1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
73 #include <trace/events/task.h>
76 #include <trace/events/sched.h>
78 static int bprm_creds_from_file(struct linux_binprm
*bprm
);
80 int suid_dumpable
= 0;
82 static LIST_HEAD(formats
);
83 static DEFINE_RWLOCK(binfmt_lock
);
85 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
88 if (WARN_ON(!fmt
->load_binary
))
90 write_lock(&binfmt_lock
);
91 insert
? list_add(&fmt
->lh
, &formats
) :
92 list_add_tail(&fmt
->lh
, &formats
);
93 write_unlock(&binfmt_lock
);
96 EXPORT_SYMBOL(__register_binfmt
);
98 void unregister_binfmt(struct linux_binfmt
* fmt
)
100 write_lock(&binfmt_lock
);
102 write_unlock(&binfmt_lock
);
105 EXPORT_SYMBOL(unregister_binfmt
);
107 static inline void put_binfmt(struct linux_binfmt
* fmt
)
109 module_put(fmt
->module
);
112 bool path_noexec(const struct path
*path
)
114 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
115 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
120 * Note that a shared library must be both readable and executable due to
123 * Also note that we take the address to load from from the file itself.
125 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
127 struct linux_binfmt
*fmt
;
129 struct filename
*tmp
= getname(library
);
130 int error
= PTR_ERR(tmp
);
131 static const struct open_flags uselib_flags
= {
132 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
133 .acc_mode
= MAY_READ
| MAY_EXEC
,
134 .intent
= LOOKUP_OPEN
,
135 .lookup_flags
= LOOKUP_FOLLOW
,
141 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
143 error
= PTR_ERR(file
);
148 * may_open() has already checked for this, so it should be
149 * impossible to trip now. But we need to be extra cautious
150 * and check again at the very end too.
153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
) ||
154 path_noexec(&file
->f_path
)))
161 read_lock(&binfmt_lock
);
162 list_for_each_entry(fmt
, &formats
, lh
) {
163 if (!fmt
->load_shlib
)
165 if (!try_module_get(fmt
->module
))
167 read_unlock(&binfmt_lock
);
168 error
= fmt
->load_shlib(file
);
169 read_lock(&binfmt_lock
);
171 if (error
!= -ENOEXEC
)
174 read_unlock(&binfmt_lock
);
180 #endif /* #ifdef CONFIG_USELIB */
184 * The nascent bprm->mm is not visible until exec_mmap() but it can
185 * use a lot of memory, account these pages in current->mm temporary
186 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
187 * change the counter back via acct_arg_size(0).
189 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
191 struct mm_struct
*mm
= current
->mm
;
192 long diff
= (long)(pages
- bprm
->vma_pages
);
197 bprm
->vma_pages
= pages
;
198 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
201 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
206 unsigned int gup_flags
= FOLL_FORCE
;
208 #ifdef CONFIG_STACK_GROWSUP
210 ret
= expand_downwards(bprm
->vma
, pos
);
217 gup_flags
|= FOLL_WRITE
;
220 * We are doing an exec(). 'current' is the process
221 * doing the exec and bprm->mm is the new process's mm.
223 ret
= get_user_pages_remote(bprm
->mm
, pos
, 1, gup_flags
,
229 acct_arg_size(bprm
, vma_pages(bprm
->vma
));
234 static void put_arg_page(struct page
*page
)
239 static void free_arg_pages(struct linux_binprm
*bprm
)
243 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
246 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
249 static int __bprm_mm_init(struct linux_binprm
*bprm
)
252 struct vm_area_struct
*vma
= NULL
;
253 struct mm_struct
*mm
= bprm
->mm
;
255 bprm
->vma
= vma
= vm_area_alloc(mm
);
258 vma_set_anonymous(vma
);
260 if (mmap_write_lock_killable(mm
)) {
266 * Place the stack at the largest stack address the architecture
267 * supports. Later, we'll move this to an appropriate place. We don't
268 * use STACK_TOP because that can depend on attributes which aren't
271 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
272 vma
->vm_end
= STACK_TOP_MAX
;
273 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
274 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
275 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
277 err
= insert_vm_struct(mm
, vma
);
281 mm
->stack_vm
= mm
->total_vm
= 1;
282 mmap_write_unlock(mm
);
283 bprm
->p
= vma
->vm_end
- sizeof(void *);
286 mmap_write_unlock(mm
);
293 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
295 return len
<= MAX_ARG_STRLEN
;
300 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
304 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
309 page
= bprm
->page
[pos
/ PAGE_SIZE
];
310 if (!page
&& write
) {
311 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
314 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
320 static void put_arg_page(struct page
*page
)
324 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
327 __free_page(bprm
->page
[i
]);
328 bprm
->page
[i
] = NULL
;
332 static void free_arg_pages(struct linux_binprm
*bprm
)
336 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
337 free_arg_page(bprm
, i
);
340 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
345 static int __bprm_mm_init(struct linux_binprm
*bprm
)
347 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
351 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
353 return len
<= bprm
->p
;
356 #endif /* CONFIG_MMU */
359 * Create a new mm_struct and populate it with a temporary stack
360 * vm_area_struct. We don't have enough context at this point to set the stack
361 * flags, permissions, and offset, so we use temporary values. We'll update
362 * them later in setup_arg_pages().
