
*sctx
)
5953 struct btrfs_root
*root
;
5954 struct btrfs_path
*path
;
5955 struct btrfs_key key
;
5956 struct btrfs_key found_key
;
5957 struct extent_buffer
*eb
;
5960 root
= sctx
->send_root
;
5961 path
= alloc_path_for_send();
5965 key
.objectid
= sctx
->cmp_key
->objectid
;
5966 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5968 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5973 eb
= path
->nodes
[0];
5974 slot
= path
->slots
[0];
5976 if (slot
>= btrfs_header_nritems(eb
)) {
5977 ret
= btrfs_next_leaf(root
, path
);
5980 } else if (ret
> 0) {
5987 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5989 if (found_key
.objectid
!= key
.objectid
||
5990 found_key
.type
!= key
.type
) {
5995 ret
= process_extent(sctx
, path
, &found_key
);
6003 btrfs_free_path(path
);
6007 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
,
6009 int *refs_processed
)
6013 if (sctx
->cur_ino
== 0)
6015 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
6016 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
6018 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
6021 ret
= process_recorded_refs(sctx
, pending_move
);
6025 *refs_processed
= 1;
6030 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
6041 int need_truncate
= 1;
6042 int pending_move
= 0;
6043 int refs_processed
= 0;
6045 if (sctx
->ignore_cur_inode
)
6048 ret
= process_recorded_refs_if_needed(sctx
, at_end
, &pending_move
,
6054 * We have processed the refs and thus need to advance send_progress.
6055 * Now, calls to get_cur_xxx will take the updated refs of the current
6056 * inode into account.
6058 * On the other hand, if our current inode is a directory and couldn't
6059 * be moved/renamed because its parent was renamed/moved too and it has
6060 * a higher inode number, we can only move/rename our current inode
6061 * after we moved/renamed its parent. Therefore in this case operate on
6062 * the old path (pre move/rename) of our current inode, and the
6063 * move/rename will be performed later.
6065 if (refs_processed
&& !pending_move
)
6066 sctx
->send_progress
= sctx
->cur_ino
+ 1;
6068 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
6070 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
6073 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
6074 &left_mode
, &left_uid
, &left_gid
, NULL
);
6078 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
6080 if (!S_ISLNK(sctx
->cur_inode_mode
))
6082 if (sctx
->cur_inode_next_write_offset
== sctx
->cur_inode_size
)
6087 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
6088 &old_size
, NULL
, &right_mode
, &right_uid
,
6093 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
6095 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
6097 if ((old_size
== sctx
->cur_inode_size
) ||
6098 (sctx
->cur_inode_size
> old_size
&&
6099 sctx
->cur_inode_next_write_offset
== sctx
->cur_inode_size
))
6103 if (S_ISREG(sctx
->cur_inode_mode
)) {
6104 if (need_send_hole(sctx
)) {
6105 if (sctx
->cur_inode_last_extent
== (u64
)-1 ||
6106 sctx
->cur_inode_last_extent
<
6107 sctx
->cur_inode_size
) {
6108 ret
= get_last_extent(sctx
, (u64
)-1);
6112 if (sctx
->cur_inode_last_extent
<
6113 sctx
->cur_inode_size
) {
6114 ret
= send_hole(sctx
, sctx
->cur_inode_size
);
6119 if (need_truncate
) {
6120 ret
= send_truncate(sctx
, sctx
->cur_ino
,
6121 sctx
->cur_inode_gen
,
6122 sctx
->cur_inode_size
);
6129 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
6130 left_uid
, left_gid
);
6135 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
6141 ret
= send_capabilities(sctx
);
6146 * If other directory inodes depended on our current directory
6147 * inode's move/rename, now do their move/rename operations.
6149 if (!is_waiting_for_move(sctx
, sctx
->cur_ino
)) {
6150 ret
= apply_children_dir_moves(sctx
);
6154 * Need to send that every time, no matter if it actually
6155 * changed between the two trees as we have done changes to
6156 * the inode before. If our inode is a directory and it's
6157 * waiting to be moved/renamed, we will send its utimes when
6158 * it's moved/renamed, therefore we don't need to do it here.
