Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob27946882d4ce45b7b544bce1b28a26eef006cd64
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * from
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
49 #include <trace/events/ext4.h>
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 return csum;
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
86 __u32 provided, calculated;
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
101 return provided == calculated;
104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
107 __u32 csum;
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
124 trace_ext4_begin_ordered_truncate(inode, new_size);
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 int ext4_inode_is_fast_symlink(struct inode *inode)
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 if (ext4_has_inline_data(inode))
156 return 0;
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
165 * Called at the last iput() if i_nlink is zero.
167 void ext4_evict_inode(struct inode *inode)
169 handle_t *handle;
170 int err;
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 int extra_credits = 6;
177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 bool freeze_protected = false;
180 trace_ext4_evict_inode(inode);
182 if (inode->i_nlink) {
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
198 * Note that directories do not have this problem because they
199 * don't use page cache.
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 inode->i_data.nrpages) {
205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208 jbd2_complete_transaction(journal, commit_tid);
209 filemap_write_and_wait(&inode->i_data);
211 truncate_inode_pages_final(&inode->i_data);
213 goto no_delete;
216 if (is_bad_inode(inode))
217 goto no_delete;
218 dquot_initialize(inode);
220 if (ext4_should_order_data(inode))
221 ext4_begin_ordered_truncate(inode, 0);
222 truncate_inode_pages_final(&inode->i_data);
225 * For inodes with journalled data, transaction commit could have
226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 * flag but we still need to remove the inode from the writeback lists.
229 if (!list_empty_careful(&inode->i_io_list)) {
230 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 inode_io_list_del(inode);
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it. When we are in a running transaction though,
237 * we are already protected against freezing and we cannot grab further
238 * protection due to lock ordering constraints.
240 if (!ext4_journal_current_handle()) {
241 sb_start_intwrite(inode->i_sb);
242 freeze_protected = true;
245 if (!IS_NOQUOTA(inode))
246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249 * Block bitmap, group descriptor, and inode are accounted in both
250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 if (IS_ERR(handle)) {
255 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 * If we're going to skip the normal cleanup, we still need to
258 * make sure that the in-core orphan linked list is properly
259 * cleaned up.
261 ext4_orphan_del(NULL, inode);
262 if (freeze_protected)
263 sb_end_intwrite(inode->i_sb);
264 goto no_delete;
267 if (IS_SYNC(inode))
268 ext4_handle_sync(handle);
271 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 * special handling of symlinks here because i_size is used to
273 * determine whether ext4_inode_info->i_data contains symlink data or
274 * block mappings. Setting i_size to 0 will remove its fast symlink
275 * status. Erase i_data so that it becomes a valid empty block map.
277 if (ext4_inode_is_fast_symlink(inode))
278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279 inode->i_size = 0;
280 err = ext4_mark_inode_dirty(handle, inode);
281 if (err) {
282 ext4_warning(inode->i_sb,
283 "couldn't mark inode dirty (err %d)", err);
284 goto stop_handle;
286 if (inode->i_blocks) {
287 err = ext4_truncate(inode);
288 if (err) {
289 ext4_error_err(inode->i_sb, -err,
290 "couldn't truncate inode %lu (err %d)",
291 inode->i_ino, err);
292 goto stop_handle;
296 /* Remove xattr references. */
297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298 extra_credits);
299 if (err) {
300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302 ext4_journal_stop(handle);
303 ext4_orphan_del(NULL, inode);
304 if (freeze_protected)
305 sb_end_intwrite(inode->i_sb);
306 ext4_xattr_inode_array_free(ea_inode_array);
307 goto no_delete;
311 * Kill off the orphan record which ext4_truncate created.
312 * AKPM: I think this can be inside the above `if'.
313 * Note that ext4_orphan_del() has to be able to cope with the
314 * deletion of a non-existent orphan - this is because we don't
315 * know if ext4_truncate() actually created an orphan record.
