1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
16 #include "transaction.h"
20 #include "dev-replace.h"
22 #include "block-group.h"
23 #include "space-info.h"
25 #define BTRFS_ROOT_TRANS_TAG 0
28 * Transaction states and transitions
30 * No running transaction (fs tree blocks are not modified)
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * Transaction N [[TRANS_STATE_RUNNING]]
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
41 * | Call btrfs_commit_transaction() on any trans handle attached to
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * | Will wait for previous running transaction to completely finish if there
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
76 * | Until all supporting trees are updated.
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
84 * | At this stage, new transaction is allowed to |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
98 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
99 [TRANS_STATE_RUNNING
] = 0U,
100 [TRANS_STATE_COMMIT_START
] = (__TRANS_START
| __TRANS_ATTACH
),
101 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_START
|
104 __TRANS_JOIN_NOSTART
),
105 [TRANS_STATE_UNBLOCKED
] = (__TRANS_START
|
108 __TRANS_JOIN_NOLOCK
|
109 __TRANS_JOIN_NOSTART
),
110 [TRANS_STATE_COMPLETED
] = (__TRANS_START
|
113 __TRANS_JOIN_NOLOCK
|
114 __TRANS_JOIN_NOSTART
),
117 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
119 WARN_ON(refcount_read(&transaction
->use_count
) == 0);
120 if (refcount_dec_and_test(&transaction
->use_count
)) {
121 BUG_ON(!list_empty(&transaction
->list
));
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction
->delayed_refs
.href_root
.rb_root
));
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction
->delayed_refs
.dirty_extent_root
));
126 if (transaction
->delayed_refs
.pending_csums
)
127 btrfs_err(transaction
->fs_info
,
128 "pending csums is %llu",
129 transaction
->delayed_refs
.pending_csums
);
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
137 while (!list_empty(&transaction
->deleted_bgs
)) {
138 struct btrfs_block_group
*cache
;
140 cache
= list_first_entry(&transaction
->deleted_bgs
,
141 struct btrfs_block_group
,
143 list_del_init(&cache
->bg_list
);
144 btrfs_unfreeze_block_group(cache
);
145 btrfs_put_block_group(cache
);
147 WARN_ON(!list_empty(&transaction
->dev_update_list
));
152 static noinline
void switch_commit_roots(struct btrfs_trans_handle
*trans
)
154 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
155 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
156 struct btrfs_root
*root
, *tmp
;
157 struct btrfs_caching_control
*caching_ctl
, *next
;
159 down_write(&fs_info
->commit_root_sem
);
160 list_for_each_entry_safe(root
, tmp
, &cur_trans
->switch_commits
,
162 list_del_init(&root
->dirty_list
);
163 free_extent_buffer(root
->commit_root
);
164 root
->commit_root
= btrfs_root_node(root
);
165 extent_io_tree_release(&root
->dirty_log_pages
);
166 btrfs_qgroup_clean_swapped_blocks(root
);
169 /* We can free old roots now. */
170 spin_lock(&cur_trans
->dropped_roots_lock
);
171 while (!list_empty(&cur_trans
->dropped_roots
)) {
172 root
= list_first_entry(&cur_trans
->dropped_roots
,
173 struct btrfs_root
, root_list
);
174 list_del_init(&root
->root_list
);
175 spin_unlock(&cur_trans
->dropped_roots_lock
);
176 btrfs_free_log(trans
, root
);
177 btrfs_drop_and_free_fs_root(fs_info
, root
);
178 spin_lock(&cur_trans
->dropped_roots_lock
);
180 spin_unlock(&cur_trans
->dropped_roots_lock
);
183 * We have to update the last_byte_to_unpin under the commit_root_sem,
184 * at the same time we swap out the commit roots.
186 * This is because we must have a real view of the last spot the caching
187 * kthreads were while caching. Consider the following views of the
188 * extent tree for a block group
191 * +----+----+----+----+----+----+----+
192 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
193 * +----+----+----+----+----+----+----+
197 * +----+----+----+----+----+----+----+
198 * | | | |\\\\| | |\\\\|
199 * +----+----+----+----+----+----+----+
202 * If the cache_ctl->progress was at 3, then we are only allowed to
203 * unpin [0,1) and [2,3], because the caching thread has already
204 * processed those extents. We are not allowed to unpin [5,6), because
205 * the caching thread will re-start it's search from 3, and thus find
206 * the hole from [4,6) to add to the free space cache.
208 spin_lock(&fs_info
->block_group_cache_lock
);
209 list_for_each_entry_safe(caching_ctl
, next
,
210 &fs_info
->caching_block_groups
, list
) {
211 struct btrfs_block_group
*cache
= caching_ctl
->block_group
;
213 if (btrfs_block_group_done(cache
)) {
214 cache
->last_byte_to_unpin
= (u64
)-1;
215 list_del_init(&caching_ctl
->list
);
216 btrfs_put_caching_control(caching_ctl
);
218 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
221 spin_unlock(&fs_info
->block_group_cache_lock
);
222 up_write(&fs_info
->commit_root_sem
);
225 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
228 if (type
& TRANS_EXTWRITERS
)
229 atomic_inc(&trans
->num_extwriters
);
232 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
235 if (type
& TRANS_EXTWRITERS
)
236 atomic_dec(&trans
->num_extwriters
);
239 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
242 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
245 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
247 return atomic_read(&trans
->num_extwriters
);
251 * To be called after all the new block groups attached to the transaction
252 * handle have been created (btrfs_create_pending_block_groups()).
254 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
256 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
258 if (!trans
->chunk_bytes_reserved
)
261 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
263 btrfs_block_rsv_release(fs_info
, &fs_info
->chunk_block_rsv
,
264 trans
->chunk_bytes_reserved
, NULL
);
265 trans
->chunk_bytes_reserved
= 0;
269 * either allocate a new transaction or hop into the existing one
271 static noinline
int join_transaction(struct btrfs_fs_info
*fs_info
,
274 struct btrfs_transaction
*cur_trans
;
276 spin_lock(&fs_info
->trans_lock
);
278 /* The file system has been taken offline. No new transactions. */
279 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
280 spin_unlock(&fs_info
->trans_lock
);
284 cur_trans
= fs_info
->running_transaction
;
286 if (TRANS_ABORTED(cur_trans
)) {
287 spin_unlock(&fs_info
->trans_lock
);
288 return cur_trans
->aborted
;
290 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
291 spin_unlock(&fs_info
->trans_lock
);
294 refcount_inc(&cur_trans
->use_count
);
295 atomic_inc(&cur_trans
->num_writers
);
296 extwriter_counter_inc(cur_trans
, type
);
297 spin_unlock(&fs_info
->trans_lock
);
300 spin_unlock(&fs_info
->trans_lock
);
303 * If we are ATTACH, we just want to catch the current transaction,
304 * and commit it. If there is no transaction, just return ENOENT.
306 if (type
== TRANS_ATTACH
)
310 * JOIN_NOLOCK only happens during the transaction commit, so
311 * it is impossible that ->running_transaction is NULL
313 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
315 cur_trans
= kmalloc(sizeof(*cur_trans
), GFP_NOFS
);
319 spin_lock(&fs_info
->trans_lock
);
320 if (fs_info
->running_transaction
) {
322 * someone started a transaction after we unlocked. Make sure
323 * to redo the checks above
327 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
328 spin_unlock(&fs_info
->trans_lock
);
333 cur_trans
->fs_info
= fs_info
;
334 atomic_set(&cur_trans
->pending_ordered
, 0);
335 init_waitqueue_head(&cur_trans
->pending_wait
);
336 atomic_set(&cur_trans
->num_writers
, 1);
337 extwriter_counter_init(cur_trans
, type
);
338 init_waitqueue_head(&cur_trans
->writer_wait
);
339 init_waitqueue_head(&cur_trans
->commit_wait
);
340 cur_trans
->state
= TRANS_STATE_RUNNING
;
342 * One for this trans handle, one so it will live on until we
343 * commit the transaction.