6160 sctx
->send_progress
= sctx
->cur_ino
+ 1;
6161 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
6170 struct parent_paths_ctx
{
6171 struct list_head
*refs
;
6172 struct send_ctx
*sctx
;
6175 static int record_parent_ref(int num
, u64 dir
, int index
, struct fs_path
*name
,
6178 struct parent_paths_ctx
*ppctx
= ctx
;
6180 return record_ref(ppctx
->sctx
->parent_root
, dir
, name
, ppctx
->sctx
,
6185 * Issue unlink operations for all paths of the current inode found in the
6188 static int btrfs_unlink_all_paths(struct send_ctx
*sctx
)
6190 LIST_HEAD(deleted_refs
);
6191 struct btrfs_path
*path
;
6192 struct btrfs_key key
;
6193 struct parent_paths_ctx ctx
;
6196 path
= alloc_path_for_send();
6200 key
.objectid
= sctx
->cur_ino
;
6201 key
.type
= BTRFS_INODE_REF_KEY
;
6203 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
6207 ctx
.refs
= &deleted_refs
;
6211 struct extent_buffer
*eb
= path
->nodes
[0];
6212 int slot
= path
->slots
[0];
6214 if (slot
>= btrfs_header_nritems(eb
)) {
6215 ret
= btrfs_next_leaf(sctx
->parent_root
, path
);
6223 btrfs_item_key_to_cpu(eb
, &key
, slot
);
6224 if (key
.objectid
!= sctx
->cur_ino
)
6226 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
6227 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
6230 ret
= iterate_inode_ref(sctx
->parent_root
, path
, &key
, 1,
6231 record_parent_ref
, &ctx
);
6238 while (!list_empty(&deleted_refs
)) {
6239 struct recorded_ref
*ref
;
6241 ref
= list_first_entry(&deleted_refs
, struct recorded_ref
, list
);
6242 ret
= send_unlink(sctx
, ref
->full_path
);
6245 fs_path_free(ref
->full_path
);
6246 list_del(&ref
->list
);
6251 btrfs_free_path(path
);
6253 __free_recorded_refs(&deleted_refs
);
6257 static int changed_inode(struct send_ctx
*sctx
,
6258 enum btrfs_compare_tree_result result
)
6261 struct btrfs_key
*key
= sctx
->cmp_key
;
6262 struct btrfs_inode_item
*left_ii
= NULL
;
6263 struct btrfs_inode_item
*right_ii
= NULL
;
6267 sctx
->cur_ino
= key
->objectid
;
6268 sctx
->cur_inode_new_gen
= 0;
6269 sctx
->cur_inode_last_extent
= (u64
)-1;
6270 sctx
->cur_inode_next_write_offset
= 0;
6271 sctx
->ignore_cur_inode
= false;
6274 * Set send_progress to current inode. This will tell all get_cur_xxx
6275 * functions that the current inode's refs are not updated yet. Later,
6276 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6278 sctx
->send_progress
= sctx
->cur_ino
;
6280 if (result
== BTRFS_COMPARE_TREE_NEW
||
6281 result
== BTRFS_COMPARE_TREE_CHANGED
) {
6282 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
6283 sctx
->left_path
->slots
[0],
6284 struct btrfs_inode_item
);
6285 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
6288 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
6289 sctx
->right_path
->slots
[0],
6290 struct btrfs_inode_item
);
6291 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
6294 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
6295 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
6296 sctx
->right_path
->slots
[0],
6297 struct btrfs_inode_item
);
6299 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
6303 * The cur_ino = root dir case is special here. We can't treat
6304 * the inode as deleted+reused because it would generate a
6305 * stream that tries to delete/mkdir the root dir.
6307 if (left_gen
!= right_gen
&&
6308 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
6309 sctx
->cur_inode_new_gen
= 1;
6313 * Normally we do not find inodes with a link count of zero (orphans)
6314 * because the most common case is to create a snapshot and use it
6315 * for a send operation. However other less common use cases involve
6316 * using a subvolume and send it after turning it to RO mode just
6317 * after deleting all hard links of a file while holding an open
6318 * file descriptor against it or turning a RO snapshot into RW mode,
6319 * keep an open file descriptor against a file, delete it and then
6320 * turn the snapshot back to RO mode before using it for a send
6321 * operation. So if we find such cases, ignore the inode and all its
6322 * items completely if it's a new inode, or if it's a changed inode
6323 * make sure all its previous paths (from the parent snapshot) are all
6324 * unlinked and all other the inode items are ignored.
6326 if (result
== BTRFS_COMPARE_TREE_NEW
||
6327 result
== BTRFS_COMPARE_TREE_CHANGED
) {
6330 nlinks
= btrfs_inode_nlink(sctx
->left_path
->nodes
[0], left_ii
);
6332 sctx
->ignore_cur_inode
= true;
6333 if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6334 ret
= btrfs_unlink_all_paths(sctx
);
6339 if (result
== BTRFS_COMPARE_TREE_NEW
) {
6340 sctx
->cur_inode_gen
= left_gen
;
6341 sctx
->cur_inode_new
= 1;
6342 sctx
->cur_inode_deleted
= 0;
6343 sctx
->cur_inode_size
= btrfs_inode_size(
6344 sctx
->left_path
->nodes
[0], left_ii
);
6345 sctx
->cur_inode_mode
= btrfs_inode_mode(
6346 sctx
->left_path
->nodes
[0], left_ii
);
6347 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
6348 sctx
->left_path
->nodes
[0], left_ii
);
6349 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
6350 ret
= send_create_inode_if_needed(sctx
);
6351 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
6352 sctx
->cur_inode_gen
= right_gen
;
6353 sctx
->cur_inode_new
= 0;
6354 sctx
->cur_inode_deleted
= 1;
6355 sctx
->cur_inode_size
= btrfs_inode_size(
6356 sctx
->right_path
->nodes
[0], right_ii
);
6357 sctx
->cur_inode_mode
= btrfs_inode_mode(
6358 sctx
->right_path
->nodes
[0], right_ii
);
6359 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
6361 * We need to do some special handling in case the inode was
6362 * reported as changed with a changed generation number. This
6363 * means that the original inode was deleted and new inode
6364 * reused the same inum. So we have to treat the old inode as
6365 * deleted and the new one as new.