364 static int bprm_mm_init(struct linux_binprm
*bprm
)
367 struct mm_struct
*mm
= NULL
;
369 bprm
->mm
= mm
= mm_alloc();
374 /* Save current stack limit for all calculations made during exec. */
375 task_lock(current
->group_leader
);
376 bprm
->rlim_stack
= current
->signal
->rlim
[RLIMIT_STACK
];
377 task_unlock(current
->group_leader
);
379 err
= __bprm_mm_init(bprm
);
394 struct user_arg_ptr
{
399 const char __user
*const __user
*native
;
401 const compat_uptr_t __user
*compat
;
406 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
408 const char __user
*native
;
411 if (unlikely(argv
.is_compat
)) {
412 compat_uptr_t compat
;
414 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
415 return ERR_PTR(-EFAULT
);
417 return compat_ptr(compat
);
421 if (get_user(native
, argv
.ptr
.native
+ nr
))
422 return ERR_PTR(-EFAULT
);
428 * count() counts the number of strings in array ARGV.
430 static int count(struct user_arg_ptr argv
, int max
)
434 if (argv
.ptr
.native
!= NULL
) {
436 const char __user
*p
= get_user_arg_ptr(argv
, i
);
448 if (fatal_signal_pending(current
))
449 return -ERESTARTNOHAND
;
456 static int count_strings_kernel(const char *const *argv
)
463 for (i
= 0; argv
[i
]; ++i
) {
464 if (i
>= MAX_ARG_STRINGS
)
466 if (fatal_signal_pending(current
))
467 return -ERESTARTNOHAND
;
473 static int bprm_stack_limits(struct linux_binprm
*bprm
)
475 unsigned long limit
, ptr_size
;
478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479 * (whichever is smaller) for the argv+env strings.
481 * - the remaining binfmt code will not run out of stack space,
482 * - the program will have a reasonable amount of stack left
485 limit
= _STK_LIM
/ 4 * 3;
486 limit
= min(limit
, bprm
->rlim_stack
.rlim_cur
/ 4);
488 * We've historically supported up to 32 pages (ARG_MAX)
489 * of argument strings even with small stacks
491 limit
= max_t(unsigned long, limit
, ARG_MAX
);
493 * We must account for the size of all the argv and envp pointers to
494 * the argv and envp strings, since they will also take up space in
495 * the stack. They aren't stored until much later when we can't
496 * signal to the parent that the child has run out of stack space.
497 * Instead, calculate it here so it's possible to fail gracefully.
499 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
500 if (limit
<= ptr_size
)
504 bprm
->argmin
= bprm
->p
- limit
;
509 * 'copy_strings()' copies argument/environment strings from the old
510 * processes's memory to the new process's stack. The call to get_user_pages()
511 * ensures the destination page is created and not swapped out.
513 static int copy_strings(int argc
, struct user_arg_ptr argv
,
514 struct linux_binprm
*bprm
)
516 struct page
*kmapped_page
= NULL
;
518 unsigned long kpos
= 0;
522 const char __user
*str
;
527 str
= get_user_arg_ptr(argv
, argc
);
531 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
536 if (!valid_arg_len(bprm
, len
))
539 /* We're going to work our way backwords. */
544 if (bprm
->p
< bprm
->argmin
)
549 int offset
, bytes_to_copy
;
551 if (fatal_signal_pending(current
)) {
552 ret
= -ERESTARTNOHAND
;
557 offset
= pos
% PAGE_SIZE
;
561 bytes_to_copy
= offset
;
562 if (bytes_to_copy
> len
)
565 offset
-= bytes_to_copy
;
566 pos
-= bytes_to_copy
;
567 str
-= bytes_to_copy
;
568 len
-= bytes_to_copy
;
570 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
573 page
= get_arg_page(bprm
, pos
, 1);
580 flush_kernel_dcache_page(kmapped_page
);
581 kunmap(kmapped_page
);
582 put_arg_page(kmapped_page
);
585 kaddr
= kmap(kmapped_page
);
586 kpos
= pos
& PAGE_MASK
;
587 flush_arg_page(bprm
, kpos
, kmapped_page
);
589 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
598 flush_kernel_dcache_page(kmapped_page
);
599 kunmap(kmapped_page
);
600 put_arg_page(kmapped_page
);
606 * Copy and argument/environment string from the kernel to the processes stack.
608 int copy_string_kernel(const char *arg
, struct linux_binprm
*bprm
)
610 int len
= strnlen(arg
, MAX_ARG_STRLEN
) + 1 /* terminating NUL */;
611 unsigned long pos
= bprm
->p
;
615 if (!valid_arg_len(bprm
, len
))
618 /* We're going to work our way backwards. */
621 if (IS_ENABLED(CONFIG_MMU
) && bprm
->p
< bprm
->argmin
)
625 unsigned int bytes_to_copy
= min_t(unsigned int, len
,
626 min_not_zero(offset_in_page(pos
), PAGE_SIZE
));
630 pos
-= bytes_to_copy
;
631 arg
-= bytes_to_copy
;
632 len
-= bytes_to_copy
;
634 page
= get_arg_page(bprm
, pos
, 1);
637 kaddr
= kmap_atomic(page
);
638 flush_arg_page(bprm
, pos
& PAGE_MASK
, page
);
639 memcpy(kaddr
+ offset_in_page(pos
), arg
, bytes_to_copy
);
640 flush_kernel_dcache_page(page
);
641 kunmap_atomic(kaddr
);
647 EXPORT_SYMBOL(copy_string_kernel
);
649 static int copy_strings_kernel(int argc
, const char *const *argv
,
650 struct linux_binprm
*bprm
)
653 int ret
= copy_string_kernel(argv
[argc
], bprm
);
656 if (fatal_signal_pending(current
))
657 return -ERESTARTNOHAND
;
666 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
667 * the binfmt code determines where the new stack should reside, we shift it to
668 * its final location. The process proceeds as follows:
670 * 1) Use shift to calculate the new vma endpoints.
671 * 2) Extend vma to cover both the old and new ranges. This ensures the
672 * arguments passed to subsequent functions are consistent.
