1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
19 #include "extent_map.h"
21 #include "transaction.h"
22 #include "print-tree.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
36 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
37 [BTRFS_RAID_RAID10
] = {
40 .devs_max
= 0, /* 0 == as many as possible */
42 .tolerated_failures
= 1,
46 .raid_name
= "raid10",
47 .bg_flag
= BTRFS_BLOCK_GROUP_RAID10
,
48 .mindev_error
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
50 [BTRFS_RAID_RAID1
] = {
55 .tolerated_failures
= 1,
60 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1
,
61 .mindev_error
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
63 [BTRFS_RAID_RAID1C3
] = {
68 .tolerated_failures
= 2,
72 .raid_name
= "raid1c3",
73 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1C3
,
74 .mindev_error
= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET
,
76 [BTRFS_RAID_RAID1C4
] = {
81 .tolerated_failures
= 3,
85 .raid_name
= "raid1c4",
86 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1C4
,
87 .mindev_error
= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET
,
94 .tolerated_failures
= 0,
99 .bg_flag
= BTRFS_BLOCK_GROUP_DUP
,
102 [BTRFS_RAID_RAID0
] = {
107 .tolerated_failures
= 0,
111 .raid_name
= "raid0",
112 .bg_flag
= BTRFS_BLOCK_GROUP_RAID0
,
115 [BTRFS_RAID_SINGLE
] = {
120 .tolerated_failures
= 0,
124 .raid_name
= "single",
128 [BTRFS_RAID_RAID5
] = {
133 .tolerated_failures
= 1,
137 .raid_name
= "raid5",
138 .bg_flag
= BTRFS_BLOCK_GROUP_RAID5
,
139 .mindev_error
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
141 [BTRFS_RAID_RAID6
] = {
146 .tolerated_failures
= 2,
150 .raid_name
= "raid6",
151 .bg_flag
= BTRFS_BLOCK_GROUP_RAID6
,
152 .mindev_error
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
156 const char *btrfs_bg_type_to_raid_name(u64 flags
)
158 const int index
= btrfs_bg_flags_to_raid_index(flags
);
160 if (index
>= BTRFS_NR_RAID_TYPES
)
163 return btrfs_raid_array
[index
].raid_name
;
167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
168 * bytes including terminating null byte.
170 void btrfs_describe_block_groups(u64 bg_flags
, char *buf
, u32 size_buf
)
175 u64 flags
= bg_flags
;
176 u32 size_bp
= size_buf
;
183 #define DESCRIBE_FLAG(flag, desc) \
185 if (flags & (flag)) { \
186 ret = snprintf(bp, size_bp, "%s|", (desc)); \
187 if (ret < 0 || ret >= size_bp) \
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA
, "data");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM
, "system");
197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA
, "metadata");
199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE
, "single");
200 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
201 DESCRIBE_FLAG(btrfs_raid_array
[i
].bg_flag
,
202 btrfs_raid_array
[i
].raid_name
);
206 ret
= snprintf(bp
, size_bp
, "0x%llx|", flags
);
210 if (size_bp
< size_buf
)
211 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last | */
214 * The text is trimmed, it's up to the caller to provide sufficiently
220 static int init_first_rw_device(struct btrfs_trans_handle
*trans
);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
224 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
225 enum btrfs_map_op op
,
226 u64 logical
, u64
*length
,
227 struct btrfs_bio
**bbio_ret
,
228 int mirror_num
, int need_raid_map
);
234 * There are several mutexes that protect manipulation of devices and low-level
235 * structures like chunks but not block groups, extents or files
237 * uuid_mutex (global lock)
238 * ------------------------
239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241 * device) or requested by the device= mount option
243 * the mutex can be very coarse and can cover long-running operations
245 * protects: updates to fs_devices counters like missing devices, rw devices,
246 * seeding, structure cloning, opening/closing devices at mount/umount time
248 * global::fs_devs - add, remove, updates to the global list
250 * does not protect: manipulation of the fs_devices::devices list in general
251 * but in mount context it could be used to exclude list modifications by eg.
254 * btrfs_device::name - renames (write side), read is RCU
256 * fs_devices::device_list_mutex (per-fs, with RCU)
257 * ------------------------------------------------
258 * protects updates to fs_devices::devices, ie. adding and deleting
260 * simple list traversal with read-only actions can be done with RCU protection
262 * may be used to exclude some operations from running concurrently without any
263 * modifications to the list (see write_all_supers)
265 * Is not required at mount and close times, because our device list is
266 * protected by the uuid_mutex at that point.
270 * protects balance structures (status, state) and context accessed from
271 * several places (internally, ioctl)
275 * protects chunks, adding or removing during allocation, trim or when a new
276 * device is added/removed. Additionally it also protects post_commit_list of
277 * individual devices, since they can be added to the transaction's
278 * post_commit_list only with chunk_mutex held.
282 * a big lock that is held by the cleaner thread and prevents running subvolume
283 * cleaning together with relocation or delayed iputs
295 * Exclusive operations
296 * ====================
298 * Maintains the exclusivity of the following operations that apply to the
299 * whole filesystem and cannot run in parallel.
304 * - Device replace (*)
307 * The device operations (as above) can be in one of the following states:
313 * Only device operations marked with (*) can go into the Paused state for the
316 * - ioctl (only Balance can be Paused through ioctl)
317 * - filesystem remounted as read-only
318 * - filesystem unmounted and mounted as read-only
319 * - system power-cycle and filesystem mounted as read-only
320 * - filesystem or device errors leading to forced read-only
322 * The status of exclusive operation is set and cleared atomically.
323 * During the course of Paused state, fs_info::exclusive_operation remains set.
324 * A device operation in Paused or Running state can be canceled or resumed
325 * either by ioctl (Balance only) or when remounted as read-write.
326 * The exclusive status is cleared when the device operation is canceled or
330 DEFINE_MUTEX(uuid_mutex
);
331 static LIST_HEAD(fs_uuids
);
332 struct list_head
* __attribute_const__
btrfs_get_fs_uuids(void)
338 * alloc_fs_devices - allocate struct btrfs_fs_devices
339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343 * The returned struct is not linked onto any lists and can be destroyed with
344 * kfree() right away.
346 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
,
347 const u8
*metadata_fsid
)
349 struct btrfs_fs_devices
*fs_devs
;
351 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
353 return ERR_PTR(-ENOMEM
);
355 mutex_init(&fs_devs
->device_list_mutex
);
357 INIT_LIST_HEAD(&fs_devs
->devices
);
358 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
359 INIT_LIST_HEAD(&fs_devs
->fs_list
);
360 INIT_LIST_HEAD(&fs_devs
->seed_list
);
362 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
365 memcpy(fs_devs
->metadata_uuid
, metadata_fsid
, BTRFS_FSID_SIZE
);
367 memcpy(fs_devs
->metadata_uuid
, fsid
, BTRFS_FSID_SIZE
);
372 void btrfs_free_device(struct btrfs_device
*device
)
374 WARN_ON(!list_empty(&device
->post_commit_list
));
375 rcu_string_free(device
->name
);
376 extent_io_tree_release(&device
->alloc_state
);
377 bio_put(device
->flush_bio
);
378 btrfs_destroy_dev_zone_info(device
);
382 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
384 struct btrfs_device
*device
;
385 WARN_ON(fs_devices
->opened
);
386 while (!list_empty(&fs_devices
->devices
)) {
387 device
= list_entry(fs_devices
->devices
.next
,
388 struct btrfs_device
, dev_list
);
389 list_del(&device
->dev_list
);
390 btrfs_free_device(device
);
395 void __exit
btrfs_cleanup_fs_uuids(void)
397 struct btrfs_fs_devices
*fs_devices
;
399 while (!list_empty(&fs_uuids
)) {
400 fs_devices
= list_entry(fs_uuids
.next
,
401 struct btrfs_fs_devices
, fs_list
);
402 list_del(&fs_devices
->fs_list
);
403 free_fs_devices(fs_devices
);
408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409 * Returned struct is not linked onto any lists and must be destroyed using
412 static struct btrfs_device
*__alloc_device(struct btrfs_fs_info
*fs_info
)
414 struct btrfs_device
*dev
;
416 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
418 return ERR_PTR(-ENOMEM
);
421 * Preallocate a bio that's always going to be used for flushing device
422 * barriers and matches the device lifespan
424 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
425 if (!dev
->flush_bio
) {
427 return ERR_PTR(-ENOMEM
);
430 INIT_LIST_HEAD(&dev
->dev_list
);
431 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
432 INIT_LIST_HEAD(&dev
->post_commit_list
);
434 atomic_set(&dev
->reada_in_flight
, 0);
435 atomic_set(&dev
->dev_stats_ccnt
, 0);
436 btrfs_device_data_ordered_init(dev
, fs_info
);
437 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
438 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
439 extent_io_tree_init(fs_info
, &dev
->alloc_state
,
440 IO_TREE_DEVICE_ALLOC_STATE
, NULL
);
445 static noinline
struct btrfs_fs_devices
*find_fsid(
446 const u8
*fsid
, const u8
*metadata_fsid
)
448 struct btrfs_fs_devices
*fs_devices
;
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
455 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0
456 && memcmp(metadata_fsid
, fs_devices
->metadata_uuid
,
457 BTRFS_FSID_SIZE
) == 0)
460 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
467 static struct btrfs_fs_devices
*find_fsid_with_metadata_uuid(
468 struct btrfs_super_block
*disk_super
)
471 struct btrfs_fs_devices
*fs_devices
;
474 * Handle scanned device having completed its fsid change but
475 * belonging to a fs_devices that was created by first scanning
476 * a device which didn't have its fsid/metadata_uuid changed
477 * at all and the CHANGING_FSID_V2 flag set.
479 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
480 if (fs_devices
->fsid_change
&&
481 memcmp(disk_super
->metadata_uuid
, fs_devices
->fsid
,
482 BTRFS_FSID_SIZE
) == 0 &&
483 memcmp(fs_devices
->fsid
, fs_devices
->metadata_uuid
,
484 BTRFS_FSID_SIZE
) == 0) {
489 * Handle scanned device having completed its fsid change but
490 * belonging to a fs_devices that was created by a device that
491 * has an outdated pair of fsid/metadata_uuid and
492 * CHANGING_FSID_V2 flag set.
494 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
495 if (fs_devices
->fsid_change
&&
496 memcmp(fs_devices
->metadata_uuid
,
497 fs_devices
->fsid
, BTRFS_FSID_SIZE
) != 0 &&
498 memcmp(disk_super
->metadata_uuid
, fs_devices
->metadata_uuid
,
499 BTRFS_FSID_SIZE
) == 0) {
504 return find_fsid(disk_super
->fsid
, disk_super
->metadata_uuid
);
509 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
510 int flush
, struct block_device
**bdev
,
511 struct btrfs_super_block
**disk_super
)
515 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
518 ret
= PTR_ERR(*bdev
);
523 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
524 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
526 blkdev_put(*bdev
, flags
);
529 invalidate_bdev(*bdev
);
530 *disk_super
= btrfs_read_dev_super(*bdev
);
531 if (IS_ERR(*disk_super
)) {
532 ret
= PTR_ERR(*disk_super
);
533 blkdev_put(*bdev
, flags
);
544 static bool device_path_matched(const char *path
, struct btrfs_device
*device
)
549 found
= strcmp(rcu_str_deref(device
->name
), path
);
556 * Search and remove all stale (devices which are not mounted) devices.
557 * When both inputs are NULL, it will search and release all stale devices.
558 * path: Optional. When provided will it release all unmounted devices
559 * matching this path only.
560 * skip_dev: Optional. Will skip this device when searching for the stale
562 * Return: 0 for success or if @path is NULL.
563 * -EBUSY if @path is a mounted device.
564 * -ENOENT if @path does not match any device in the list.
566 static int btrfs_free_stale_devices(const char *path
,
567 struct btrfs_device
*skip_device
)
569 struct btrfs_fs_devices
*fs_devices
, *tmp_fs_devices
;
570 struct btrfs_device
*device
, *tmp_device
;
576 list_for_each_entry_safe(fs_devices
, tmp_fs_devices
, &fs_uuids
, fs_list
) {
578 mutex_lock(&fs_devices
->device_list_mutex
);
579 list_for_each_entry_safe(device
, tmp_device
,
580 &fs_devices
->devices
, dev_list
) {
581 if (skip_device
&& skip_device
== device
)
583 if (path
&& !device
->name
)
585 if (path
&& !device_path_matched(path
, device
))
587 if (fs_devices
->opened
) {
588 /* for an already deleted device return 0 */
589 if (path
&& ret
!= 0)
594 /* delete the stale device */
595 fs_devices
->num_devices
--;
596 list_del(&device
->dev_list
);
597 btrfs_free_device(device
);
601 mutex_unlock(&fs_devices
->device_list_mutex
);
603 if (fs_devices
->num_devices
== 0) {
604 btrfs_sysfs_remove_fsid(fs_devices
);
605 list_del(&fs_devices
->fs_list
);
606 free_fs_devices(fs_devices
);
614 * This is only used on mount, and we are protected from competing things
615 * messing with our fs_devices by the uuid_mutex, thus we do not need the
616 * fs_devices->device_list_mutex here.
618 static int btrfs_open_one_device(struct btrfs_fs_devices
*fs_devices
,
619 struct btrfs_device
*device
, fmode_t flags
,
622 struct request_queue
*q
;
623 struct block_device
*bdev
;
624 struct btrfs_super_block
*disk_super
;
633 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
638 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
639 if (devid
!= device
->devid
)
640 goto error_free_page
;
642 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
, BTRFS_UUID_SIZE
))
643 goto error_free_page
;
645 device
->generation
= btrfs_super_generation(disk_super
);
647 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
648 if (btrfs_super_incompat_flags(disk_super
) &
649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID
) {
651 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652 goto error_free_page
;
655 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
656 fs_devices
->seeding
= true;
658 if (bdev_read_only(bdev
))
659 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
661 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
664 q
= bdev_get_queue(bdev
);
665 if (!blk_queue_nonrot(q
))
666 fs_devices
->rotating
= true;
669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
670 device
->mode
= flags
;
672 ret
= btrfs_get_dev_zone_info(device
);
674 goto error_free_page
;
676 fs_devices
->open_devices
++;
677 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
678 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
679 fs_devices
->rw_devices
++;
680 list_add_tail(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
682 btrfs_release_disk_super(disk_super
);
687 btrfs_release_disk_super(disk_super
);
688 blkdev_put(bdev
, flags
);
694 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
695 * being created with a disk that has already completed its fsid change. Such
696 * disk can belong to an fs which has its FSID changed or to one which doesn't.
697 * Handle both cases here.
699 static struct btrfs_fs_devices
*find_fsid_inprogress(
700 struct btrfs_super_block
*disk_super
)
702 struct btrfs_fs_devices
*fs_devices
;
704 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
705 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
706 BTRFS_FSID_SIZE
) != 0 &&
707 memcmp(fs_devices
->metadata_uuid
, disk_super
->fsid
,
708 BTRFS_FSID_SIZE
) == 0 && !fs_devices
->fsid_change
) {
713 return find_fsid(disk_super
->fsid
, NULL
);
717 static struct btrfs_fs_devices
*find_fsid_changed(
718 struct btrfs_super_block
*disk_super
)
720 struct btrfs_fs_devices
*fs_devices
;
723 * Handles the case where scanned device is part of an fs that had
724 * multiple successful changes of FSID but curently device didn't
725 * observe it. Meaning our fsid will be different than theirs. We need
726 * to handle two subcases :
727 * 1 - The fs still continues to have different METADATA/FSID uuids.
728 * 2 - The fs is switched back to its original FSID (METADATA/FSID
731 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
733 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
734 BTRFS_FSID_SIZE
) != 0 &&
735 memcmp(fs_devices
->metadata_uuid
, disk_super
->metadata_uuid
,
736 BTRFS_FSID_SIZE
) == 0 &&
737 memcmp(fs_devices
->fsid
, disk_super
->fsid
,
738 BTRFS_FSID_SIZE
) != 0)
741 /* Unchanged UUIDs */
742 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
743 BTRFS_FSID_SIZE
) == 0 &&
744 memcmp(fs_devices
->fsid
, disk_super
->metadata_uuid
,
745 BTRFS_FSID_SIZE
) == 0)
752 static struct btrfs_fs_devices
*find_fsid_reverted_metadata(
753 struct btrfs_super_block
*disk_super
)
755 struct btrfs_fs_devices
*fs_devices
;
758 * Handle the case where the scanned device is part of an fs whose last
759 * metadata UUID change reverted it to the original FSID. At the same
760 * time * fs_devices was first created by another constitutent device
761 * which didn't fully observe the operation. This results in an
762 * btrfs_fs_devices created with metadata/fsid different AND
763 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
764 * fs_devices equal to the FSID of the disk.
766 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
767 if (memcmp(fs_devices
->fsid
, fs_devices
->metadata_uuid
,
768 BTRFS_FSID_SIZE
) != 0 &&
769 memcmp(fs_devices
->metadata_uuid
, disk_super
->fsid
,
770 BTRFS_FSID_SIZE
) == 0 &&
771 fs_devices
->fsid_change
)
778 * Add new device to list of registered devices
781 * device pointer which was just added or updated when successful
782 * error pointer when failed
784 static noinline
struct btrfs_device
*device_list_add(const char *path
,
785 struct btrfs_super_block
*disk_super
,
786 bool *new_device_added
)
788 struct btrfs_device
*device
;
789 struct btrfs_fs_devices
*fs_devices
= NULL
;
790 struct rcu_string
*name
;
791 u64 found_transid
= btrfs_super_generation(disk_super
);
792 u64 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
793 bool has_metadata_uuid
= (btrfs_super_incompat_flags(disk_super
) &
794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID
);
795 bool fsid_change_in_progress
= (btrfs_super_flags(disk_super
) &
796 BTRFS_SUPER_FLAG_CHANGING_FSID_V2
);
798 if (fsid_change_in_progress
) {
799 if (!has_metadata_uuid
)
800 fs_devices
= find_fsid_inprogress(disk_super
);
802 fs_devices
= find_fsid_changed(disk_super
);
803 } else if (has_metadata_uuid
) {
804 fs_devices
= find_fsid_with_metadata_uuid(disk_super
);
806 fs_devices
= find_fsid_reverted_metadata(disk_super
);
808 fs_devices
= find_fsid(disk_super
->fsid
, NULL
);
813 if (has_metadata_uuid
)
814 fs_devices
= alloc_fs_devices(disk_super
->fsid
,
815 disk_super
->metadata_uuid
);
817 fs_devices
= alloc_fs_devices(disk_super
->fsid
, NULL
);
819 if (IS_ERR(fs_devices
))
820 return ERR_CAST(fs_devices
);
822 fs_devices
->fsid_change
= fsid_change_in_progress
;
824 mutex_lock(&fs_devices
->device_list_mutex
);
825 list_add(&fs_devices
->fs_list
, &fs_uuids
);
829 mutex_lock(&fs_devices
->device_list_mutex
);
830 device
= btrfs_find_device(fs_devices
, devid
,
831 disk_super
->dev_item
.uuid
, NULL
);
834 * If this disk has been pulled into an fs devices created by
835 * a device which had the CHANGING_FSID_V2 flag then replace the
836 * metadata_uuid/fsid values of the fs_devices.
838 if (fs_devices
->fsid_change
&&
839 found_transid
> fs_devices
->latest_generation
) {
840 memcpy(fs_devices
->fsid
, disk_super
->fsid
,
843 if (has_metadata_uuid
)
844 memcpy(fs_devices
->metadata_uuid
,
845 disk_super
->metadata_uuid
,
848 memcpy(fs_devices
->metadata_uuid
,
849 disk_super
->fsid
, BTRFS_FSID_SIZE
);
851 fs_devices
->fsid_change
= false;
856 if (fs_devices
->opened
) {
857 mutex_unlock(&fs_devices
->device_list_mutex
);
858 return ERR_PTR(-EBUSY
);
861 device
= btrfs_alloc_device(NULL
, &devid
,
862 disk_super
->dev_item
.uuid
);
863 if (IS_ERR(device
)) {
864 mutex_unlock(&fs_devices
->device_list_mutex
);
865 /* we can safely leave the fs_devices entry around */
869 name
= rcu_string_strdup(path
, GFP_NOFS
);
871 btrfs_free_device(device
);
872 mutex_unlock(&fs_devices
->device_list_mutex
);
873 return ERR_PTR(-ENOMEM
);
875 rcu_assign_pointer(device
->name
, name
);
877 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
878 fs_devices
->num_devices
++;
880 device
->fs_devices
= fs_devices
;
881 *new_device_added
= true;
883 if (disk_super
->label
[0])
885 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
886 disk_super
->label
, devid
, found_transid
, path
,
887 current
->comm
, task_pid_nr(current
));
890 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
891 disk_super
->fsid
, devid
, found_transid
, path
,
892 current
->comm
, task_pid_nr(current
));
894 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
896 * When FS is already mounted.
897 * 1. If you are here and if the device->name is NULL that
898 * means this device was missing at time of FS mount.
899 * 2. If you are here and if the device->name is different
900 * from 'path' that means either
901 * a. The same device disappeared and reappeared with
903 * b. The missing-disk-which-was-replaced, has
906 * We must allow 1 and 2a above. But 2b would be a spurious
909 * Further in case of 1 and 2a above, the disk at 'path'
910 * would have missed some transaction when it was away and
911 * in case of 2a the stale bdev has to be updated as well.
912 * 2b must not be allowed at all time.
916 * For now, we do allow update to btrfs_fs_device through the
917 * btrfs dev scan cli after FS has been mounted. We're still
918 * tracking a problem where systems fail mount by subvolume id
919 * when we reject replacement on a mounted FS.
921 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
923 * That is if the FS is _not_ mounted and if you
924 * are here, that means there is more than one
925 * disk with same uuid and devid.We keep the one
926 * with larger generation number or the last-in if
927 * generation are equal.
929 mutex_unlock(&fs_devices
->device_list_mutex
);
930 return ERR_PTR(-EEXIST
);
934 * We are going to replace the device path for a given devid,
935 * make sure it's the same device if the device is mounted
941 error
= lookup_bdev(path
, &path_dev
);
943 mutex_unlock(&fs_devices
->device_list_mutex
);
944 return ERR_PTR(error
);
947 if (device
->bdev
->bd_dev
!= path_dev
) {
948 mutex_unlock(&fs_devices
->device_list_mutex
);
950 * device->fs_info may not be reliable here, so
951 * pass in a NULL instead. This avoids a
952 * possible use-after-free when the fs_info and
953 * fs_info->sb are already torn down.