6367 if (sctx
->cur_inode_new_gen
) {
6369 * First, process the inode as if it was deleted.
6371 sctx
->cur_inode_gen
= right_gen
;
6372 sctx
->cur_inode_new
= 0;
6373 sctx
->cur_inode_deleted
= 1;
6374 sctx
->cur_inode_size
= btrfs_inode_size(
6375 sctx
->right_path
->nodes
[0], right_ii
);
6376 sctx
->cur_inode_mode
= btrfs_inode_mode(
6377 sctx
->right_path
->nodes
[0], right_ii
);
6378 ret
= process_all_refs(sctx
,
6379 BTRFS_COMPARE_TREE_DELETED
);
6384 * Now process the inode as if it was new.
6386 sctx
->cur_inode_gen
= left_gen
;
6387 sctx
->cur_inode_new
= 1;
6388 sctx
->cur_inode_deleted
= 0;
6389 sctx
->cur_inode_size
= btrfs_inode_size(
6390 sctx
->left_path
->nodes
[0], left_ii
);
6391 sctx
->cur_inode_mode
= btrfs_inode_mode(
6392 sctx
->left_path
->nodes
[0], left_ii
);
6393 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
6394 sctx
->left_path
->nodes
[0], left_ii
);
6395 ret
= send_create_inode_if_needed(sctx
);
6399 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
6403 * Advance send_progress now as we did not get into
6404 * process_recorded_refs_if_needed in the new_gen case.
6406 sctx
->send_progress
= sctx
->cur_ino
+ 1;
6409 * Now process all extents and xattrs of the inode as if
6410 * they were all new.
6412 ret
= process_all_extents(sctx
);
6415 ret
= process_all_new_xattrs(sctx
);
6419 sctx
->cur_inode_gen
= left_gen
;
6420 sctx
->cur_inode_new
= 0;
6421 sctx
->cur_inode_new_gen
= 0;
6422 sctx
->cur_inode_deleted
= 0;
6423 sctx
->cur_inode_size
= btrfs_inode_size(
6424 sctx
->left_path
->nodes
[0], left_ii
);
6425 sctx
->cur_inode_mode
= btrfs_inode_mode(
6426 sctx
->left_path
->nodes
[0], left_ii
);
6435 * We have to process new refs before deleted refs, but compare_trees gives us
6436 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6437 * first and later process them in process_recorded_refs.
6438 * For the cur_inode_new_gen case, we skip recording completely because
6439 * changed_inode did already initiate processing of refs. The reason for this is
6440 * that in this case, compare_tree actually compares the refs of 2 different
6441 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6442 * refs of the right tree as deleted and all refs of the left tree as new.
6444 static int changed_ref(struct send_ctx
*sctx
,
6445 enum btrfs_compare_tree_result result
)
6449 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
6450 inconsistent_snapshot_error(sctx
, result
, "reference");
6454 if (!sctx
->cur_inode_new_gen
&&
6455 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
6456 if (result
== BTRFS_COMPARE_TREE_NEW
)
6457 ret
= record_new_ref(sctx
);
6458 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
6459 ret
= record_deleted_ref(sctx
);
6460 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6461 ret
= record_changed_ref(sctx
);
6468 * Process new/deleted/changed xattrs. We skip processing in the
6469 * cur_inode_new_gen case because changed_inode did already initiate processing
6470 * of xattrs. The reason is the same as in changed_ref
6472 static int changed_xattr(struct send_ctx
*sctx
,
6473 enum btrfs_compare_tree_result result
)
6477 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
6478 inconsistent_snapshot_error(sctx
, result
, "xattr");
6482 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6483 if (result
== BTRFS_COMPARE_TREE_NEW
)
6484 ret
= process_new_xattr(sctx
);
6485 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
6486 ret
= process_deleted_xattr(sctx
);
6487 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6488 ret
= process_changed_xattr(sctx
);
6495 * Process new/deleted/changed extents. We skip processing in the
6496 * cur_inode_new_gen case because changed_inode did already initiate processing
6497 * of extents. The reason is the same as in changed_ref
6499 static int changed_extent(struct send_ctx
*sctx
,
6500 enum btrfs_compare_tree_result result
)
6505 * We have found an extent item that changed without the inode item
6506 * having changed. This can happen either after relocation (where the
6507 * disk_bytenr of an extent item is replaced at
6508 * relocation.c:replace_file_extents()) or after deduplication into a
6509 * file in both the parent and send snapshots (where an extent item can
6510 * get modified or replaced with a new one). Note that deduplication
6511 * updates the inode item, but it only changes the iversion (sequence
6512 * field in the inode item) of the inode, so if a file is deduplicated
6513 * the same amount of times in both the parent and send snapshots, its
6514 * iversion becames the same in both snapshots, whence the inode item is
6515 * the same on both snapshots.