345 refcount_set(&cur_trans
->use_count
, 2);
346 cur_trans
->flags
= 0;
347 cur_trans
->start_time
= ktime_get_seconds();
349 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
351 cur_trans
->delayed_refs
.href_root
= RB_ROOT_CACHED
;
352 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
353 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
356 * although the tree mod log is per file system and not per transaction,
357 * the log must never go across transaction boundaries.
360 if (!list_empty(&fs_info
->tree_mod_seq_list
))
361 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
362 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
363 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
364 atomic64_set(&fs_info
->tree_mod_seq
, 0);
366 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
368 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
369 INIT_LIST_HEAD(&cur_trans
->dev_update_list
);
370 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
371 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
372 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
373 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
374 mutex_init(&cur_trans
->cache_write_mutex
);
375 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
376 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
377 spin_lock_init(&cur_trans
->dropped_roots_lock
);
378 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
379 extent_io_tree_init(fs_info
, &cur_trans
->dirty_pages
,
380 IO_TREE_TRANS_DIRTY_PAGES
, fs_info
->btree_inode
);
381 extent_io_tree_init(fs_info
, &cur_trans
->pinned_extents
,
382 IO_TREE_FS_PINNED_EXTENTS
, NULL
);
383 fs_info
->generation
++;
384 cur_trans
->transid
= fs_info
->generation
;
385 fs_info
->running_transaction
= cur_trans
;
386 cur_trans
->aborted
= 0;
387 spin_unlock(&fs_info
->trans_lock
);
393 * This does all the record keeping required to make sure that a shareable root
394 * is properly recorded in a given transaction. This is required to make sure
395 * the old root from before we joined the transaction is deleted when the
396 * transaction commits.
398 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
399 struct btrfs_root
*root
,
402 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
404 if ((test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
405 root
->last_trans
< trans
->transid
) || force
) {
406 WARN_ON(root
== fs_info
->extent_root
);
407 WARN_ON(!force
&& root
->commit_root
!= root
->node
);
410 * see below for IN_TRANS_SETUP usage rules
411 * we have the reloc mutex held now, so there
412 * is only one writer in this function
414 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
416 /* make sure readers find IN_TRANS_SETUP before
417 * they find our root->last_trans update
421 spin_lock(&fs_info
->fs_roots_radix_lock
);
422 if (root
->last_trans
== trans
->transid
&& !force
) {
423 spin_unlock(&fs_info
->fs_roots_radix_lock
);
426 radix_tree_tag_set(&fs_info
->fs_roots_radix
,
427 (unsigned long)root
->root_key
.objectid
,
428 BTRFS_ROOT_TRANS_TAG
);
429 spin_unlock(&fs_info
->fs_roots_radix_lock
);
430 root
->last_trans
= trans
->transid
;
432 /* this is pretty tricky. We don't want to
433 * take the relocation lock in btrfs_record_root_in_trans
434 * unless we're really doing the first setup for this root in
437 * Normally we'd use root->last_trans as a flag to decide
438 * if we want to take the expensive mutex.
440 * But, we have to set root->last_trans before we
441 * init the relocation root, otherwise, we trip over warnings
442 * in ctree.c. The solution used here is to flag ourselves
443 * with root IN_TRANS_SETUP. When this is 1, we're still
444 * fixing up the reloc trees and everyone must wait.
446 * When this is zero, they can trust root->last_trans and fly
447 * through btrfs_record_root_in_trans without having to take the
448 * lock. smp_wmb() makes sure that all the writes above are
449 * done before we pop in the zero below
451 btrfs_init_reloc_root(trans
, root
);
452 smp_mb__before_atomic();
453 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
459 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
460 struct btrfs_root
*root
)
462 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
463 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
465 /* Add ourselves to the transaction dropped list */
466 spin_lock(&cur_trans
->dropped_roots_lock
);
467 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
468 spin_unlock(&cur_trans
->dropped_roots_lock
);
470 /* Make sure we don't try to update the root at commit time */
471 spin_lock(&fs_info
->fs_roots_radix_lock
);
472 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
473 (unsigned long)root
->root_key
.objectid
,
474 BTRFS_ROOT_TRANS_TAG
);
475 spin_unlock(&fs_info
->fs_roots_radix_lock
);
478 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
479 struct btrfs_root
*root
)
481 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
483 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
487 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491 if (root
->last_trans
== trans
->transid
&&
492 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
495 mutex_lock(&fs_info
->reloc_mutex
);
496 record_root_in_trans(trans
, root
, 0);
497 mutex_unlock(&fs_info
->reloc_mutex
);
502 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
504 return (trans
->state
>= TRANS_STATE_COMMIT_START
&&
505 trans
->state
< TRANS_STATE_UNBLOCKED
&&
506 !TRANS_ABORTED(trans
));
509 /* wait for commit against the current transaction to become unblocked
510 * when this is done, it is safe to start a new transaction, but the current
511 * transaction might not be fully on disk.
513 static void wait_current_trans(struct btrfs_fs_info
*fs_info
)
515 struct btrfs_transaction
*cur_trans
;
517 spin_lock(&fs_info
->trans_lock
);
518 cur_trans
= fs_info
->running_transaction
;
519 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
520 refcount_inc(&cur_trans
->use_count
);
521 spin_unlock(&fs_info
->trans_lock
);
523 wait_event(fs_info
->transaction_wait
,
524 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
525 TRANS_ABORTED(cur_trans
));
526 btrfs_put_transaction(cur_trans
);
528 spin_unlock(&fs_info
->trans_lock
);
532 static int may_wait_transaction(struct btrfs_fs_info
*fs_info
, int type
)
534 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
537 if (type
== TRANS_START
)
543 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
545 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
547 if (!fs_info
->reloc_ctl
||
548 !test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) ||
549 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
556 static struct btrfs_trans_handle
*
557 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
558 unsigned int type
, enum btrfs_reserve_flush_enum flush
,
559 bool enforce_qgroups
)
561 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
562 struct btrfs_block_rsv
*delayed_refs_rsv
= &fs_info
->delayed_refs_rsv
;
563 struct btrfs_trans_handle
*h
;
564 struct btrfs_transaction
*cur_trans
;
566 u64 qgroup_reserved
= 0;
567 bool reloc_reserved
= false;
568 bool do_chunk_alloc
= false;
571 /* Send isn't supposed to start transactions. */
572 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
574 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
575 return ERR_PTR(-EROFS
);
577 if (current
->journal_info
) {
578 WARN_ON(type
& TRANS_EXTWRITERS
);
579 h
= current
->journal_info
;
580 refcount_inc(&h
->use_count
);
581 WARN_ON(refcount_read(&h
->use_count
) > 2);
582 h
->orig_rsv
= h
->block_rsv
;
588 * Do the reservation before we join the transaction so we can do all
589 * the appropriate flushing if need be.
591 if (num_items
&& root
!= fs_info
->chunk_root
) {
592 struct btrfs_block_rsv
*rsv
= &fs_info
->trans_block_rsv
;
593 u64 delayed_refs_bytes
= 0;
595 qgroup_reserved
= num_items
* fs_info
->nodesize
;
596 ret
= btrfs_qgroup_reserve_meta_pertrans(root
, qgroup_reserved
,
602 * We want to reserve all the bytes we may need all at once, so
603 * we only do 1 enospc flushing cycle per transaction start. We
604 * accomplish this by simply assuming we'll do 2 x num_items
605 * worth of delayed refs updates in this trans handle, and
606 * refill that amount for whatever is missing in the reserve.
608 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, num_items
);
609 if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
610 delayed_refs_rsv
->full
== 0) {
611 delayed_refs_bytes
= num_bytes
;
616 * Do the reservation for the relocation root creation
618 if (need_reserve_reloc_root(root
)) {
619 num_bytes
+= fs_info
->nodesize
;
620 reloc_reserved
= true;
623 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
, flush
);
626 if (delayed_refs_bytes
) {
627 btrfs_migrate_to_delayed_refs_rsv(fs_info
, rsv
,
629 num_bytes
-= delayed_refs_bytes
;
632 if (rsv
->space_info
->force_alloc
)
633 do_chunk_alloc
= true;
634 } else if (num_items
== 0 && flush
== BTRFS_RESERVE_FLUSH_ALL
&&
635 !delayed_refs_rsv
->full
) {
637 * Some people call with btrfs_start_transaction(root, 0)
638 * because they can be throttled, but have some other mechanism
639 * for reserving space. We still want these guys to refill the
640 * delayed block_rsv so just add 1 items worth of reservation
643 ret
= btrfs_delayed_refs_rsv_refill(fs_info
, flush
);
648 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
655 * If we are JOIN_NOLOCK we're already committing a transaction and
656 * waiting on this guy, so we don't need to do the sb_start_intwrite
657 * because we're already holding a ref. We need this because we could
658 * have raced in and did an fsync() on a file which can kick a commit
659 * and then we deadlock with somebody doing a freeze.