955 btrfs_warn_in_rcu(NULL
,
956 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
957 path
, devid
, found_transid
,
959 task_pid_nr(current
));
960 return ERR_PTR(-EEXIST
);
962 btrfs_info_in_rcu(device
->fs_info
,
963 "devid %llu device path %s changed to %s scanned by %s (%d)",
964 devid
, rcu_str_deref(device
->name
),
966 task_pid_nr(current
));
969 name
= rcu_string_strdup(path
, GFP_NOFS
);
971 mutex_unlock(&fs_devices
->device_list_mutex
);
972 return ERR_PTR(-ENOMEM
);
974 rcu_string_free(device
->name
);
975 rcu_assign_pointer(device
->name
, name
);
976 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
977 fs_devices
->missing_devices
--;
978 clear_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
983 * Unmount does not free the btrfs_device struct but would zero
984 * generation along with most of the other members. So just update
985 * it back. We need it to pick the disk with largest generation
988 if (!fs_devices
->opened
) {
989 device
->generation
= found_transid
;
990 fs_devices
->latest_generation
= max_t(u64
, found_transid
,
991 fs_devices
->latest_generation
);
994 fs_devices
->total_devices
= btrfs_super_num_devices(disk_super
);
996 mutex_unlock(&fs_devices
->device_list_mutex
);
1000 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
1002 struct btrfs_fs_devices
*fs_devices
;
1003 struct btrfs_device
*device
;
1004 struct btrfs_device
*orig_dev
;
1007 fs_devices
= alloc_fs_devices(orig
->fsid
, NULL
);
1008 if (IS_ERR(fs_devices
))
1011 mutex_lock(&orig
->device_list_mutex
);
1012 fs_devices
->total_devices
= orig
->total_devices
;
1014 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
1015 struct rcu_string
*name
;
1017 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
1019 if (IS_ERR(device
)) {
1020 ret
= PTR_ERR(device
);
1025 * This is ok to do without rcu read locked because we hold the
1026 * uuid mutex so nothing we touch in here is going to disappear.
1028 if (orig_dev
->name
) {
1029 name
= rcu_string_strdup(orig_dev
->name
->str
,
1032 btrfs_free_device(device
);
1036 rcu_assign_pointer(device
->name
, name
);
1039 list_add(&device
->dev_list
, &fs_devices
->devices
);
1040 device
->fs_devices
= fs_devices
;
1041 fs_devices
->num_devices
++;
1043 mutex_unlock(&orig
->device_list_mutex
);
1046 mutex_unlock(&orig
->device_list_mutex
);
1047 free_fs_devices(fs_devices
);
1048 return ERR_PTR(ret
);
1051 static void __btrfs_free_extra_devids(struct btrfs_fs_devices
*fs_devices
,
1052 struct btrfs_device
**latest_dev
)
1054 struct btrfs_device
*device
, *next
;
1056 /* This is the initialized path, it is safe to release the devices. */
1057 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
1058 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
)) {
1059 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1060 &device
->dev_state
) &&
1061 !test_bit(BTRFS_DEV_STATE_MISSING
,
1062 &device
->dev_state
) &&
1064 device
->generation
> (*latest_dev
)->generation
)) {
1065 *latest_dev
= device
;
1071 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1072 * in btrfs_init_dev_replace() so just continue.
1074 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
)
1078 blkdev_put(device
->bdev
, device
->mode
);
1079 device
->bdev
= NULL
;
1080 fs_devices
->open_devices
--;
1082 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1083 list_del_init(&device
->dev_alloc_list
);
1084 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
1086 list_del_init(&device
->dev_list
);
1087 fs_devices
->num_devices
--;
1088 btrfs_free_device(device
);
1094 * After we have read the system tree and know devids belonging to this
1095 * filesystem, remove the device which does not belong there.
1097 void btrfs_free_extra_devids(struct btrfs_fs_devices
*fs_devices
)
1099 struct btrfs_device
*latest_dev
= NULL
;
1100 struct btrfs_fs_devices
*seed_dev
;
1102 mutex_lock(&uuid_mutex
);
1103 __btrfs_free_extra_devids(fs_devices
, &latest_dev
);
1105 list_for_each_entry(seed_dev
, &fs_devices
->seed_list
, seed_list
)
1106 __btrfs_free_extra_devids(seed_dev
, &latest_dev
);
1108 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1110 mutex_unlock(&uuid_mutex
);
1113 static void btrfs_close_bdev(struct btrfs_device
*device
)
1118 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1119 sync_blockdev(device
->bdev
);
1120 invalidate_bdev(device
->bdev
);
1123 blkdev_put(device
->bdev
, device
->mode
);
1126 static void btrfs_close_one_device(struct btrfs_device
*device
)
1128 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
1130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1131 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1132 list_del_init(&device
->dev_alloc_list
);
1133 fs_devices
->rw_devices
--;
1136 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
1137 fs_devices
->missing_devices
--;
1139 btrfs_close_bdev(device
);
1141 fs_devices
->open_devices
--;
1142 device
->bdev
= NULL
;
1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
1145 btrfs_destroy_dev_zone_info(device
);
1147 device
->fs_info
= NULL
;
1148 atomic_set(&device
->dev_stats_ccnt
, 0);
1149 extent_io_tree_release(&device
->alloc_state
);
1151 /* Verify the device is back in a pristine state */
1152 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
));
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1154 ASSERT(list_empty(&device
->dev_alloc_list
));
1155 ASSERT(list_empty(&device
->post_commit_list
));
1156 ASSERT(atomic_read(&device
->reada_in_flight
) == 0);
1159 static void close_fs_devices(struct btrfs_fs_devices
*fs_devices
)
1161 struct btrfs_device
*device
, *tmp
;
1163 lockdep_assert_held(&uuid_mutex
);
1165 if (--fs_devices
->opened
> 0)
1168 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
)
1169 btrfs_close_one_device(device
);
1171 WARN_ON(fs_devices
->open_devices
);
1172 WARN_ON(fs_devices
->rw_devices
);
1173 fs_devices
->opened
= 0;
1174 fs_devices
->seeding
= false;
1175 fs_devices
->fs_info
= NULL
;
1178 void btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1181 struct btrfs_fs_devices
*tmp
;
1183 mutex_lock(&uuid_mutex
);
1184 close_fs_devices(fs_devices
);
1185 if (!fs_devices
->opened
)
1186 list_splice_init(&fs_devices
->seed_list
, &list
);
1188 list_for_each_entry_safe(fs_devices
, tmp
, &list
, seed_list
) {
1189 close_fs_devices(fs_devices
);
1190 list_del(&fs_devices
->seed_list
);
1191 free_fs_devices(fs_devices
);
1193 mutex_unlock(&uuid_mutex
);
1196 static int open_fs_devices(struct btrfs_fs_devices
*fs_devices
,
1197 fmode_t flags
, void *holder
)
1199 struct btrfs_device
*device
;
1200 struct btrfs_device
*latest_dev
= NULL
;
1201 struct btrfs_device
*tmp_device
;
1203 flags
|= FMODE_EXCL
;
1205 list_for_each_entry_safe(device
, tmp_device
, &fs_devices
->devices
,
1209 ret
= btrfs_open_one_device(fs_devices
, device
, flags
, holder
);
1211 (!latest_dev
|| device
->generation
> latest_dev
->generation
)) {
1212 latest_dev
= device
;
1213 } else if (ret
== -ENODATA
) {
1214 fs_devices
->num_devices
--;
1215 list_del(&device
->dev_list
);
1216 btrfs_free_device(device
);
1219 if (fs_devices
->open_devices
== 0)
1222 fs_devices
->opened
= 1;
1223 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1224 fs_devices
->total_rw_bytes
= 0;
1225 fs_devices
->chunk_alloc_policy
= BTRFS_CHUNK_ALLOC_REGULAR
;
1226 fs_devices
->read_policy
= BTRFS_READ_POLICY_PID
;
1231 static int devid_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1233 struct btrfs_device
*dev1
, *dev2
;
1235 dev1
= list_entry(a
, struct btrfs_device
, dev_list
);
1236 dev2
= list_entry(b
, struct btrfs_device
, dev_list
);
1238 if (dev1
->devid
< dev2
->devid
)
1240 else if (dev1
->devid
> dev2
->devid
)
1245 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1246 fmode_t flags
, void *holder
)
1250 lockdep_assert_held(&uuid_mutex
);
1252 * The device_list_mutex cannot be taken here in case opening the
1253 * underlying device takes further locks like bd_mutex.
1255 * We also don't need the lock here as this is called during mount and
1256 * exclusion is provided by uuid_mutex
1259 if (fs_devices
->opened
) {
1260 fs_devices
->opened
++;
1263 list_sort(NULL
, &fs_devices
->devices
, devid_cmp
);
1264 ret
= open_fs_devices(fs_devices
, flags
, holder
);
1270 void btrfs_release_disk_super(struct btrfs_super_block
*super
)
1272 struct page
*page
= virt_to_page(super
);
1277 static struct btrfs_super_block
*btrfs_read_disk_super(struct block_device
*bdev
,
1278 u64 bytenr
, u64 bytenr_orig
)
1280 struct btrfs_super_block
*disk_super
;
1285 /* make sure our super fits in the device */
1286 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1287 return ERR_PTR(-EINVAL
);
1289 /* make sure our super fits in the page */
1290 if (sizeof(*disk_super
) > PAGE_SIZE
)
1291 return ERR_PTR(-EINVAL
);
1293 /* make sure our super doesn't straddle pages on disk */
1294 index
= bytenr
>> PAGE_SHIFT
;
1295 if ((bytenr
+ sizeof(*disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1296 return ERR_PTR(-EINVAL
);
1298 /* pull in the page with our super */
1299 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
, index
, GFP_KERNEL
);
1302 return ERR_CAST(page
);
1304 p
= page_address(page
);
1306 /* align our pointer to the offset of the super block */
1307 disk_super
= p
+ offset_in_page(bytenr
);
1309 if (btrfs_super_bytenr(disk_super
) != bytenr_orig
||
1310 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
1311 btrfs_release_disk_super(p
);
1312 return ERR_PTR(-EINVAL
);
1315 if (disk_super
->label
[0] && disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
1316 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = 0;
1321 int btrfs_forget_devices(const char *path
)
1325 mutex_lock(&uuid_mutex
);
1326 ret
= btrfs_free_stale_devices(strlen(path
) ? path
: NULL
, NULL
);
1327 mutex_unlock(&uuid_mutex
);
1333 * Look for a btrfs signature on a device. This may be called out of the mount path
1334 * and we are not allowed to call set_blocksize during the scan. The superblock
1335 * is read via pagecache
1337 struct btrfs_device
*btrfs_scan_one_device(const char *path
, fmode_t flags
,
1340 struct btrfs_super_block
*disk_super
;
1341 bool new_device_added
= false;
1342 struct btrfs_device
*device
= NULL
;
1343 struct block_device
*bdev
;
1344 u64 bytenr
, bytenr_orig
;
1347 lockdep_assert_held(&uuid_mutex
);
1350 * we would like to check all the supers, but that would make
1351 * a btrfs mount succeed after a mkfs from a different FS.
1352 * So, we need to add a special mount option to scan for
1353 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1355 flags
|= FMODE_EXCL
;
1357 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1359 return ERR_CAST(bdev
);
1361 bytenr_orig
= btrfs_sb_offset(0);
1362 ret
= btrfs_sb_log_location_bdev(bdev
, 0, READ
, &bytenr
);
1364 return ERR_PTR(ret
);
1366 disk_super
= btrfs_read_disk_super(bdev
, bytenr
, bytenr_orig
);
1367 if (IS_ERR(disk_super
)) {
1368 device
= ERR_CAST(disk_super
);
1369 goto error_bdev_put
;
1372 device
= device_list_add(path
, disk_super
, &new_device_added
);
1373 if (!IS_ERR(device
)) {
1374 if (new_device_added
)
1375 btrfs_free_stale_devices(path
, device
);
1378 btrfs_release_disk_super(disk_super
);
1381 blkdev_put(bdev
, flags
);
1387 * Try to find a chunk that intersects [start, start + len] range and when one
1388 * such is found, record the end of it in *start
1390 static bool contains_pending_extent(struct btrfs_device
*device
, u64
*start
,
1393 u64 physical_start
, physical_end
;
1395 lockdep_assert_held(&device
->fs_info
->chunk_mutex
);
1397 if (!find_first_extent_bit(&device
->alloc_state
, *start
,
1398 &physical_start
, &physical_end
,
1399 CHUNK_ALLOCATED
, NULL
)) {
1401 if (in_range(physical_start
, *start
, len
) ||
1402 in_range(*start
, physical_start
,
1403 physical_end
- physical_start
)) {
1404 *start
= physical_end
+ 1;
1411 static u64
dev_extent_search_start(struct btrfs_device
*device
, u64 start
)
1413 switch (device
->fs_devices
->chunk_alloc_policy
) {
1414 case BTRFS_CHUNK_ALLOC_REGULAR
:
1416 * We don't want to overwrite the superblock on the drive nor
1417 * any area used by the boot loader (grub for example), so we
1418 * make sure to start at an offset of at least 1MB.
1420 return max_t(u64
, start
, SZ_1M
);
1427 * dev_extent_hole_check - check if specified hole is suitable for allocation
1428 * @device: the device which we have the hole
1429 * @hole_start: starting position of the hole
1430 * @hole_size: the size of the hole
1431 * @num_bytes: the size of the free space that we need
1433 * This function may modify @hole_start and @hole_end to reflect the suitable
1434 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1436 static bool dev_extent_hole_check(struct btrfs_device
*device
, u64
*hole_start
,
1437 u64
*hole_size
, u64 num_bytes
)
1439 bool changed
= false;
1440 u64 hole_end
= *hole_start
+ *hole_size
;
1443 * Check before we set max_hole_start, otherwise we could end up
1444 * sending back this offset anyway.
1446 if (contains_pending_extent(device
, hole_start
, *hole_size
)) {
1447 if (hole_end
>= *hole_start
)
1448 *hole_size
= hole_end
- *hole_start
;
1454 switch (device
->fs_devices
->chunk_alloc_policy
) {
1455 case BTRFS_CHUNK_ALLOC_REGULAR
:
1456 /* No extra check */
1466 * find_free_dev_extent_start - find free space in the specified device
1467 * @device: the device which we search the free space in
1468 * @num_bytes: the size of the free space that we need
1469 * @search_start: the position from which to begin the search
1470 * @start: store the start of the free space.
1471 * @len: the size of the free space. that we find, or the size
1472 * of the max free space if we don't find suitable free space
1474 * this uses a pretty simple search, the expectation is that it is
1475 * called very infrequently and that a given device has a small number
1478 * @start is used to store the start of the free space if we find. But if we
1479 * don't find suitable free space, it will be used to store the start position
1480 * of the max free space.
1482 * @len is used to store the size of the free space that we find.
1483 * But if we don't find suitable free space, it is used to store the size of
1484 * the max free space.
1486 * NOTE: This function will search *commit* root of device tree, and does extra
1487 * check to ensure dev extents are not double allocated.
1488 * This makes the function safe to allocate dev extents but may not report
1489 * correct usable device space, as device extent freed in current transaction
1490 * is not reported as avaiable.
1492 static int find_free_dev_extent_start(struct btrfs_device
*device
,
1493 u64 num_bytes
, u64 search_start
, u64
*start
,
1496 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1497 struct btrfs_root
*root
= fs_info
->dev_root
;
1498 struct btrfs_key key
;
1499 struct btrfs_dev_extent
*dev_extent
;
1500 struct btrfs_path
*path
;
1505 u64 search_end
= device
->total_bytes
;
1508 struct extent_buffer
*l
;
1510 search_start
= dev_extent_search_start(device
, search_start
);
1512 path
= btrfs_alloc_path();
1516 max_hole_start
= search_start
;
1520 if (search_start
>= search_end
||
1521 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1526 path
->reada
= READA_FORWARD
;
1527 path
->search_commit_root
= 1;
1528 path
->skip_locking
= 1;
1530 key
.objectid
= device
->devid
;
1531 key
.offset
= search_start
;
1532 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1534 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1538 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1545 slot
= path
->slots
[0];
1546 if (slot
>= btrfs_header_nritems(l
)) {
1547 ret
= btrfs_next_leaf(root
, path
);
1555 btrfs_item_key_to_cpu(l
, &key
, slot
);
1557 if (key
.objectid
< device
->devid
)
1560 if (key
.objectid
> device
->devid
)
1563 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1566 if (key
.offset
> search_start
) {
1567 hole_size
= key
.offset
- search_start
;
1568 dev_extent_hole_check(device
, &search_start
, &hole_size
,
1571 if (hole_size
> max_hole_size
) {
1572 max_hole_start
= search_start
;
1573 max_hole_size
= hole_size
;
1577 * If this free space is greater than which we need,
1578 * it must be the max free space that we have found
1579 * until now, so max_hole_start must point to the start
1580 * of this free space and the length of this free space
1581 * is stored in max_hole_size. Thus, we return
1582 * max_hole_start and max_hole_size and go back to the
1585 if (hole_size
>= num_bytes
) {
1591 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1592 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1594 if (extent_end
> search_start
)
1595 search_start
= extent_end
;
1602 * At this point, search_start should be the end of
1603 * allocated dev extents, and when shrinking the device,
1604 * search_end may be smaller than search_start.
1606 if (search_end
> search_start
) {
1607 hole_size
= search_end
- search_start
;
1608 if (dev_extent_hole_check(device
, &search_start
, &hole_size
,
1610 btrfs_release_path(path
);
1614 if (hole_size
> max_hole_size
) {
1615 max_hole_start
= search_start
;
1616 max_hole_size
= hole_size
;
1621 if (max_hole_size
< num_bytes
)
1627 btrfs_free_path(path
);
1628 *start
= max_hole_start
;
1630 *len
= max_hole_size
;
1634 int find_free_dev_extent(struct btrfs_device
*device
, u64 num_bytes
,
1635 u64
*start
, u64
*len
)
1637 /* FIXME use last free of some kind */
1638 return find_free_dev_extent_start(device
, num_bytes
, 0, start
, len
);
1641 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1642 struct btrfs_device
*device
,
1643 u64 start
, u64
*dev_extent_len
)
1645 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1646 struct btrfs_root
*root
= fs_info
->dev_root
;
1648 struct btrfs_path
*path
;
1649 struct btrfs_key key
;
1650 struct btrfs_key found_key
;
1651 struct extent_buffer
*leaf
= NULL
;
1652 struct btrfs_dev_extent
*extent
= NULL
;
1654 path
= btrfs_alloc_path();
1658 key
.objectid
= device
->devid
;
1660 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1662 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1664 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1665 BTRFS_DEV_EXTENT_KEY
);
1668 leaf
= path
->nodes
[0];
1669 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1670 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1671 struct btrfs_dev_extent
);
1672 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1673 btrfs_dev_extent_length(leaf
, extent
) < start
);
1675 btrfs_release_path(path
);
1677 } else if (ret
== 0) {
1678 leaf
= path
->nodes
[0];
1679 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1680 struct btrfs_dev_extent
);
1682 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1686 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1688 ret
= btrfs_del_item(trans
, root
, path
);
1690 btrfs_handle_fs_error(fs_info
, ret
,
1691 "Failed to remove dev extent item");
1693 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1696 btrfs_free_path(path
);
1700 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1701 struct btrfs_device
*device
,
1702 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1705 struct btrfs_path
*path
;
1706 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1707 struct btrfs_root
*root
= fs_info
->dev_root
;
1708 struct btrfs_dev_extent
*extent
;
1709 struct extent_buffer
*leaf
;
1710 struct btrfs_key key
;
1712 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
1713 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1714 path
= btrfs_alloc_path();
1718 key
.objectid
= device
->devid
;
1720 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1721 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1726 leaf
= path
->nodes
[0];
1727 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1728 struct btrfs_dev_extent
);
1729 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1730 BTRFS_CHUNK_TREE_OBJECTID
);
1731 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1732 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1733 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1735 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1736 btrfs_mark_buffer_dirty(leaf
);
1738 btrfs_free_path(path
);
1742 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1744 struct extent_map_tree
*em_tree
;
1745 struct extent_map
*em
;
1749 em_tree
= &fs_info
->mapping_tree
;
1750 read_lock(&em_tree
->lock
);
1751 n
= rb_last(&em_tree
->map
.rb_root
);
1753 em
= rb_entry(n
, struct extent_map
, rb_node
);
1754 ret
= em
->start
+ em
->len
;
1756 read_unlock(&em_tree
->lock
);
1761 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1765 struct btrfs_key key
;
1766 struct btrfs_key found_key
;
1767 struct btrfs_path
*path
;
1769 path
= btrfs_alloc_path();
1773 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1774 key
.type
= BTRFS_DEV_ITEM_KEY
;
1775 key
.offset
= (u64
)-1;
1777 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1783 btrfs_err(fs_info
, "corrupted chunk tree devid -1 matched");
1788 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1789 BTRFS_DEV_ITEMS_OBJECTID
,
1790 BTRFS_DEV_ITEM_KEY
);
1794 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1796 *devid_ret
= found_key
.offset
+ 1;
1800 btrfs_free_path(path
);
1805 * the device information is stored in the chunk root
1806 * the btrfs_device struct should be fully filled in
1808 static int btrfs_add_dev_item(struct btrfs_trans_handle
*trans
,
1809 struct btrfs_device
*device
)
1812 struct btrfs_path
*path
;
1813 struct btrfs_dev_item
*dev_item
;
1814 struct extent_buffer
*leaf
;
1815 struct btrfs_key key
;
1818 path
= btrfs_alloc_path();
1822 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1823 key
.type
= BTRFS_DEV_ITEM_KEY
;
1824 key
.offset
= device
->devid
;
1826 ret
= btrfs_insert_empty_item(trans
, trans
->fs_info
->chunk_root
, path
,
1827 &key
, sizeof(*dev_item
));
1831 leaf
= path
->nodes
[0];
1832 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1834 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1835 btrfs_set_device_generation(leaf
, dev_item
, 0);
1836 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1837 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1838 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1839 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1840 btrfs_set_device_total_bytes(leaf
, dev_item
,
1841 btrfs_device_get_disk_total_bytes(device
));
1842 btrfs_set_device_bytes_used(leaf
, dev_item
,
1843 btrfs_device_get_bytes_used(device
));
1844 btrfs_set_device_group(leaf
, dev_item
, 0);
1845 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1846 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1847 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1849 ptr
= btrfs_device_uuid(dev_item
);
1850 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1851 ptr
= btrfs_device_fsid(dev_item
);
1852 write_extent_buffer(leaf
, trans
->fs_info
->fs_devices
->metadata_uuid
,
1853 ptr
, BTRFS_FSID_SIZE
);
1854 btrfs_mark_buffer_dirty(leaf
);
1858 btrfs_free_path(path
);
1863 * Function to update ctime/mtime for a given device path.
1864 * Mainly used for ctime/mtime based probe like libblkid.
1866 static void update_dev_time(const char *path_name
)
1870 filp
= filp_open(path_name
, O_RDWR
, 0);
1873 file_update_time(filp
);
1874 filp_close(filp
, NULL
);
1877 static int btrfs_rm_dev_item(struct btrfs_device
*device
)
1879 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
1881 struct btrfs_path
*path
;
1882 struct btrfs_key key
;
1883 struct btrfs_trans_handle
*trans
;
1885 path
= btrfs_alloc_path();
1889 trans
= btrfs_start_transaction(root
, 0);
1890 if (IS_ERR(trans
)) {
1891 btrfs_free_path(path
);
1892 return PTR_ERR(trans
);
1894 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1895 key
.type
= BTRFS_DEV_ITEM_KEY
;
1896 key
.offset
= device
->devid
;
1898 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1902 btrfs_abort_transaction(trans
, ret
);
1903 btrfs_end_transaction(trans
);
1907 ret
= btrfs_del_item(trans
, root
, path
);
1909 btrfs_abort_transaction(trans
, ret
);
1910 btrfs_end_transaction(trans
);
1914 btrfs_free_path(path
);
1916 ret
= btrfs_commit_transaction(trans
);
1921 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1922 * filesystem. It's up to the caller to adjust that number regarding eg. device
1925 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1933 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1935 all_avail
= fs_info
->avail_data_alloc_bits
|
1936 fs_info
->avail_system_alloc_bits
|
1937 fs_info
->avail_metadata_alloc_bits
;
1938 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1940 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1941 if (!(all_avail
& btrfs_raid_array
[i
].bg_flag
))
1944 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1945 int ret
= btrfs_raid_array
[i
].mindev_error
;
1955 static struct btrfs_device
* btrfs_find_next_active_device(
1956 struct btrfs_fs_devices
*fs_devs
, struct btrfs_device
*device
)
1958 struct btrfs_device
*next_device
;
1960 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1961 if (next_device
!= device
&&
1962 !test_bit(BTRFS_DEV_STATE_MISSING
, &next_device
->dev_state
)
1963 && next_device
->bdev
)
1971 * Helper function to check if the given device is part of s_bdev / latest_bdev
1972 * and replace it with the provided or the next active device, in the context
1973 * where this function called, there should be always be another device (or
1974 * this_dev) which is active.