6517 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
)
6520 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6521 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
6522 ret
= process_extent(sctx
, sctx
->left_path
,
6529 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
6531 u64 orig_gen
, new_gen
;
6534 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
6539 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
6544 return (orig_gen
!= new_gen
) ? 1 : 0;
6547 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
6548 struct btrfs_key
*key
)
6550 struct btrfs_inode_extref
*extref
;
6551 struct extent_buffer
*leaf
;
6552 u64 dirid
= 0, last_dirid
= 0;
6559 /* Easy case, just check this one dirid */
6560 if (key
->type
== BTRFS_INODE_REF_KEY
) {
6561 dirid
= key
->offset
;
6563 ret
= dir_changed(sctx
, dirid
);
6567 leaf
= path
->nodes
[0];
6568 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
6569 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
6570 while (cur_offset
< item_size
) {
6571 extref
= (struct btrfs_inode_extref
*)(ptr
+
6573 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
6574 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
6575 cur_offset
+= ref_name_len
+ sizeof(*extref
);
6576 if (dirid
== last_dirid
)
6578 ret
= dir_changed(sctx
, dirid
);
6588 * Updates compare related fields in sctx and simply forwards to the actual
6589 * changed_xxx functions.
6591 static int changed_cb(struct btrfs_path
*left_path
,
6592 struct btrfs_path
*right_path
,
6593 struct btrfs_key
*key
,
6594 enum btrfs_compare_tree_result result
,
6598 struct send_ctx
*sctx
= ctx
;
6600 if (result
== BTRFS_COMPARE_TREE_SAME
) {
6601 if (key
->type
== BTRFS_INODE_REF_KEY
||
6602 key
->type
== BTRFS_INODE_EXTREF_KEY
) {
6603 ret
= compare_refs(sctx
, left_path
, key
);
6608 } else if (key
->type
== BTRFS_EXTENT_DATA_KEY
) {
6609 return maybe_send_hole(sctx
, left_path
, key
);
6613 result
= BTRFS_COMPARE_TREE_CHANGED
;
6617 sctx
->left_path
= left_path
;
6618 sctx
->right_path
= right_path
;
6619 sctx
->cmp_key
= key
;
6621 ret
= finish_inode_if_needed(sctx
, 0);
6625 /* Ignore non-FS objects */
6626 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
6627 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
6630 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
6631 ret
= changed_inode(sctx
, result
);
6632 } else if (!sctx
->ignore_cur_inode
) {
6633 if (key
->type
== BTRFS_INODE_REF_KEY
||
6634 key
->type
== BTRFS_INODE_EXTREF_KEY
)
6635 ret
= changed_ref(sctx
, result
);
6636 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
6637 ret
= changed_xattr(sctx
, result
);
6638 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
6639 ret
= changed_extent(sctx
, result
);
6646 static int full_send_tree(struct send_ctx
*sctx
)
6649 struct btrfs_root
*send_root
= sctx
->send_root
;
6650 struct btrfs_key key
;
6651 struct btrfs_path
*path
;
6652 struct extent_buffer
*eb
;
6655 path
= alloc_path_for_send();
6659 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
6660 key
.type
= BTRFS_INODE_ITEM_KEY
;
6663 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
6670 eb
= path
->nodes
[0];
6671 slot
= path
->slots
[0];
6672 btrfs_item_key_to_cpu(eb
, &key
, slot
);
6674 ret
= changed_cb(path
, NULL
, &key
,
6675 BTRFS_COMPARE_TREE_NEW
, sctx
);
6679 ret
= btrfs_next_item(send_root
, path
);
6689 ret
= finish_inode_if_needed(sctx
, 1);
6692 btrfs_free_path(path
);
6696 static int tree_move_down(struct btrfs_path
*path
, int *level
)
6698 struct extent_buffer
*eb
;
6700 BUG_ON(*level
== 0);
6701 eb
= btrfs_read_node_slot(path
->nodes
[*level
], path
->slots
[*level
]);
6705 path
->nodes
[*level
- 1] = eb
;
6706 path
->slots
[*level
- 1] = 0;
6711 static int tree_move_next_or_upnext(struct btrfs_path
*path
,
6712 int *level
, int root_level
)
6716 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
6718 path
->slots
[*level
]++;
6720 while (path
->slots
[*level
] >= nritems
) {
6721 if (*level
== root_level
)
6725 path
->slots
[*level
] = 0;
6726 free_extent_buffer(path
->nodes
[*level
]);
6727 path
->nodes
[*level
] = NULL
;
6729 path
->slots
[*level
]++;
6731 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
6738 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6741 static int tree_advance(struct btrfs_path
*path
,
6742 int *level
, int root_level
,
6744 struct btrfs_key
*key
)
6748 if (*level
== 0 || !allow_down
) {
6749 ret
= tree_move_next_or_upnext(path
, level
, root_level
);
6751 ret
= tree_move_down(path
, level
);
6755 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
6756 path
->slots
[*level
]);
6758 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
6759 path
->slots
[*level
]);
6764 static int tree_compare_item(struct btrfs_path
*left_path
,
6765 struct btrfs_path
*right_path
,
6770 unsigned long off1
, off2
;
6772 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
6773 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
6777 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
6778 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
6779 right_path
->slots
[0]);
6781 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
6783 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
6790 * This function compares two trees and calls the provided callback for
6791 * every changed/new/deleted item it finds.