661 * If we are ATTACH, it means we just want to catch the current
662 * transaction and commit it, so we needn't do sb_start_intwrite().
664 if (type
& __TRANS_FREEZABLE
)
665 sb_start_intwrite(fs_info
->sb
);
667 if (may_wait_transaction(fs_info
, type
))
668 wait_current_trans(fs_info
);
671 ret
= join_transaction(fs_info
, type
);
673 wait_current_trans(fs_info
);
674 if (unlikely(type
== TRANS_ATTACH
||
675 type
== TRANS_JOIN_NOSTART
))
678 } while (ret
== -EBUSY
);
683 cur_trans
= fs_info
->running_transaction
;
685 h
->transid
= cur_trans
->transid
;
686 h
->transaction
= cur_trans
;
688 refcount_set(&h
->use_count
, 1);
689 h
->fs_info
= root
->fs_info
;
692 h
->can_flush_pending_bgs
= true;
693 INIT_LIST_HEAD(&h
->new_bgs
);
696 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
&&
697 may_wait_transaction(fs_info
, type
)) {
698 current
->journal_info
= h
;
699 btrfs_commit_transaction(h
);
704 trace_btrfs_space_reservation(fs_info
, "transaction",
705 h
->transid
, num_bytes
, 1);
706 h
->block_rsv
= &fs_info
->trans_block_rsv
;
707 h
->bytes_reserved
= num_bytes
;
708 h
->reloc_reserved
= reloc_reserved
;
712 if (!current
->journal_info
)
713 current
->journal_info
= h
;
716 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
717 * ALLOC_FORCE the first run through, and then we won't allocate for
718 * anybody else who races in later. We don't care about the return
721 if (do_chunk_alloc
&& num_bytes
) {
722 u64 flags
= h
->block_rsv
->space_info
->flags
;
724 btrfs_chunk_alloc(h
, btrfs_get_alloc_profile(fs_info
, flags
),
725 CHUNK_ALLOC_NO_FORCE
);
729 * btrfs_record_root_in_trans() needs to alloc new extents, and may
730 * call btrfs_join_transaction() while we're also starting a
733 * Thus it need to be called after current->journal_info initialized,
734 * or we can deadlock.
736 btrfs_record_root_in_trans(h
, root
);
741 if (type
& __TRANS_FREEZABLE
)
742 sb_end_intwrite(fs_info
->sb
);
743 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
746 btrfs_block_rsv_release(fs_info
, &fs_info
->trans_block_rsv
,
749 btrfs_qgroup_free_meta_pertrans(root
, qgroup_reserved
);
753 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
754 unsigned int num_items
)
756 return start_transaction(root
, num_items
, TRANS_START
,
757 BTRFS_RESERVE_FLUSH_ALL
, true);
760 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
761 struct btrfs_root
*root
,
762 unsigned int num_items
)
764 return start_transaction(root
, num_items
, TRANS_START
,
765 BTRFS_RESERVE_FLUSH_ALL_STEAL
, false);
768 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
770 return start_transaction(root
, 0, TRANS_JOIN
, BTRFS_RESERVE_NO_FLUSH
,
774 struct btrfs_trans_handle
*btrfs_join_transaction_spacecache(struct btrfs_root
*root
)
776 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
777 BTRFS_RESERVE_NO_FLUSH
, true);
781 * Similar to regular join but it never starts a transaction when none is
782 * running or after waiting for the current one to finish.
784 struct btrfs_trans_handle
*btrfs_join_transaction_nostart(struct btrfs_root
*root
)
786 return start_transaction(root
, 0, TRANS_JOIN_NOSTART
,
787 BTRFS_RESERVE_NO_FLUSH
, true);
791 * btrfs_attach_transaction() - catch the running transaction
793 * It is used when we want to commit the current the transaction, but
794 * don't want to start a new one.
796 * Note: If this function return -ENOENT, it just means there is no
797 * running transaction. But it is possible that the inactive transaction
798 * is still in the memory, not fully on disk. If you hope there is no
799 * inactive transaction in the fs when -ENOENT is returned, you should
801 * btrfs_attach_transaction_barrier()
803 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
805 return start_transaction(root
, 0, TRANS_ATTACH
,
806 BTRFS_RESERVE_NO_FLUSH
, true);
810 * btrfs_attach_transaction_barrier() - catch the running transaction
812 * It is similar to the above function, the difference is this one
813 * will wait for all the inactive transactions until they fully
816 struct btrfs_trans_handle
*
817 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
819 struct btrfs_trans_handle
*trans
;
821 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
822 BTRFS_RESERVE_NO_FLUSH
, true);
823 if (trans
== ERR_PTR(-ENOENT
))
824 btrfs_wait_for_commit(root
->fs_info
, 0);
829 /* wait for a transaction commit to be fully complete */
830 static noinline
void wait_for_commit(struct btrfs_transaction
*commit
)
832 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
835 int btrfs_wait_for_commit(struct btrfs_fs_info
*fs_info
, u64 transid
)
837 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
841 if (transid
<= fs_info
->last_trans_committed
)
844 /* find specified transaction */
845 spin_lock(&fs_info
->trans_lock
);
846 list_for_each_entry(t
, &fs_info
->trans_list
, list
) {
847 if (t
->transid
== transid
) {
849 refcount_inc(&cur_trans
->use_count
);
853 if (t
->transid
> transid
) {
858 spin_unlock(&fs_info
->trans_lock
);
861 * The specified transaction doesn't exist, or we
862 * raced with btrfs_commit_transaction
865 if (transid
> fs_info
->last_trans_committed
)
870 /* find newest transaction that is committing | committed */
871 spin_lock(&fs_info
->trans_lock
);
872 list_for_each_entry_reverse(t
, &fs_info
->trans_list
,
874 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
875 if (t
->state
== TRANS_STATE_COMPLETED
)
878 refcount_inc(&cur_trans
->use_count
);
882 spin_unlock(&fs_info
->trans_lock
);
884 goto out
; /* nothing committing|committed */
887 wait_for_commit(cur_trans
);
888 btrfs_put_transaction(cur_trans
);
893 void btrfs_throttle(struct btrfs_fs_info
*fs_info
)
895 wait_current_trans(fs_info
);
898 static bool should_end_transaction(struct btrfs_trans_handle
*trans
)
900 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
902 if (btrfs_check_space_for_delayed_refs(fs_info
))
905 return !!btrfs_block_rsv_check(&fs_info
->global_block_rsv
, 5);
908 bool btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
)
910 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
913 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
||
914 cur_trans
->delayed_refs
.flushing
)
917 return should_end_transaction(trans
);
920 static void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
)
923 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
925 if (!trans
->block_rsv
) {
926 ASSERT(!trans
->bytes_reserved
);
930 if (!trans
->bytes_reserved
)
933 ASSERT(trans
->block_rsv
== &fs_info
->trans_block_rsv
);
934 trace_btrfs_space_reservation(fs_info
, "transaction",
935 trans
->transid
, trans
->bytes_reserved
, 0);
936 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
937 trans
->bytes_reserved
, NULL
);
938 trans
->bytes_reserved
= 0;
941 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
944 struct btrfs_fs_info
*info
= trans
->fs_info
;
945 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
948 if (refcount_read(&trans
->use_count
) > 1) {
949 refcount_dec(&trans
->use_count
);
950 trans
->block_rsv
= trans
->orig_rsv
;
954 btrfs_trans_release_metadata(trans
);
955 trans
->block_rsv
= NULL
;
957 btrfs_create_pending_block_groups(trans
);
959 btrfs_trans_release_chunk_metadata(trans
);
961 if (trans
->type
& __TRANS_FREEZABLE
)
962 sb_end_intwrite(info
->sb
);
964 WARN_ON(cur_trans
!= info
->running_transaction
);
965 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
966 atomic_dec(&cur_trans
->num_writers
);
967 extwriter_counter_dec(cur_trans
, trans
->type
);
969 cond_wake_up(&cur_trans
->writer_wait
);
970 btrfs_put_transaction(cur_trans
);
972 if (current
->journal_info
== trans
)
973 current
->journal_info
= NULL
;
976 btrfs_run_delayed_iputs(info
);
978 if (TRANS_ABORTED(trans
) ||
979 test_bit(BTRFS_FS_STATE_ERROR
, &info
->fs_state
)) {
980 wake_up_process(info
->transaction_kthread
);
981 if (TRANS_ABORTED(trans
))
982 err
= trans
->aborted
;
987 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
991 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
)
993 return __btrfs_end_transaction(trans
, 0);
996 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
)
998 return __btrfs_end_transaction(trans
, 1);
1002 * when btree blocks are allocated, they have some corresponding bits set for
1003 * them in one of two extent_io trees. This is used to make sure all of
1004 * those extents are sent to disk but does not wait on them
1006 int btrfs_write_marked_extents(struct btrfs_fs_info
*fs_info
,
1007 struct extent_io_tree
*dirty_pages
, int mark
)
1011 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
1012 struct extent_state
*cached_state
= NULL
;
1016 atomic_inc(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
1017 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
1018 mark
, &cached_state
)) {
1019 bool wait_writeback
= false;
1021 err
= convert_extent_bit(dirty_pages
, start
, end
,
1023 mark
, &cached_state
);
1025 * convert_extent_bit can return -ENOMEM, which is most of the
1026 * time a temporary error. So when it happens, ignore the error
1027 * and wait for writeback of this range to finish - because we
1028 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1029 * to __btrfs_wait_marked_extents() would not know that
1030 * writeback for this range started and therefore wouldn't
1031 * wait for it to finish - we don't want to commit a
1032 * superblock that points to btree nodes/leafs for which
1033 * writeback hasn't finished yet (and without errors).