1976 void __cold
btrfs_assign_next_active_device(struct btrfs_device
*device
,
1977 struct btrfs_device
*next_device
)
1979 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1982 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1984 ASSERT(next_device
);
1986 if (fs_info
->sb
->s_bdev
&&
1987 (fs_info
->sb
->s_bdev
== device
->bdev
))
1988 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1990 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1991 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1995 * Return btrfs_fs_devices::num_devices excluding the device that's being
1996 * currently replaced.
1998 static u64
btrfs_num_devices(struct btrfs_fs_info
*fs_info
)
2000 u64 num_devices
= fs_info
->fs_devices
->num_devices
;
2002 down_read(&fs_info
->dev_replace
.rwsem
);
2003 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
2004 ASSERT(num_devices
> 1);
2007 up_read(&fs_info
->dev_replace
.rwsem
);
2012 void btrfs_scratch_superblocks(struct btrfs_fs_info
*fs_info
,
2013 struct block_device
*bdev
,
2014 const char *device_path
)
2016 struct btrfs_super_block
*disk_super
;
2022 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
; copy_num
++) {
2026 disk_super
= btrfs_read_dev_one_super(bdev
, copy_num
);
2027 if (IS_ERR(disk_super
))
2030 if (bdev_is_zoned(bdev
)) {
2031 btrfs_reset_sb_log_zones(bdev
, copy_num
);
2035 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
2037 page
= virt_to_page(disk_super
);
2038 set_page_dirty(page
);
2040 /* write_on_page() unlocks the page */
2041 ret
= write_one_page(page
);
2044 "error clearing superblock number %d (%d)",
2046 btrfs_release_disk_super(disk_super
);
2050 /* Notify udev that device has changed */
2051 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
2053 /* Update ctime/mtime for device path for libblkid */
2054 update_dev_time(device_path
);
2057 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
2060 struct btrfs_device
*device
;
2061 struct btrfs_fs_devices
*cur_devices
;
2062 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2066 mutex_lock(&uuid_mutex
);
2068 num_devices
= btrfs_num_devices(fs_info
);
2070 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
2074 device
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
);
2076 if (IS_ERR(device
)) {
2077 if (PTR_ERR(device
) == -ENOENT
&&
2078 strcmp(device_path
, "missing") == 0)
2079 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2081 ret
= PTR_ERR(device
);
2085 if (btrfs_pinned_by_swapfile(fs_info
, device
)) {
2086 btrfs_warn_in_rcu(fs_info
,
2087 "cannot remove device %s (devid %llu) due to active swapfile",
2088 rcu_str_deref(device
->name
), device
->devid
);
2093 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2094 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
2098 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
2099 fs_info
->fs_devices
->rw_devices
== 1) {
2100 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2105 mutex_lock(&fs_info
->chunk_mutex
);
2106 list_del_init(&device
->dev_alloc_list
);
2107 device
->fs_devices
->rw_devices
--;
2108 mutex_unlock(&fs_info
->chunk_mutex
);
2111 mutex_unlock(&uuid_mutex
);
2112 ret
= btrfs_shrink_device(device
, 0);
2114 btrfs_reada_remove_dev(device
);
2115 mutex_lock(&uuid_mutex
);
2120 * TODO: the superblock still includes this device in its num_devices
2121 * counter although write_all_supers() is not locked out. This
2122 * could give a filesystem state which requires a degraded mount.
2124 ret
= btrfs_rm_dev_item(device
);
2128 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2129 btrfs_scrub_cancel_dev(device
);
2132 * the device list mutex makes sure that we don't change
2133 * the device list while someone else is writing out all
2134 * the device supers. Whoever is writing all supers, should
2135 * lock the device list mutex before getting the number of
2136 * devices in the super block (super_copy). Conversely,
2137 * whoever updates the number of devices in the super block
2138 * (super_copy) should hold the device list mutex.
2142 * In normal cases the cur_devices == fs_devices. But in case
2143 * of deleting a seed device, the cur_devices should point to
2144 * its own fs_devices listed under the fs_devices->seed.
2146 cur_devices
= device
->fs_devices
;
2147 mutex_lock(&fs_devices
->device_list_mutex
);
2148 list_del_rcu(&device
->dev_list
);
2150 cur_devices
->num_devices
--;
2151 cur_devices
->total_devices
--;
2152 /* Update total_devices of the parent fs_devices if it's seed */
2153 if (cur_devices
!= fs_devices
)
2154 fs_devices
->total_devices
--;
2156 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
2157 cur_devices
->missing_devices
--;
2159 btrfs_assign_next_active_device(device
, NULL
);
2162 cur_devices
->open_devices
--;
2163 /* remove sysfs entry */
2164 btrfs_sysfs_remove_device(device
);
2167 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
2168 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
2169 mutex_unlock(&fs_devices
->device_list_mutex
);
2172 * at this point, the device is zero sized and detached from
2173 * the devices list. All that's left is to zero out the old
2174 * supers and free the device.
2176 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2177 btrfs_scratch_superblocks(fs_info
, device
->bdev
,
2180 btrfs_close_bdev(device
);
2182 btrfs_free_device(device
);
2184 if (cur_devices
->open_devices
== 0) {
2185 list_del_init(&cur_devices
->seed_list
);
2186 close_fs_devices(cur_devices
);
2187 free_fs_devices(cur_devices
);
2191 mutex_unlock(&uuid_mutex
);
2195 btrfs_reada_undo_remove_dev(device
);
2196 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2197 mutex_lock(&fs_info
->chunk_mutex
);
2198 list_add(&device
->dev_alloc_list
,
2199 &fs_devices
->alloc_list
);
2200 device
->fs_devices
->rw_devices
++;
2201 mutex_unlock(&fs_info
->chunk_mutex
);
2206 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device
*srcdev
)
2208 struct btrfs_fs_devices
*fs_devices
;
2210 lockdep_assert_held(&srcdev
->fs_info
->fs_devices
->device_list_mutex
);
2213 * in case of fs with no seed, srcdev->fs_devices will point
2214 * to fs_devices of fs_info. However when the dev being replaced is
2215 * a seed dev it will point to the seed's local fs_devices. In short
2216 * srcdev will have its correct fs_devices in both the cases.
2218 fs_devices
= srcdev
->fs_devices
;
2220 list_del_rcu(&srcdev
->dev_list
);
2221 list_del(&srcdev
->dev_alloc_list
);
2222 fs_devices
->num_devices
--;
2223 if (test_bit(BTRFS_DEV_STATE_MISSING
, &srcdev
->dev_state
))
2224 fs_devices
->missing_devices
--;
2226 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
))
2227 fs_devices
->rw_devices
--;
2230 fs_devices
->open_devices
--;
2233 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device
*srcdev
)
2235 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2237 mutex_lock(&uuid_mutex
);
2239 btrfs_close_bdev(srcdev
);
2241 btrfs_free_device(srcdev
);
2243 /* if this is no devs we rather delete the fs_devices */
2244 if (!fs_devices
->num_devices
) {
2246 * On a mounted FS, num_devices can't be zero unless it's a
2247 * seed. In case of a seed device being replaced, the replace
2248 * target added to the sprout FS, so there will be no more
2249 * device left under the seed FS.
2251 ASSERT(fs_devices
->seeding
);
2253 list_del_init(&fs_devices
->seed_list
);
2254 close_fs_devices(fs_devices
);
2255 free_fs_devices(fs_devices
);
2257 mutex_unlock(&uuid_mutex
);
2260 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device
*tgtdev
)
2262 struct btrfs_fs_devices
*fs_devices
= tgtdev
->fs_info
->fs_devices
;
2264 mutex_lock(&fs_devices
->device_list_mutex
);
2266 btrfs_sysfs_remove_device(tgtdev
);
2269 fs_devices
->open_devices
--;
2271 fs_devices
->num_devices
--;
2273 btrfs_assign_next_active_device(tgtdev
, NULL
);
2275 list_del_rcu(&tgtdev
->dev_list
);
2277 mutex_unlock(&fs_devices
->device_list_mutex
);
2280 * The update_dev_time() with in btrfs_scratch_superblocks()
2281 * may lead to a call to btrfs_show_devname() which will try
2282 * to hold device_list_mutex. And here this device
2283 * is already out of device list, so we don't have to hold
2284 * the device_list_mutex lock.
2286 btrfs_scratch_superblocks(tgtdev
->fs_info
, tgtdev
->bdev
,
2289 btrfs_close_bdev(tgtdev
);
2291 btrfs_free_device(tgtdev
);
2294 static struct btrfs_device
*btrfs_find_device_by_path(
2295 struct btrfs_fs_info
*fs_info
, const char *device_path
)
2298 struct btrfs_super_block
*disk_super
;
2301 struct block_device
*bdev
;
2302 struct btrfs_device
*device
;
2304 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2305 fs_info
->bdev_holder
, 0, &bdev
, &disk_super
);
2307 return ERR_PTR(ret
);
2309 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2310 dev_uuid
= disk_super
->dev_item
.uuid
;
2311 if (btrfs_fs_incompat(fs_info
, METADATA_UUID
))
2312 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2313 disk_super
->metadata_uuid
);
2315 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2318 btrfs_release_disk_super(disk_super
);
2320 device
= ERR_PTR(-ENOENT
);
2321 blkdev_put(bdev
, FMODE_READ
);
2326 * Lookup a device given by device id, or the path if the id is 0.
2328 struct btrfs_device
*btrfs_find_device_by_devspec(
2329 struct btrfs_fs_info
*fs_info
, u64 devid
,
2330 const char *device_path
)
2332 struct btrfs_device
*device
;
2335 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
,
2338 return ERR_PTR(-ENOENT
);
2342 if (!device_path
|| !device_path
[0])
2343 return ERR_PTR(-EINVAL
);
2345 if (strcmp(device_path
, "missing") == 0) {
2346 /* Find first missing device */
2347 list_for_each_entry(device
, &fs_info
->fs_devices
->devices
,
2349 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2350 &device
->dev_state
) && !device
->bdev
)
2353 return ERR_PTR(-ENOENT
);
2356 return btrfs_find_device_by_path(fs_info
, device_path
);
2360 * does all the dirty work required for changing file system's UUID.
2362 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2364 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2365 struct btrfs_fs_devices
*old_devices
;
2366 struct btrfs_fs_devices
*seed_devices
;
2367 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2368 struct btrfs_device
*device
;
2371 lockdep_assert_held(&uuid_mutex
);
2372 if (!fs_devices
->seeding
)
2376 * Private copy of the seed devices, anchored at
2377 * fs_info->fs_devices->seed_list
2379 seed_devices
= alloc_fs_devices(NULL
, NULL
);
2380 if (IS_ERR(seed_devices
))
2381 return PTR_ERR(seed_devices
);
2384 * It's necessary to retain a copy of the original seed fs_devices in
2385 * fs_uuids so that filesystems which have been seeded can successfully
2386 * reference the seed device from open_seed_devices. This also supports
2389 old_devices
= clone_fs_devices(fs_devices
);
2390 if (IS_ERR(old_devices
)) {
2391 kfree(seed_devices
);
2392 return PTR_ERR(old_devices
);
2395 list_add(&old_devices
->fs_list
, &fs_uuids
);
2397 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2398 seed_devices
->opened
= 1;
2399 INIT_LIST_HEAD(&seed_devices
->devices
);
2400 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2401 mutex_init(&seed_devices
->device_list_mutex
);
2403 mutex_lock(&fs_devices
->device_list_mutex
);
2404 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2406 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2407 device
->fs_devices
= seed_devices
;
2409 fs_devices
->seeding
= false;
2410 fs_devices
->num_devices
= 0;
2411 fs_devices
->open_devices
= 0;
2412 fs_devices
->missing_devices
= 0;
2413 fs_devices
->rotating
= false;
2414 list_add(&seed_devices
->seed_list
, &fs_devices
->seed_list
);
2416 generate_random_uuid(fs_devices
->fsid
);
2417 memcpy(fs_devices
->metadata_uuid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2418 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2419 mutex_unlock(&fs_devices
->device_list_mutex
);
2421 super_flags
= btrfs_super_flags(disk_super
) &
2422 ~BTRFS_SUPER_FLAG_SEEDING
;
2423 btrfs_set_super_flags(disk_super
, super_flags
);
2429 * Store the expected generation for seed devices in device items.
2431 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
)
2433 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2434 struct btrfs_root
*root
= fs_info
->chunk_root
;
2435 struct btrfs_path
*path
;
2436 struct extent_buffer
*leaf
;
2437 struct btrfs_dev_item
*dev_item
;
2438 struct btrfs_device
*device
;
2439 struct btrfs_key key
;
2440 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2441 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2445 path
= btrfs_alloc_path();
2449 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2451 key
.type
= BTRFS_DEV_ITEM_KEY
;
2454 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2458 leaf
= path
->nodes
[0];
2460 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2461 ret
= btrfs_next_leaf(root
, path
);
2466 leaf
= path
->nodes
[0];
2467 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2468 btrfs_release_path(path
);
2472 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2473 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2474 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2477 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2478 struct btrfs_dev_item
);
2479 devid
= btrfs_device_id(leaf
, dev_item
);
2480 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2482 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2484 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2486 BUG_ON(!device
); /* Logic error */
2488 if (device
->fs_devices
->seeding
) {
2489 btrfs_set_device_generation(leaf
, dev_item
,
2490 device
->generation
);
2491 btrfs_mark_buffer_dirty(leaf
);
2499 btrfs_free_path(path
);
2503 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2505 struct btrfs_root
*root
= fs_info
->dev_root
;
2506 struct request_queue
*q
;
2507 struct btrfs_trans_handle
*trans
;
2508 struct btrfs_device
*device
;
2509 struct block_device
*bdev
;
2510 struct super_block
*sb
= fs_info
->sb
;
2511 struct rcu_string
*name
;
2512 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2513 u64 orig_super_total_bytes
;
2514 u64 orig_super_num_devices
;
2515 int seeding_dev
= 0;
2517 bool locked
= false;
2519 if (sb_rdonly(sb
) && !fs_devices
->seeding
)
2522 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2523 fs_info
->bdev_holder
);
2525 return PTR_ERR(bdev
);
2527 if (!btrfs_check_device_zone_type(fs_info
, bdev
)) {
2532 if (fs_devices
->seeding
) {
2534 down_write(&sb
->s_umount
);
2535 mutex_lock(&uuid_mutex
);
2539 sync_blockdev(bdev
);
2542 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
2543 if (device
->bdev
== bdev
) {
2551 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2552 if (IS_ERR(device
)) {
2553 /* we can safely leave the fs_devices entry around */
2554 ret
= PTR_ERR(device
);
2558 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2561 goto error_free_device
;
2563 rcu_assign_pointer(device
->name
, name
);
2565 device
->fs_info
= fs_info
;
2566 device
->bdev
= bdev
;
2568 ret
= btrfs_get_dev_zone_info(device
);
2570 goto error_free_device
;
2572 trans
= btrfs_start_transaction(root
, 0);
2573 if (IS_ERR(trans
)) {
2574 ret
= PTR_ERR(trans
);
2575 goto error_free_zone
;
2578 q
= bdev_get_queue(bdev
);
2579 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2580 device
->generation
= trans
->transid
;
2581 device
->io_width
= fs_info
->sectorsize
;
2582 device
->io_align
= fs_info
->sectorsize
;
2583 device
->sector_size
= fs_info
->sectorsize
;
2584 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2585 fs_info
->sectorsize
);
2586 device
->disk_total_bytes
= device
->total_bytes
;
2587 device
->commit_total_bytes
= device
->total_bytes
;
2588 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2589 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2590 device
->mode
= FMODE_EXCL
;
2591 device
->dev_stats_valid
= 1;
2592 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2595 btrfs_clear_sb_rdonly(sb
);
2596 ret
= btrfs_prepare_sprout(fs_info
);
2598 btrfs_abort_transaction(trans
, ret
);
2603 device
->fs_devices
= fs_devices
;
2605 mutex_lock(&fs_devices
->device_list_mutex
);
2606 mutex_lock(&fs_info
->chunk_mutex
);
2607 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
2608 list_add(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
2609 fs_devices
->num_devices
++;
2610 fs_devices
->open_devices
++;
2611 fs_devices
->rw_devices
++;
2612 fs_devices
->total_devices
++;
2613 fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2615 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2617 if (!blk_queue_nonrot(q
))
2618 fs_devices
->rotating
= true;
2620 orig_super_total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
2621 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2622 round_down(orig_super_total_bytes
+ device
->total_bytes
,
2623 fs_info
->sectorsize
));
2625 orig_super_num_devices
= btrfs_super_num_devices(fs_info
->super_copy
);
2626 btrfs_set_super_num_devices(fs_info
->super_copy
,
2627 orig_super_num_devices
+ 1);
2630 * we've got more storage, clear any full flags on the space
2633 btrfs_clear_space_info_full(fs_info
);
2635 mutex_unlock(&fs_info
->chunk_mutex
);
2637 /* Add sysfs device entry */
2638 btrfs_sysfs_add_device(device
);
2640 mutex_unlock(&fs_devices
->device_list_mutex
);
2643 mutex_lock(&fs_info
->chunk_mutex
);
2644 ret
= init_first_rw_device(trans
);
2645 mutex_unlock(&fs_info
->chunk_mutex
);
2647 btrfs_abort_transaction(trans
, ret
);
2652 ret
= btrfs_add_dev_item(trans
, device
);
2654 btrfs_abort_transaction(trans
, ret
);
2659 ret
= btrfs_finish_sprout(trans
);
2661 btrfs_abort_transaction(trans
, ret
);
2666 * fs_devices now represents the newly sprouted filesystem and
2667 * its fsid has been changed by btrfs_prepare_sprout
2669 btrfs_sysfs_update_sprout_fsid(fs_devices
);
2672 ret
= btrfs_commit_transaction(trans
);
2675 mutex_unlock(&uuid_mutex
);
2676 up_write(&sb
->s_umount
);
2679 if (ret
) /* transaction commit */
2682 ret
= btrfs_relocate_sys_chunks(fs_info
);
2684 btrfs_handle_fs_error(fs_info
, ret
,
2685 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2686 trans
= btrfs_attach_transaction(root
);
2687 if (IS_ERR(trans
)) {
2688 if (PTR_ERR(trans
) == -ENOENT
)
2690 ret
= PTR_ERR(trans
);
2694 ret
= btrfs_commit_transaction(trans
);
2698 * Now that we have written a new super block to this device, check all
2699 * other fs_devices list if device_path alienates any other scanned
2701 * We can ignore the return value as it typically returns -EINVAL and
2702 * only succeeds if the device was an alien.
2704 btrfs_forget_devices(device_path
);
2706 /* Update ctime/mtime for blkid or udev */
2707 update_dev_time(device_path
);
2712 btrfs_sysfs_remove_device(device
);
2713 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2714 mutex_lock(&fs_info
->chunk_mutex
);
2715 list_del_rcu(&device
->dev_list
);
2716 list_del(&device
->dev_alloc_list
);
2717 fs_info
->fs_devices
->num_devices
--;
2718 fs_info
->fs_devices
->open_devices
--;
2719 fs_info
->fs_devices
->rw_devices
--;
2720 fs_info
->fs_devices
->total_devices
--;
2721 fs_info
->fs_devices
->total_rw_bytes
-= device
->total_bytes
;
2722 atomic64_sub(device
->total_bytes
, &fs_info
->free_chunk_space
);
2723 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2724 orig_super_total_bytes
);
2725 btrfs_set_super_num_devices(fs_info
->super_copy
,
2726 orig_super_num_devices
);
2727 mutex_unlock(&fs_info
->chunk_mutex
);
2728 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2731 btrfs_set_sb_rdonly(sb
);
2733 btrfs_end_transaction(trans
);
2735 btrfs_destroy_dev_zone_info(device
);
2737 btrfs_free_device(device
);
2739 blkdev_put(bdev
, FMODE_EXCL
);
2741 mutex_unlock(&uuid_mutex
);
2742 up_write(&sb
->s_umount
);
2747 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2748 struct btrfs_device
*device
)
2751 struct btrfs_path
*path
;
2752 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2753 struct btrfs_dev_item
*dev_item
;
2754 struct extent_buffer
*leaf
;
2755 struct btrfs_key key
;
2757 path
= btrfs_alloc_path();
2761 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2762 key
.type
= BTRFS_DEV_ITEM_KEY
;
2763 key
.offset
= device
->devid
;
2765 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2774 leaf
= path
->nodes
[0];
2775 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2777 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2778 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2779 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2780 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2781 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2782 btrfs_set_device_total_bytes(leaf
, dev_item
,
2783 btrfs_device_get_disk_total_bytes(device
));
2784 btrfs_set_device_bytes_used(leaf
, dev_item
,
2785 btrfs_device_get_bytes_used(device
));
2786 btrfs_mark_buffer_dirty(leaf
);
2789 btrfs_free_path(path
);
2793 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2794 struct btrfs_device
*device
, u64 new_size
)
2796 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2797 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2801 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2804 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2806 mutex_lock(&fs_info
->chunk_mutex
);
2807 old_total
= btrfs_super_total_bytes(super_copy
);
2808 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2810 if (new_size
<= device
->total_bytes
||
2811 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2812 mutex_unlock(&fs_info
->chunk_mutex
);
2816 btrfs_set_super_total_bytes(super_copy
,
2817 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2818 device
->fs_devices
->total_rw_bytes
+= diff
;
2820 btrfs_device_set_total_bytes(device
, new_size
);
2821 btrfs_device_set_disk_total_bytes(device
, new_size
);
2822 btrfs_clear_space_info_full(device
->fs_info
);
2823 if (list_empty(&device
->post_commit_list
))
2824 list_add_tail(&device
->post_commit_list
,
2825 &trans
->transaction
->dev_update_list
);
2826 mutex_unlock(&fs_info
->chunk_mutex
);
2828 return btrfs_update_device(trans
, device
);
2831 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
, u64 chunk_offset
)
2833 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2834 struct btrfs_root
*root
= fs_info
->chunk_root
;
2836 struct btrfs_path
*path
;
2837 struct btrfs_key key
;
2839 path
= btrfs_alloc_path();
2843 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2844 key
.offset
= chunk_offset
;
2845 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2847 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2850 else if (ret
> 0) { /* Logic error or corruption */
2851 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2852 "Failed lookup while freeing chunk.");
2857 ret
= btrfs_del_item(trans
, root
, path
);
2859 btrfs_handle_fs_error(fs_info
, ret
,
2860 "Failed to delete chunk item.");
2862 btrfs_free_path(path
);
2866 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2868 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2869 struct btrfs_disk_key
*disk_key
;
2870 struct btrfs_chunk
*chunk
;
2877 struct btrfs_key key
;
2879 mutex_lock(&fs_info
->chunk_mutex
);
2880 array_size
= btrfs_super_sys_array_size(super_copy
);
2882 ptr
= super_copy
->sys_chunk_array
;
2885 while (cur
< array_size
) {
2886 disk_key
= (struct btrfs_disk_key
*)ptr
;
2887 btrfs_disk_key_to_cpu(&key
, disk_key
);
2889 len
= sizeof(*disk_key
);
2891 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2892 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2893 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2894 len
+= btrfs_chunk_item_size(num_stripes
);
2899 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2900 key
.offset
== chunk_offset
) {
2901 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2903 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2909 mutex_unlock(&fs_info
->chunk_mutex
);
2914 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2915 * @logical: Logical block offset in bytes.