673 * 3) Move vma's page tables to the new range.
674 * 4) Free up any cleared pgd range.
675 * 5) Shrink the vma to cover only the new range.
677 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
679 struct mm_struct
*mm
= vma
->vm_mm
;
680 unsigned long old_start
= vma
->vm_start
;
681 unsigned long old_end
= vma
->vm_end
;
682 unsigned long length
= old_end
- old_start
;
683 unsigned long new_start
= old_start
- shift
;
684 unsigned long new_end
= old_end
- shift
;
685 struct mmu_gather tlb
;
687 BUG_ON(new_start
> new_end
);
690 * ensure there are no vmas between where we want to go
693 if (vma
!= find_vma(mm
, new_start
))
697 * cover the whole range: [new_start, old_end)
699 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
703 * move the page tables downwards, on failure we rely on
704 * process cleanup to remove whatever mess we made.
706 if (length
!= move_page_tables(vma
, old_start
,
707 vma
, new_start
, length
, false))
711 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
712 if (new_end
> old_start
) {
714 * when the old and new regions overlap clear from new_end.
716 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
717 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
720 * otherwise, clean from old_start; this is done to not touch
721 * the address space in [new_end, old_start) some architectures
722 * have constraints on va-space that make this illegal (IA64) -
723 * for the others its just a little faster.
725 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
726 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
728 tlb_finish_mmu(&tlb
, old_start
, old_end
);
731 * Shrink the vma to just the new range. Always succeeds.
733 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
739 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
740 * the stack is optionally relocated, and some extra space is added.
742 int setup_arg_pages(struct linux_binprm
*bprm
,
743 unsigned long stack_top
,
744 int executable_stack
)
747 unsigned long stack_shift
;
748 struct mm_struct
*mm
= current
->mm
;
749 struct vm_area_struct
*vma
= bprm
->vma
;
750 struct vm_area_struct
*prev
= NULL
;
751 unsigned long vm_flags
;
752 unsigned long stack_base
;
753 unsigned long stack_size
;
754 unsigned long stack_expand
;
755 unsigned long rlim_stack
;
757 #ifdef CONFIG_STACK_GROWSUP
758 /* Limit stack size */
759 stack_base
= bprm
->rlim_stack
.rlim_max
;
761 stack_base
= calc_max_stack_size(stack_base
);
763 /* Add space for stack randomization. */
764 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
766 /* Make sure we didn't let the argument array grow too large. */
767 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
770 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
772 stack_shift
= vma
->vm_start
- stack_base
;
773 mm
->arg_start
= bprm
->p
- stack_shift
;
774 bprm
->p
= vma
->vm_end
- stack_shift
;
776 stack_top
= arch_align_stack(stack_top
);
777 stack_top
= PAGE_ALIGN(stack_top
);
779 if (unlikely(stack_top
< mmap_min_addr
) ||
780 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
783 stack_shift
= vma
->vm_end
- stack_top
;
785 bprm
->p
-= stack_shift
;
786 mm
->arg_start
= bprm
->p
;
790 bprm
->loader
-= stack_shift
;
791 bprm
->exec
-= stack_shift
;
793 if (mmap_write_lock_killable(mm
))
796 vm_flags
= VM_STACK_FLAGS
;
799 * Adjust stack execute permissions; explicitly enable for
800 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
801 * (arch default) otherwise.
803 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
805 else if (executable_stack
== EXSTACK_DISABLE_X
)
806 vm_flags
&= ~VM_EXEC
;
807 vm_flags
|= mm
->def_flags
;
808 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
810 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
816 if (unlikely(vm_flags
& VM_EXEC
)) {
817 pr_warn_once("process '%pD4' started with executable stack\n",
821 /* Move stack pages down in memory. */
823 ret
= shift_arg_pages(vma
, stack_shift
);
828 /* mprotect_fixup is overkill to remove the temporary stack flags */
829 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
831 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
832 stack_size
= vma
->vm_end
- vma
->vm_start
;
834 * Align this down to a page boundary as expand_stack
837 rlim_stack
= bprm
->rlim_stack
.rlim_cur
& PAGE_MASK
;
838 #ifdef CONFIG_STACK_GROWSUP
839 if (stack_size
+ stack_expand
> rlim_stack
)
840 stack_base
= vma
->vm_start
+ rlim_stack
;
842 stack_base
= vma
->vm_end
+ stack_expand
;
844 if (stack_size
+ stack_expand
> rlim_stack
)
845 stack_base
= vma
->vm_end
- rlim_stack
;
847 stack_base
= vma
->vm_start
- stack_expand
;
849 current
->mm
->start_stack
= bprm
->p
;
850 ret
= expand_stack(vma
, stack_base
);
855 mmap_write_unlock(mm
);
858 EXPORT_SYMBOL(setup_arg_pages
);
863 * Transfer the program arguments and environment from the holding pages
864 * onto the stack. The provided stack pointer is adjusted accordingly.
866 int transfer_args_to_stack(struct linux_binprm
*bprm
,
867 unsigned long *sp_location
)
869 unsigned long index
, stop
, sp
;
872 stop
= bprm
->p
>> PAGE_SHIFT
;
875 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
876 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
877 char *src
= kmap(bprm
->page
[index
]) + offset
;
878 sp
-= PAGE_SIZE
- offset
;
879 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
881 kunmap(bprm
->page
[index
]);
891 EXPORT_SYMBOL(transfer_args_to_stack
);
893 #endif /* CONFIG_MMU */
895 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
899 struct open_flags open_exec_flags
= {
900 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
901 .acc_mode
= MAY_EXEC
,
902 .intent
= LOOKUP_OPEN
,
903 .lookup_flags
= LOOKUP_FOLLOW
,
906 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
907 return ERR_PTR(-EINVAL
);
908 if (flags
& AT_SYMLINK_NOFOLLOW
)
909 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
910 if (flags
& AT_EMPTY_PATH
)
911 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
913 file
= do_filp_open(fd
, name
, &open_exec_flags
);
918 * may_open() has already checked for this, so it should be
919 * impossible to trip now. But we need to be extra cautious
920 * and check again at the very end too.