1034 * We cleanup any entries left in the io tree when committing
1035 * the transaction (through extent_io_tree_release()).
1037 if (err
== -ENOMEM
) {
1039 wait_writeback
= true;
1042 err
= filemap_fdatawrite_range(mapping
, start
, end
);
1045 else if (wait_writeback
)
1046 werr
= filemap_fdatawait_range(mapping
, start
, end
);
1047 free_extent_state(cached_state
);
1048 cached_state
= NULL
;
1052 atomic_dec(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
1057 * when btree blocks are allocated, they have some corresponding bits set for
1058 * them in one of two extent_io trees. This is used to make sure all of
1059 * those extents are on disk for transaction or log commit. We wait
1060 * on all the pages and clear them from the dirty pages state tree
1062 static int __btrfs_wait_marked_extents(struct btrfs_fs_info
*fs_info
,
1063 struct extent_io_tree
*dirty_pages
)
1067 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
1068 struct extent_state
*cached_state
= NULL
;
1072 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
1073 EXTENT_NEED_WAIT
, &cached_state
)) {
1075 * Ignore -ENOMEM errors returned by clear_extent_bit().
1076 * When committing the transaction, we'll remove any entries
1077 * left in the io tree. For a log commit, we don't remove them
1078 * after committing the log because the tree can be accessed
1079 * concurrently - we do it only at transaction commit time when
1080 * it's safe to do it (through extent_io_tree_release()).
1082 err
= clear_extent_bit(dirty_pages
, start
, end
,
1083 EXTENT_NEED_WAIT
, 0, 0, &cached_state
);
1087 err
= filemap_fdatawait_range(mapping
, start
, end
);
1090 free_extent_state(cached_state
);
1091 cached_state
= NULL
;
1100 static int btrfs_wait_extents(struct btrfs_fs_info
*fs_info
,
1101 struct extent_io_tree
*dirty_pages
)
1103 bool errors
= false;
1106 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1107 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR
, &fs_info
->flags
))
1115 int btrfs_wait_tree_log_extents(struct btrfs_root
*log_root
, int mark
)
1117 struct btrfs_fs_info
*fs_info
= log_root
->fs_info
;
1118 struct extent_io_tree
*dirty_pages
= &log_root
->dirty_log_pages
;
1119 bool errors
= false;
1122 ASSERT(log_root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
1124 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1125 if ((mark
& EXTENT_DIRTY
) &&
1126 test_and_clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
))
1129 if ((mark
& EXTENT_NEW
) &&
1130 test_and_clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
))
1139 * When btree blocks are allocated the corresponding extents are marked dirty.
1140 * This function ensures such extents are persisted on disk for transaction or
1143 * @trans: transaction whose dirty pages we'd like to write
1145 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
)
1149 struct extent_io_tree
*dirty_pages
= &trans
->transaction
->dirty_pages
;
1150 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1151 struct blk_plug plug
;
1153 blk_start_plug(&plug
);
1154 ret
= btrfs_write_marked_extents(fs_info
, dirty_pages
, EXTENT_DIRTY
);
1155 blk_finish_plug(&plug
);
1156 ret2
= btrfs_wait_extents(fs_info
, dirty_pages
);
1158 extent_io_tree_release(&trans
->transaction
->dirty_pages
);
1169 * this is used to update the root pointer in the tree of tree roots.
1171 * But, in the case of the extent allocation tree, updating the root
1172 * pointer may allocate blocks which may change the root of the extent
1175 * So, this loops and repeats and makes sure the cowonly root didn't
1176 * change while the root pointer was being updated in the metadata.
1178 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1179 struct btrfs_root
*root
)
1182 u64 old_root_bytenr
;
1184 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1185 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1187 old_root_used
= btrfs_root_used(&root
->root_item
);
1190 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1191 if (old_root_bytenr
== root
->node
->start
&&
1192 old_root_used
== btrfs_root_used(&root
->root_item
))
1195 btrfs_set_root_node(&root
->root_item
, root
->node
);
1196 ret
= btrfs_update_root(trans
, tree_root
,
1202 old_root_used
= btrfs_root_used(&root
->root_item
);
1209 * update all the cowonly tree roots on disk
1211 * The error handling in this function may not be obvious. Any of the
1212 * failures will cause the file system to go offline. We still need
1213 * to clean up the delayed refs.
1215 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
)
1217 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1218 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1219 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1220 struct list_head
*next
;
1221 struct extent_buffer
*eb
;
1224 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1225 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1226 0, &eb
, BTRFS_NESTING_COW
);
1227 btrfs_tree_unlock(eb
);
1228 free_extent_buffer(eb
);
1233 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1237 ret
= btrfs_run_dev_stats(trans
);
1240 ret
= btrfs_run_dev_replace(trans
);
1243 ret
= btrfs_run_qgroups(trans
);
1247 ret
= btrfs_setup_space_cache(trans
);
1251 /* run_qgroups might have added some more refs */
1252 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1256 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1257 struct btrfs_root
*root
;
1258 next
= fs_info
->dirty_cowonly_roots
.next
;
1259 list_del_init(next
);
1260 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1261 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1263 if (root
!= fs_info
->extent_root
)
1264 list_add_tail(&root
->dirty_list
,
1265 &trans
->transaction
->switch_commits
);
1266 ret
= update_cowonly_root(trans
, root
);
1269 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1274 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1275 ret
= btrfs_write_dirty_block_groups(trans
);
1278 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1283 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1286 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1287 &trans
->transaction
->switch_commits
);
1289 /* Update dev-replace pointer once everything is committed */
1290 fs_info
->dev_replace
.committed_cursor_left
=
1291 fs_info
->dev_replace
.cursor_left_last_write_of_item
;
1297 * dead roots are old snapshots that need to be deleted. This allocates
1298 * a dirty root struct and adds it into the list of dead roots that need to
1301 void btrfs_add_dead_root(struct btrfs_root
*root
)
1303 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1305 spin_lock(&fs_info
->trans_lock
);
1306 if (list_empty(&root
->root_list
)) {
1307 btrfs_grab_root(root
);
1308 list_add_tail(&root
->root_list
, &fs_info
->dead_roots
);
1310 spin_unlock(&fs_info
->trans_lock
);
1314 * update all the cowonly tree roots on disk
1316 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
)
1318 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1319 struct btrfs_root
*gang
[8];
1324 spin_lock(&fs_info
->fs_roots_radix_lock
);
1326 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1329 BTRFS_ROOT_TRANS_TAG
);
1332 for (i
= 0; i
< ret
; i
++) {
1333 struct btrfs_root
*root
= gang
[i
];
1334 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1335 (unsigned long)root
->root_key
.objectid
,
1336 BTRFS_ROOT_TRANS_TAG
);
1337 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1339 btrfs_free_log(trans
, root
);
1340 btrfs_update_reloc_root(trans
, root
);
1342 /* see comments in should_cow_block() */
1343 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1344 smp_mb__after_atomic();
1346 if (root
->commit_root
!= root
->node
) {
1347 list_add_tail(&root
->dirty_list
,
1348 &trans
->transaction
->switch_commits
);
1349 btrfs_set_root_node(&root
->root_item
,
1353 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1356 spin_lock(&fs_info
->fs_roots_radix_lock
);
1359 btrfs_qgroup_free_meta_all_pertrans(root
);
1362 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1367 * defrag a given btree.