2916 * @length: Length of extent in bytes.
2918 * Return: Chunk mapping or ERR_PTR.
2920 struct extent_map
*btrfs_get_chunk_map(struct btrfs_fs_info
*fs_info
,
2921 u64 logical
, u64 length
)
2923 struct extent_map_tree
*em_tree
;
2924 struct extent_map
*em
;
2926 em_tree
= &fs_info
->mapping_tree
;
2927 read_lock(&em_tree
->lock
);
2928 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2929 read_unlock(&em_tree
->lock
);
2932 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2934 return ERR_PTR(-EINVAL
);
2937 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2939 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2940 logical
, length
, em
->start
, em
->start
+ em
->len
);
2941 free_extent_map(em
);
2942 return ERR_PTR(-EINVAL
);
2945 /* callers are responsible for dropping em's ref. */
2949 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
, u64 chunk_offset
)
2951 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2952 struct extent_map
*em
;
2953 struct map_lookup
*map
;
2954 u64 dev_extent_len
= 0;
2956 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2958 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, 1);
2961 * This is a logic error, but we don't want to just rely on the
2962 * user having built with ASSERT enabled, so if ASSERT doesn't
2963 * do anything we still error out.
2968 map
= em
->map_lookup
;
2969 mutex_lock(&fs_info
->chunk_mutex
);
2970 check_system_chunk(trans
, map
->type
);
2971 mutex_unlock(&fs_info
->chunk_mutex
);
2974 * Take the device list mutex to prevent races with the final phase of
2975 * a device replace operation that replaces the device object associated
2976 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2978 mutex_lock(&fs_devices
->device_list_mutex
);
2979 for (i
= 0; i
< map
->num_stripes
; i
++) {
2980 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2981 ret
= btrfs_free_dev_extent(trans
, device
,
2982 map
->stripes
[i
].physical
,
2985 mutex_unlock(&fs_devices
->device_list_mutex
);
2986 btrfs_abort_transaction(trans
, ret
);
2990 if (device
->bytes_used
> 0) {
2991 mutex_lock(&fs_info
->chunk_mutex
);
2992 btrfs_device_set_bytes_used(device
,
2993 device
->bytes_used
- dev_extent_len
);
2994 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
2995 btrfs_clear_space_info_full(fs_info
);
2996 mutex_unlock(&fs_info
->chunk_mutex
);
2999 ret
= btrfs_update_device(trans
, device
);
3001 mutex_unlock(&fs_devices
->device_list_mutex
);
3002 btrfs_abort_transaction(trans
, ret
);
3006 mutex_unlock(&fs_devices
->device_list_mutex
);
3008 ret
= btrfs_free_chunk(trans
, chunk_offset
);
3010 btrfs_abort_transaction(trans
, ret
);
3014 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
3016 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3017 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
3019 btrfs_abort_transaction(trans
, ret
);
3024 ret
= btrfs_remove_block_group(trans
, chunk_offset
, em
);
3026 btrfs_abort_transaction(trans
, ret
);
3032 free_extent_map(em
);
3036 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
3038 struct btrfs_root
*root
= fs_info
->chunk_root
;
3039 struct btrfs_trans_handle
*trans
;
3040 struct btrfs_block_group
*block_group
;
3044 * Prevent races with automatic removal of unused block groups.
3045 * After we relocate and before we remove the chunk with offset
3046 * chunk_offset, automatic removal of the block group can kick in,
3047 * resulting in a failure when calling btrfs_remove_chunk() below.
3049 * Make sure to acquire this mutex before doing a tree search (dev
3050 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3051 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3052 * we release the path used to search the chunk/dev tree and before
3053 * the current task acquires this mutex and calls us.
3055 lockdep_assert_held(&fs_info
->delete_unused_bgs_mutex
);
3057 /* step one, relocate all the extents inside this chunk */
3058 btrfs_scrub_pause(fs_info
);
3059 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
3060 btrfs_scrub_continue(fs_info
);
3064 block_group
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3067 btrfs_discard_cancel_work(&fs_info
->discard_ctl
, block_group
);
3068 btrfs_put_block_group(block_group
);
3070 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
3072 if (IS_ERR(trans
)) {
3073 ret
= PTR_ERR(trans
);
3074 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
3079 * step two, delete the device extents and the
3080 * chunk tree entries
3082 ret
= btrfs_remove_chunk(trans
, chunk_offset
);
3083 btrfs_end_transaction(trans
);
3087 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
3089 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3090 struct btrfs_path
*path
;
3091 struct extent_buffer
*leaf
;
3092 struct btrfs_chunk
*chunk
;
3093 struct btrfs_key key
;
3094 struct btrfs_key found_key
;
3096 bool retried
= false;
3100 path
= btrfs_alloc_path();
3105 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3106 key
.offset
= (u64
)-1;
3107 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3110 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3111 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3113 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3116 BUG_ON(ret
== 0); /* Corruption */
3118 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
3121 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3127 leaf
= path
->nodes
[0];
3128 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3130 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3131 struct btrfs_chunk
);
3132 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3133 btrfs_release_path(path
);
3135 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3136 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3142 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3144 if (found_key
.offset
== 0)
3146 key
.offset
= found_key
.offset
- 1;
3149 if (failed
&& !retried
) {
3153 } else if (WARN_ON(failed
&& retried
)) {
3157 btrfs_free_path(path
);
3162 * return 1 : allocate a data chunk successfully,
3163 * return <0: errors during allocating a data chunk,
3164 * return 0 : no need to allocate a data chunk.
3166 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info
*fs_info
,
3169 struct btrfs_block_group
*cache
;
3173 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3175 chunk_type
= cache
->flags
;
3176 btrfs_put_block_group(cache
);
3178 if (!(chunk_type
& BTRFS_BLOCK_GROUP_DATA
))
3181 spin_lock(&fs_info
->data_sinfo
->lock
);
3182 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3183 spin_unlock(&fs_info
->data_sinfo
->lock
);
3186 struct btrfs_trans_handle
*trans
;
3189 trans
= btrfs_join_transaction(fs_info
->tree_root
);
3191 return PTR_ERR(trans
);
3193 ret
= btrfs_force_chunk_alloc(trans
, BTRFS_BLOCK_GROUP_DATA
);
3194 btrfs_end_transaction(trans
);
3203 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3204 struct btrfs_balance_control
*bctl
)
3206 struct btrfs_root
*root
= fs_info
->tree_root
;
3207 struct btrfs_trans_handle
*trans
;
3208 struct btrfs_balance_item
*item
;
3209 struct btrfs_disk_balance_args disk_bargs
;
3210 struct btrfs_path
*path
;
3211 struct extent_buffer
*leaf
;
3212 struct btrfs_key key
;
3215 path
= btrfs_alloc_path();
3219 trans
= btrfs_start_transaction(root
, 0);
3220 if (IS_ERR(trans
)) {
3221 btrfs_free_path(path
);
3222 return PTR_ERR(trans
);
3225 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3226 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3229 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3234 leaf
= path
->nodes
[0];
3235 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3237 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3239 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3240 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3241 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3242 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3243 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3244 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3246 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3248 btrfs_mark_buffer_dirty(leaf
);
3250 btrfs_free_path(path
);
3251 err
= btrfs_commit_transaction(trans
);
3257 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3259 struct btrfs_root
*root
= fs_info
->tree_root
;
3260 struct btrfs_trans_handle
*trans
;
3261 struct btrfs_path
*path
;
3262 struct btrfs_key key
;
3265 path
= btrfs_alloc_path();
3269 trans
= btrfs_start_transaction_fallback_global_rsv(root
, 0);
3270 if (IS_ERR(trans
)) {
3271 btrfs_free_path(path
);
3272 return PTR_ERR(trans
);
3275 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3276 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3279 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3287 ret
= btrfs_del_item(trans
, root
, path
);
3289 btrfs_free_path(path
);
3290 err
= btrfs_commit_transaction(trans
);
3297 * This is a heuristic used to reduce the number of chunks balanced on
3298 * resume after balance was interrupted.
3300 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3303 * Turn on soft mode for chunk types that were being converted.
3305 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3306 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3307 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3308 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3309 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3310 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3313 * Turn on usage filter if is not already used. The idea is
3314 * that chunks that we have already balanced should be
3315 * reasonably full. Don't do it for chunks that are being
3316 * converted - that will keep us from relocating unconverted
3317 * (albeit full) chunks.
3319 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3320 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3321 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3322 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3323 bctl
->data
.usage
= 90;
3325 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3326 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3327 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3328 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3329 bctl
->sys
.usage
= 90;
3331 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3332 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3333 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3334 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3335 bctl
->meta
.usage
= 90;
3340 * Clear the balance status in fs_info and delete the balance item from disk.
3342 static void reset_balance_state(struct btrfs_fs_info
*fs_info
)
3344 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3347 BUG_ON(!fs_info
->balance_ctl
);
3349 spin_lock(&fs_info
->balance_lock
);
3350 fs_info
->balance_ctl
= NULL
;
3351 spin_unlock(&fs_info
->balance_lock
);
3354 ret
= del_balance_item(fs_info
);
3356 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3360 * Balance filters. Return 1 if chunk should be filtered out
3361 * (should not be balanced).
3363 static int chunk_profiles_filter(u64 chunk_type
,
3364 struct btrfs_balance_args
*bargs
)
3366 chunk_type
= chunk_to_extended(chunk_type
) &
3367 BTRFS_EXTENDED_PROFILE_MASK
;
3369 if (bargs
->profiles
& chunk_type
)
3375 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3376 struct btrfs_balance_args
*bargs
)
3378 struct btrfs_block_group
*cache
;
3380 u64 user_thresh_min
;
3381 u64 user_thresh_max
;
3384 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3385 chunk_used
= cache
->used
;
3387 if (bargs
->usage_min
== 0)
3388 user_thresh_min
= 0;
3390 user_thresh_min
= div_factor_fine(cache
->length
,
3393 if (bargs
->usage_max
== 0)
3394 user_thresh_max
= 1;
3395 else if (bargs
->usage_max
> 100)
3396 user_thresh_max
= cache
->length
;
3398 user_thresh_max
= div_factor_fine(cache
->length
,
3401 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3404 btrfs_put_block_group(cache
);
3408 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3409 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3411 struct btrfs_block_group
*cache
;
3412 u64 chunk_used
, user_thresh
;
3415 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3416 chunk_used
= cache
->used
;
3418 if (bargs
->usage_min
== 0)
3420 else if (bargs
->usage
> 100)
3421 user_thresh
= cache
->length
;
3423 user_thresh
= div_factor_fine(cache
->length
, bargs
->usage
);
3425 if (chunk_used
< user_thresh
)
3428 btrfs_put_block_group(cache
);
3432 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3433 struct btrfs_chunk
*chunk
,
3434 struct btrfs_balance_args
*bargs
)
3436 struct btrfs_stripe
*stripe
;
3437 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3440 for (i
= 0; i
< num_stripes
; i
++) {
3441 stripe
= btrfs_stripe_nr(chunk
, i
);
3442 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3449 static u64
calc_data_stripes(u64 type
, int num_stripes
)
3451 const int index
= btrfs_bg_flags_to_raid_index(type
);
3452 const int ncopies
= btrfs_raid_array
[index
].ncopies
;
3453 const int nparity
= btrfs_raid_array
[index
].nparity
;
3456 return num_stripes
- nparity
;
3458 return num_stripes
/ ncopies
;
3461 /* [pstart, pend) */
3462 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3463 struct btrfs_chunk
*chunk
,
3464 struct btrfs_balance_args
*bargs
)
3466 struct btrfs_stripe
*stripe
;
3467 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3474 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3477 type
= btrfs_chunk_type(leaf
, chunk
);
3478 factor
= calc_data_stripes(type
, num_stripes
);
3480 for (i
= 0; i
< num_stripes
; i
++) {
3481 stripe
= btrfs_stripe_nr(chunk
, i
);
3482 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3485 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3486 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3487 stripe_length
= div_u64(stripe_length
, factor
);
3489 if (stripe_offset
< bargs
->pend
&&
3490 stripe_offset
+ stripe_length
> bargs
->pstart
)
3497 /* [vstart, vend) */
3498 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3499 struct btrfs_chunk
*chunk
,
3501 struct btrfs_balance_args
*bargs
)
3503 if (chunk_offset
< bargs
->vend
&&
3504 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3505 /* at least part of the chunk is inside this vrange */
3511 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3512 struct btrfs_chunk
*chunk
,
3513 struct btrfs_balance_args
*bargs
)
3515 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3517 if (bargs
->stripes_min
<= num_stripes
3518 && num_stripes
<= bargs
->stripes_max
)
3524 static int chunk_soft_convert_filter(u64 chunk_type
,
3525 struct btrfs_balance_args
*bargs
)
3527 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3530 chunk_type
= chunk_to_extended(chunk_type
) &
3531 BTRFS_EXTENDED_PROFILE_MASK
;
3533 if (bargs
->target
== chunk_type
)
3539 static int should_balance_chunk(struct extent_buffer
*leaf
,
3540 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3542 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
3543 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3544 struct btrfs_balance_args
*bargs
= NULL
;
3545 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3548 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3549 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3553 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3554 bargs
= &bctl
->data
;
3555 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3557 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3558 bargs
= &bctl
->meta
;
3560 /* profiles filter */
3561 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3562 chunk_profiles_filter(chunk_type
, bargs
)) {
3567 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3568 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3570 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3571 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3576 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3577 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3581 /* drange filter, makes sense only with devid filter */
3582 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3583 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3588 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3589 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3593 /* stripes filter */
3594 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3595 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3599 /* soft profile changing mode */
3600 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3601 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3606 * limited by count, must be the last filter
3608 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3609 if (bargs
->limit
== 0)
3613 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3615 * Same logic as the 'limit' filter; the minimum cannot be
3616 * determined here because we do not have the global information
3617 * about the count of all chunks that satisfy the filters.
3619 if (bargs
->limit_max
== 0)
3628 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3630 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3631 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3633 struct btrfs_chunk
*chunk
;
3634 struct btrfs_path
*path
= NULL
;
3635 struct btrfs_key key
;
3636 struct btrfs_key found_key
;
3637 struct extent_buffer
*leaf
;
3640 int enospc_errors
= 0;
3641 bool counting
= true;
3642 /* The single value limit and min/max limits use the same bytes in the */
3643 u64 limit_data
= bctl
->data
.limit
;
3644 u64 limit_meta
= bctl
->meta
.limit
;
3645 u64 limit_sys
= bctl
->sys
.limit
;
3649 int chunk_reserved
= 0;
3651 path
= btrfs_alloc_path();
3657 /* zero out stat counters */
3658 spin_lock(&fs_info
->balance_lock
);
3659 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3660 spin_unlock(&fs_info
->balance_lock
);
3664 * The single value limit and min/max limits use the same bytes
3667 bctl
->data
.limit
= limit_data
;
3668 bctl
->meta
.limit
= limit_meta
;
3669 bctl
->sys
.limit
= limit_sys
;
3671 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3672 key
.offset
= (u64
)-1;
3673 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3676 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3677 atomic_read(&fs_info
->balance_cancel_req
)) {
3682 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3683 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3685 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3690 * this shouldn't happen, it means the last relocate
3694 BUG(); /* FIXME break ? */
3696 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3697 BTRFS_CHUNK_ITEM_KEY
);
3699 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3704 leaf
= path
->nodes
[0];
3705 slot
= path
->slots
[0];
3706 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3708 if (found_key
.objectid
!= key
.objectid
) {
3709 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3713 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3714 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3717 spin_lock(&fs_info
->balance_lock
);
3718 bctl
->stat
.considered
++;
3719 spin_unlock(&fs_info
->balance_lock
);
3722 ret
= should_balance_chunk(leaf
, chunk
, found_key
.offset
);
3724 btrfs_release_path(path
);
3726 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3731 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3732 spin_lock(&fs_info
->balance_lock
);
3733 bctl
->stat
.expected
++;
3734 spin_unlock(&fs_info
->balance_lock
);
3736 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3738 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3740 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3747 * Apply limit_min filter, no need to check if the LIMITS
3748 * filter is used, limit_min is 0 by default
3750 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3751 count_data
< bctl
->data
.limit_min
)
3752 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3753 count_meta
< bctl
->meta
.limit_min
)
3754 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3755 count_sys
< bctl
->sys
.limit_min
)) {
3756 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3760 if (!chunk_reserved
) {
3762 * We may be relocating the only data chunk we have,
3763 * which could potentially end up with losing data's
3764 * raid profile, so lets allocate an empty one in
3767 ret
= btrfs_may_alloc_data_chunk(fs_info
,
3770 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3772 } else if (ret
== 1) {
3777 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3778 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3779 if (ret
== -ENOSPC
) {
3781 } else if (ret
== -ETXTBSY
) {
3783 "skipping relocation of block group %llu due to active swapfile",
3789 spin_lock(&fs_info
->balance_lock
);
3790 bctl
->stat
.completed
++;
3791 spin_unlock(&fs_info
->balance_lock
);
3794 if (found_key
.offset
== 0)
3796 key
.offset
= found_key
.offset
- 1;
3800 btrfs_release_path(path
);
3805 btrfs_free_path(path
);
3806 if (enospc_errors
) {
3807 btrfs_info(fs_info
, "%d enospc errors during balance",
3817 * alloc_profile_is_valid - see if a given profile is valid and reduced
3818 * @flags: profile to validate
3819 * @extended: if true @flags is treated as an extended profile
3821 static int alloc_profile_is_valid(u64 flags
, int extended
)
3823 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3824 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3826 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3828 /* 1) check that all other bits are zeroed */
3832 /* 2) see if profile is reduced */
3834 return !extended
; /* "0" is valid for usual profiles */
3836 return has_single_bit_set(flags
);
3839 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3841 /* cancel requested || normal exit path */
3842 return atomic_read(&fs_info
->balance_cancel_req
) ||
3843 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3844 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3848 * Validate target profile against allowed profiles and return true if it's OK.
3849 * Otherwise print the error message and return false.
3851 static inline int validate_convert_profile(struct btrfs_fs_info
*fs_info
,
3852 const struct btrfs_balance_args
*bargs
,
3853 u64 allowed
, const char *type
)
3855 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3858 /* Profile is valid and does not have bits outside of the allowed set */
3859 if (alloc_profile_is_valid(bargs
->target
, 1) &&
3860 (bargs
->target
& ~allowed
) == 0)
3863 btrfs_err(fs_info
, "balance: invalid convert %s profile %s",
3864 type
, btrfs_bg_type_to_raid_name(bargs
->target
));
3869 * Fill @buf with textual description of balance filter flags @bargs, up to
3870 * @size_buf including the terminating null. The output may be trimmed if it
3871 * does not fit into the provided buffer.
3873 static void describe_balance_args(struct btrfs_balance_args
*bargs
, char *buf
,
3877 u32 size_bp
= size_buf
;
3879 u64 flags
= bargs
->flags
;
3880 char tmp_buf
[128] = {'\0'};
3885 #define CHECK_APPEND_NOARG(a) \
3887 ret = snprintf(bp, size_bp, (a)); \
3888 if (ret < 0 || ret >= size_bp) \
3889 goto out_overflow; \
3894 #define CHECK_APPEND_1ARG(a, v1) \
3896 ret = snprintf(bp, size_bp, (a), (v1)); \
3897 if (ret < 0 || ret >= size_bp) \
3898 goto out_overflow; \
3903 #define CHECK_APPEND_2ARG(a, v1, v2) \
3905 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3906 if (ret < 0 || ret >= size_bp) \
3907 goto out_overflow; \
3912 if (flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3913 CHECK_APPEND_1ARG("convert=%s,",
3914 btrfs_bg_type_to_raid_name(bargs
->target
));
3916 if (flags
& BTRFS_BALANCE_ARGS_SOFT
)
3917 CHECK_APPEND_NOARG("soft,");
3919 if (flags
& BTRFS_BALANCE_ARGS_PROFILES
) {
3920 btrfs_describe_block_groups(bargs
->profiles
, tmp_buf
,
3922 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf
);
3925 if (flags
& BTRFS_BALANCE_ARGS_USAGE
)
3926 CHECK_APPEND_1ARG("usage=%llu,", bargs
->usage
);
3928 if (flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
)
3929 CHECK_APPEND_2ARG("usage=%u..%u,",
3930 bargs
->usage_min
, bargs
->usage_max
);
3932 if (flags
& BTRFS_BALANCE_ARGS_DEVID
)
3933 CHECK_APPEND_1ARG("devid=%llu,", bargs
->devid
);
3935 if (flags
& BTRFS_BALANCE_ARGS_DRANGE
)
3936 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3937 bargs
->pstart
, bargs
->pend
);
3939 if (flags
& BTRFS_BALANCE_ARGS_VRANGE
)
3940 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3941 bargs
->vstart
, bargs
->vend
);
3943 if (flags
& BTRFS_BALANCE_ARGS_LIMIT
)
3944 CHECK_APPEND_1ARG("limit=%llu,", bargs
->limit
);
3946 if (flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)
3947 CHECK_APPEND_2ARG("limit=%u..%u,",
3948 bargs
->limit_min
, bargs
->limit_max
);
3950 if (flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
)
3951 CHECK_APPEND_2ARG("stripes=%u..%u,",
3952 bargs
->stripes_min
, bargs
->stripes_max
);
3954 #undef CHECK_APPEND_2ARG
3955 #undef CHECK_APPEND_1ARG
3956 #undef CHECK_APPEND_NOARG
3960 if (size_bp
< size_buf
)
3961 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last , */
3966 static void describe_balance_start_or_resume(struct btrfs_fs_info
*fs_info
)
3968 u32 size_buf
= 1024;
3969 char tmp_buf
[192] = {'\0'};
3972 u32 size_bp
= size_buf
;
3974 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3976 buf
= kzalloc(size_buf
, GFP_KERNEL
);
3982 #define CHECK_APPEND_1ARG(a, v1) \
3984 ret = snprintf(bp, size_bp, (a), (v1)); \
3985 if (ret < 0 || ret >= size_bp) \
3986 goto out_overflow; \
3991 if (bctl
->flags
& BTRFS_BALANCE_FORCE
)
3992 CHECK_APPEND_1ARG("%s", "-f ");
3994 if (bctl
->flags
& BTRFS_BALANCE_DATA
) {
3995 describe_balance_args(&bctl
->data
, tmp_buf
, sizeof(tmp_buf
));
3996 CHECK_APPEND_1ARG("-d%s ", tmp_buf
);
3999 if (bctl
->flags
& BTRFS_BALANCE_METADATA
) {
4000 describe_balance_args(&bctl
->meta
, tmp_buf
, sizeof(tmp_buf
));
4001 CHECK_APPEND_1ARG("-m%s ", tmp_buf
);
4004 if (bctl
->flags
& BTRFS_BALANCE_SYSTEM
) {
4005 describe_balance_args(&bctl
->sys
, tmp_buf
, sizeof(tmp_buf
));
4006 CHECK_APPEND_1ARG("-s%s ", tmp_buf
);
4009 #undef CHECK_APPEND_1ARG
4013 if (size_bp
< size_buf
)
4014 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last " " */
4015 btrfs_info(fs_info
, "balance: %s %s",
4016 (bctl
->flags
& BTRFS_BALANCE_RESUME
) ?