316 * (Well, we could do this if we need to, but heck - it works)
318 ext4_orphan_del(handle, inode);
319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
322 * One subtle ordering requirement: if anything has gone wrong
323 * (transaction abort, IO errors, whatever), then we can still
324 * do these next steps (the fs will already have been marked as
325 * having errors), but we can't free the inode if the mark_dirty
326 * fails.
328 if (ext4_mark_inode_dirty(handle, inode))
329 /* If that failed, just do the required in-core inode clear. */
330 ext4_clear_inode(inode);
331 else
332 ext4_free_inode(handle, inode);
333 ext4_journal_stop(handle);
334 if (freeze_protected)
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338 no_delete:
339 if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
344 #ifdef CONFIG_QUOTA
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 return &EXT4_I(inode)->i_reserved_quota;
349 #endif
352 * Called with i_data_sem down, which is important since we can call
353 * ext4_discard_preallocations() from here.
355 void ext4_da_update_reserve_space(struct inode *inode,
356 int used, int quota_claim)
358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 struct ext4_inode_info *ei = EXT4_I(inode);
361 spin_lock(&ei->i_block_reservation_lock);
362 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 if (unlikely(used > ei->i_reserved_data_blocks)) {
364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 "with only %d reserved data blocks",
366 __func__, inode->i_ino, used,
367 ei->i_reserved_data_blocks);
368 WARN_ON(1);
369 used = ei->i_reserved_data_blocks;
372 /* Update per-inode reservations */
373 ei->i_reserved_data_blocks -= used;
374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
378 /* Update quota subsystem for data blocks */
379 if (quota_claim)
380 dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 else {
383 * We did fallocate with an offset that is already delayed
384 * allocated. So on delayed allocated writeback we should
385 * not re-claim the quota for fallocated blocks.
387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
391 * If we have done all the pending block allocations and if
392 * there aren't any writers on the inode, we can discard the
393 * inode's preallocations.
395 if ((ei->i_reserved_data_blocks == 0) &&
396 !inode_is_open_for_write(inode))
397 ext4_discard_preallocations(inode, 0);
400 static int __check_block_validity(struct inode *inode, const char *func,
401 unsigned int line,
402 struct ext4_map_blocks *map)
404 if (ext4_has_feature_journal(inode->i_sb) &&
405 (inode->i_ino ==
406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 return 0;
408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 ext4_error_inode(inode, func, line, map->m_pblk,
410 "lblock %lu mapped to illegal pblock %llu "
411 "(length %d)", (unsigned long) map->m_lblk,
412 map->m_pblk, map->m_len);
413 return -EFSCORRUPTED;
415 return 0;
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419 ext4_lblk_t len)
421 int ret;
423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427 if (ret > 0)
428 ret = 0;
430 return ret;
433 #define check_block_validity(inode, map) \
434 __check_block_validity((inode), __func__, __LINE__, (map))
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438 struct inode *inode,
439 struct ext4_map_blocks *es_map,
440 struct ext4_map_blocks *map,
441 int flags)
443 int retval;
445 map->m_flags = 0;
447 * There is a race window that the result is not the same.
448 * e.g. xfstests #223 when dioread_nolock enables. The reason
449 * is that we lookup a block mapping in extent status tree with
450 * out taking i_data_sem. So at the time the unwritten extent
451 * could be converted.
453 down_read(&EXT4_I(inode)->i_data_sem);
454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 retval = ext4_ext_map_blocks(handle, inode, map, 0);
456 } else {
457 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 up_read((&EXT4_I(inode)->i_data_sem));
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
477 #endif /* ES_AGGRESSIVE_TEST */
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489 * based files
491 * On success, it returns the number of blocks being mapped or allocated. if
492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 * It returns 0 if plain look up failed (blocks have not been allocated), in
496 * that case, @map is returned as unmapped but we still do fill map->m_len to
497 * indicate the length of a hole starting at map->m_lblk.