923 if (WARN_ON_ONCE(!S_ISREG(file_inode(file
)->i_mode
) ||
924 path_noexec(&file
->f_path
)))
927 err
= deny_write_access(file
);
931 if (name
->name
[0] != '\0')
942 struct file
*open_exec(const char *name
)
944 struct filename
*filename
= getname_kernel(name
);
945 struct file
*f
= ERR_CAST(filename
);
947 if (!IS_ERR(filename
)) {
948 f
= do_open_execat(AT_FDCWD
, filename
, 0);
953 EXPORT_SYMBOL(open_exec
);
955 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
956 defined(CONFIG_BINFMT_ELF_FDPIC)
957 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
959 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
961 flush_icache_user_range(addr
, addr
+ len
);
964 EXPORT_SYMBOL(read_code
);
968 * Maps the mm_struct mm into the current task struct.
969 * On success, this function returns with exec_update_lock
972 static int exec_mmap(struct mm_struct
*mm
)
974 struct task_struct
*tsk
;
975 struct mm_struct
*old_mm
, *active_mm
;
978 /* Notify parent that we're no longer interested in the old VM */
980 old_mm
= current
->mm
;
981 exec_mm_release(tsk
, old_mm
);
985 ret
= down_write_killable(&tsk
->signal
->exec_update_lock
);
991 * Make sure that if there is a core dump in progress
992 * for the old mm, we get out and die instead of going
993 * through with the exec. We must hold mmap_lock around
994 * checking core_state and changing tsk->mm.
996 mmap_read_lock(old_mm
);
997 if (unlikely(old_mm
->core_state
)) {
998 mmap_read_unlock(old_mm
);
999 up_write(&tsk
->signal
->exec_update_lock
);
1005 membarrier_exec_mmap(mm
);
1007 local_irq_disable();
1008 active_mm
= tsk
->active_mm
;
1009 tsk
->active_mm
= mm
;
1012 * This prevents preemption while active_mm is being loaded and
1013 * it and mm are being updated, which could cause problems for
1014 * lazy tlb mm refcounting when these are updated by context
1015 * switches. Not all architectures can handle irqs off over
1018 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1020 activate_mm(active_mm
, mm
);
1021 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM
))
1023 tsk
->mm
->vmacache_seqnum
= 0;
1024 vmacache_flush(tsk
);
1027 mmap_read_unlock(old_mm
);
1028 BUG_ON(active_mm
!= old_mm
);
1029 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1030 mm_update_next_owner(old_mm
);
1038 static int de_thread(struct task_struct
*tsk
)
1040 struct signal_struct
*sig
= tsk
->signal
;
1041 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1042 spinlock_t
*lock
= &oldsighand
->siglock
;
1044 if (thread_group_empty(tsk
))
1045 goto no_thread_group
;
1048 * Kill all other threads in the thread group.
1050 spin_lock_irq(lock
);
1051 if (signal_group_exit(sig
)) {
1053 * Another group action in progress, just
1054 * return so that the signal is processed.
1056 spin_unlock_irq(lock
);
1060 sig
->group_exit_task
= tsk
;
1061 sig
->notify_count
= zap_other_threads(tsk
);
1062 if (!thread_group_leader(tsk
))
1063 sig
->notify_count
--;
1065 while (sig
->notify_count
) {
1066 __set_current_state(TASK_KILLABLE
);
1067 spin_unlock_irq(lock
);
1069 if (__fatal_signal_pending(tsk
))
1071 spin_lock_irq(lock
);
1073 spin_unlock_irq(lock
);
1076 * At this point all other threads have exited, all we have to
1077 * do is to wait for the thread group leader to become inactive,
1078 * and to assume its PID:
1080 if (!thread_group_leader(tsk
)) {
1081 struct task_struct
*leader
= tsk
->group_leader
;
1084 cgroup_threadgroup_change_begin(tsk
);
1085 write_lock_irq(&tasklist_lock
);
1087 * Do this under tasklist_lock to ensure that
1088 * exit_notify() can't miss ->group_exit_task
1090 sig
->notify_count
= -1;
1091 if (likely(leader
->exit_state
))
1093 __set_current_state(TASK_KILLABLE
);
1094 write_unlock_irq(&tasklist_lock
);
1095 cgroup_threadgroup_change_end(tsk
);
1097 if (__fatal_signal_pending(tsk
))
1102 * The only record we have of the real-time age of a
1103 * process, regardless of execs it's done, is start_time.
1104 * All the past CPU time is accumulated in signal_struct
1105 * from sister threads now dead. But in this non-leader
1106 * exec, nothing survives from the original leader thread,
1107 * whose birth marks the true age of this process now.
1108 * When we take on its identity by switching to its PID, we
1109 * also take its birthdate (always earlier than our own).
1111 tsk
->start_time
= leader
->start_time
;
1112 tsk
->start_boottime
= leader
->start_boottime
;
1114 BUG_ON(!same_thread_group(leader
, tsk
));
1116 * An exec() starts a new thread group with the
1117 * TGID of the previous thread group. Rehash the
1118 * two threads with a switched PID, and release
1119 * the former thread group leader:
1122 /* Become a process group leader with the old leader's pid.
1123 * The old leader becomes a thread of the this thread group.