4017 "resume" : "start", buf
);
4023 * Should be called with balance mutexe held
4025 int btrfs_balance(struct btrfs_fs_info
*fs_info
,
4026 struct btrfs_balance_control
*bctl
,
4027 struct btrfs_ioctl_balance_args
*bargs
)
4029 u64 meta_target
, data_target
;
4035 bool reducing_redundancy
;
4038 if (btrfs_fs_closing(fs_info
) ||
4039 atomic_read(&fs_info
->balance_pause_req
) ||
4040 btrfs_should_cancel_balance(fs_info
)) {
4045 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
4046 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
4050 * In case of mixed groups both data and meta should be picked,
4051 * and identical options should be given for both of them.
4053 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
4054 if (mixed
&& (bctl
->flags
& allowed
)) {
4055 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
4056 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
4057 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
4059 "balance: mixed groups data and metadata options must be the same");
4066 * rw_devices will not change at the moment, device add/delete/replace
4069 num_devices
= fs_info
->fs_devices
->rw_devices
;
4072 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073 * special bit for it, to make it easier to distinguish. Thus we need
4074 * to set it manually, or balance would refuse the profile.
4076 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
4077 for (i
= 0; i
< ARRAY_SIZE(btrfs_raid_array
); i
++)
4078 if (num_devices
>= btrfs_raid_array
[i
].devs_min
)
4079 allowed
|= btrfs_raid_array
[i
].bg_flag
;
4081 if (!validate_convert_profile(fs_info
, &bctl
->data
, allowed
, "data") ||
4082 !validate_convert_profile(fs_info
, &bctl
->meta
, allowed
, "metadata") ||
4083 !validate_convert_profile(fs_info
, &bctl
->sys
, allowed
, "system")) {
4089 * Allow to reduce metadata or system integrity only if force set for
4090 * profiles with redundancy (copies, parity)
4093 for (i
= 0; i
< ARRAY_SIZE(btrfs_raid_array
); i
++) {
4094 if (btrfs_raid_array
[i
].ncopies
>= 2 ||
4095 btrfs_raid_array
[i
].tolerated_failures
>= 1)
4096 allowed
|= btrfs_raid_array
[i
].bg_flag
;
4099 seq
= read_seqbegin(&fs_info
->profiles_lock
);
4101 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
4102 (fs_info
->avail_system_alloc_bits
& allowed
) &&
4103 !(bctl
->sys
.target
& allowed
)) ||
4104 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
4105 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
4106 !(bctl
->meta
.target
& allowed
)))
4107 reducing_redundancy
= true;
4109 reducing_redundancy
= false;
4111 /* if we're not converting, the target field is uninitialized */
4112 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
4113 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
4114 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
4115 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
4116 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
4118 if (reducing_redundancy
) {
4119 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
4121 "balance: force reducing metadata redundancy");
4124 "balance: reduces metadata redundancy, use --force if you want this");
4130 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
4131 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
4133 "balance: metadata profile %s has lower redundancy than data profile %s",
4134 btrfs_bg_type_to_raid_name(meta_target
),
4135 btrfs_bg_type_to_raid_name(data_target
));
4138 if (fs_info
->send_in_progress
) {
4139 btrfs_warn_rl(fs_info
,
4140 "cannot run balance while send operations are in progress (%d in progress)",
4141 fs_info
->send_in_progress
);
4146 ret
= insert_balance_item(fs_info
, bctl
);
4147 if (ret
&& ret
!= -EEXIST
)
4150 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
4151 BUG_ON(ret
== -EEXIST
);
4152 BUG_ON(fs_info
->balance_ctl
);
4153 spin_lock(&fs_info
->balance_lock
);
4154 fs_info
->balance_ctl
= bctl
;
4155 spin_unlock(&fs_info
->balance_lock
);
4157 BUG_ON(ret
!= -EEXIST
);
4158 spin_lock(&fs_info
->balance_lock
);
4159 update_balance_args(bctl
);
4160 spin_unlock(&fs_info
->balance_lock
);
4163 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4164 set_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
4165 describe_balance_start_or_resume(fs_info
);
4166 mutex_unlock(&fs_info
->balance_mutex
);
4168 ret
= __btrfs_balance(fs_info
);
4170 mutex_lock(&fs_info
->balance_mutex
);
4171 if (ret
== -ECANCELED
&& atomic_read(&fs_info
->balance_pause_req
))
4172 btrfs_info(fs_info
, "balance: paused");
4174 * Balance can be canceled by:
4176 * - Regular cancel request
4177 * Then ret == -ECANCELED and balance_cancel_req > 0
4179 * - Fatal signal to "btrfs" process
4180 * Either the signal caught by wait_reserve_ticket() and callers
4181 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4183 * Either way, in this case balance_cancel_req = 0, and
4184 * ret == -EINTR or ret == -ECANCELED.
4186 * So here we only check the return value to catch canceled balance.
4188 else if (ret
== -ECANCELED
|| ret
== -EINTR
)
4189 btrfs_info(fs_info
, "balance: canceled");
4191 btrfs_info(fs_info
, "balance: ended with status: %d", ret
);
4193 clear_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
4196 memset(bargs
, 0, sizeof(*bargs
));
4197 btrfs_update_ioctl_balance_args(fs_info
, bargs
);
4200 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
4201 balance_need_close(fs_info
)) {
4202 reset_balance_state(fs_info
);
4203 btrfs_exclop_finish(fs_info
);
4206 wake_up(&fs_info
->balance_wait_q
);
4210 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
4211 reset_balance_state(fs_info
);
4214 btrfs_exclop_finish(fs_info
);
4219 static int balance_kthread(void *data
)
4221 struct btrfs_fs_info
*fs_info
= data
;
4224 mutex_lock(&fs_info
->balance_mutex
);
4225 if (fs_info
->balance_ctl
)
4226 ret
= btrfs_balance(fs_info
, fs_info
->balance_ctl
, NULL
);
4227 mutex_unlock(&fs_info
->balance_mutex
);
4232 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
4234 struct task_struct
*tsk
;
4236 mutex_lock(&fs_info
->balance_mutex
);
4237 if (!fs_info
->balance_ctl
) {
4238 mutex_unlock(&fs_info
->balance_mutex
);
4241 mutex_unlock(&fs_info
->balance_mutex
);
4243 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
4244 btrfs_info(fs_info
, "balance: resume skipped");
4249 * A ro->rw remount sequence should continue with the paused balance
4250 * regardless of who pauses it, system or the user as of now, so set
4253 spin_lock(&fs_info
->balance_lock
);
4254 fs_info
->balance_ctl
->flags
|= BTRFS_BALANCE_RESUME
;
4255 spin_unlock(&fs_info
->balance_lock
);
4257 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
4258 return PTR_ERR_OR_ZERO(tsk
);
4261 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
4263 struct btrfs_balance_control
*bctl
;
4264 struct btrfs_balance_item
*item
;
4265 struct btrfs_disk_balance_args disk_bargs
;
4266 struct btrfs_path
*path
;
4267 struct extent_buffer
*leaf
;
4268 struct btrfs_key key
;
4271 path
= btrfs_alloc_path();
4275 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4276 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4279 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4282 if (ret
> 0) { /* ret = -ENOENT; */
4287 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4293 leaf
= path
->nodes
[0];
4294 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4296 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4297 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4299 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4300 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4301 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4302 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4303 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4304 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4307 * This should never happen, as the paused balance state is recovered
4308 * during mount without any chance of other exclusive ops to collide.
4310 * This gives the exclusive op status to balance and keeps in paused
4311 * state until user intervention (cancel or umount). If the ownership
4312 * cannot be assigned, show a message but do not fail. The balance
4313 * is in a paused state and must have fs_info::balance_ctl properly
4316 if (!btrfs_exclop_start(fs_info
, BTRFS_EXCLOP_BALANCE
))
4318 "balance: cannot set exclusive op status, resume manually");
4320 mutex_lock(&fs_info
->balance_mutex
);
4321 BUG_ON(fs_info
->balance_ctl
);
4322 spin_lock(&fs_info
->balance_lock
);
4323 fs_info
->balance_ctl
= bctl
;
4324 spin_unlock(&fs_info
->balance_lock
);
4325 mutex_unlock(&fs_info
->balance_mutex
);
4327 btrfs_free_path(path
);
4331 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4335 mutex_lock(&fs_info
->balance_mutex
);
4336 if (!fs_info
->balance_ctl
) {
4337 mutex_unlock(&fs_info
->balance_mutex
);
4341 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4342 atomic_inc(&fs_info
->balance_pause_req
);
4343 mutex_unlock(&fs_info
->balance_mutex
);
4345 wait_event(fs_info
->balance_wait_q
,
4346 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4348 mutex_lock(&fs_info
->balance_mutex
);
4349 /* we are good with balance_ctl ripped off from under us */
4350 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4351 atomic_dec(&fs_info
->balance_pause_req
);
4356 mutex_unlock(&fs_info
->balance_mutex
);
4360 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4362 mutex_lock(&fs_info
->balance_mutex
);
4363 if (!fs_info
->balance_ctl
) {
4364 mutex_unlock(&fs_info
->balance_mutex
);
4369 * A paused balance with the item stored on disk can be resumed at
4370 * mount time if the mount is read-write. Otherwise it's still paused
4371 * and we must not allow cancelling as it deletes the item.
4373 if (sb_rdonly(fs_info
->sb
)) {
4374 mutex_unlock(&fs_info
->balance_mutex
);
4378 atomic_inc(&fs_info
->balance_cancel_req
);
4380 * if we are running just wait and return, balance item is
4381 * deleted in btrfs_balance in this case
4383 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4384 mutex_unlock(&fs_info
->balance_mutex
);
4385 wait_event(fs_info
->balance_wait_q
,
4386 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4387 mutex_lock(&fs_info
->balance_mutex
);
4389 mutex_unlock(&fs_info
->balance_mutex
);
4391 * Lock released to allow other waiters to continue, we'll
4392 * reexamine the status again.
4394 mutex_lock(&fs_info
->balance_mutex
);
4396 if (fs_info
->balance_ctl
) {
4397 reset_balance_state(fs_info
);
4398 btrfs_exclop_finish(fs_info
);
4399 btrfs_info(fs_info
, "balance: canceled");
4403 BUG_ON(fs_info
->balance_ctl
||
4404 test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4405 atomic_dec(&fs_info
->balance_cancel_req
);
4406 mutex_unlock(&fs_info
->balance_mutex
);
4410 int btrfs_uuid_scan_kthread(void *data
)
4412 struct btrfs_fs_info
*fs_info
= data
;
4413 struct btrfs_root
*root
= fs_info
->tree_root
;
4414 struct btrfs_key key
;
4415 struct btrfs_path
*path
= NULL
;
4417 struct extent_buffer
*eb
;
4419 struct btrfs_root_item root_item
;
4421 struct btrfs_trans_handle
*trans
= NULL
;
4422 bool closing
= false;
4424 path
= btrfs_alloc_path();
4431 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4435 if (btrfs_fs_closing(fs_info
)) {
4439 ret
= btrfs_search_forward(root
, &key
, path
,
4440 BTRFS_OLDEST_GENERATION
);
4447 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4448 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4449 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4450 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4453 eb
= path
->nodes
[0];
4454 slot
= path
->slots
[0];
4455 item_size
= btrfs_item_size_nr(eb
, slot
);
4456 if (item_size
< sizeof(root_item
))
4459 read_extent_buffer(eb
, &root_item
,
4460 btrfs_item_ptr_offset(eb
, slot
),
4461 (int)sizeof(root_item
));
4462 if (btrfs_root_refs(&root_item
) == 0)
4465 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4466 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4470 btrfs_release_path(path
);
4472 * 1 - subvol uuid item
4473 * 1 - received_subvol uuid item
4475 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4476 if (IS_ERR(trans
)) {
4477 ret
= PTR_ERR(trans
);
4485 btrfs_release_path(path
);
4486 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4487 ret
= btrfs_uuid_tree_add(trans
, root_item
.uuid
,
4488 BTRFS_UUID_KEY_SUBVOL
,
4491 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4497 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4498 ret
= btrfs_uuid_tree_add(trans
,
4499 root_item
.received_uuid
,
4500 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4503 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4510 btrfs_release_path(path
);
4512 ret
= btrfs_end_transaction(trans
);
4518 if (key
.offset
< (u64
)-1) {
4520 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4522 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4523 } else if (key
.objectid
< (u64
)-1) {
4525 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4534 btrfs_free_path(path
);
4535 if (trans
&& !IS_ERR(trans
))
4536 btrfs_end_transaction(trans
);
4538 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4540 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4541 up(&fs_info
->uuid_tree_rescan_sem
);
4545 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4547 struct btrfs_trans_handle
*trans
;
4548 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4549 struct btrfs_root
*uuid_root
;
4550 struct task_struct
*task
;
4557 trans
= btrfs_start_transaction(tree_root
, 2);
4559 return PTR_ERR(trans
);
4561 uuid_root
= btrfs_create_tree(trans
, BTRFS_UUID_TREE_OBJECTID
);
4562 if (IS_ERR(uuid_root
)) {
4563 ret
= PTR_ERR(uuid_root
);
4564 btrfs_abort_transaction(trans
, ret
);
4565 btrfs_end_transaction(trans
);
4569 fs_info
->uuid_root
= uuid_root
;
4571 ret
= btrfs_commit_transaction(trans
);
4575 down(&fs_info
->uuid_tree_rescan_sem
);
4576 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4578 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4579 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4580 up(&fs_info
->uuid_tree_rescan_sem
);
4581 return PTR_ERR(task
);
4588 * shrinking a device means finding all of the device extents past
4589 * the new size, and then following the back refs to the chunks.
4590 * The chunk relocation code actually frees the device extent
4592 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4594 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4595 struct btrfs_root
*root
= fs_info
->dev_root
;
4596 struct btrfs_trans_handle
*trans
;
4597 struct btrfs_dev_extent
*dev_extent
= NULL
;
4598 struct btrfs_path
*path
;
4604 bool retried
= false;
4605 struct extent_buffer
*l
;
4606 struct btrfs_key key
;
4607 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4608 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4609 u64 old_size
= btrfs_device_get_total_bytes(device
);
4613 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4615 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4617 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4620 path
= btrfs_alloc_path();
4624 path
->reada
= READA_BACK
;
4626 trans
= btrfs_start_transaction(root
, 0);
4627 if (IS_ERR(trans
)) {
4628 btrfs_free_path(path
);
4629 return PTR_ERR(trans
);
4632 mutex_lock(&fs_info
->chunk_mutex
);
4634 btrfs_device_set_total_bytes(device
, new_size
);
4635 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4636 device
->fs_devices
->total_rw_bytes
-= diff
;
4637 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4641 * Once the device's size has been set to the new size, ensure all
4642 * in-memory chunks are synced to disk so that the loop below sees them
4643 * and relocates them accordingly.
4645 if (contains_pending_extent(device
, &start
, diff
)) {
4646 mutex_unlock(&fs_info
->chunk_mutex
);
4647 ret
= btrfs_commit_transaction(trans
);
4651 mutex_unlock(&fs_info
->chunk_mutex
);
4652 btrfs_end_transaction(trans
);
4656 key
.objectid
= device
->devid
;
4657 key
.offset
= (u64
)-1;
4658 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4661 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4662 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4664 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4668 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4670 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4675 btrfs_release_path(path
);
4680 slot
= path
->slots
[0];
4681 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4683 if (key
.objectid
!= device
->devid
) {
4684 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4685 btrfs_release_path(path
);
4689 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4690 length
= btrfs_dev_extent_length(l
, dev_extent
);
4692 if (key
.offset
+ length
<= new_size
) {
4693 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4694 btrfs_release_path(path
);
4698 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4699 btrfs_release_path(path
);
4702 * We may be relocating the only data chunk we have,
4703 * which could potentially end up with losing data's
4704 * raid profile, so lets allocate an empty one in
4707 ret
= btrfs_may_alloc_data_chunk(fs_info
, chunk_offset
);
4709 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4713 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4714 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4715 if (ret
== -ENOSPC
) {
4718 if (ret
== -ETXTBSY
) {
4720 "could not shrink block group %llu due to active swapfile",
4725 } while (key
.offset
-- > 0);
4727 if (failed
&& !retried
) {
4731 } else if (failed
&& retried
) {
4736 /* Shrinking succeeded, else we would be at "done". */
4737 trans
= btrfs_start_transaction(root
, 0);
4738 if (IS_ERR(trans
)) {
4739 ret
= PTR_ERR(trans
);
4743 mutex_lock(&fs_info
->chunk_mutex
);
4744 /* Clear all state bits beyond the shrunk device size */
4745 clear_extent_bits(&device
->alloc_state
, new_size
, (u64
)-1,
4748 btrfs_device_set_disk_total_bytes(device
, new_size
);
4749 if (list_empty(&device
->post_commit_list
))
4750 list_add_tail(&device
->post_commit_list
,
4751 &trans
->transaction
->dev_update_list
);
4753 WARN_ON(diff
> old_total
);
4754 btrfs_set_super_total_bytes(super_copy
,
4755 round_down(old_total
- diff
, fs_info
->sectorsize
));
4756 mutex_unlock(&fs_info
->chunk_mutex
);
4758 /* Now btrfs_update_device() will change the on-disk size. */
4759 ret
= btrfs_update_device(trans
, device
);
4761 btrfs_abort_transaction(trans
, ret
);
4762 btrfs_end_transaction(trans
);
4764 ret
= btrfs_commit_transaction(trans
);
4767 btrfs_free_path(path
);
4769 mutex_lock(&fs_info
->chunk_mutex
);
4770 btrfs_device_set_total_bytes(device
, old_size
);
4771 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
4772 device
->fs_devices
->total_rw_bytes
+= diff
;
4773 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4774 mutex_unlock(&fs_info
->chunk_mutex
);
4779 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4780 struct btrfs_key
*key
,
4781 struct btrfs_chunk
*chunk
, int item_size
)
4783 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4784 struct btrfs_disk_key disk_key
;
4788 mutex_lock(&fs_info
->chunk_mutex
);
4789 array_size
= btrfs_super_sys_array_size(super_copy
);
4790 if (array_size
+ item_size
+ sizeof(disk_key
)
4791 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4792 mutex_unlock(&fs_info
->chunk_mutex
);
4796 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4797 btrfs_cpu_key_to_disk(&disk_key
, key
);
4798 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4799 ptr
+= sizeof(disk_key
);
4800 memcpy(ptr
, chunk
, item_size
);
4801 item_size
+= sizeof(disk_key
);
4802 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4803 mutex_unlock(&fs_info
->chunk_mutex
);
4809 * sort the devices in descending order by max_avail, total_avail
4811 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4813 const struct btrfs_device_info
*di_a
= a
;
4814 const struct btrfs_device_info
*di_b
= b
;
4816 if (di_a
->max_avail
> di_b
->max_avail
)
4818 if (di_a
->max_avail
< di_b
->max_avail
)
4820 if (di_a
->total_avail
> di_b
->total_avail
)
4822 if (di_a
->total_avail
< di_b
->total_avail
)
4827 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4829 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4832 btrfs_set_fs_incompat(info
, RAID56
);
4835 static void check_raid1c34_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4837 if (!(type
& (BTRFS_BLOCK_GROUP_RAID1C3
| BTRFS_BLOCK_GROUP_RAID1C4
)))
4840 btrfs_set_fs_incompat(info
, RAID1C34
);
4844 * Structure used internally for __btrfs_alloc_chunk() function.
4845 * Wraps needed parameters.
4847 struct alloc_chunk_ctl
{
4850 /* Total number of stripes to allocate */
4852 /* sub_stripes info for map */
4854 /* Stripes per device */
4856 /* Maximum number of devices to use */
4858 /* Minimum number of devices to use */
4860 /* ndevs has to be a multiple of this */
4862 /* Number of copies */
4864 /* Number of stripes worth of bytes to store parity information */
4866 u64 max_stripe_size
;
4874 static void init_alloc_chunk_ctl_policy_regular(
4875 struct btrfs_fs_devices
*fs_devices
,
4876 struct alloc_chunk_ctl
*ctl
)
4878 u64 type
= ctl
->type
;
4880 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4881 ctl
->max_stripe_size
= SZ_1G
;
4882 ctl
->max_chunk_size
= BTRFS_MAX_DATA_CHUNK_SIZE
;
4883 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4884 /* For larger filesystems, use larger metadata chunks */
4885 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4886 ctl
->max_stripe_size
= SZ_1G
;
4888 ctl
->max_stripe_size
= SZ_256M
;
4889 ctl
->max_chunk_size
= ctl
->max_stripe_size
;
4890 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4891 ctl
->max_stripe_size
= SZ_32M
;
4892 ctl
->max_chunk_size
= 2 * ctl
->max_stripe_size
;
4893 ctl
->devs_max
= min_t(int, ctl
->devs_max
,
4894 BTRFS_MAX_DEVS_SYS_CHUNK
);
4899 /* We don't want a chunk larger than 10% of writable space */
4900 ctl
->max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4901 ctl
->max_chunk_size
);
4902 ctl
->dev_extent_min
= BTRFS_STRIPE_LEN
* ctl
->dev_stripes
;
4905 static void init_alloc_chunk_ctl(struct btrfs_fs_devices
*fs_devices
,
4906 struct alloc_chunk_ctl
*ctl
)
4908 int index
= btrfs_bg_flags_to_raid_index(ctl
->type
);
4910 ctl
->sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4911 ctl
->dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4912 ctl
->devs_max
= btrfs_raid_array
[index
].devs_max
;
4914 ctl
->devs_max
= BTRFS_MAX_DEVS(fs_devices
->fs_info
);
4915 ctl
->devs_min
= btrfs_raid_array
[index
].devs_min
;
4916 ctl
->devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4917 ctl
->ncopies
= btrfs_raid_array
[index
].ncopies
;
4918 ctl
->nparity
= btrfs_raid_array
[index
].nparity
;
4921 switch (fs_devices
->chunk_alloc_policy
) {
4922 case BTRFS_CHUNK_ALLOC_REGULAR
:
4923 init_alloc_chunk_ctl_policy_regular(fs_devices
, ctl
);
4930 static int gather_device_info(struct btrfs_fs_devices
*fs_devices
,
4931 struct alloc_chunk_ctl
*ctl
,
4932 struct btrfs_device_info
*devices_info
)
4934 struct btrfs_fs_info
*info
= fs_devices
->fs_info
;
4935 struct btrfs_device
*device
;
4937 u64 dev_extent_want
= ctl
->max_stripe_size
* ctl
->dev_stripes
;
4944 * in the first pass through the devices list, we gather information
4945 * about the available holes on each device.