499 * It returns the error in case of allocation failure.
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
504 struct extent_status es;
505 int retval;
506 int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508 struct ext4_map_blocks orig_map;
510 memcpy(&orig_map, map, sizeof(*map));
511 #endif
513 map->m_flags = 0;
514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 flags, map->m_len, (unsigned long) map->m_lblk);
518 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 if (unlikely(map->m_len > INT_MAX))
521 map->m_len = INT_MAX;
523 /* We can handle the block number less than EXT_MAX_BLOCKS */
524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 return -EFSCORRUPTED;
527 /* Lookup extent status tree firstly */
528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 map->m_pblk = ext4_es_pblock(&es) +
532 map->m_lblk - es.es_lblk;
533 map->m_flags |= ext4_es_is_written(&es) ?
534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 retval = es.es_len - (map->m_lblk - es.es_lblk);
536 if (retval > map->m_len)
537 retval = map->m_len;
538 map->m_len = retval;
539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540 map->m_pblk = 0;
541 retval = es.es_len - (map->m_lblk - es.es_lblk);
542 if (retval > map->m_len)
543 retval = map->m_len;
544 map->m_len = retval;
545 retval = 0;
546 } else {
547 BUG();
549 #ifdef ES_AGGRESSIVE_TEST
550 ext4_map_blocks_es_recheck(handle, inode, map,
551 &orig_map, flags);
552 #endif
553 goto found;
557 * Try to see if we can get the block without requesting a new
558 * file system block.
560 down_read(&EXT4_I(inode)->i_data_sem);
561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 retval = ext4_ext_map_blocks(handle, inode, map, 0);
563 } else {
564 retval = ext4_ind_map_blocks(handle, inode, map, 0);
566 if (retval > 0) {
567 unsigned int status;
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
574 WARN_ON(1);
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 !(status & EXTENT_STATUS_WRITTEN) &&
581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 map->m_lblk + map->m_len - 1))
583 status |= EXTENT_STATUS_DELAYED;
584 ret = ext4_es_insert_extent(inode, map->m_lblk,
585 map->m_len, map->m_pblk, status);
586 if (ret < 0)
587 retval = ret;
589 up_read((&EXT4_I(inode)->i_data_sem));
591 found:
592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 ret = check_block_validity(inode, map);
594 if (ret != 0)
595 return ret;
598 /* If it is only a block(s) look up */
599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 return retval;
603 * Returns if the blocks have already allocated
605 * Note that if blocks have been preallocated
606 * ext4_ext_get_block() returns the create = 0
607 * with buffer head unmapped.
609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 return retval;
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
622 map->m_flags &= ~EXT4_MAP_FLAGS;
625 * New blocks allocate and/or writing to unwritten extent
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_block()
628 * with create == 1 flag.
630 down_write(&EXT4_I(inode)->i_data_sem);
633 * We need to check for EXT4 here because migrate
634 * could have changed the inode type in between
636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 } else {
639 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 * We allocated new blocks which will result in
644 * i_data's format changing. Force the migrate
645 * to fail by clearing migrate flags
647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 * Update reserved blocks/metadata blocks after successful
652 * block allocation which had been deferred till now. We don't
653 * support fallocate for non extent files. So we can update
654 * reserve space here.
656 if ((retval > 0) &&
657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 ext4_da_update_reserve_space(inode, retval, 1);
661 if (retval > 0) {
662 unsigned int status;
664 if (unlikely(retval != map->m_len)) {
665 ext4_warning(inode->i_sb,
666 "ES len assertion failed for inode "
667 "%lu: retval %d != map->m_len %d",
668 inode->i_ino, retval, map->m_len);
669 WARN_ON(1);
673 * We have to zeroout blocks before inserting them into extent
674 * status tree. Otherwise someone could look them up there and
675 * use them before they are really zeroed. We also have to
676 * unmap metadata before zeroing as otherwise writeback can
677 * overwrite zeros with stale data from block device.