1125 exchange_tids(tsk
, leader
);
1126 transfer_pid(leader
, tsk
, PIDTYPE_TGID
);
1127 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1128 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1130 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1131 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1133 tsk
->group_leader
= tsk
;
1134 leader
->group_leader
= tsk
;
1136 tsk
->exit_signal
= SIGCHLD
;
1137 leader
->exit_signal
= -1;
1139 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1140 leader
->exit_state
= EXIT_DEAD
;
1143 * We are going to release_task()->ptrace_unlink() silently,
1144 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1145 * the tracer wont't block again waiting for this thread.
1147 if (unlikely(leader
->ptrace
))
1148 __wake_up_parent(leader
, leader
->parent
);
1149 write_unlock_irq(&tasklist_lock
);
1150 cgroup_threadgroup_change_end(tsk
);
1152 release_task(leader
);
1155 sig
->group_exit_task
= NULL
;
1156 sig
->notify_count
= 0;
1159 /* we have changed execution domain */
1160 tsk
->exit_signal
= SIGCHLD
;
1162 BUG_ON(!thread_group_leader(tsk
));
1166 /* protects against exit_notify() and __exit_signal() */
1167 read_lock(&tasklist_lock
);
1168 sig
->group_exit_task
= NULL
;
1169 sig
->notify_count
= 0;
1170 read_unlock(&tasklist_lock
);
1176 * This function makes sure the current process has its own signal table,
1177 * so that flush_signal_handlers can later reset the handlers without
1178 * disturbing other processes. (Other processes might share the signal
1179 * table via the CLONE_SIGHAND option to clone().)
1181 static int unshare_sighand(struct task_struct
*me
)
1183 struct sighand_struct
*oldsighand
= me
->sighand
;
1185 if (refcount_read(&oldsighand
->count
) != 1) {
1186 struct sighand_struct
*newsighand
;
1188 * This ->sighand is shared with the CLONE_SIGHAND
1189 * but not CLONE_THREAD task, switch to the new one.
1191 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1195 refcount_set(&newsighand
->count
, 1);
1196 memcpy(newsighand
->action
, oldsighand
->action
,
1197 sizeof(newsighand
->action
));
1199 write_lock_irq(&tasklist_lock
);
1200 spin_lock(&oldsighand
->siglock
);
1201 rcu_assign_pointer(me
->sighand
, newsighand
);
1202 spin_unlock(&oldsighand
->siglock
);
1203 write_unlock_irq(&tasklist_lock
);
1205 __cleanup_sighand(oldsighand
);
1210 char *__get_task_comm(char *buf
, size_t buf_size
, struct task_struct
*tsk
)
1213 strncpy(buf
, tsk
->comm
, buf_size
);
1217 EXPORT_SYMBOL_GPL(__get_task_comm
);
1220 * These functions flushes out all traces of the currently running executable
1221 * so that a new one can be started
1224 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1227 trace_task_rename(tsk
, buf
);
1228 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1230 perf_event_comm(tsk
, exec
);
1234 * Calling this is the point of no return. None of the failures will be
1235 * seen by userspace since either the process is already taking a fatal
1236 * signal (via de_thread() or coredump), or will have SEGV raised
1237 * (after exec_mmap()) by search_binary_handler (see below).
1239 int begin_new_exec(struct linux_binprm
* bprm
)
1241 struct task_struct
*me
= current
;
1244 /* Once we are committed compute the creds */
1245 retval
= bprm_creds_from_file(bprm
);
1250 * Ensure all future errors are fatal.
1252 bprm
->point_of_no_return
= true;
1255 * Make this the only thread in the thread group.
1257 retval
= de_thread(me
);
1262 * Cancel any io_uring activity across execve
1264 io_uring_task_cancel();
1266 /* Ensure the files table is not shared. */
1267 retval
= unshare_files();
1272 * Must be called _before_ exec_mmap() as bprm->mm is
1273 * not visibile until then. This also enables the update
1276 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1278 /* If the binary is not readable then enforce mm->dumpable=0 */
1279 would_dump(bprm
, bprm
->file
);
1280 if (bprm
->have_execfd
)
1281 would_dump(bprm
, bprm
->executable
);
1284 * Release all of the old mmap stuff
1286 acct_arg_size(bprm
, 0);
1287 retval
= exec_mmap(bprm
->mm
);
1293 #ifdef CONFIG_POSIX_TIMERS
1294 exit_itimers(me
->signal
);
1295 flush_itimer_signals();
1299 * Make the signal table private.
1301 retval
= unshare_sighand(me
);
1306 * Ensure that the uaccess routines can actually operate on userspace
1309 force_uaccess_begin();
1311 me
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1312 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1314 me
->personality
&= ~bprm
->per_clear
;
1316 clear_syscall_work_syscall_user_dispatch(me
);
1319 * We have to apply CLOEXEC before we change whether the process is
1320 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1321 * trying to access the should-be-closed file descriptors of a process
1322 * undergoing exec(2).
1324 do_close_on_exec(me
->files
);
1326 if (bprm
->secureexec
) {
1327 /* Make sure parent cannot signal privileged process. */
1328 me
->pdeath_signal
= 0;
1331 * For secureexec, reset the stack limit to sane default to
1332 * avoid bad behavior from the prior rlimits. This has to
1333 * happen before arch_pick_mmap_layout(), which examines
1334 * RLIMIT_STACK, but after the point of no return to avoid
1335 * needing to clean up the change on failure.
1337 if (bprm
->rlim_stack
.rlim_cur
> _STK_LIM
)
1338 bprm
->rlim_stack
.rlim_cur
= _STK_LIM
;
1341 me
->sas_ss_sp
= me
->sas_ss_size
= 0;
1344 * Figure out dumpability. Note that this checking only of current
1345 * is wrong, but userspace depends on it. This should be testing
1346 * bprm->secureexec instead.