6792 * If shared tree blocks are encountered, whole subtrees are skipped, making
6793 * the compare pretty fast on snapshotted subvolumes.
6795 * This currently works on commit roots only. As commit roots are read only,
6796 * we don't do any locking. The commit roots are protected with transactions.
6797 * Transactions are ended and rejoined when a commit is tried in between.
6799 * This function checks for modifications done to the trees while comparing.
6800 * If it detects a change, it aborts immediately.
6802 static int btrfs_compare_trees(struct btrfs_root
*left_root
,
6803 struct btrfs_root
*right_root
, void *ctx
)
6805 struct btrfs_fs_info
*fs_info
= left_root
->fs_info
;
6808 struct btrfs_path
*left_path
= NULL
;
6809 struct btrfs_path
*right_path
= NULL
;
6810 struct btrfs_key left_key
;
6811 struct btrfs_key right_key
;
6812 char *tmp_buf
= NULL
;
6813 int left_root_level
;
6814 int right_root_level
;
6817 int left_end_reached
;
6818 int right_end_reached
;
6826 left_path
= btrfs_alloc_path();
6831 right_path
= btrfs_alloc_path();
6837 tmp_buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
6843 left_path
->search_commit_root
= 1;
6844 left_path
->skip_locking
= 1;
6845 right_path
->search_commit_root
= 1;
6846 right_path
->skip_locking
= 1;
6849 * Strategy: Go to the first items of both trees. Then do
6851 * If both trees are at level 0
6852 * Compare keys of current items
6853 * If left < right treat left item as new, advance left tree
6855 * If left > right treat right item as deleted, advance right tree
6857 * If left == right do deep compare of items, treat as changed if
6858 * needed, advance both trees and repeat
6859 * If both trees are at the same level but not at level 0
6860 * Compare keys of current nodes/leafs
6861 * If left < right advance left tree and repeat
6862 * If left > right advance right tree and repeat
6863 * If left == right compare blockptrs of the next nodes/leafs
6864 * If they match advance both trees but stay at the same level
6866 * If they don't match advance both trees while allowing to go
6868 * If tree levels are different
6869 * Advance the tree that needs it and repeat
6871 * Advancing a tree means:
6872 * If we are at level 0, try to go to the next slot. If that's not
6873 * possible, go one level up and repeat. Stop when we found a level
6874 * where we could go to the next slot. We may at this point be on a
6877 * If we are not at level 0 and not on shared tree blocks, go one
6880 * If we are not at level 0 and on shared tree blocks, go one slot to
6881 * the right if possible or go up and right.
6884 down_read(&fs_info
->commit_root_sem
);
6885 left_level
= btrfs_header_level(left_root
->commit_root
);
6886 left_root_level
= left_level
;
6887 left_path
->nodes
[left_level
] =
6888 btrfs_clone_extent_buffer(left_root
->commit_root
);
6889 if (!left_path
->nodes
[left_level
]) {
6890 up_read(&fs_info
->commit_root_sem
);
6895 right_level
= btrfs_header_level(right_root
->commit_root
);
6896 right_root_level
= right_level
;
6897 right_path
->nodes
[right_level
] =
6898 btrfs_clone_extent_buffer(right_root
->commit_root
);
6899 if (!right_path
->nodes
[right_level
]) {
6900 up_read(&fs_info
->commit_root_sem
);
6904 up_read(&fs_info
->commit_root_sem
);
6906 if (left_level
== 0)
6907 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
6908 &left_key
, left_path
->slots
[left_level
]);
6910 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
6911 &left_key
, left_path
->slots
[left_level
]);
6912 if (right_level
== 0)
6913 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
6914 &right_key
, right_path
->slots
[right_level
]);
6916 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
6917 &right_key
, right_path
->slots
[right_level
]);
6919 left_end_reached
= right_end_reached
= 0;
6920 advance_left
= advance_right
= 0;
6924 if (advance_left
&& !left_end_reached
) {
6925 ret
= tree_advance(left_path
, &left_level
,
6927 advance_left
!= ADVANCE_ONLY_NEXT
,
6930 left_end_reached
= ADVANCE
;
6935 if (advance_right
&& !right_end_reached
) {
6936 ret
= tree_advance(right_path
, &right_level
,
6938 advance_right
!= ADVANCE_ONLY_NEXT
,
6941 right_end_reached
= ADVANCE
;
6947 if (left_end_reached
&& right_end_reached
) {
6950 } else if (left_end_reached
) {
6951 if (right_level
== 0) {
6952 ret