1368 * Every leaf in the btree is read and defragged.
1370 int btrfs_defrag_root(struct btrfs_root
*root
)
1372 struct btrfs_fs_info
*info
= root
->fs_info
;
1373 struct btrfs_trans_handle
*trans
;
1376 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1380 trans
= btrfs_start_transaction(root
, 0);
1382 return PTR_ERR(trans
);
1384 ret
= btrfs_defrag_leaves(trans
, root
);
1386 btrfs_end_transaction(trans
);
1387 btrfs_btree_balance_dirty(info
);
1390 if (btrfs_fs_closing(info
) || ret
!= -EAGAIN
)
1393 if (btrfs_defrag_cancelled(info
)) {
1394 btrfs_debug(info
, "defrag_root cancelled");
1399 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1404 * Do all special snapshot related qgroup dirty hack.
1406 * Will do all needed qgroup inherit and dirty hack like switch commit
1407 * roots inside one transaction and write all btree into disk, to make
1410 static int qgroup_account_snapshot(struct btrfs_trans_handle
*trans
,
1411 struct btrfs_root
*src
,
1412 struct btrfs_root
*parent
,
1413 struct btrfs_qgroup_inherit
*inherit
,
1416 struct btrfs_fs_info
*fs_info
= src
->fs_info
;
1420 * Save some performance in the case that qgroups are not
1421 * enabled. If this check races with the ioctl, rescan will
1424 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
))
1428 * Ensure dirty @src will be committed. Or, after coming
1429 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1430 * recorded root will never be updated again, causing an outdated root
1433 record_root_in_trans(trans
, src
, 1);
1436 * We are going to commit transaction, see btrfs_commit_transaction()
1437 * comment for reason locking tree_log_mutex
1439 mutex_lock(&fs_info
->tree_log_mutex
);
1441 ret
= commit_fs_roots(trans
);
1444 ret
= btrfs_qgroup_account_extents(trans
);
1448 /* Now qgroup are all updated, we can inherit it to new qgroups */
1449 ret
= btrfs_qgroup_inherit(trans
, src
->root_key
.objectid
, dst_objectid
,
1455 * Now we do a simplified commit transaction, which will:
1456 * 1) commit all subvolume and extent tree
1457 * To ensure all subvolume and extent tree have a valid
1458 * commit_root to accounting later insert_dir_item()
1459 * 2) write all btree blocks onto disk
1460 * This is to make sure later btree modification will be cowed
1461 * Or commit_root can be populated and cause wrong qgroup numbers
1462 * In this simplified commit, we don't really care about other trees
1463 * like chunk and root tree, as they won't affect qgroup.
1464 * And we don't write super to avoid half committed status.
1466 ret
= commit_cowonly_roots(trans
);
1469 switch_commit_roots(trans
);
1470 ret
= btrfs_write_and_wait_transaction(trans
);
1472 btrfs_handle_fs_error(fs_info
, ret
,
1473 "Error while writing out transaction for qgroup");
1476 mutex_unlock(&fs_info
->tree_log_mutex
);
1479 * Force parent root to be updated, as we recorded it before so its
1480 * last_trans == cur_transid.
1481 * Or it won't be committed again onto disk after later
1485 record_root_in_trans(trans
, parent
, 1);
1490 * new snapshots need to be created at a very specific time in the
1491 * transaction commit. This does the actual creation.
1494 * If the error which may affect the commitment of the current transaction
1495 * happens, we should return the error number. If the error which just affect
1496 * the creation of the pending snapshots, just return 0.
1498 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1499 struct btrfs_pending_snapshot
*pending
)
1502 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1503 struct btrfs_key key
;
1504 struct btrfs_root_item
*new_root_item
;
1505 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1506 struct btrfs_root
*root
= pending
->root
;
1507 struct btrfs_root
*parent_root
;
1508 struct btrfs_block_rsv
*rsv
;
1509 struct inode
*parent_inode
;
1510 struct btrfs_path
*path
;
1511 struct btrfs_dir_item
*dir_item
;
1512 struct dentry
*dentry
;
1513 struct extent_buffer
*tmp
;
1514 struct extent_buffer
*old
;
1515 struct timespec64 cur_time
;
1522 ASSERT(pending
->path
);
1523 path
= pending
->path
;
1525 ASSERT(pending
->root_item
);
1526 new_root_item
= pending
->root_item
;
1528 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1530 goto no_free_objectid
;
1533 * Make qgroup to skip current new snapshot's qgroupid, as it is
1534 * accounted by later btrfs_qgroup_inherit().