679 if (flags & EXT4_GET_BLOCKS_ZERO &&
680 map->m_flags & EXT4_MAP_MAPPED &&
681 map->m_flags & EXT4_MAP_NEW) {
682 ret = ext4_issue_zeroout(inode, map->m_lblk,
683 map->m_pblk, map->m_len);
684 if (ret) {
685 retval = ret;
686 goto out_sem;
691 * If the extent has been zeroed out, we don't need to update
692 * extent status tree.
694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 if (ext4_es_is_written(&es))
697 goto out_sem;
699 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 !(status & EXTENT_STATUS_WRITTEN) &&
703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 map->m_lblk + map->m_len - 1))
705 status |= EXTENT_STATUS_DELAYED;
706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 map->m_pblk, status);
708 if (ret < 0) {
709 retval = ret;
710 goto out_sem;
714 out_sem:
715 up_write((&EXT4_I(inode)->i_data_sem));
716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 ret = check_block_validity(inode, map);
718 if (ret != 0)
719 return ret;
722 * Inodes with freshly allocated blocks where contents will be
723 * visible after transaction commit must be on transaction's
724 * ordered data list.
726 if (map->m_flags & EXT4_MAP_NEW &&
727 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 !ext4_is_quota_file(inode) &&
730 ext4_should_order_data(inode)) {
731 loff_t start_byte =
732 (loff_t)map->m_lblk << inode->i_blkbits;
733 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 ret = ext4_jbd2_inode_add_wait(handle, inode,
737 start_byte, length);
738 else
739 ret = ext4_jbd2_inode_add_write(handle, inode,
740 start_byte, length);
741 if (ret)
742 return ret;
744 ext4_fc_track_range(handle, inode, map->m_lblk,
745 map->m_lblk + map->m_len - 1);
748 if (retval < 0)
749 ext_debug(inode, "failed with err %d\n", retval);
750 return retval;
754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755 * we have to be careful as someone else may be manipulating b_state as well.
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 unsigned long old_state;
760 unsigned long new_state;
762 flags &= EXT4_MAP_FLAGS;
764 /* Dummy buffer_head? Set non-atomically. */
765 if (!bh->b_page) {
766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 return;
770 * Someone else may be modifying b_state. Be careful! This is ugly but
771 * once we get rid of using bh as a container for mapping information
772 * to pass to / from get_block functions, this can go away.
774 do {
775 old_state = READ_ONCE(bh->b_state);
776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 } while (unlikely(
778 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 struct buffer_head *bh, int flags)
784 struct ext4_map_blocks map;
785 int ret = 0;
787 if (ext4_has_inline_data(inode))
788 return -ERANGE;
790 map.m_lblk = iblock;
791 map.m_len = bh->b_size >> inode->i_blkbits;
793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794 flags);
795 if (ret > 0) {
796 map_bh(bh, inode->i_sb, map.m_pblk);
797 ext4_update_bh_state(bh, map.m_flags);
798 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799 ret = 0;
800 } else if (ret == 0) {
801 /* hole case, need to fill in bh->b_size */
802 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 return ret;
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh, int create)
810 return _ext4_get_block(inode, iblock, bh,
811 create ? EXT4_GET_BLOCKS_CREATE : 0);
815 * Get block function used when preparing for buffered write if we require
816 * creating an unwritten extent if blocks haven't been allocated. The extent
817 * will be converted to written after the IO is complete.