= changed_cb(left_path
, right_path
,
6954 BTRFS_COMPARE_TREE_DELETED
,
6959 advance_right
= ADVANCE
;
6961 } else if (right_end_reached
) {
6962 if (left_level
== 0) {
6963 ret
= changed_cb(left_path
, right_path
,
6965 BTRFS_COMPARE_TREE_NEW
,
6970 advance_left
= ADVANCE
;
6974 if (left_level
== 0 && right_level
== 0) {
6975 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
6977 ret
= changed_cb(left_path
, right_path
,
6979 BTRFS_COMPARE_TREE_NEW
,
6983 advance_left
= ADVANCE
;
6984 } else if (cmp
> 0) {
6985 ret
= changed_cb(left_path
, right_path
,
6987 BTRFS_COMPARE_TREE_DELETED
,
6991 advance_right
= ADVANCE
;
6993 enum btrfs_compare_tree_result result
;
6995 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
6996 ret
= tree_compare_item(left_path
, right_path
,
6999 result
= BTRFS_COMPARE_TREE_CHANGED
;
7001 result
= BTRFS_COMPARE_TREE_SAME
;
7002 ret
= changed_cb(left_path
, right_path
,
7003 &left_key
, result
, ctx
);
7006 advance_left
= ADVANCE
;
7007 advance_right
= ADVANCE
;
7009 } else if (left_level
== right_level
) {
7010 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
7012 advance_left
= ADVANCE
;
7013 } else if (cmp
> 0) {
7014 advance_right
= ADVANCE
;
7016 left_blockptr
= btrfs_node_blockptr(
7017 left_path
->nodes
[left_level
],
7018 left_path
->slots
[left_level
]);
7019 right_blockptr
= btrfs_node_blockptr(
7020 right_path
->nodes
[right_level
],
7021 right_path
->slots
[right_level
]);
7022 left_gen
= btrfs_node_ptr_generation(
7023 left_path
->nodes
[left_level
],
7024 left_path
->slots
[left_level
]);
7025 right_gen
= btrfs_node_ptr_generation(
7026 right_path
->nodes
[right_level
],
7027 right_path
->slots
[right_level
]);
7028 if (left_blockptr
== right_blockptr
&&
7029 left_gen
== right_gen
) {
7031 * As we're on a shared block, don't
7032 * allow to go deeper.
7034 advance_left
= ADVANCE_ONLY_NEXT
;
7035 advance_right
= ADVANCE_ONLY_NEXT
;
7037 advance_left
= ADVANCE
;
7038 advance_right
= ADVANCE
;
7041 } else if (left_level
< right_level
) {
7042 advance_right
= ADVANCE
;
7044 advance_left
= ADVANCE
;
7049 btrfs_free_path(left_path
);
7050 btrfs_free_path(right_path
);
7055 static int send_subvol(struct send_ctx
*sctx
)
7059 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
7060 ret
= send_header(sctx
);
7065 ret
= send_subvol_begin(sctx
);
7069 if (sctx
->parent_root
) {
7070 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
, sctx
);
7073 ret
= finish_inode_if_needed(sctx
, 1);
7077 ret
= full_send_tree(sctx
);
7083 free_recorded_refs(sctx
);
7088 * If orphan cleanup did remove any orphans from a root, it means the tree
7089 * was modified and therefore the commit root is not the same as the current
7090 * root anymore. This is a problem, because send uses the commit root and
7091 * therefore can see inode items that don't exist in the current root anymore,
7092 * and for example make calls to btrfs_iget, which will do tree lookups based
7093 * on the current root and not on the commit root. Those lookups will fail,
7094 * returning a -ESTALE error, and making send fail with that error. So make
7095 * sure a send does not see any orphans we have just removed, and that it will
7096 * see the same inodes regardless of whether a transaction commit happened
7097 * before it started (meaning that the commit root will be the same as the
7098 * current root) or not.
7100 static int ensure_commit_roots_uptodate(struct send_ctx
*sctx
)
7103 struct btrfs_trans_handle
*trans
= NULL
;
7106 if (sctx
->parent_root
&&
7107 sctx
->parent_root
->node
!= sctx
->parent_root
->commit_root
)
7110 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
7111 if (sctx
->clone_roots
[i
].root
->node
!=
7112 sctx
->clone_roots
[i
].root
->commit_root
)
7116 return btrfs_end_transaction(trans
);
7121 /* Use any root, all fs roots will get their commit roots updated. */
7123 trans
= btrfs_join_transaction(sctx
->send_root
);
7125 return PTR_ERR(trans
);
7129 return btrfs_commit_transaction(trans
);
7133 * Make sure any existing dellaloc is flushed for any root used by a send
7134 * operation so that we do not miss any data and we do not race with writeback
7135 * finishing and changing a tree while send is using the tree. This could
7136 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7137 * a send operation then uses the subvolume.