1536 btrfs_set_skip_qgroup(trans
, objectid
);
1538 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1540 if (to_reserve
> 0) {
1541 pending
->error
= btrfs_block_rsv_add(root
,
1542 &pending
->block_rsv
,
1544 BTRFS_RESERVE_NO_FLUSH
);
1546 goto clear_skip_qgroup
;
1549 key
.objectid
= objectid
;
1550 key
.offset
= (u64
)-1;
1551 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1553 rsv
= trans
->block_rsv
;
1554 trans
->block_rsv
= &pending
->block_rsv
;
1555 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1556 trace_btrfs_space_reservation(fs_info
, "transaction",
1558 trans
->bytes_reserved
, 1);
1559 dentry
= pending
->dentry
;
1560 parent_inode
= pending
->dir
;
1561 parent_root
= BTRFS_I(parent_inode
)->root
;
1562 record_root_in_trans(trans
, parent_root
, 0);
1564 cur_time
= current_time(parent_inode
);
1567 * insert the directory item
1569 ret
= btrfs_set_inode_index(BTRFS_I(parent_inode
), &index
);
1570 BUG_ON(ret
); /* -ENOMEM */
1572 /* check if there is a file/dir which has the same name. */
1573 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1574 btrfs_ino(BTRFS_I(parent_inode
)),
1575 dentry
->d_name
.name
,
1576 dentry
->d_name
.len
, 0);
1577 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1578 pending
->error
= -EEXIST
;
1579 goto dir_item_existed
;
1580 } else if (IS_ERR(dir_item
)) {
1581 ret
= PTR_ERR(dir_item
);
1582 btrfs_abort_transaction(trans
, ret
);
1585 btrfs_release_path(path
);
1588 * pull in the delayed directory update
1589 * and the delayed inode item
1590 * otherwise we corrupt the FS during
1593 ret
= btrfs_run_delayed_items(trans
);
1594 if (ret
) { /* Transaction aborted */
1595 btrfs_abort_transaction(trans
, ret
);
1599 record_root_in_trans(trans
, root
, 0);
1600 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1601 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1602 btrfs_check_and_init_root_item(new_root_item
);
1604 root_flags
= btrfs_root_flags(new_root_item
);
1605 if (pending
->readonly
)
1606 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1608 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1609 btrfs_set_root_flags(new_root_item
, root_flags
);
1611 btrfs_set_root_generation_v2(new_root_item
,
1613 generate_random_guid(new_root_item
->uuid
);
1614 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1616 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1617 memset(new_root_item
->received_uuid
, 0,
1618 sizeof(new_root_item
->received_uuid
));
1619 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1620 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1621 btrfs_set_root_stransid(new_root_item
, 0);
1622 btrfs_set_root_rtransid(new_root_item
, 0);
1624 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1625 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1626 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1628 old
= btrfs_lock_root_node(root
);
1629 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
,
1632 btrfs_tree_unlock(old
);
1633 free_extent_buffer(old
);
1634 btrfs_abort_transaction(trans
, ret
);
1638 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1639 /* clean up in any case */
1640 btrfs_tree_unlock(old
);
1641 free_extent_buffer(old
);
1643 btrfs_abort_transaction(trans
, ret
);
1646 /* see comments in should_cow_block() */
1647 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1650 btrfs_set_root_node(new_root_item
, tmp
);
1651 /* record when the snapshot was created in key.offset */
1652 key
.offset
= trans
->transid
;
1653 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1654 btrfs_tree_unlock(tmp
);
1655 free_extent_buffer(tmp
);
1657 btrfs_abort_transaction(trans
, ret
);
1662 * insert root back/forward references
1664 ret
= btrfs_add_root_ref(trans
, objectid
,
1665 parent_root
->root_key
.objectid
,
1666 btrfs_ino(BTRFS_I(parent_inode
)), index
,
1667 dentry
->d_name
.name
, dentry
->d_name
.len
);
1669 btrfs_abort_transaction(trans
, ret
);
1673 key
.offset
= (u64
)-1;
1674 pending
->snap
= btrfs_get_new_fs_root(fs_info
, objectid
, pending
->anon_dev
);
1675 if (IS_ERR(pending
->snap
)) {
1676 ret
= PTR_ERR(pending
->snap
);
1677 pending
->snap
= NULL
;
1678 btrfs_abort_transaction(trans
, ret
);
1682 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1684 btrfs_abort_transaction(trans
, ret
);
1688 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1690 btrfs_abort_transaction(trans
, ret
);
1695 * Do special qgroup accounting for snapshot, as we do some qgroup
1696 * snapshot hack to do fast snapshot.
1697 * To co-operate with that hack, we do hack again.
1698 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1700 ret
= qgroup_account_snapshot(trans
, root
, parent_root
,
1701 pending
->inherit
, objectid
);
1705 ret
= btrfs_insert_dir_item(trans
, dentry
->d_name
.name
,
1706 dentry
->d_name
.len
, BTRFS_I(parent_inode
),
1707 &key
, BTRFS_FT_DIR
, index
);
1708 /* We have check then name at the beginning, so it is impossible. */
1709 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1711 btrfs_abort_transaction(trans
, ret
);
1715 btrfs_i_size_write(BTRFS_I(parent_inode
), parent_inode
->i_size
+
1716 dentry
->d_name
.len
* 2);
1717 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1718 current_time(parent_inode
);
1719 ret
= btrfs_update_inode_fallback(trans
, parent_root
, BTRFS_I(parent_inode
));
1721 btrfs_abort_transaction(trans
, ret
);
1724 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->uuid
,
1725 BTRFS_UUID_KEY_SUBVOL
,
1728 btrfs_abort_transaction(trans
, ret
);
1731 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1732 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->received_uuid
,
1733 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1735 if (ret
&& ret
!= -EEXIST
) {
1736 btrfs_abort_transaction(trans
, ret
);
1741 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1743 btrfs_abort_transaction(trans
, ret
);
1748 pending
->error
= ret
;
1750 trans
->block_rsv
= rsv
;
1751 trans
->bytes_reserved
= 0;
1753 btrfs_clear_skip_qgroup(trans
);
1755 kfree(new_root_item
);
1756 pending
->root_item
= NULL
;
1757 btrfs_free_path(path
);
1758 pending
->path
= NULL
;
1764 * create all the snapshots we've scheduled for creation
1766 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
)
1768 struct btrfs_pending_snapshot
*pending
, *next
;
1769 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1772 list_for_each_entry_safe(pending
, next
, head
, list
) {
1773 list_del(&pending
->list
);
1774 ret
= create_pending_snapshot(trans
, pending
);
1781 static void update_super_roots(struct btrfs_fs_info
*fs_info
)
1783 struct btrfs_root_item
*root_item
;
1784 struct btrfs_super_block
*super
;
1786 super
= fs_info
->super_copy
;
1788 root_item
= &fs_info
->chunk_root
->root_item
;
1789 super
->chunk_root
= root_item
->bytenr
;
1790 super
->chunk_root_generation
= root_item
->generation
;
1791 super
->chunk_root_level
= root_item
->level
;
1793 root_item
= &fs_info
->tree_root
->root_item
;
1794 super
->root
= root_item
->bytenr
;
1795 super
->generation
= root_item
->generation
;
1796 super
->root_level
= root_item
->level
;
1797 if (btrfs_test_opt(fs_info
, SPACE_CACHE
))
1798 super
->cache_generation
= root_item
->generation
;
1799 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1
, &fs_info
->flags
))
1800 super
->cache_generation
= 0;
1801 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
))
1802 super
->uuid_tree_generation
= root_item
->generation
;
1805 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1807 struct btrfs_transaction
*trans
;
1810 spin_lock(&info
->trans_lock
);
1811 trans
= info
->running_transaction
;
1813 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1814 spin_unlock(&info
->trans_lock
);
1818 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1820 struct btrfs_transaction
*trans
;
1823 spin_lock(&info
->trans_lock
);
1824 trans
= info
->running_transaction
;
1826 ret
= is_transaction_blocked(trans
);
1827 spin_unlock(&info
->trans_lock
);
1832 * wait for the current transaction commit to start and block subsequent
1835 static void wait_current_trans_commit_start(struct btrfs_fs_info
*fs_info
,
1836 struct btrfs_transaction
*trans
)
1838 wait_event(fs_info
->transaction_blocked_wait
,
1839 trans
->state
>= TRANS_STATE_COMMIT_START
||
1840 TRANS_ABORTED(trans
));
1844 * wait for the current transaction to start and then become unblocked.
1847 static void wait_current_trans_commit_start_and_unblock(
1848 struct btrfs_fs_info
*fs_info
,
1849 struct btrfs_transaction
*trans
)
1851 wait_event(fs_info
->transaction_wait
,
1852 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1853 TRANS_ABORTED(trans
));
1857 * commit transactions asynchronously. once btrfs_commit_transaction_async
1858 * returns, any subsequent transaction will not be allowed to join.
1860 struct btrfs_async_commit
{
1861 struct btrfs_trans_handle
*newtrans
;
1862 struct work_struct work
;
1865 static void do_async_commit(struct work_struct
*work
)
1867 struct btrfs_async_commit
*ac
=
1868 container_of(work
, struct btrfs_async_commit
, work
);
1871 * We've got freeze protection passed with the transaction.
1872 * Tell lockdep about it.
1874 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1875 __sb_writers_acquired(ac
->newtrans
->fs_info
->sb
, SB_FREEZE_FS
);
1877 current
->journal_info
= ac
->newtrans
;
1879 btrfs_commit_transaction(ac
->newtrans
);
1883 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1884 int wait_for_unblock
)
1886 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1887 struct btrfs_async_commit
*ac
;
1888 struct btrfs_transaction
*cur_trans
;
1890 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1894 INIT_WORK(&ac
->work
, do_async_commit
);
1895 ac
->newtrans
= btrfs_join_transaction(trans
->root
);
1896 if (IS_ERR(ac
->newtrans
)) {
1897 int err
= PTR_ERR(ac
->newtrans
);
1902 /* take transaction reference */
1903 cur_trans
= trans
->transaction
;
1904 refcount_inc(&cur_trans
->use_count
);
1906 btrfs_end_transaction(trans
);
1909 * Tell lockdep we've released the freeze rwsem, since the
1910 * async commit thread will be the one to unlock it.