1348 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
||
1349 !(uid_eq(current_euid(), current_uid()) &&
1350 gid_eq(current_egid(), current_gid())))
1351 set_dumpable(current
->mm
, suid_dumpable
);
1353 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1356 __set_task_comm(me
, kbasename(bprm
->filename
), true);
1358 /* An exec changes our domain. We are no longer part of the thread
1360 WRITE_ONCE(me
->self_exec_id
, me
->self_exec_id
+ 1);
1361 flush_signal_handlers(me
, 0);
1364 * install the new credentials for this executable
1366 security_bprm_committing_creds(bprm
);
1368 commit_creds(bprm
->cred
);
1372 * Disable monitoring for regular users
1373 * when executing setuid binaries. Must
1374 * wait until new credentials are committed
1375 * by commit_creds() above
1377 if (get_dumpable(me
->mm
) != SUID_DUMP_USER
)
1378 perf_event_exit_task(me
);
1380 * cred_guard_mutex must be held at least to this point to prevent
1381 * ptrace_attach() from altering our determination of the task's
1382 * credentials; any time after this it may be unlocked.
1384 security_bprm_committed_creds(bprm
);
1386 /* Pass the opened binary to the interpreter. */
1387 if (bprm
->have_execfd
) {
1388 retval
= get_unused_fd_flags(0);
1391 fd_install(retval
, bprm
->executable
);
1392 bprm
->executable
= NULL
;
1393 bprm
->execfd
= retval
;
1398 up_write(&me
->signal
->exec_update_lock
);
1402 EXPORT_SYMBOL(begin_new_exec
);
1404 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1406 struct inode
*inode
= file_inode(file
);
1407 if (inode_permission(inode
, MAY_READ
) < 0) {
1408 struct user_namespace
*old
, *user_ns
;
1409 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1411 /* Ensure mm->user_ns contains the executable */
1412 user_ns
= old
= bprm
->mm
->user_ns
;
1413 while ((user_ns
!= &init_user_ns
) &&
1414 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1415 user_ns
= user_ns
->parent
;
1417 if (old
!= user_ns
) {
1418 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1423 EXPORT_SYMBOL(would_dump
);
1425 void setup_new_exec(struct linux_binprm
* bprm
)
1427 /* Setup things that can depend upon the personality */
1428 struct task_struct
*me
= current
;
1430 arch_pick_mmap_layout(me
->mm
, &bprm
->rlim_stack
);
1432 arch_setup_new_exec();
1434 /* Set the new mm task size. We have to do that late because it may
1435 * depend on TIF_32BIT which is only updated in flush_thread() on
1436 * some architectures like powerpc
1438 me
->mm
->task_size
= TASK_SIZE
;
1439 up_write(&me
->signal
->exec_update_lock
);
1440 mutex_unlock(&me
->signal
->cred_guard_mutex
);
1442 EXPORT_SYMBOL(setup_new_exec
);
1444 /* Runs immediately before start_thread() takes over. */
1445 void finalize_exec(struct linux_binprm
*bprm
)
1447 /* Store any stack rlimit changes before starting thread. */
1448 task_lock(current
->group_leader
);
1449 current
->signal
->rlim
[RLIMIT_STACK
] = bprm
->rlim_stack
;
1450 task_unlock(current
->group_leader
);
1452 EXPORT_SYMBOL(finalize_exec
);
1455 * Prepare credentials and lock ->cred_guard_mutex.
1456 * setup_new_exec() commits the new creds and drops the lock.
1457 * Or, if exec fails before, free_bprm() should release ->cred and
1460 static int prepare_bprm_creds(struct linux_binprm
*bprm
)
1462 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1463 return -ERESTARTNOINTR
;
1465 bprm
->cred
= prepare_exec_creds();
1466 if (likely(bprm
->cred
))
1469 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1473 static void free_bprm(struct linux_binprm
*bprm
)
1476 acct_arg_size(bprm
, 0);
1479 free_arg_pages(bprm
);
1481 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1482 abort_creds(bprm
->cred
);
1485 allow_write_access(bprm
->file
);
1488 if (bprm
->executable
)
1489 fput(bprm
->executable
);
1490 /* If a binfmt changed the interp, free it. */
1491 if (bprm
->interp
!= bprm
->filename
)
1492 kfree(bprm
->interp
);
1493 kfree(bprm
->fdpath
);
1497 static struct linux_binprm
*alloc_bprm(int fd
, struct filename
*filename
)
1499 struct linux_binprm
*bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1500 int retval
= -ENOMEM
;
1504 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1505 bprm
->filename
= filename
->name
;
1507 if (filename
->name
[0] == '\0')
1508 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d", fd
);
1510 bprm
->fdpath
= kasprintf(GFP_KERNEL
, "/dev/fd/%d/%s",
1511 fd
, filename
->name
);
1515 bprm
->filename
= bprm
->fdpath
;
1517 bprm
->interp
= bprm
->filename
;
1519 retval
= bprm_mm_init(bprm
);
1527 return ERR_PTR(retval
);
1530 int bprm_change_interp(const char *interp
, struct linux_binprm
*bprm
)
1532 /* If a binfmt changed the interp, free it first. */
1533 if (bprm
->interp
!= bprm
->filename
)
1534 kfree(bprm
->interp
);
1535 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1540 EXPORT_SYMBOL(bprm_change_interp
);
1543 * determine how safe it is to execute the proposed program
1544 * - the caller must hold ->cred_guard_mutex to protect against
1545 * PTRACE_ATTACH or seccomp thread-sync
1547 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1549 struct task_struct
*p
= current
, *t
;
1553 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1556 * This isn't strictly necessary, but it makes it harder for LSMs to
1559 if (task_no_new_privs(current
))
1560 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1564 spin_lock(&p
->fs
->lock
);
1566 while_each_thread(p
, t
) {
1572 if (p
->fs
->users
> n_fs
)
1573 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1576 spin_unlock(&p
->fs
->lock
);
1579 static void bprm_fill_uid(struct linux_binprm
*bprm
, struct file
*file
)
1581 /* Handle suid and sgid on files */
1582 struct inode
*inode
;
1587 if (!mnt_may_suid(file
->f_path
.mnt
))
1590 if (task_no_new_privs(current
))
1593 inode
= file
->f_path
.dentry
->d_inode
;
1594 mode
= READ_ONCE(inode
->i_mode
);
1595 if (!(mode
& (S_ISUID
|S_ISGID
)))
1598 /* Be careful if suid/sgid is set */
1601 /* reload atomically mode/uid/gid now that lock held */
1602 mode
= inode
->i_mode
;
1605 inode_unlock(inode
);
1607 /* We ignore suid/sgid if there are no mappings for them in the ns */
1608 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1609 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1612 if (mode
& S_ISUID
) {
1613 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1614 bprm
->cred
->euid
= uid
;
1617 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1618 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1619 bprm
->cred
->egid
= gid
;
1624 * Compute brpm->cred based upon the final binary.