4947 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4948 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4950 "BTRFS: read-only device in alloc_list\n");
4954 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
4955 &device
->dev_state
) ||
4956 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4959 if (device
->total_bytes
> device
->bytes_used
)
4960 total_avail
= device
->total_bytes
- device
->bytes_used
;
4964 /* If there is no space on this device, skip it. */
4965 if (total_avail
< ctl
->dev_extent_min
)
4968 ret
= find_free_dev_extent(device
, dev_extent_want
, &dev_offset
,
4970 if (ret
&& ret
!= -ENOSPC
)
4974 max_avail
= dev_extent_want
;
4976 if (max_avail
< ctl
->dev_extent_min
) {
4977 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
4979 "%s: devid %llu has no free space, have=%llu want=%llu",
4980 __func__
, device
->devid
, max_avail
,
4981 ctl
->dev_extent_min
);
4985 if (ndevs
== fs_devices
->rw_devices
) {
4986 WARN(1, "%s: found more than %llu devices\n",
4987 __func__
, fs_devices
->rw_devices
);
4990 devices_info
[ndevs
].dev_offset
= dev_offset
;
4991 devices_info
[ndevs
].max_avail
= max_avail
;
4992 devices_info
[ndevs
].total_avail
= total_avail
;
4993 devices_info
[ndevs
].dev
= device
;
4999 * now sort the devices by hole size / available space
5001 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
5002 btrfs_cmp_device_info
, NULL
);
5007 static int decide_stripe_size_regular(struct alloc_chunk_ctl
*ctl
,
5008 struct btrfs_device_info
*devices_info
)
5010 /* Number of stripes that count for block group size */
5014 * The primary goal is to maximize the number of stripes, so use as
5015 * many devices as possible, even if the stripes are not maximum sized.
5017 * The DUP profile stores more than one stripe per device, the
5018 * max_avail is the total size so we have to adjust.
5020 ctl
->stripe_size
= div_u64(devices_info
[ctl
->ndevs
- 1].max_avail
,
5022 ctl
->num_stripes
= ctl
->ndevs
* ctl
->dev_stripes
;
5024 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5025 data_stripes
= (ctl
->num_stripes
- ctl
->nparity
) / ctl
->ncopies
;
5028 * Use the number of data stripes to figure out how big this chunk is
5029 * really going to be in terms of logical address space, and compare
5030 * that answer with the max chunk size. If it's higher, we try to
5031 * reduce stripe_size.
5033 if (ctl
->stripe_size
* data_stripes
> ctl
->max_chunk_size
) {
5035 * Reduce stripe_size, round it up to a 16MB boundary again and
5036 * then use it, unless it ends up being even bigger than the
5037 * previous value we had already.
5039 ctl
->stripe_size
= min(round_up(div_u64(ctl
->max_chunk_size
,
5040 data_stripes
), SZ_16M
),
5044 /* Align to BTRFS_STRIPE_LEN */
5045 ctl
->stripe_size
= round_down(ctl
->stripe_size
, BTRFS_STRIPE_LEN
);
5046 ctl
->chunk_size
= ctl
->stripe_size
* data_stripes
;
5051 static int decide_stripe_size(struct btrfs_fs_devices
*fs_devices
,
5052 struct alloc_chunk_ctl
*ctl
,
5053 struct btrfs_device_info
*devices_info
)
5055 struct btrfs_fs_info
*info
= fs_devices
->fs_info
;
5058 * Round down to number of usable stripes, devs_increment can be any
5059 * number so we can't use round_down() that requires power of 2, while
5060 * rounddown is safe.
5062 ctl
->ndevs
= rounddown(ctl
->ndevs
, ctl
->devs_increment
);
5064 if (ctl
->ndevs
< ctl
->devs_min
) {
5065 if (btrfs_test_opt(info
, ENOSPC_DEBUG
)) {
5067 "%s: not enough devices with free space: have=%d minimum required=%d",
5068 __func__
, ctl
->ndevs
, ctl
->devs_min
);
5073 ctl
->ndevs
= min(ctl
->ndevs
, ctl
->devs_max
);
5075 switch (fs_devices
->chunk_alloc_policy
) {
5076 case BTRFS_CHUNK_ALLOC_REGULAR
:
5077 return decide_stripe_size_regular(ctl
, devices_info
);
5083 static int create_chunk(struct btrfs_trans_handle
*trans
,
5084 struct alloc_chunk_ctl
*ctl
,
5085 struct btrfs_device_info
*devices_info
)
5087 struct btrfs_fs_info
*info
= trans
->fs_info
;
5088 struct map_lookup
*map
= NULL
;
5089 struct extent_map_tree
*em_tree
;
5090 struct extent_map
*em
;
5091 u64 start
= ctl
->start
;
5092 u64 type
= ctl
->type
;
5097 map
= kmalloc(map_lookup_size(ctl
->num_stripes
), GFP_NOFS
);
5100 map
->num_stripes
= ctl
->num_stripes
;
5102 for (i
= 0; i
< ctl
->ndevs
; ++i
) {
5103 for (j
= 0; j
< ctl
->dev_stripes
; ++j
) {
5104 int s
= i
* ctl
->dev_stripes
+ j
;
5105 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
5106 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
5107 j
* ctl
->stripe_size
;
5110 map
->stripe_len
= BTRFS_STRIPE_LEN
;
5111 map
->io_align
= BTRFS_STRIPE_LEN
;
5112 map
->io_width
= BTRFS_STRIPE_LEN
;
5114 map
->sub_stripes
= ctl
->sub_stripes
;
5116 trace_btrfs_chunk_alloc(info
, map
, start
, ctl
->chunk_size
);
5118 em
= alloc_extent_map();
5123 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
5124 em
->map_lookup
= map
;
5126 em
->len
= ctl
->chunk_size
;
5127 em
->block_start
= 0;
5128 em
->block_len
= em
->len
;
5129 em
->orig_block_len
= ctl
->stripe_size
;
5131 em_tree
= &info
->mapping_tree
;
5132 write_lock(&em_tree
->lock
);
5133 ret
= add_extent_mapping(em_tree
, em
, 0);
5135 write_unlock(&em_tree
->lock
);
5136 free_extent_map(em
);
5139 write_unlock(&em_tree
->lock
);
5141 ret
= btrfs_make_block_group(trans
, 0, type
, start
, ctl
->chunk_size
);
5143 goto error_del_extent
;
5145 for (i
= 0; i
< map
->num_stripes
; i
++) {
5146 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
5148 btrfs_device_set_bytes_used(dev
,
5149 dev
->bytes_used
+ ctl
->stripe_size
);
5150 if (list_empty(&dev
->post_commit_list
))
5151 list_add_tail(&dev
->post_commit_list
,
5152 &trans
->transaction
->dev_update_list
);
5155 atomic64_sub(ctl
->stripe_size
* map
->num_stripes
,
5156 &info
->free_chunk_space
);
5158 free_extent_map(em
);
5159 check_raid56_incompat_flag(info
, type
);
5160 check_raid1c34_incompat_flag(info
, type
);
5165 write_lock(&em_tree
->lock
);
5166 remove_extent_mapping(em_tree
, em
);
5167 write_unlock(&em_tree
->lock
);
5169 /* One for our allocation */
5170 free_extent_map(em
);
5171 /* One for the tree reference */
5172 free_extent_map(em
);
5177 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
, u64 type
)
5179 struct btrfs_fs_info
*info
= trans
->fs_info
;
5180 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
5181 struct btrfs_device_info
*devices_info
= NULL
;
5182 struct alloc_chunk_ctl ctl
;
5185 lockdep_assert_held(&info
->chunk_mutex
);
5187 if (!alloc_profile_is_valid(type
, 0)) {
5192 if (list_empty(&fs_devices
->alloc_list
)) {
5193 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
5194 btrfs_debug(info
, "%s: no writable device", __func__
);
5198 if (!(type
& BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
5199 btrfs_err(info
, "invalid chunk type 0x%llx requested", type
);
5204 ctl
.start
= find_next_chunk(info
);
5206 init_alloc_chunk_ctl(fs_devices
, &ctl
);
5208 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
5213 ret
= gather_device_info(fs_devices
, &ctl
, devices_info
);
5217 ret
= decide_stripe_size(fs_devices
, &ctl
, devices_info
);
5221 ret
= create_chunk(trans
, &ctl
, devices_info
);
5224 kfree(devices_info
);
5229 * Chunk allocation falls into two parts. The first part does work
5230 * that makes the new allocated chunk usable, but does not do any operation
5231 * that modifies the chunk tree. The second part does the work that
5232 * requires modifying the chunk tree. This division is important for the
5233 * bootstrap process of adding storage to a seed btrfs.
5235 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
5236 u64 chunk_offset
, u64 chunk_size
)
5238 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5239 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5240 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
5241 struct btrfs_key key
;
5242 struct btrfs_device
*device
;
5243 struct btrfs_chunk
*chunk
;
5244 struct btrfs_stripe
*stripe
;
5245 struct extent_map
*em
;
5246 struct map_lookup
*map
;
5253 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
5257 map
= em
->map_lookup
;
5258 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
5259 stripe_size
= em
->orig_block_len
;
5261 chunk
= kzalloc(item_size
, GFP_NOFS
);
5268 * Take the device list mutex to prevent races with the final phase of
5269 * a device replace operation that replaces the device object associated
5270 * with the map's stripes, because the device object's id can change
5271 * at any time during that final phase of the device replace operation
5272 * (dev-replace.c:btrfs_dev_replace_finishing()).
5274 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
5275 for (i
= 0; i
< map
->num_stripes
; i
++) {
5276 device
= map
->stripes
[i
].dev
;
5277 dev_offset
= map
->stripes
[i
].physical
;
5279 ret
= btrfs_update_device(trans
, device
);
5282 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
5283 dev_offset
, stripe_size
);
5288 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5292 stripe
= &chunk
->stripe
;
5293 for (i
= 0; i
< map
->num_stripes
; i
++) {
5294 device
= map
->stripes
[i
].dev
;
5295 dev_offset
= map
->stripes
[i
].physical
;
5297 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
5298 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
5299 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
5302 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5304 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
5305 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
5306 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
5307 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5308 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5309 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5310 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5311 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
5312 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5314 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5315 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5316 key
.offset
= chunk_offset
;
5318 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5319 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5321 * TODO: Cleanup of inserted chunk root in case of
5324 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5329 free_extent_map(em
);
5333 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
)
5335 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5339 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5340 ret
= btrfs_alloc_chunk(trans
, alloc_profile
);
5344 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5345 ret
= btrfs_alloc_chunk(trans
, alloc_profile
);
5349 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5351 const int index
= btrfs_bg_flags_to_raid_index(map
->type
);
5353 return btrfs_raid_array
[index
].tolerated_failures
;
5356 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5358 struct extent_map
*em
;
5359 struct map_lookup
*map
;
5364 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, 1);
5368 map
= em
->map_lookup
;
5369 for (i
= 0; i
< map
->num_stripes
; i
++) {
5370 if (test_bit(BTRFS_DEV_STATE_MISSING
,
5371 &map
->stripes
[i
].dev
->dev_state
)) {
5375 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
,
5376 &map
->stripes
[i
].dev
->dev_state
)) {
5383 * If the number of missing devices is larger than max errors,
5384 * we can not write the data into that chunk successfully, so
5387 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5390 free_extent_map(em
);
5394 void btrfs_mapping_tree_free(struct extent_map_tree
*tree
)
5396 struct extent_map
*em
;
5399 write_lock(&tree
->lock
);
5400 em
= lookup_extent_mapping(tree
, 0, (u64
)-1);
5402 remove_extent_mapping(tree
, em
);
5403 write_unlock(&tree
->lock
);
5407 free_extent_map(em
);
5408 /* once for the tree */
5409 free_extent_map(em
);
5413 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5415 struct extent_map
*em
;
5416 struct map_lookup
*map
;
5419 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5422 * We could return errors for these cases, but that could get
5423 * ugly and we'd probably do the same thing which is just not do
5424 * anything else and exit, so return 1 so the callers don't try
5425 * to use other copies.
5429 map
= em
->map_lookup
;
5430 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1_MASK
))
5431 ret
= map
->num_stripes
;
5432 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5433 ret
= map
->sub_stripes
;
5434 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5436 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5438 * There could be two corrupted data stripes, we need
5439 * to loop retry in order to rebuild the correct data.
5441 * Fail a stripe at a time on every retry except the
5442 * stripe under reconstruction.
5444 ret
= map
->num_stripes
;
5447 free_extent_map(em
);
5449 down_read(&fs_info
->dev_replace
.rwsem
);
5450 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5451 fs_info
->dev_replace
.tgtdev
)
5453 up_read(&fs_info
->dev_replace
.rwsem
);
5458 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5461 struct extent_map
*em
;
5462 struct map_lookup
*map
;
5463 unsigned long len
= fs_info
->sectorsize
;
5465 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5467 if (!WARN_ON(IS_ERR(em
))) {
5468 map
= em
->map_lookup
;
5469 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5470 len
= map
->stripe_len
* nr_data_stripes(map
);
5471 free_extent_map(em
);
5476 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5478 struct extent_map
*em
;
5479 struct map_lookup
*map
;
5482 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5484 if(!WARN_ON(IS_ERR(em
))) {
5485 map
= em
->map_lookup
;
5486 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5488 free_extent_map(em
);
5493 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5494 struct map_lookup
*map
, int first
,
5495 int dev_replace_is_ongoing
)
5499 int preferred_mirror
;
5501 struct btrfs_device
*srcdev
;
5504 (BTRFS_BLOCK_GROUP_RAID1_MASK
| BTRFS_BLOCK_GROUP_RAID10
)));
5506 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5507 num_stripes
= map
->sub_stripes
;
5509 num_stripes
= map
->num_stripes
;
5511 switch (fs_info
->fs_devices
->read_policy
) {
5513 /* Shouldn't happen, just warn and use pid instead of failing */
5514 btrfs_warn_rl(fs_info
,
5515 "unknown read_policy type %u, reset to pid",
5516 fs_info
->fs_devices
->read_policy
);
5517 fs_info
->fs_devices
->read_policy
= BTRFS_READ_POLICY_PID
;
5519 case BTRFS_READ_POLICY_PID
:
5520 preferred_mirror
= first
+ (current
->pid
% num_stripes
);
5524 if (dev_replace_is_ongoing
&&
5525 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5526 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5527 srcdev
= fs_info
->dev_replace
.srcdev
;
5532 * try to avoid the drive that is the source drive for a
5533 * dev-replace procedure, only choose it if no other non-missing
5534 * mirror is available
5536 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5537 if (map
->stripes
[preferred_mirror
].dev
->bdev
&&
5538 (tolerance
|| map
->stripes
[preferred_mirror
].dev
!= srcdev
))
5539 return preferred_mirror
;
5540 for (i
= first
; i
< first
+ num_stripes
; i
++) {
5541 if (map
->stripes
[i
].dev
->bdev
&&
5542 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5547 /* we couldn't find one that doesn't fail. Just return something
5548 * and the io error handling code will clean up eventually
5550 return preferred_mirror
;
5553 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5554 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5561 for (i
= 0; i
< num_stripes
- 1; i
++) {
5562 /* Swap if parity is on a smaller index */
5563 if (bbio
->raid_map
[i
] > bbio
->raid_map
[i
+ 1]) {
5564 swap(bbio
->stripes
[i
], bbio
->stripes
[i
+ 1]);
5565 swap(bbio
->raid_map
[i
], bbio
->raid_map
[i
+ 1]);
5572 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5574 struct btrfs_bio
*bbio
= kzalloc(
5575 /* the size of the btrfs_bio */
5576 sizeof(struct btrfs_bio
) +
5577 /* plus the variable array for the stripes */
5578 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5579 /* plus the variable array for the tgt dev */
5580 sizeof(int) * (real_stripes
) +
5582 * plus the raid_map, which includes both the tgt dev
5585 sizeof(u64
) * (total_stripes
),
5586 GFP_NOFS
|__GFP_NOFAIL
);
5588 atomic_set(&bbio
->error
, 0);
5589 refcount_set(&bbio
->refs
, 1);
5591 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ total_stripes
);
5592 bbio
->raid_map
= (u64
*)(bbio
->tgtdev_map
+ real_stripes
);
5597 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5599 WARN_ON(!refcount_read(&bbio
->refs
));
5600 refcount_inc(&bbio
->refs
);
5603 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5607 if (refcount_dec_and_test(&bbio
->refs
))
5611 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5613 * Please note that, discard won't be sent to target device of device
5616 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5617 u64 logical
, u64
*length_ret
,
5618 struct btrfs_bio
**bbio_ret
)
5620 struct extent_map
*em
;
5621 struct map_lookup
*map
;
5622 struct btrfs_bio
*bbio
;
5623 u64 length
= *length_ret
;
5627 u64 stripe_end_offset
;
5634 u32 sub_stripes
= 0;
5635 u64 stripes_per_dev
= 0;
5636 u32 remaining_stripes
= 0;
5637 u32 last_stripe
= 0;
5641 /* discard always return a bbio */
5644 em
= btrfs_get_chunk_map(fs_info
, logical
, length
);
5648 map
= em
->map_lookup
;
5649 /* we don't discard raid56 yet */
5650 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5655 offset
= logical
- em
->start
;
5656 length
= min_t(u64
, em
->start
+ em
->len
- logical
, length
);
5657 *length_ret
= length
;
5659 stripe_len
= map
->stripe_len
;
5661 * stripe_nr counts the total number of stripes we have to stride
5662 * to get to this block
5664 stripe_nr
= div64_u64(offset
, stripe_len
);
5666 /* stripe_offset is the offset of this block in its stripe */
5667 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5669 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5670 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5671 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5672 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5675 * after this, stripe_nr is the number of stripes on this
5676 * device we have to walk to find the data, and stripe_index is
5677 * the number of our device in the stripe array
5681 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5682 BTRFS_BLOCK_GROUP_RAID10
)) {
5683 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5686 sub_stripes
= map
->sub_stripes
;
5688 factor
= map
->num_stripes
/ sub_stripes
;
5689 num_stripes
= min_t(u64
, map
->num_stripes
,
5690 sub_stripes
* stripe_cnt
);
5691 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5692 stripe_index
*= sub_stripes
;
5693 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5694 &remaining_stripes
);
5695 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5696 last_stripe
*= sub_stripes
;
5697 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1_MASK
|
5698 BTRFS_BLOCK_GROUP_DUP
)) {
5699 num_stripes
= map
->num_stripes
;
5701 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5705 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5711 for (i
= 0; i
< num_stripes
; i
++) {
5712 bbio
->stripes
[i
].physical
=
5713 map
->stripes
[stripe_index
].physical
+
5714 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5715 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5717 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5718 BTRFS_BLOCK_GROUP_RAID10
)) {
5719 bbio
->stripes
[i
].length
= stripes_per_dev
*
5722 if (i
/ sub_stripes
< remaining_stripes
)
5723 bbio
->stripes
[i
].length
+=
5727 * Special for the first stripe and
5730 * |-------|...|-------|
5734 if (i
< sub_stripes
)
5735 bbio
->stripes
[i
].length
-=
5738 if (stripe_index
>= last_stripe
&&
5739 stripe_index
<= (last_stripe
+
5741 bbio
->stripes
[i
].length
-=
5744 if (i
== sub_stripes
- 1)
5747 bbio
->stripes
[i
].length
= length
;
5751 if (stripe_index
== map
->num_stripes
) {
5758 bbio
->map_type
= map
->type
;
5759 bbio
->num_stripes
= num_stripes
;
5761 free_extent_map(em
);
5766 * In dev-replace case, for repair case (that's the only case where the mirror
5767 * is selected explicitly when calling btrfs_map_block), blocks left of the
5768 * left cursor can also be read from the target drive.
5770 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5772 * For READ, it also needs to be supported using the same mirror number.
5774 * If the requested block is not left of the left cursor, EIO is returned. This
5775 * can happen because btrfs_num_copies() returns one more in the dev-replace
5778 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5779 u64 logical
, u64 length
,
5780 u64 srcdev_devid
, int *mirror_num
,
5783 struct btrfs_bio
*bbio
= NULL
;
5785 int index_srcdev
= 0;
5787 u64 physical_of_found
= 0;
5791 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5792 logical
, &length
, &bbio
, 0, 0);
5794 ASSERT(bbio
== NULL
);
5798 num_stripes
= bbio
->num_stripes
;
5799 if (*mirror_num
> num_stripes
) {
5801 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5802 * that means that the requested area is not left of the left
5805 btrfs_put_bbio(bbio
);
5810 * process the rest of the function using the mirror_num of the source
5811 * drive. Therefore look it up first. At the end, patch the device
5812 * pointer to the one of the target drive.
5814 for (i
= 0; i
< num_stripes
; i
++) {
5815 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5819 * In case of DUP, in order to keep it simple, only add the
5820 * mirror with the lowest physical address
5823 physical_of_found
<= bbio
->stripes
[i
].physical
)
5828 physical_of_found
= bbio
->stripes
[i
].physical
;
5831 btrfs_put_bbio(bbio
);
5837 *mirror_num
= index_srcdev
+ 1;
5838 *physical
= physical_of_found
;
5842 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5843 struct btrfs_bio
**bbio_ret
,
5844 struct btrfs_dev_replace
*dev_replace
,
5845 int *num_stripes_ret
, int *max_errors_ret
)
5847 struct btrfs_bio
*bbio
= *bbio_ret
;
5848 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5849 int tgtdev_indexes
= 0;
5850 int num_stripes
= *num_stripes_ret
;
5851 int max_errors
= *max_errors_ret
;
5854 if (op
== BTRFS_MAP_WRITE
) {
5855 int index_where_to_add
;
5858 * duplicate the write operations while the dev replace
5859 * procedure is running. Since the copying of the old disk to
5860 * the new disk takes place at run time while the filesystem is
5861 * mounted writable, the regular write operations to the old
5862 * disk have to be duplicated to go to the new disk as well.
5864 * Note that device->missing is handled by the caller, and that
5865 * the write to the old disk is already set up in the stripes
5868 index_where_to_add
= num_stripes
;
5869 for (i
= 0; i
< num_stripes
; i
++) {
5870 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5871 /* write to new disk, too */
5872 struct btrfs_bio_stripe
*new =
5873 bbio
->stripes
+ index_where_to_add
;
5874 struct btrfs_bio_stripe
*old
=
5877 new->physical
= old
->physical
;
5878 new->length
= old
->length
;
5879 new->dev
= dev_replace
->tgtdev
;
5880 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5881 index_where_to_add
++;
5886 num_stripes
= index_where_to_add
;
5887 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5888 int index_srcdev
= 0;
5890 u64 physical_of_found
= 0;
5893 * During the dev-replace procedure, the target drive can also
5894 * be used to read data in case it is needed to repair a corrupt
5895 * block elsewhere. This is possible if the requested area is
5896 * left of the left cursor. In this area, the target drive is a
5897 * full copy of the source drive.