1912 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1913 __sb_writers_release(fs_info
->sb
, SB_FREEZE_FS
);
1915 schedule_work(&ac
->work
);
1917 /* wait for transaction to start and unblock */
1918 if (wait_for_unblock
)
1919 wait_current_trans_commit_start_and_unblock(fs_info
, cur_trans
);
1921 wait_current_trans_commit_start(fs_info
, cur_trans
);
1923 if (current
->journal_info
== trans
)
1924 current
->journal_info
= NULL
;
1926 btrfs_put_transaction(cur_trans
);
1931 static void cleanup_transaction(struct btrfs_trans_handle
*trans
, int err
)
1933 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1934 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1936 WARN_ON(refcount_read(&trans
->use_count
) > 1);
1938 btrfs_abort_transaction(trans
, err
);
1940 spin_lock(&fs_info
->trans_lock
);
1943 * If the transaction is removed from the list, it means this
1944 * transaction has been committed successfully, so it is impossible
1945 * to call the cleanup function.
1947 BUG_ON(list_empty(&cur_trans
->list
));
1949 list_del_init(&cur_trans
->list
);
1950 if (cur_trans
== fs_info
->running_transaction
) {
1951 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1952 spin_unlock(&fs_info
->trans_lock
);
1953 wait_event(cur_trans
->writer_wait
,
1954 atomic_read(&cur_trans
->num_writers
) == 1);
1956 spin_lock(&fs_info
->trans_lock
);
1958 spin_unlock(&fs_info
->trans_lock
);
1960 btrfs_cleanup_one_transaction(trans
->transaction
, fs_info
);
1962 spin_lock(&fs_info
->trans_lock
);
1963 if (cur_trans
== fs_info
->running_transaction
)
1964 fs_info
->running_transaction
= NULL
;
1965 spin_unlock(&fs_info
->trans_lock
);
1967 if (trans
->type
& __TRANS_FREEZABLE
)
1968 sb_end_intwrite(fs_info
->sb
);
1969 btrfs_put_transaction(cur_trans
);
1970 btrfs_put_transaction(cur_trans
);
1972 trace_btrfs_transaction_commit(trans
->root
);
1974 if (current
->journal_info
== trans
)
1975 current
->journal_info
= NULL
;
1976 btrfs_scrub_cancel(fs_info
);
1978 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1982 * Release reserved delayed ref space of all pending block groups of the
1983 * transaction and remove them from the list
1985 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle
*trans
)
1987 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1988 struct btrfs_block_group
*block_group
, *tmp
;
1990 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
1991 btrfs_delayed_refs_rsv_release(fs_info
, 1);
1992 list_del_init(&block_group
->bg_list
);
1996 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1999 * We use writeback_inodes_sb here because if we used
2000 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2001 * Currently are holding the fs freeze lock, if we do an async flush
2002 * we'll do btrfs_join_transaction() and deadlock because we need to
2003 * wait for the fs freeze lock. Using the direct flushing we benefit
2004 * from already being in a transaction and our join_transaction doesn't
2005 * have to re-take the fs freeze lock.
2007 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
))
2008 writeback_inodes_sb(fs_info
->sb
, WB_REASON_SYNC
);
2012 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
2014 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
))
2015 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
2018 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
)
2020 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2021 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
2022 struct btrfs_transaction
*prev_trans
= NULL
;
2025 ASSERT(refcount_read(&trans
->use_count
) == 1);
2028 * Some places just start a transaction to commit it. We need to make
2029 * sure that if this commit fails that the abort code actually marks the
2030 * transaction as failed, so set trans->dirty to make the abort code do
2033 trans
->dirty
= true;
2035 /* Stop the commit early if ->aborted is set */
2036 if (TRANS_ABORTED(cur_trans
)) {
2037 ret
= cur_trans
->aborted
;
2038 btrfs_end_transaction(trans
);
2042 btrfs_trans_release_metadata(trans
);
2043 trans
->block_rsv
= NULL
;
2045 /* make a pass through all the delayed refs we have so far
2046 * any runnings procs may add more while we are here
2048 ret
= btrfs_run_delayed_refs(trans
, 0);
2050 btrfs_end_transaction(trans
);
2054 cur_trans
= trans
->transaction
;
2057 * set the flushing flag so procs in this transaction have to
2058 * start sending their work down.
2060 cur_trans
->delayed_refs
.flushing
= 1;
2063 btrfs_create_pending_block_groups(trans
);
2065 ret
= btrfs_run_delayed_refs(trans
, 0);
2067 btrfs_end_transaction(trans
);
2071 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
2074 /* this mutex is also taken before trying to set
2075 * block groups readonly. We need to make sure
2076 * that nobody has set a block group readonly
2077 * after a extents from that block group have been
2078 * allocated for cache files. btrfs_set_block_group_ro
2079 * will wait for the transaction to commit if it
2080 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2082 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2083 * only one process starts all the block group IO. It wouldn't
2084 * hurt to have more than one go through, but there's no
2085 * real advantage to it either.
2087 mutex_lock(&fs_info
->ro_block_group_mutex
);
2088 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
2091 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2094 ret
= btrfs_start_dirty_block_groups(trans
);
2096 btrfs_end_transaction(trans
);
2102 spin_lock(&fs_info
->trans_lock
);
2103 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
2104 spin_unlock(&fs_info
->trans_lock
);
2105 refcount_inc(&cur_trans
->use_count
);
2106 ret
= btrfs_end_transaction(trans
);
2108 wait_for_commit(cur_trans
);
2110 if (TRANS_ABORTED(cur_trans
))
2111 ret
= cur_trans
->aborted
;
2113 btrfs_put_transaction(cur_trans
);
2118 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
2119 wake_up(&fs_info
->transaction_blocked_wait
);
2121 if (cur_trans
->list
.prev
!= &fs_info
->trans_list
) {
2122 prev_trans
= list_entry(cur_trans
->list
.prev
,
2123 struct btrfs_transaction
, list
);
2124 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
2125 refcount_inc(&prev_trans
->use_count
);
2126 spin_unlock(&fs_info
->trans_lock
);
2128 wait_for_commit(prev_trans
);
2129 ret
= READ_ONCE(prev_trans
->aborted
);
2131 btrfs_put_transaction(prev_trans
);
2133 goto cleanup_transaction
;
2135 spin_unlock(&fs_info
->trans_lock
);
2138 spin_unlock(&fs_info
->trans_lock
);
2140 * The previous transaction was aborted and was already removed
2141 * from the list of transactions at fs_info->trans_list. So we
2142 * abort to prevent writing a new superblock that reflects a
2143 * corrupt state (pointing to trees with unwritten nodes/leafs).
2145 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
)) {
2147 goto cleanup_transaction
;
2151 extwriter_counter_dec(cur_trans
, trans
->type
);
2153 ret
= btrfs_start_delalloc_flush(fs_info
);
2155 goto cleanup_transaction
;
2157 ret
= btrfs_run_delayed_items(trans
);
2159 goto cleanup_transaction
;
2161 wait_event(cur_trans
->writer_wait
,
2162 extwriter_counter_read(cur_trans
) == 0);
2164 /* some pending stuffs might be added after the previous flush. */
2165 ret
= btrfs_run_delayed_items(trans
);
2167 goto cleanup_transaction
;
2169 btrfs_wait_delalloc_flush(fs_info
);
2172 * Wait for all ordered extents started by a fast fsync that joined this
2173 * transaction. Otherwise if this transaction commits before the ordered
2174 * extents complete we lose logged data after a power failure.
2176 wait_event(cur_trans
->pending_wait
,
2177 atomic_read(&cur_trans
->pending_ordered
) == 0);
2179 btrfs_scrub_pause(fs_info
);
2181 * Ok now we need to make sure to block out any other joins while we
2182 * commit the transaction. We could have started a join before setting
2183 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2185 spin_lock(&fs_info
->trans_lock
);
2186 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
2187 spin_unlock(&fs_info
->trans_lock
);
2188 wait_event(cur_trans
->writer_wait
,
2189 atomic_read(&cur_trans
->num_writers
) == 1);
2191 if (TRANS_ABORTED(cur_trans
)) {
2192 ret
= cur_trans
->aborted
;
2193 goto scrub_continue
;
2196 * the reloc mutex makes sure that we stop
2197 * the balancing code from coming in and moving
2198 * extents around in the middle of the commit
2200 mutex_lock(&fs_info
->reloc_mutex
);
2203 * We needn't worry about the delayed items because we will
2204 * deal with them in create_pending_snapshot(), which is the
2205 * core function of the snapshot creation.