7138 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7140 static int flush_delalloc_roots(struct send_ctx
*sctx
)
7142 struct btrfs_root
*root
= sctx
->parent_root
;
7147 ret
= btrfs_start_delalloc_snapshot(root
);
7150 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, U64_MAX
);
7153 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
7154 root
= sctx
->clone_roots
[i
].root
;
7155 ret
= btrfs_start_delalloc_snapshot(root
);
7158 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, U64_MAX
);
7164 static void btrfs_root_dec_send_in_progress(struct btrfs_root
* root
)
7166 spin_lock(&root
->root_item_lock
);
7167 root
->send_in_progress
--;
7169 * Not much left to do, we don't know why it's unbalanced and
7170 * can't blindly reset it to 0.
7172 if (root
->send_in_progress
< 0)
7173 btrfs_err(root
->fs_info
,
7174 "send_in_progress unbalanced %d root %llu",
7175 root
->send_in_progress
, root
->root_key
.objectid
);
7176 spin_unlock(&root
->root_item_lock
);
7179 static void dedupe_in_progress_warn(const struct btrfs_root
*root
)
7181 btrfs_warn_rl(root
->fs_info
,
7182 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7183 root
->root_key
.objectid
, root
->dedupe_in_progress
);
7186 long btrfs_ioctl_send(struct file
*mnt_file
, struct btrfs_ioctl_send_args
*arg
)
7189 struct btrfs_root
*send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
7190 struct btrfs_fs_info
*fs_info
= send_root
->fs_info
;
7191 struct btrfs_root
*clone_root
;
7192 struct send_ctx
*sctx
= NULL
;
7194 u64
*clone_sources_tmp
= NULL
;
7195 int clone_sources_to_rollback
= 0;
7197 int sort_clone_roots
= 0;
7199 if (!capable(CAP_SYS_ADMIN
))
7203 * The subvolume must remain read-only during send, protect against
7204 * making it RW. This also protects against deletion.
7206 spin_lock(&send_root
->root_item_lock
);
7207 if (btrfs_root_readonly(send_root
) && send_root
->dedupe_in_progress
) {
7208 dedupe_in_progress_warn(send_root
);
7209 spin_unlock(&send_root
->root_item_lock
);
7212 send_root
->send_in_progress
++;
7213 spin_unlock(&send_root
->root_item_lock
);
7216 * Userspace tools do the checks and warn the user if it's
7219 if (!btrfs_root_readonly(send_root
)) {
7225 * Check that we don't overflow at later allocations, we request
7226 * clone_sources_count + 1 items, and compare to unsigned long inside
7229 if (arg
->clone_sources_count
>
7230 ULONG_MAX
/ sizeof(struct clone_root
) - 1) {
7235 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
7240 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_KERNEL
);
7246 INIT_LIST_HEAD(&sctx
->new_refs
);
7247 INIT_LIST_HEAD(&sctx
->deleted_refs
);
7248 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_KERNEL
);
7249 INIT_LIST_HEAD(&sctx
->name_cache_list
);
7251 sctx
->flags
= arg
->flags
;
7253 sctx
->send_filp
= fget(arg
->send_fd
);
7254 if (!sctx
->send_filp
) {
7259 sctx
->send_root
= send_root
;
7261 * Unlikely but possible, if the subvolume is marked for deletion but
7262 * is slow to remove the directory entry, send can still be started
7264 if (btrfs_root_dead(sctx
->send_root
)) {
7269 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
7271 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
7272 sctx
->send_buf
= kvmalloc(sctx
->send_max_size
, GFP_KERNEL
);
7273 if (!sctx
->send_buf
) {
7278 sctx
->pending_dir_moves
= RB_ROOT
;
7279 sctx
->waiting_dir_moves
= RB_ROOT
;
7280 sctx
->orphan_dirs
= RB_ROOT
;
7282 sctx
->clone_roots
= kvcalloc(sizeof(*sctx
->clone_roots
),
7283 arg
->clone_sources_count
+ 1,
7285 if (!sctx
->clone_roots
) {
7290 alloc_size
= array_size(sizeof(*arg
->clone_sources
),
7291 arg
->clone_sources_count
);
7293 if (arg
->clone_sources_count
) {
7294 clone_sources_tmp
= kvmalloc(alloc_size
, GFP_KERNEL
);
7295 if (!clone_sources_tmp
) {
7300 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
7307 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
7308 clone_root
= btrfs_get_fs_root(fs_info
,
7309 clone_sources_tmp
[i
], true);
7310 if (IS_ERR(clone_root
)) {
7311 ret
= PTR_ERR(clone_root
);
7314 spin_lock(&clone_root
->root_item_lock
);
7315 if (!btrfs_root_readonly(clone_root
) ||
7316 btrfs_root_dead(clone_root
)) {
7317 spin_unlock(&clone_root
->root_item_lock
);
7318 btrfs_put_root(clone_root