5899 for (i
= 0; i
< num_stripes
; i
++) {
5900 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5902 * In case of DUP, in order to keep it simple,
5903 * only add the mirror with the lowest physical
5907 physical_of_found
<=
5908 bbio
->stripes
[i
].physical
)
5912 physical_of_found
= bbio
->stripes
[i
].physical
;
5916 struct btrfs_bio_stripe
*tgtdev_stripe
=
5917 bbio
->stripes
+ num_stripes
;
5919 tgtdev_stripe
->physical
= physical_of_found
;
5920 tgtdev_stripe
->length
=
5921 bbio
->stripes
[index_srcdev
].length
;
5922 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5923 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5930 *num_stripes_ret
= num_stripes
;
5931 *max_errors_ret
= max_errors
;
5932 bbio
->num_tgtdevs
= tgtdev_indexes
;
5936 static bool need_full_stripe(enum btrfs_map_op op
)
5938 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5942 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5943 * tuple. This information is used to calculate how big a
5944 * particular bio can get before it straddles a stripe.
5946 * @fs_info - the filesystem
5947 * @logical - address that we want to figure out the geometry of
5948 * @len - the length of IO we are going to perform, starting at @logical
5949 * @op - type of operation - write or read
5950 * @io_geom - pointer used to return values
5952 * Returns < 0 in case a chunk for the given logical address cannot be found,
5953 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5955 int btrfs_get_io_geometry(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5956 u64 logical
, u64 len
, struct btrfs_io_geometry
*io_geom
)
5958 struct extent_map
*em
;
5959 struct map_lookup
*map
;
5964 u64 raid56_full_stripe_start
= (u64
)-1;
5968 ASSERT(op
!= BTRFS_MAP_DISCARD
);
5970 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5974 map
= em
->map_lookup
;
5975 /* Offset of this logical address in the chunk */
5976 offset
= logical
- em
->start
;
5977 /* Len of a stripe in a chunk */
5978 stripe_len
= map
->stripe_len
;
5979 /* Stripe wher this block falls in */
5980 stripe_nr
= div64_u64(offset
, stripe_len
);
5981 /* Offset of stripe in the chunk */
5982 stripe_offset
= stripe_nr
* stripe_len
;
5983 if (offset
< stripe_offset
) {
5985 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5986 stripe_offset
, offset
, em
->start
, logical
, stripe_len
);
5991 /* stripe_offset is the offset of this block in its stripe */
5992 stripe_offset
= offset
- stripe_offset
;
5993 data_stripes
= nr_data_stripes(map
);
5995 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5996 u64 max_len
= stripe_len
- stripe_offset
;
5999 * In case of raid56, we need to know the stripe aligned start
6001 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6002 unsigned long full_stripe_len
= stripe_len
* data_stripes
;
6003 raid56_full_stripe_start
= offset
;
6006 * Allow a write of a full stripe, but make sure we
6007 * don't allow straddling of stripes
6009 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
6011 raid56_full_stripe_start
*= full_stripe_len
;
6014 * For writes to RAID[56], allow a full stripeset across
6015 * all disks. For other RAID types and for RAID[56]
6016 * reads, just allow a single stripe (on a single disk).
6018 if (op
== BTRFS_MAP_WRITE
) {
6019 max_len
= stripe_len
* data_stripes
-
6020 (offset
- raid56_full_stripe_start
);
6023 len
= min_t(u64
, em
->len
- offset
, max_len
);
6025 len
= em
->len
- offset
;
6029 io_geom
->offset
= offset
;
6030 io_geom
->stripe_len
= stripe_len
;
6031 io_geom
->stripe_nr
= stripe_nr
;
6032 io_geom
->stripe_offset
= stripe_offset
;
6033 io_geom
->raid56_stripe_offset
= raid56_full_stripe_start
;
6037 free_extent_map(em
);
6041 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
6042 enum btrfs_map_op op
,
6043 u64 logical
, u64
*length
,
6044 struct btrfs_bio
**bbio_ret
,
6045 int mirror_num
, int need_raid_map
)
6047 struct extent_map
*em
;
6048 struct map_lookup
*map
;
6058 int tgtdev_indexes
= 0;
6059 struct btrfs_bio
*bbio
= NULL
;
6060 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
6061 int dev_replace_is_ongoing
= 0;
6062 int num_alloc_stripes
;
6063 int patch_the_first_stripe_for_dev_replace
= 0;
6064 u64 physical_to_patch_in_first_stripe
= 0;
6065 u64 raid56_full_stripe_start
= (u64
)-1;
6066 struct btrfs_io_geometry geom
;
6069 ASSERT(op
!= BTRFS_MAP_DISCARD
);
6071 ret
= btrfs_get_io_geometry(fs_info
, op
, logical
, *length
, &geom
);
6075 em
= btrfs_get_chunk_map(fs_info
, logical
, *length
);
6076 ASSERT(!IS_ERR(em
));
6077 map
= em
->map_lookup
;
6080 stripe_len
= geom
.stripe_len
;
6081 stripe_nr
= geom
.stripe_nr
;
6082 stripe_offset
= geom
.stripe_offset
;
6083 raid56_full_stripe_start
= geom
.raid56_stripe_offset
;
6084 data_stripes
= nr_data_stripes(map
);
6086 down_read(&dev_replace
->rwsem
);
6087 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
6089 * Hold the semaphore for read during the whole operation, write is
6090 * requested at commit time but must wait.
6092 if (!dev_replace_is_ongoing
)
6093 up_read(&dev_replace
->rwsem
);
6095 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
6096 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
6097 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
6098 dev_replace
->srcdev
->devid
,
6100 &physical_to_patch_in_first_stripe
);
6104 patch_the_first_stripe_for_dev_replace
= 1;
6105 } else if (mirror_num
> map
->num_stripes
) {
6111 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6112 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
6114 if (!need_full_stripe(op
))
6116 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1_MASK
) {
6117 if (need_full_stripe(op
))
6118 num_stripes
= map
->num_stripes
;
6119 else if (mirror_num
)
6120 stripe_index
= mirror_num
- 1;
6122 stripe_index
= find_live_mirror(fs_info
, map
, 0,
6123 dev_replace_is_ongoing
);
6124 mirror_num
= stripe_index
+ 1;
6127 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
6128 if (need_full_stripe(op
)) {
6129 num_stripes
= map
->num_stripes
;
6130 } else if (mirror_num
) {
6131 stripe_index
= mirror_num
- 1;
6136 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6137 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
6139 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
6140 stripe_index
*= map
->sub_stripes
;
6142 if (need_full_stripe(op
))
6143 num_stripes
= map
->sub_stripes
;
6144 else if (mirror_num
)
6145 stripe_index
+= mirror_num
- 1;
6147 int old_stripe_index
= stripe_index
;
6148 stripe_index
= find_live_mirror(fs_info
, map
,
6150 dev_replace_is_ongoing
);
6151 mirror_num
= stripe_index
- old_stripe_index
+ 1;
6154 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6155 if (need_raid_map
&& (need_full_stripe(op
) || mirror_num
> 1)) {
6156 /* push stripe_nr back to the start of the full stripe */
6157 stripe_nr
= div64_u64(raid56_full_stripe_start
,
6158 stripe_len
* data_stripes
);
6160 /* RAID[56] write or recovery. Return all stripes */
6161 num_stripes
= map
->num_stripes
;
6162 max_errors
= nr_parity_stripes(map
);
6164 *length
= map
->stripe_len
;
6169 * Mirror #0 or #1 means the original data block.
6170 * Mirror #2 is RAID5 parity block.
6171 * Mirror #3 is RAID6 Q block.
6173 stripe_nr
= div_u64_rem(stripe_nr
,
6174 data_stripes
, &stripe_index
);
6176 stripe_index
= data_stripes
+ mirror_num
- 2;
6178 /* We distribute the parity blocks across stripes */
6179 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
6181 if (!need_full_stripe(op
) && mirror_num
<= 1)
6186 * after this, stripe_nr is the number of stripes on this
6187 * device we have to walk to find the data, and stripe_index is
6188 * the number of our device in the stripe array
6190 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
6192 mirror_num
= stripe_index
+ 1;
6194 if (stripe_index
>= map
->num_stripes
) {
6196 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6197 stripe_index
, map
->num_stripes
);
6202 num_alloc_stripes
= num_stripes
;
6203 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
6204 if (op
== BTRFS_MAP_WRITE
)
6205 num_alloc_stripes
<<= 1;
6206 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
6207 num_alloc_stripes
++;
6208 tgtdev_indexes
= num_stripes
;
6211 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
6217 for (i
= 0; i
< num_stripes
; i
++) {
6218 bbio
->stripes
[i
].physical
= map
->stripes
[stripe_index
].physical
+
6219 stripe_offset
+ stripe_nr
* map
->stripe_len
;
6220 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
6224 /* build raid_map */
6225 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
6226 (need_full_stripe(op
) || mirror_num
> 1)) {
6230 /* Work out the disk rotation on this stripe-set */
6231 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
6233 /* Fill in the logical address of each stripe */
6234 tmp
= stripe_nr
* data_stripes
;
6235 for (i
= 0; i
< data_stripes
; i
++)
6236 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
6237 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
6239 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
6240 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
6241 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
6244 sort_parity_stripes(bbio
, num_stripes
);
6247 if (need_full_stripe(op
))
6248 max_errors
= btrfs_chunk_max_errors(map
);
6250 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
6251 need_full_stripe(op
)) {
6252 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
6257 bbio
->map_type
= map
->type
;
6258 bbio
->num_stripes
= num_stripes
;
6259 bbio
->max_errors
= max_errors
;
6260 bbio
->mirror_num
= mirror_num
;
6263 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6264 * mirror_num == num_stripes + 1 && dev_replace target drive is
6265 * available as a mirror
6267 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
6268 WARN_ON(num_stripes
> 1);
6269 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
6270 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
6271 bbio
->mirror_num
= map
->num_stripes
+ 1;
6274 if (dev_replace_is_ongoing
) {
6275 lockdep_assert_held(&dev_replace
->rwsem
);
6276 /* Unlock and let waiting writers proceed */
6277 up_read(&dev_replace
->rwsem
);
6279 free_extent_map(em
);
6283 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6284 u64 logical
, u64
*length
,
6285 struct btrfs_bio
**bbio_ret
, int mirror_num
)
6287 if (op
== BTRFS_MAP_DISCARD
)
6288 return __btrfs_map_block_for_discard(fs_info
, logical
,
6291 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
6295 /* For Scrub/replace */
6296 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6297 u64 logical
, u64
*length
,
6298 struct btrfs_bio
**bbio_ret
)
6300 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
6303 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6305 bio
->bi_private
= bbio
->private;
6306 bio
->bi_end_io
= bbio
->end_io
;
6309 btrfs_put_bbio(bbio
);
6312 static void btrfs_end_bio(struct bio
*bio
)
6314 struct btrfs_bio
*bbio
= bio
->bi_private
;
6315 int is_orig_bio
= 0;
6317 if (bio
->bi_status
) {
6318 atomic_inc(&bbio
->error
);
6319 if (bio
->bi_status
== BLK_STS_IOERR
||
6320 bio
->bi_status
== BLK_STS_TARGET
) {
6321 struct btrfs_device
*dev
= btrfs_io_bio(bio
)->device
;
6324 if (bio_op(bio
) == REQ_OP_WRITE
)
6325 btrfs_dev_stat_inc_and_print(dev
,
6326 BTRFS_DEV_STAT_WRITE_ERRS
);
6327 else if (!(bio
->bi_opf
& REQ_RAHEAD
))
6328 btrfs_dev_stat_inc_and_print(dev
,
6329 BTRFS_DEV_STAT_READ_ERRS
);
6330 if (bio
->bi_opf
& REQ_PREFLUSH
)
6331 btrfs_dev_stat_inc_and_print(dev
,
6332 BTRFS_DEV_STAT_FLUSH_ERRS
);
6336 if (bio
== bbio
->orig_bio
)
6339 btrfs_bio_counter_dec(bbio
->fs_info
);
6341 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6344 bio
= bbio
->orig_bio
;
6347 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6348 /* only send an error to the higher layers if it is
6349 * beyond the tolerance of the btrfs bio
6351 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6352 bio
->bi_status
= BLK_STS_IOERR
;
6355 * this bio is actually up to date, we didn't
6356 * go over the max number of errors
6358 bio
->bi_status
= BLK_STS_OK
;
6361 btrfs_end_bbio(bbio
, bio
);
6362 } else if (!is_orig_bio
) {
6367 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6368 u64 physical
, struct btrfs_device
*dev
)
6370 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6372 bio
->bi_private
= bbio
;
6373 btrfs_io_bio(bio
)->device
= dev
;
6374 bio
->bi_end_io
= btrfs_end_bio
;
6375 bio
->bi_iter
.bi_sector
= physical
>> 9;
6376 btrfs_debug_in_rcu(fs_info
,
6377 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6378 bio_op(bio
), bio
->bi_opf
, bio
->bi_iter
.bi_sector
,
6379 (unsigned long)dev
->bdev
->bd_dev
, rcu_str_deref(dev
->name
),
6380 dev
->devid
, bio
->bi_iter
.bi_size
);
6381 bio_set_dev(bio
, dev
->bdev
);
6383 btrfs_bio_counter_inc_noblocked(fs_info
);
6385 btrfsic_submit_bio(bio
);
6388 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6390 atomic_inc(&bbio
->error
);
6391 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6392 /* Should be the original bio. */
6393 WARN_ON(bio
!= bbio
->orig_bio
);
6395 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6396 bio
->bi_iter
.bi_sector
= logical
>> 9;
6397 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6398 bio
->bi_status
= BLK_STS_IOERR
;
6400 bio
->bi_status
= BLK_STS_OK
;
6401 btrfs_end_bbio(bbio
, bio
);
6405 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6408 struct btrfs_device
*dev
;
6409 struct bio
*first_bio
= bio
;
6410 u64 logical
= bio
->bi_iter
.bi_sector
<< 9;
6416 struct btrfs_bio
*bbio
= NULL
;
6418 length
= bio
->bi_iter
.bi_size
;
6419 map_length
= length
;
6421 btrfs_bio_counter_inc_blocked(fs_info
);
6422 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6423 &map_length
, &bbio
, mirror_num
, 1);
6425 btrfs_bio_counter_dec(fs_info
);
6426 return errno_to_blk_status(ret
);
6429 total_devs
= bbio
->num_stripes
;
6430 bbio
->orig_bio
= first_bio
;
6431 bbio
->private = first_bio
->bi_private
;
6432 bbio
->end_io
= first_bio
->bi_end_io
;
6433 bbio
->fs_info
= fs_info
;
6434 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6436 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6437 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6438 /* In this case, map_length has been set to the length of
6439 a single stripe; not the whole write */
6440 if (bio_op(bio
) == REQ_OP_WRITE
) {
6441 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6444 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6445 map_length
, mirror_num
, 1);
6448 btrfs_bio_counter_dec(fs_info
);
6449 return errno_to_blk_status(ret
);
6452 if (map_length
< length
) {
6454 "mapping failed logical %llu bio len %llu len %llu",
6455 logical
, length
, map_length
);
6459 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6460 dev
= bbio
->stripes
[dev_nr
].dev
;
6461 if (!dev
|| !dev
->bdev
|| test_bit(BTRFS_DEV_STATE_MISSING
,
6463 (bio_op(first_bio
) == REQ_OP_WRITE
&&
6464 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))) {
6465 bbio_error(bbio
, first_bio
, logical
);
6469 if (dev_nr
< total_devs
- 1)
6470 bio
= btrfs_bio_clone(first_bio
);
6474 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
, dev
);
6476 btrfs_bio_counter_dec(fs_info
);
6481 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6484 * If devid and uuid are both specified, the match must be exact, otherwise
6485 * only devid is used.
6487 * If @seed is true, traverse through the seed devices.
6489 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_devices
*fs_devices
,
6490 u64 devid
, u8
*uuid
, u8
*fsid
)
6492 struct btrfs_device
*device
;
6493 struct btrfs_fs_devices
*seed_devs
;
6495 if (!fsid
|| !memcmp(fs_devices
->metadata_uuid
, fsid
, BTRFS_FSID_SIZE
)) {
6496 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6497 if (device
->devid
== devid
&&
6498 (!uuid
|| memcmp(device
->uuid
, uuid
,
6499 BTRFS_UUID_SIZE
) == 0))
6504 list_for_each_entry(seed_devs
, &fs_devices
->seed_list
, seed_list
) {
6506 !memcmp(seed_devs
->metadata_uuid
, fsid
, BTRFS_FSID_SIZE
)) {
6507 list_for_each_entry(device
, &seed_devs
->devices
,
6509 if (device
->devid
== devid
&&
6510 (!uuid
|| memcmp(device
->uuid
, uuid
,
6511 BTRFS_UUID_SIZE
) == 0))
6520 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6521 u64 devid
, u8
*dev_uuid
)
6523 struct btrfs_device
*device
;
6524 unsigned int nofs_flag
;
6527 * We call this under the chunk_mutex, so we want to use NOFS for this
6528 * allocation, however we don't want to change btrfs_alloc_device() to
6529 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6532 nofs_flag
= memalloc_nofs_save();
6533 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6534 memalloc_nofs_restore(nofs_flag
);
6538 list_add(&device
->dev_list
, &fs_devices
->devices
);
6539 device
->fs_devices
= fs_devices
;
6540 fs_devices
->num_devices
++;
6542 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6543 fs_devices
->missing_devices
++;
6549 * btrfs_alloc_device - allocate struct btrfs_device
6550 * @fs_info: used only for generating a new devid, can be NULL if
6551 * devid is provided (i.e. @devid != NULL).
6552 * @devid: a pointer to devid for this device. If NULL a new devid
6554 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6557 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6558 * on error. Returned struct is not linked onto any lists and must be
6559 * destroyed with btrfs_free_device.
6561 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6565 struct btrfs_device
*dev
;
6568 if (WARN_ON(!devid
&& !fs_info
))
6569 return ERR_PTR(-EINVAL
);
6571 dev
= __alloc_device(fs_info
);
6580 ret
= find_next_devid(fs_info
, &tmp
);
6582 btrfs_free_device(dev
);
6583 return ERR_PTR(ret
);
6589 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6591 generate_random_uuid(dev
->uuid
);
6596 static void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
,
6597 u64 devid
, u8
*uuid
, bool error
)
6600 btrfs_err_rl(fs_info
, "devid %llu uuid %pU is missing",
6603 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing",
6607 static u64
calc_stripe_length(u64 type
, u64 chunk_len
, int num_stripes
)
6609 int index
= btrfs_bg_flags_to_raid_index(type
);
6610 int ncopies
= btrfs_raid_array
[index
].ncopies
;
6611 const int nparity
= btrfs_raid_array
[index
].nparity
;
6615 data_stripes
= num_stripes
- nparity
;
6617 data_stripes
= num_stripes
/ ncopies
;
6619 return div_u64(chunk_len
, data_stripes
);
6622 static int read_one_chunk(struct btrfs_key
*key
, struct extent_buffer
*leaf
,
6623 struct btrfs_chunk
*chunk
)
6625 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
6626 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
6627 struct map_lookup
*map
;
6628 struct extent_map
*em
;
6632 u8 uuid
[BTRFS_UUID_SIZE
];
6637 logical
= key
->offset
;
6638 length
= btrfs_chunk_length(leaf
, chunk
);
6639 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6642 * Only need to verify chunk item if we're reading from sys chunk array,
6643 * as chunk item in tree block is already verified by tree-checker.
6645 if (leaf
->start
== BTRFS_SUPER_INFO_OFFSET
) {
6646 ret
= btrfs_check_chunk_valid(leaf
, chunk
, logical
);
6651 read_lock(&map_tree
->lock
);
6652 em
= lookup_extent_mapping(map_tree
, logical
, 1);
6653 read_unlock(&map_tree
->lock
);
6655 /* already mapped? */
6656 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6657 free_extent_map(em
);
6660 free_extent_map(em
);
6663 em
= alloc_extent_map();
6666 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6668 free_extent_map(em
);
6672 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6673 em
->map_lookup
= map
;
6674 em
->start
= logical
;
6677 em
->block_start
= 0;
6678 em
->block_len
= em
->len
;
6680 map
->num_stripes
= num_stripes
;
6681 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6682 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6683 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6684 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6685 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6686 map
->verified_stripes
= 0;
6687 em
->orig_block_len
= calc_stripe_length(map
->type
, em
->len
,
6689 for (i
= 0; i
< num_stripes
; i
++) {
6690 map
->stripes
[i
].physical
=
6691 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6692 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6693 read_extent_buffer(leaf
, uuid
, (unsigned long)
6694 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6696 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
->fs_devices
,
6698 if (!map
->stripes
[i
].dev
&&
6699 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6700 free_extent_map(em
);
6701 btrfs_report_missing_device(fs_info
, devid
, uuid
, true);
6704 if (!map
->stripes
[i
].dev
) {
6705 map
->stripes
[i
].dev
=
6706 add_missing_dev(fs_info
->fs_devices
, devid
,
6708 if (IS_ERR(map
->stripes
[i
].dev
)) {
6709 free_extent_map(em
);
6711 "failed to init missing dev %llu: %ld",
6712 devid
, PTR_ERR(map
->stripes
[i
].dev
));
6713 return PTR_ERR(map
->stripes
[i
].dev
);
6715 btrfs_report_missing_device(fs_info
, devid
, uuid
, false);
6717 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
6718 &(map
->stripes
[i
].dev
->dev_state
));
6722 write_lock(&map_tree
->lock
);
6723 ret
= add_extent_mapping(map_tree
, em
, 0);
6724 write_unlock(&map_tree
->lock
);
6727 "failed to add chunk map, start=%llu len=%llu: %d",
6728 em
->start
, em
->len
, ret
);
6730 free_extent_map(em
);
6735 static void fill_device_from_item(struct extent_buffer
*leaf
,
6736 struct btrfs_dev_item
*dev_item
,
6737 struct btrfs_device
*device
)
6741 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6742 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6743 device
->total_bytes
= device
->disk_total_bytes
;
6744 device
->commit_total_bytes
= device
->disk_total_bytes
;
6745 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6746 device
->commit_bytes_used
= device
->bytes_used
;
6747 device
->type
= btrfs_device_type(leaf
, dev_item
);
6748 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6749 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6750 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6751 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6752 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
6754 ptr
= btrfs_device_uuid(dev_item
);
6755 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6758 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6761 struct btrfs_fs_devices
*fs_devices
;
6764 lockdep_assert_held(&uuid_mutex
);
6767 /* This will match only for multi-device seed fs */
6768 list_for_each_entry(fs_devices
, &fs_info
->fs_devices
->seed_list
, seed_list
)
6769 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6773 fs_devices
= find_fsid(fsid
, NULL
);
6775 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6776 return ERR_PTR(-ENOENT
);
6778 fs_devices
= alloc_fs_devices(fsid
, NULL
);
6779 if (IS_ERR(fs_devices
))
6782 fs_devices
->seeding
= true;
6783 fs_devices
->opened
= 1;
6788 * Upon first call for a seed fs fsid, just create a private copy of the
6789 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6791 fs_devices
= clone_fs_devices(fs_devices
);
6792 if (IS_ERR(fs_devices
))
6795 ret
= open_fs_devices(fs_devices
, FMODE_READ
, fs_info
->bdev_holder
);
6797 free_fs_devices(fs_devices
);
6798 return ERR_PTR(ret
);
6801 if (!fs_devices
->seeding
) {
6802 close_fs_devices(fs_devices
);
6803 free_fs_devices(fs_devices
);
6804 return ERR_PTR(-EINVAL
);
6807 list_add(&fs_devices
->seed_list
, &fs_info
->fs_devices
->seed_list
);
6812 static int read_one_dev(struct extent_buffer
*leaf
,
6813 struct btrfs_dev_item
*dev_item
)
6815 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
6816 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6817 struct btrfs_device
*device
;
6820 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6821 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6823 devid
= btrfs_device_id(leaf
, dev_item
);
6824 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6826 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6829 if (memcmp(fs_uuid
, fs_devices
->metadata_uuid
, BTRFS_FSID_SIZE
)) {
6830 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6831 if (IS_ERR(fs_devices
))
6832 return PTR_ERR(fs_devices
);
6835 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
6838 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6839 btrfs_report_missing_device(fs_info
, devid
,
6844 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6845 if (IS_ERR(device
)) {
6847 "failed to add missing dev %llu: %ld",
6848 devid
, PTR_ERR(device
));
6849 return PTR_ERR(device
);
6851 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
, false);
6853 if (!device
->bdev
) {
6854 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6855 btrfs_report_missing_device(fs_info
,
6856 devid
, dev_uuid
, true);
6859 btrfs_report_missing_device(fs_info
, devid
,
6863 if (!device
->bdev
&&
6864 !test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
6866 * this happens when a device that was properly setup
6867 * in the device info lists suddenly goes bad.