2207 ret
= create_pending_snapshots(trans
);
2212 * We insert the dir indexes of the snapshots and update the inode
2213 * of the snapshots' parents after the snapshot creation, so there
2214 * are some delayed items which are not dealt with. Now deal with
2217 * We needn't worry that this operation will corrupt the snapshots,
2218 * because all the tree which are snapshoted will be forced to COW
2219 * the nodes and leaves.
2221 ret
= btrfs_run_delayed_items(trans
);
2225 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2230 * make sure none of the code above managed to slip in a
2233 btrfs_assert_delayed_root_empty(fs_info
);
2235 WARN_ON(cur_trans
!= trans
->transaction
);
2237 /* btrfs_commit_tree_roots is responsible for getting the
2238 * various roots consistent with each other. Every pointer
2239 * in the tree of tree roots has to point to the most up to date
2240 * root for every subvolume and other tree. So, we have to keep
2241 * the tree logging code from jumping in and changing any
2244 * At this point in the commit, there can't be any tree-log
2245 * writers, but a little lower down we drop the trans mutex
2246 * and let new people in. By holding the tree_log_mutex
2247 * from now until after the super is written, we avoid races
2248 * with the tree-log code.
2250 mutex_lock(&fs_info
->tree_log_mutex
);
2252 ret
= commit_fs_roots(trans
);
2254 goto unlock_tree_log
;
2257 * Since the transaction is done, we can apply the pending changes
2258 * before the next transaction.
2260 btrfs_apply_pending_changes(fs_info
);
2262 /* commit_fs_roots gets rid of all the tree log roots, it is now
2263 * safe to free the root of tree log roots
2265 btrfs_free_log_root_tree(trans
, fs_info
);
2268 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2269 * new delayed refs. Must handle them or qgroup can be wrong.
2271 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2273 goto unlock_tree_log
;
2276 * Since fs roots are all committed, we can get a quite accurate
2277 * new_roots. So let's do quota accounting.
2279 ret
= btrfs_qgroup_account_extents(trans
);
2281 goto unlock_tree_log
;
2283 ret
= commit_cowonly_roots(trans
);
2285 goto unlock_tree_log
;
2288 * The tasks which save the space cache and inode cache may also
2289 * update ->aborted, check it.
2291 if (TRANS_ABORTED(cur_trans
)) {
2292 ret
= cur_trans
->aborted
;
2293 goto unlock_tree_log
;
2296 cur_trans
= fs_info
->running_transaction
;
2298 btrfs_set_root_node(&fs_info
->tree_root
->root_item
,
2299 fs_info
->tree_root
->node
);
2300 list_add_tail(&fs_info
->tree_root
->dirty_list
,
2301 &cur_trans
->switch_commits
);
2303 btrfs_set_root_node(&fs_info
->chunk_root
->root_item
,
2304 fs_info
->chunk_root
->node
);
2305 list_add_tail(&fs_info
->chunk_root
->dirty_list
,
2306 &cur_trans
->switch_commits
);
2308 switch_commit_roots(trans
);
2310 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2311 ASSERT(list_empty(&cur_trans
->io_bgs
));
2312 update_super_roots(fs_info
);
2314 btrfs_set_super_log_root(fs_info
->super_copy
, 0);
2315 btrfs_set_super_log_root_level(fs_info
->super_copy
, 0);
2316 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2317 sizeof(*fs_info
->super_copy
));
2319 btrfs_commit_device_sizes(cur_trans
);
2321 clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
);
2322 clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
);
2324 btrfs_trans_release_chunk_metadata(trans
);
2326 spin_lock(&fs_info
->trans_lock
);
2327 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2328 fs_info
->running_transaction
= NULL
;
2329 spin_unlock(&fs_info
->trans_lock
);
2330 mutex_unlock(&fs_info
->reloc_mutex
);
2332 wake_up(&fs_info
->transaction_wait
);
2334 ret
= btrfs_write_and_wait_transaction(trans
);
2336 btrfs_handle_fs_error(fs_info
, ret
,
2337 "Error while writing out transaction");
2339 * reloc_mutex has been unlocked, tree_log_mutex is still held
2340 * but we can't jump to unlock_tree_log causing double unlock
2342 mutex_unlock(&fs_info
->tree_log_mutex
);
2343 goto scrub_continue
;
2346 ret
= write_all_supers(fs_info
, 0);
2348 * the super is written, we can safely allow the tree-loggers
2349 * to go about their business
2351 mutex_unlock(&fs_info
->tree_log_mutex
);
2353 goto scrub_continue
;
2355 btrfs_finish_extent_commit(trans
);
2357 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2358 btrfs_clear_space_info_full(fs_info
);
2360 fs_info
->last_trans_committed
= cur_trans
->transid
;
2362 * We needn't acquire the lock here because there is no other task
2363 * which can change it.
2365 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2366 wake_up(&cur_trans
->commit_wait
);
2368 spin_lock(&fs_info
->trans_lock
);
2369 list_del_init(&cur_trans
->list
);
2370 spin_unlock(&fs_info
->trans_lock
);
2372 btrfs_put_transaction(cur_trans
);
2373 btrfs_put_transaction(cur_trans
);
2375 if (trans
->type
& __TRANS_FREEZABLE
)
2376 sb_end_intwrite(fs_info
->sb
);
2378 trace_btrfs_transaction_commit(trans
->root
);
2380 btrfs_scrub_continue(fs_info
);
2382 if (current
->journal_info
== trans
)
2383 current
->journal_info
= NULL
;
2385 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2390 mutex_unlock(&fs_info
->tree_log_mutex
);
2392 mutex_unlock(&fs_info
->reloc_mutex
);
2394 btrfs_scrub_continue(fs_info
);
2395 cleanup_transaction
:
2396 btrfs_trans_release_metadata(trans
);
2397 btrfs_cleanup_pending_block_groups(trans
);
2398 btrfs_trans_release_chunk_metadata(trans
);
2399 trans
->block_rsv
= NULL
;
2400 btrfs_warn(fs_info
, "Skipping commit of aborted transaction.");
2401 if (current
->journal_info
== trans
)
2402 current
->journal_info
= NULL
;
2403 cleanup_transaction(trans
, ret
);
2409 * return < 0 if error
2410 * 0 if there are no more dead_roots at the time of call
2411 * 1 there are more to be processed, call me again
2413 * The return value indicates there are certainly more snapshots to delete, but
2414 * if there comes a new one during processing, it may return 0. We don't mind,
2415 * because btrfs_commit_super will poke cleaner thread and it will process it a
2416 * few seconds later.
2418 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2421 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2423 spin_lock(&fs_info
->trans_lock
);
2424 if (list_empty(&fs_info
->dead_roots
)) {
2425 spin_unlock(&fs_info
->trans_lock
);
2428 root
= list_first_entry(&fs_info
->dead_roots
,
2429 struct btrfs_root
, root_list
);
2430 list_del_init(&root
->root_list
);
2431 spin_unlock(&fs_info
->trans_lock
);
2433 btrfs_debug(fs_info
, "cleaner removing %llu", root
->root_key
.objectid
);
2435 btrfs_kill_all_delayed_nodes(root
);
2437 if (btrfs_header_backref_rev(root
->node
) <
2438 BTRFS_MIXED_BACKREF_REV
)
2439 ret
= btrfs_drop_snapshot(root
, 0, 0);
2441 ret
= btrfs_drop_snapshot(root
, 1, 0);
2443 btrfs_put_root(root
);
2444 return (ret
< 0) ? 0 : 1;
2447 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2452 prev
= xchg(&fs_info
->pending_changes
, 0);
2456 bit
= 1 << BTRFS_PENDING_COMMIT
;
2458 btrfs_debug(fs_info
, "pending commit done");
2463 "unknown pending changes left 0x%lx, ignoring", prev
);