1626 static int bprm_creds_from_file(struct linux_binprm
*bprm
)
1628 /* Compute creds based on which file? */
1629 struct file
*file
= bprm
->execfd_creds
? bprm
->executable
: bprm
->file
;
1631 bprm_fill_uid(bprm
, file
);
1632 return security_bprm_creds_from_file(bprm
, file
);
1636 * Fill the binprm structure from the inode.
1637 * Read the first BINPRM_BUF_SIZE bytes
1639 * This may be called multiple times for binary chains (scripts for example).
1641 static int prepare_binprm(struct linux_binprm
*bprm
)
1645 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1646 return kernel_read(bprm
->file
, bprm
->buf
, BINPRM_BUF_SIZE
, &pos
);
1650 * Arguments are '\0' separated strings found at the location bprm->p
1651 * points to; chop off the first by relocating brpm->p to right after
1652 * the first '\0' encountered.
1654 int remove_arg_zero(struct linux_binprm
*bprm
)
1657 unsigned long offset
;
1665 offset
= bprm
->p
& ~PAGE_MASK
;
1666 page
= get_arg_page(bprm
, bprm
->p
, 0);
1671 kaddr
= kmap_atomic(page
);
1673 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1674 offset
++, bprm
->p
++)
1677 kunmap_atomic(kaddr
);
1679 } while (offset
== PAGE_SIZE
);
1688 EXPORT_SYMBOL(remove_arg_zero
);
1690 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1692 * cycle the list of binary formats handler, until one recognizes the image
1694 static int search_binary_handler(struct linux_binprm
*bprm
)
1696 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1697 struct linux_binfmt
*fmt
;
1700 retval
= prepare_binprm(bprm
);
1704 retval
= security_bprm_check(bprm
);
1710 read_lock(&binfmt_lock
);
1711 list_for_each_entry(fmt
, &formats
, lh
) {
1712 if (!try_module_get(fmt
->module
))
1714 read_unlock(&binfmt_lock
);
1716 retval
= fmt
->load_binary(bprm
);
1718 read_lock(&binfmt_lock
);
1720 if (bprm
->point_of_no_return
|| (retval
!= -ENOEXEC
)) {
1721 read_unlock(&binfmt_lock
);
1725 read_unlock(&binfmt_lock
);
1728 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1729 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1731 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1740 static int exec_binprm(struct linux_binprm
*bprm
)
1742 pid_t old_pid
, old_vpid
;
1745 /* Need to fetch pid before load_binary changes it */
1746 old_pid
= current
->pid
;
1748 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1751 /* This allows 4 levels of binfmt rewrites before failing hard. */
1752 for (depth
= 0;; depth
++) {
1757 ret
= search_binary_handler(bprm
);
1760 if (!bprm
->interpreter
)
1764 bprm
->file
= bprm
->interpreter
;
1765 bprm
->interpreter
= NULL
;
1767 allow_write_access(exec
);
1768 if (unlikely(bprm
->have_execfd
)) {
1769 if (bprm
->executable
) {
1773 bprm
->executable
= exec
;
1779 trace_sched_process_exec(current
, old_pid
, bprm
);
1780 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1781 proc_exec_connector(current
);
1786 * sys_execve() executes a new program.
1788 static int bprm_execve(struct linux_binprm
*bprm
,
1789 int fd
, struct filename
*filename
, int flags
)
1794 retval
= prepare_bprm_creds(bprm
);
1798 check_unsafe_exec(bprm
);
1799 current
->in_execve
= 1;
1801 file
= do_open_execat(fd
, filename
, flags
);
1802 retval
= PTR_ERR(file
);
1810 * Record that a name derived from an O_CLOEXEC fd will be
1811 * inaccessible after exec. This allows the code in exec to
1812 * choose to fail when the executable is not mmaped into the
1813 * interpreter and an open file descriptor is not passed to
1814 * the interpreter. This makes for a better user experience
1815 * than having the interpreter start and then immediately fail
1816 * when it finds the executable is inaccessible.