6868 * device->bdev is NULL, and so we have to set
6869 * device->missing to one here
6871 device
->fs_devices
->missing_devices
++;
6872 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6875 /* Move the device to its own fs_devices */
6876 if (device
->fs_devices
!= fs_devices
) {
6877 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING
,
6878 &device
->dev_state
));
6880 list_move(&device
->dev_list
, &fs_devices
->devices
);
6881 device
->fs_devices
->num_devices
--;
6882 fs_devices
->num_devices
++;
6884 device
->fs_devices
->missing_devices
--;
6885 fs_devices
->missing_devices
++;
6887 device
->fs_devices
= fs_devices
;
6891 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6892 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
));
6893 if (device
->generation
!=
6894 btrfs_device_generation(leaf
, dev_item
))
6898 fill_device_from_item(leaf
, dev_item
, device
);
6900 u64 max_total_bytes
= i_size_read(device
->bdev
->bd_inode
);
6902 if (device
->total_bytes
> max_total_bytes
) {
6904 "device total_bytes should be at most %llu but found %llu",
6905 max_total_bytes
, device
->total_bytes
);
6909 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
6910 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
6911 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
6912 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6913 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6914 &fs_info
->free_chunk_space
);
6920 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6922 struct btrfs_root
*root
= fs_info
->tree_root
;
6923 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6924 struct extent_buffer
*sb
;
6925 struct btrfs_disk_key
*disk_key
;
6926 struct btrfs_chunk
*chunk
;
6928 unsigned long sb_array_offset
;
6935 struct btrfs_key key
;
6937 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6939 * This will create extent buffer of nodesize, superblock size is
6940 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6941 * overallocate but we can keep it as-is, only the first page is used.
6943 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
,
6944 root
->root_key
.objectid
, 0);
6947 set_extent_buffer_uptodate(sb
);
6949 * The sb extent buffer is artificial and just used to read the system array.
6950 * set_extent_buffer_uptodate() call does not properly mark all it's
6951 * pages up-to-date when the page is larger: extent does not cover the
6952 * whole page and consequently check_page_uptodate does not find all
6953 * the page's extents up-to-date (the hole beyond sb),
6954 * write_extent_buffer then triggers a WARN_ON.
6956 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6957 * but sb spans only this function. Add an explicit SetPageUptodate call
6958 * to silence the warning eg. on PowerPC 64.
6960 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6961 SetPageUptodate(sb
->pages
[0]);
6963 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6964 array_size
= btrfs_super_sys_array_size(super_copy
);
6966 array_ptr
= super_copy
->sys_chunk_array
;
6967 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6970 while (cur_offset
< array_size
) {
6971 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6972 len
= sizeof(*disk_key
);
6973 if (cur_offset
+ len
> array_size
)
6974 goto out_short_read
;
6976 btrfs_disk_key_to_cpu(&key
, disk_key
);
6979 sb_array_offset
+= len
;
6982 if (key
.type
!= BTRFS_CHUNK_ITEM_KEY
) {
6984 "unexpected item type %u in sys_array at offset %u",
6985 (u32
)key
.type
, cur_offset
);
6990 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6992 * At least one btrfs_chunk with one stripe must be present,
6993 * exact stripe count check comes afterwards
6995 len
= btrfs_chunk_item_size(1);
6996 if (cur_offset
+ len
> array_size
)
6997 goto out_short_read
;
6999 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
7002 "invalid number of stripes %u in sys_array at offset %u",
7003 num_stripes
, cur_offset
);
7008 type
= btrfs_chunk_type(sb
, chunk
);
7009 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
7011 "invalid chunk type %llu in sys_array at offset %u",
7017 len
= btrfs_chunk_item_size(num_stripes
);
7018 if (cur_offset
+ len
> array_size
)
7019 goto out_short_read
;
7021 ret
= read_one_chunk(&key
, sb
, chunk
);
7026 sb_array_offset
+= len
;
7029 clear_extent_buffer_uptodate(sb
);
7030 free_extent_buffer_stale(sb
);
7034 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
7036 clear_extent_buffer_uptodate(sb
);
7037 free_extent_buffer_stale(sb
);
7042 * Check if all chunks in the fs are OK for read-write degraded mount
7044 * If the @failing_dev is specified, it's accounted as missing.
7046 * Return true if all chunks meet the minimal RW mount requirements.
7047 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7049 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
,
7050 struct btrfs_device
*failing_dev
)
7052 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
7053 struct extent_map
*em
;
7057 read_lock(&map_tree
->lock
);
7058 em
= lookup_extent_mapping(map_tree
, 0, (u64
)-1);
7059 read_unlock(&map_tree
->lock
);
7060 /* No chunk at all? Return false anyway */
7066 struct map_lookup
*map
;
7071 map
= em
->map_lookup
;
7073 btrfs_get_num_tolerated_disk_barrier_failures(
7075 for (i
= 0; i
< map
->num_stripes
; i
++) {
7076 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
7078 if (!dev
|| !dev
->bdev
||
7079 test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) ||
7080 dev
->last_flush_error
)
7082 else if (failing_dev
&& failing_dev
== dev
)
7085 if (missing
> max_tolerated
) {
7088 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7089 em
->start
, missing
, max_tolerated
);
7090 free_extent_map(em
);
7094 next_start
= extent_map_end(em
);
7095 free_extent_map(em
);
7097 read_lock(&map_tree
->lock
);
7098 em
= lookup_extent_mapping(map_tree
, next_start
,
7099 (u64
)(-1) - next_start
);
7100 read_unlock(&map_tree
->lock
);
7106 static void readahead_tree_node_children(struct extent_buffer
*node
)
7109 const int nr_items
= btrfs_header_nritems(node
);
7111 for (i
= 0; i
< nr_items
; i
++)
7112 btrfs_readahead_node_child(node
, i
);
7115 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
7117 struct btrfs_root
*root
= fs_info
->chunk_root
;
7118 struct btrfs_path
*path
;
7119 struct extent_buffer
*leaf
;
7120 struct btrfs_key key
;
7121 struct btrfs_key found_key
;
7125 u64 last_ra_node
= 0;
7127 path
= btrfs_alloc_path();
7132 * uuid_mutex is needed only if we are mounting a sprout FS
7133 * otherwise we don't need it.
7135 mutex_lock(&uuid_mutex
);
7138 * It is possible for mount and umount to race in such a way that
7139 * we execute this code path, but open_fs_devices failed to clear
7140 * total_rw_bytes. We certainly want it cleared before reading the
7141 * device items, so clear it here.
7143 fs_info
->fs_devices
->total_rw_bytes
= 0;
7146 * Read all device items, and then all the chunk items. All
7147 * device items are found before any chunk item (their object id
7148 * is smaller than the lowest possible object id for a chunk
7149 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7151 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
7154 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7158 struct extent_buffer
*node
;
7160 leaf
= path
->nodes
[0];
7161 slot
= path
->slots
[0];
7162 if (slot
>= btrfs_header_nritems(leaf
)) {
7163 ret
= btrfs_next_leaf(root
, path
);
7171 * The nodes on level 1 are not locked but we don't need to do
7172 * that during mount time as nothing else can access the tree
7174 node
= path
->nodes
[1];
7176 if (last_ra_node
!= node
->start
) {
7177 readahead_tree_node_children(node
);
7178 last_ra_node
= node
->start
;
7181 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7182 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
7183 struct btrfs_dev_item
*dev_item
;
7184 dev_item
= btrfs_item_ptr(leaf
, slot
,
7185 struct btrfs_dev_item
);
7186 ret
= read_one_dev(leaf
, dev_item
);
7190 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
7191 struct btrfs_chunk
*chunk
;
7192 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
7193 mutex_lock(&fs_info
->chunk_mutex
);
7194 ret
= read_one_chunk(&found_key
, leaf
, chunk
);
7195 mutex_unlock(&fs_info
->chunk_mutex
);
7203 * After loading chunk tree, we've got all device information,
7204 * do another round of validation checks.
7206 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
7208 "super_num_devices %llu mismatch with num_devices %llu found here",
7209 btrfs_super_num_devices(fs_info
->super_copy
),
7214 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
7215 fs_info
->fs_devices
->total_rw_bytes
) {
7217 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7218 btrfs_super_total_bytes(fs_info
->super_copy
),
7219 fs_info
->fs_devices
->total_rw_bytes
);
7225 mutex_unlock(&uuid_mutex
);
7227 btrfs_free_path(path
);
7231 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
7233 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
, *seed_devs
;
7234 struct btrfs_device
*device
;
7236 fs_devices
->fs_info
= fs_info
;
7238 mutex_lock(&fs_devices
->device_list_mutex
);
7239 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7240 device
->fs_info
= fs_info
;
7242 list_for_each_entry(seed_devs
, &fs_devices
->seed_list
, seed_list
) {
7243 list_for_each_entry(device
, &seed_devs
->devices
, dev_list
)
7244 device
->fs_info
= fs_info
;
7246 seed_devs
->fs_info
= fs_info
;
7248 mutex_unlock(&fs_devices
->device_list_mutex
);
7251 static u64
btrfs_dev_stats_value(const struct extent_buffer
*eb
,
7252 const struct btrfs_dev_stats_item
*ptr
,
7257 read_extent_buffer(eb
, &val
,
7258 offsetof(struct btrfs_dev_stats_item
, values
) +
7259 ((unsigned long)ptr
) + (index
* sizeof(u64
)),
7264 static void btrfs_set_dev_stats_value(struct extent_buffer
*eb
,
7265 struct btrfs_dev_stats_item
*ptr
,
7268 write_extent_buffer(eb
, &val
,
7269 offsetof(struct btrfs_dev_stats_item
, values
) +
7270 ((unsigned long)ptr
) + (index
* sizeof(u64
)),
7274 static int btrfs_device_init_dev_stats(struct btrfs_device
*device
,
7275 struct btrfs_path
*path
)
7277 struct btrfs_dev_stats_item
*ptr
;
7278 struct extent_buffer
*eb
;
7279 struct btrfs_key key
;
7283 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7284 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7285 key
.offset
= device
->devid
;
7286 ret
= btrfs_search_slot(NULL
, device
->fs_info
->dev_root
, &key
, path
, 0, 0);
7288 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7289 btrfs_dev_stat_set(device
, i
, 0);
7290 device
->dev_stats_valid
= 1;
7291 btrfs_release_path(path
);
7292 return ret
< 0 ? ret
: 0;
7294 slot
= path
->slots
[0];
7295 eb
= path
->nodes
[0];
7296 item_size
= btrfs_item_size_nr(eb
, slot
);
7298 ptr
= btrfs_item_ptr(eb
, slot
, struct btrfs_dev_stats_item
);
7300 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7301 if (item_size
>= (1 + i
) * sizeof(__le64
))
7302 btrfs_dev_stat_set(device
, i
,
7303 btrfs_dev_stats_value(eb
, ptr
, i
));
7305 btrfs_dev_stat_set(device
, i
, 0);
7308 device
->dev_stats_valid
= 1;
7309 btrfs_dev_stat_print_on_load(device
);
7310 btrfs_release_path(path
);
7315 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7317 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
, *seed_devs
;
7318 struct btrfs_device
*device
;
7319 struct btrfs_path
*path
= NULL
;
7322 path
= btrfs_alloc_path();
7326 mutex_lock(&fs_devices
->device_list_mutex
);
7327 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7328 ret
= btrfs_device_init_dev_stats(device
, path
);
7332 list_for_each_entry(seed_devs
, &fs_devices
->seed_list
, seed_list
) {
7333 list_for_each_entry(device
, &seed_devs
->devices
, dev_list
) {
7334 ret
= btrfs_device_init_dev_stats(device
, path
);
7340 mutex_unlock(&fs_devices
->device_list_mutex
);
7342 btrfs_free_path(path
);
7346 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7347 struct btrfs_device
*device
)
7349 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7350 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7351 struct btrfs_path
*path
;
7352 struct btrfs_key key
;
7353 struct extent_buffer
*eb
;
7354 struct btrfs_dev_stats_item
*ptr
;
7358 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7359 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7360 key
.offset
= device
->devid
;
7362 path
= btrfs_alloc_path();
7365 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7367 btrfs_warn_in_rcu(fs_info
,
7368 "error %d while searching for dev_stats item for device %s",
7369 ret
, rcu_str_deref(device
->name
));
7374 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7375 /* need to delete old one and insert a new one */
7376 ret
= btrfs_del_item(trans
, dev_root
, path
);
7378 btrfs_warn_in_rcu(fs_info
,
7379 "delete too small dev_stats item for device %s failed %d",
7380 rcu_str_deref(device
->name
), ret
);
7387 /* need to insert a new item */
7388 btrfs_release_path(path
);
7389 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7390 &key
, sizeof(*ptr
));
7392 btrfs_warn_in_rcu(fs_info
,
7393 "insert dev_stats item for device %s failed %d",
7394 rcu_str_deref(device
->name
), ret
);
7399 eb
= path
->nodes
[0];
7400 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7401 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7402 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7403 btrfs_dev_stat_read(device
, i
));
7404 btrfs_mark_buffer_dirty(eb
);
7407 btrfs_free_path(path
);
7412 * called from commit_transaction. Writes all changed device stats to disk.
7414 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
)
7416 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7417 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7418 struct btrfs_device
*device
;
7422 mutex_lock(&fs_devices
->device_list_mutex
);
7423 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7424 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7425 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7430 * There is a LOAD-LOAD control dependency between the value of
7431 * dev_stats_ccnt and updating the on-disk values which requires
7432 * reading the in-memory counters. Such control dependencies
7433 * require explicit read memory barriers.
7435 * This memory barriers pairs with smp_mb__before_atomic in
7436 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7437 * barrier implied by atomic_xchg in
7438 * btrfs_dev_stats_read_and_reset
7442 ret
= update_dev_stat_item(trans
, device
);
7444 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7446 mutex_unlock(&fs_devices
->device_list_mutex
);
7451 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7453 btrfs_dev_stat_inc(dev
, index
);
7454 btrfs_dev_stat_print_on_error(dev
);
7457 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7459 if (!dev
->dev_stats_valid
)
7461 btrfs_err_rl_in_rcu(dev
->fs_info
,
7462 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7463 rcu_str_deref(dev
->name
),
7464 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7465 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7466 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7467 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7468 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7471 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7475 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7476 if (btrfs_dev_stat_read(dev
, i
) != 0)
7478 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7479 return; /* all values == 0, suppress message */
7481 btrfs_info_in_rcu(dev
->fs_info
,
7482 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7483 rcu_str_deref(dev
->name
),
7484 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7485 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7486 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7487 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7488 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7491 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7492 struct btrfs_ioctl_get_dev_stats
*stats
)
7494 struct btrfs_device
*dev
;
7495 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7498 mutex_lock(&fs_devices
->device_list_mutex
);
7499 dev
= btrfs_find_device(fs_info
->fs_devices
, stats
->devid
, NULL
, NULL
);
7500 mutex_unlock(&fs_devices
->device_list_mutex
);
7503 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7505 } else if (!dev
->dev_stats_valid
) {
7506 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7508 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7509 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7510 if (stats
->nr_items
> i
)
7512 btrfs_dev_stat_read_and_reset(dev
, i
);
7514 btrfs_dev_stat_set(dev
, i
, 0);
7516 btrfs_info(fs_info
, "device stats zeroed by %s (%d)",
7517 current
->comm
, task_pid_nr(current
));
7519 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7520 if (stats
->nr_items
> i
)
7521 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7523 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7524 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7529 * Update the size and bytes used for each device where it changed. This is
7530 * delayed since we would otherwise get errors while writing out the
7533 * Must be invoked during transaction commit.
7535 void btrfs_commit_device_sizes(struct btrfs_transaction
*trans
)
7537 struct btrfs_device
*curr
, *next
;
7539 ASSERT(trans
->state
== TRANS_STATE_COMMIT_DOING
);
7541 if (list_empty(&trans
->dev_update_list
))
7545 * We don't need the device_list_mutex here. This list is owned by the
7546 * transaction and the transaction must complete before the device is
7549 mutex_lock(&trans
->fs_info
->chunk_mutex
);
7550 list_for_each_entry_safe(curr
, next
, &trans
->dev_update_list
,
7552 list_del_init(&curr
->post_commit_list
);
7553 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7554 curr
->commit_bytes_used
= curr
->bytes_used
;
7556 mutex_unlock(&trans
->fs_info
->chunk_mutex
);
7560 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7562 int btrfs_bg_type_to_factor(u64 flags
)
7564 const int index
= btrfs_bg_flags_to_raid_index(flags
);
7566 return btrfs_raid_array
[index
].ncopies
;
7571 static int verify_one_dev_extent(struct btrfs_fs_info
*fs_info
,
7572 u64 chunk_offset
, u64 devid
,
7573 u64 physical_offset
, u64 physical_len
)
7575 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
;
7576 struct extent_map
*em
;
7577 struct map_lookup
*map
;
7578 struct btrfs_device
*dev
;
7584 read_lock(&em_tree
->lock
);
7585 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
7586 read_unlock(&em_tree
->lock
);
7590 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7591 physical_offset
, devid
);
7596 map
= em
->map_lookup
;
7597 stripe_len
= calc_stripe_length(map
->type
, em
->len
, map
->num_stripes
);
7598 if (physical_len
!= stripe_len
) {
7600 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7601 physical_offset
, devid
, em
->start
, physical_len
,
7607 for (i
= 0; i
< map
->num_stripes
; i
++) {
7608 if (map
->stripes
[i
].dev
->devid
== devid
&&
7609 map
->stripes
[i
].physical
== physical_offset
) {
7611 if (map
->verified_stripes
>= map
->num_stripes
) {
7613 "too many dev extents for chunk %llu found",
7618 map
->verified_stripes
++;
7624 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7625 physical_offset
, devid
);
7629 /* Make sure no dev extent is beyond device bondary */
7630 dev
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
, NULL
);
7632 btrfs_err(fs_info
, "failed to find devid %llu", devid
);
7637 if (physical_offset
+ physical_len
> dev
->disk_total_bytes
) {
7639 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7640 devid
, physical_offset
, physical_len
,
7641 dev
->disk_total_bytes
);
7646 free_extent_map(em
);
7650 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info
*fs_info
)
7652 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
;
7653 struct extent_map
*em
;
7654 struct rb_node
*node
;
7657 read_lock(&em_tree
->lock
);
7658 for (node
= rb_first_cached(&em_tree
->map
); node
; node
= rb_next(node
)) {
7659 em
= rb_entry(node
, struct extent_map
, rb_node
);
7660 if (em
->map_lookup
->num_stripes
!=
7661 em
->map_lookup
->verified_stripes
) {
7663 "chunk %llu has missing dev extent, have %d expect %d",
7664 em
->start
, em
->map_lookup
->verified_stripes
,
7665 em
->map_lookup
->num_stripes
);
7671 read_unlock(&em_tree
->lock
);
7676 * Ensure that all dev extents are mapped to correct chunk, otherwise
7677 * later chunk allocation/free would cause unexpected behavior.
7679 * NOTE: This will iterate through the whole device tree, which should be of
7680 * the same size level as the chunk tree. This slightly increases mount time.
7682 int btrfs_verify_dev_extents(struct btrfs_fs_info
*fs_info
)
7684 struct btrfs_path
*path
;
7685 struct btrfs_root
*root
= fs_info
->dev_root
;
7686 struct btrfs_key key
;
7688 u64 prev_dev_ext_end
= 0;
7692 * We don't have a dev_root because we mounted with ignorebadroots and
7693 * failed to load the root, so we want to skip the verification in this
7696 * However if the dev root is fine, but the tree itself is corrupted
7697 * we'd still fail to mount. This verification is only to make sure
7698 * writes can happen safely, so instead just bypass this check
7699 * completely in the case of IGNOREBADROOTS.
7701 if (btrfs_test_opt(fs_info
, IGNOREBADROOTS
))
7705 key
.type
= BTRFS_DEV_EXTENT_KEY
;
7708 path
= btrfs_alloc_path();
7712 path
->reada
= READA_FORWARD
;
7713 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7717 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
7718 ret
= btrfs_next_item(root
, path
);
7721 /* No dev extents at all? Not good */
7728 struct extent_buffer
*leaf
= path
->nodes
[0];
7729 struct btrfs_dev_extent
*dext
;
7730 int slot
= path
->slots
[0];
7732 u64 physical_offset
;
7736 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7737 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
7739 devid
= key
.objectid
;
7740 physical_offset
= key
.offset
;
7742 dext
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dev_extent
);
7743 chunk_offset
= btrfs_dev_extent_chunk_offset(leaf
, dext
);
7744 physical_len
= btrfs_dev_extent_length(leaf
, dext
);
7746 /* Check if this dev extent overlaps with the previous one */
7747 if (devid
== prev_devid
&& physical_offset
< prev_dev_ext_end
) {
7749 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7750 devid
, physical_offset
, prev_dev_ext_end
);
7755 ret
= verify_one_dev_extent(fs_info
, chunk_offset
, devid
,
7756 physical_offset
, physical_len
);
7760 prev_dev_ext_end
= physical_offset
+ physical_len
;
7762 ret
= btrfs_next_item(root
, path
);
7771 /* Ensure all chunks have corresponding dev extents */
7772 ret
= verify_chunk_dev_extent_mapping(fs_info
);
7774 btrfs_free_path(path
);
7779 * Check whether the given block group or device is pinned by any inode being
7780 * used as a swapfile.
7782 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info
*fs_info
, void *ptr
)
7784 struct btrfs_swapfile_pin
*sp
;
7785 struct rb_node
*node
;
7787 spin_lock(&fs_info
->swapfile_pins_lock
);
7788 node
= fs_info
->swapfile_pins
.rb_node
;
7790 sp
= rb_entry(node
, struct btrfs_swapfile_pin
, node
);
7792 node
= node
->rb_left
;
7793 else if (ptr
> sp
->ptr
)
7794 node
= node
->rb_right
;
7798 spin_unlock(&fs_info
->swapfile_pins_lock
);
7799 return node
!= NULL
;