);
7322 if (clone_root
->dedupe_in_progress
) {
7323 dedupe_in_progress_warn(clone_root
);
7324 spin_unlock(&clone_root
->root_item_lock
);
7325 btrfs_put_root(clone_root
);
7329 clone_root
->send_in_progress
++;
7330 spin_unlock(&clone_root
->root_item_lock
);
7332 sctx
->clone_roots
[i
].root
= clone_root
;
7333 clone_sources_to_rollback
= i
+ 1;
7335 kvfree(clone_sources_tmp
);
7336 clone_sources_tmp
= NULL
;
7339 if (arg
->parent_root
) {
7340 sctx
->parent_root
= btrfs_get_fs_root(fs_info
, arg
->parent_root
,
7342 if (IS_ERR(sctx
->parent_root
)) {
7343 ret
= PTR_ERR(sctx
->parent_root
);
7347 spin_lock(&sctx
->parent_root
->root_item_lock
);
7348 sctx
->parent_root
->send_in_progress
++;
7349 if (!btrfs_root_readonly(sctx
->parent_root
) ||
7350 btrfs_root_dead(sctx
->parent_root
)) {
7351 spin_unlock(&sctx
->parent_root
->root_item_lock
);
7355 if (sctx
->parent_root
->dedupe_in_progress
) {
7356 dedupe_in_progress_warn(sctx
->parent_root
);
7357 spin_unlock(&sctx
->parent_root
->root_item_lock
);
7361 spin_unlock(&sctx
->parent_root
->root_item_lock
);
7365 * Clones from send_root are allowed, but only if the clone source
7366 * is behind the current send position. This is checked while searching
7367 * for possible clone sources.
7369 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
=
7370 btrfs_grab_root(sctx
->send_root
);
7372 /* We do a bsearch later */
7373 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
7374 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
7376 sort_clone_roots
= 1;
7378 ret
= flush_delalloc_roots(sctx
);
7382 ret
= ensure_commit_roots_uptodate(sctx
);
7386 mutex_lock(&fs_info
->balance_mutex
);
7387 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
7388 mutex_unlock(&fs_info
->balance_mutex
);
7389 btrfs_warn_rl(fs_info
,
7390 "cannot run send because a balance operation is in progress");
7394 fs_info
->send_in_progress
++;
7395 mutex_unlock(&fs_info
->balance_mutex
);
7397 current
->journal_info
= BTRFS_SEND_TRANS_STUB
;
7398 ret
= send_subvol(sctx
);
7399 current
->journal_info
= NULL
;
7400 mutex_lock(&fs_info
->balance_mutex
);
7401 fs_info
->send_in_progress
--;
7402 mutex_unlock(&fs_info
->balance_mutex
);
7406 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
7407 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
7410 ret
= send_cmd(sctx
);
7416 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
));
7417 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
)) {
7419 struct pending_dir_move
*pm
;
7421 n
= rb_first(&sctx
->pending_dir_moves
);
7422 pm
= rb_entry(n
, struct pending_dir_move
, node
);
7423 while (!list_empty(&pm
->list
)) {
7424 struct pending_dir_move
*pm2
;
7426 pm2
= list_first_entry(&pm
->list
,
7427 struct pending_dir_move
, list
);
7428 free_pending_move(sctx
, pm2
);
7430 free_pending_move(sctx
, pm
);
7433 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
));
7434 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
)) {
7436 struct waiting_dir_move
*dm
;
7438 n
= rb_first(&sctx
->waiting_dir_moves
);
7439 dm
= rb_entry(n
, struct waiting_dir_move
, node
);
7440 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
7444 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
));
7445 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
)) {
7447 struct orphan_dir_info
*odi
;
7449 n
= rb_first(&sctx
->orphan_dirs
);
7450 odi
= rb_entry(n
, struct orphan_dir_info
, node
);
7451 free_orphan_dir_info(sctx
, odi
);
7454 if (sort_clone_roots
) {
7455 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
7456 btrfs_root_dec_send_in_progress(
7457 sctx
->clone_roots
[i
].root
);
7458 btrfs_put_root(sctx
->clone_roots
[i
].root
);
7461 for (i
= 0; sctx
&& i
< clone_sources_to_rollback
; i
++) {
7462 btrfs_root_dec_send_in_progress(
7463 sctx
->clone_roots
[i
].root
);
7464 btrfs_put_root(sctx
->clone_roots
[i
].root
);
7467 btrfs_root_dec_send_in_progress(send_root
);
7469 if (sctx
&& !IS_ERR_OR_NULL(sctx
->parent_root
)) {
7470 btrfs_root_dec_send_in_progress(sctx
->parent_root
);
7471 btrfs_put_root(sctx
->parent_root
);
7474 kvfree(clone_sources_tmp
);
7477 if (sctx
->send_filp
)
7478 fput(sctx
->send_filp
);
7480 kvfree(sctx
->clone_roots
);
7481 kvfree(sctx
->send_buf
);
7483 name_cache_free(sctx
);