1818 if (bprm
->fdpath
&& get_close_on_exec(fd
))
1819 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1821 /* Set the unchanging part of bprm->cred */
1822 retval
= security_bprm_creds_for_exec(bprm
);
1826 retval
= exec_binprm(bprm
);
1830 /* execve succeeded */
1831 current
->fs
->in_exec
= 0;
1832 current
->in_execve
= 0;
1833 rseq_execve(current
);
1834 acct_update_integrals(current
);
1835 task_numa_free(current
, false);
1840 * If past the point of no return ensure the the code never
1841 * returns to the userspace process. Use an existing fatal
1842 * signal if present otherwise terminate the process with
1845 if (bprm
->point_of_no_return
&& !fatal_signal_pending(current
))
1846 force_sigsegv(SIGSEGV
);
1849 current
->fs
->in_exec
= 0;
1850 current
->in_execve
= 0;
1855 static int do_execveat_common(int fd
, struct filename
*filename
,
1856 struct user_arg_ptr argv
,
1857 struct user_arg_ptr envp
,
1860 struct linux_binprm
*bprm
;
1863 if (IS_ERR(filename
))
1864 return PTR_ERR(filename
);
1867 * We move the actual failure in case of RLIMIT_NPROC excess from
1868 * set*uid() to execve() because too many poorly written programs
1869 * don't check setuid() return code. Here we additionally recheck
1870 * whether NPROC limit is still exceeded.
1872 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1873 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1878 /* We're below the limit (still or again), so we don't want to make
1879 * further execve() calls fail. */
1880 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1882 bprm
= alloc_bprm(fd
, filename
);
1884 retval
= PTR_ERR(bprm
);
1888 retval
= count(argv
, MAX_ARG_STRINGS
);
1891 bprm
->argc
= retval
;
1893 retval
= count(envp
, MAX_ARG_STRINGS
);
1896 bprm
->envc
= retval
;
1898 retval
= bprm_stack_limits(bprm
);
1902 retval
= copy_string_kernel(bprm
->filename
, bprm
);
1905 bprm
->exec
= bprm
->p
;
1907 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1911 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1915 retval
= bprm_execve(bprm
, fd
, filename
, flags
);
1924 int kernel_execve(const char *kernel_filename
,
1925 const char *const *argv
, const char *const *envp
)
1927 struct filename
*filename
;
1928 struct linux_binprm
*bprm
;
1932 filename
= getname_kernel(kernel_filename
);
1933 if (IS_ERR(filename
))
1934 return PTR_ERR(filename
);
1936 bprm
= alloc_bprm(fd
, filename
);
1938 retval
= PTR_ERR(bprm
);
1942 retval
= count_strings_kernel(argv
);
1945 bprm
->argc
= retval
;
1947 retval
= count_strings_kernel(envp
);
1950 bprm
->envc
= retval
;
1952 retval
= bprm_stack_limits(bprm
);
1956 retval
= copy_string_kernel(bprm
->filename
, bprm
);
1959 bprm
->exec
= bprm
->p
;
1961 retval
= copy_strings_kernel(bprm
->envc
, envp
, bprm
);
1965 retval
= copy_strings_kernel(bprm
->argc
, argv
, bprm
);
1969 retval
= bprm_execve(bprm
, fd
, filename
, 0);
1977 static int do_execve(struct filename
*filename
,
1978 const char __user
*const __user
*__argv
,
1979 const char __user
*const __user
*__envp
)
1981 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1982 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1983 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1986 static int do_execveat(int fd
, struct filename
*filename
,
1987 const char __user
*const __user
*__argv
,
1988 const char __user
*const __user
*__envp
,
1991 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1992 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1994 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1997 #ifdef CONFIG_COMPAT
1998 static int compat_do_execve(struct filename
*filename
,
1999 const compat_uptr_t __user
*__argv
,
2000 const compat_uptr_t __user
*__envp
)
2002 struct user_arg_ptr argv
= {
2004 .ptr
.compat
= __argv
,
2006 struct user_arg_ptr envp
= {
2008 .ptr
.compat
= __envp
,
2010 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
2013 static int compat_do_execveat(int fd
, struct filename
*filename
,
2014 const compat_uptr_t __user
*__argv
,
2015 const compat_uptr_t __user
*__envp
,
2018 struct user_arg_ptr argv
= {
2020 .ptr
.compat
= __argv
,
2022 struct user_arg_ptr envp
= {
2024 .ptr
.compat
= __envp
,
2026 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
2030 void set_binfmt(struct linux_binfmt
*new)
2032 struct mm_struct
*mm
= current
->mm
;
2035 module_put(mm
->binfmt
->module
);
2039 __module_get(new->module
);
2041 EXPORT_SYMBOL(set_binfmt
);
2044 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2046 void set_dumpable(struct mm_struct
*mm
, int value
)
2048 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
2051 set_mask_bits(&mm
->flags
, MMF_DUMPABLE_MASK
, value
);
2054 SYSCALL_DEFINE3(execve
,
2055 const char __user
*, filename
,
2056 const char __user
*const __user
*, argv
,
2057 const char __user
*const __user
*, envp
)
2059 return do_execve(getname(filename
), argv
, envp
);
2062 SYSCALL_DEFINE5(execveat
,
2063 int, fd
, const char __user
*, filename
,
2064 const char __user
*const __user
*, argv
,
2065 const char __user
*const __user
*, envp
,
2068 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
2070 return do_execveat(fd
,
2071 getname_flags(filename
, lookup_flags
, NULL
),
2075 #ifdef CONFIG_COMPAT
2076 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
2077 const compat_uptr_t __user
*, argv
,
2078 const compat_uptr_t __user
*, envp
)
2080 return compat_do_execve(getname(filename
), argv
, envp
);
2083 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
2084 const char __user
*, filename
,
2085 const compat_uptr_t __user
*, argv
,
2086 const compat_uptr_t __user
*, envp
,
2089 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
2091 return compat_do_execveat(fd
,
2092 getname_flags(filename
, lookup_flags
, NULL
),