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 struct buffer_head *bh_result, int create)
822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 inode->i_ino, create);
824 return _ext4_get_block(inode, iblock, bh_result,
825 EXT4_GET_BLOCKS_IO_CREATE_EXT);
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
832 * `handle' can be NULL if create is zero
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 ext4_lblk_t block, int map_flags)
837 struct ext4_map_blocks map;
838 struct buffer_head *bh;
839 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840 int err;
842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 || handle != NULL || create == 0);
845 map.m_lblk = block;
846 map.m_len = 1;
847 err = ext4_map_blocks(handle, inode, &map, map_flags);
849 if (err == 0)
850 return create ? ERR_PTR(-ENOSPC) : NULL;
851 if (err < 0)
852 return ERR_PTR(err);
854 bh = sb_getblk(inode->i_sb, map.m_pblk);
855 if (unlikely(!bh))
856 return ERR_PTR(-ENOMEM);
857 if (map.m_flags & EXT4_MAP_NEW) {
858 ASSERT(create != 0);
859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 || (handle != NULL));
863 * Now that we do not always journal data, we should
864 * keep in mind whether this should always journal the
865 * new buffer as metadata. For now, regular file
866 * writes use ext4_get_block instead, so it's not a
867 * problem.
869 lock_buffer(bh);
870 BUFFER_TRACE(bh, "call get_create_access");
871 err = ext4_journal_get_create_access(handle, bh);
872 if (unlikely(err)) {
873 unlock_buffer(bh);
874 goto errout;
876 if (!buffer_uptodate(bh)) {
877 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
878 set_buffer_uptodate(bh);
880 unlock_buffer(bh);
881 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
882 err = ext4_handle_dirty_metadata(handle, inode, bh);
883 if (unlikely(err))
884 goto errout;
885 } else
886 BUFFER_TRACE(bh, "not a new buffer");
887 return bh;
888 errout:
889 brelse(bh);
890 return ERR_PTR(err);
893 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
894 ext4_lblk_t block, int map_flags)
896 struct buffer_head *bh;
897 int ret;
899 bh = ext4_getblk(handle, inode, block, map_flags);
900 if (IS_ERR(bh))
901 return bh;
902 if (!bh || ext4_buffer_uptodate(bh))
903 return bh;
905 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
906 if (ret) {
907 put_bh(bh);
908 return ERR_PTR(ret);
910 return bh;
913 /* Read a contiguous batch of blocks. */
914 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
915 bool wait, struct buffer_head **bhs)
917 int i, err;
919 for (i = 0; i < bh_count; i++) {
920 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
921 if (IS_ERR(bhs[i])) {
922 err = PTR_ERR(bhs[i]);
923 bh_count = i;
924 goto out_brelse;
928 for (i = 0; i < bh_count; i++)
929 /* Note that NULL bhs[i] is valid because of holes. */
930 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
931 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933 if (!wait)
934 return 0;
936 for (i = 0; i < bh_count; i++)
937 if (bhs[i])
938 wait_on_buffer(bhs[i]);
940 for (i = 0; i < bh_count; i++) {
941 if (bhs[i] && !buffer_uptodate(bhs[i])) {
942 err = -EIO;
943 goto out_brelse;
946 return 0;
948 out_brelse:
949 for (i = 0; i < bh_count; i++) {
950 brelse(bhs[i]);
951 bhs[i] = NULL;
953 return err;
956 int ext4_walk_page_buffers(handle_t *handle,
957 struct buffer_head *head,
958 unsigned from,
959 unsigned to,
960 int *partial,
961 int (*fn)(handle_t *handle,
962 struct buffer_head *bh))
964 struct buffer_head *bh;
965 unsigned block_start, block_end;
966 unsigned blocksize = head->b_size;
967 int err, ret = 0;
968 struct buffer_head *next;
970 for (bh = head, block_start = 0;
971 ret == 0 && (bh != head || !block_start);
972 block_start = block_end, bh = next) {
973 next = bh->b_this_page;
974 block_end = block_start + blocksize;
975 if (block_end <= from || block_start >= to) {
976 if (partial && !buffer_uptodate(bh))
977 *partial = 1;
978 continue;
980 err = (*fn)(handle, bh);
981 if (!ret)
982 ret = err;
984 return ret;
988 * To preserve ordering, it is essential that the hole instantiation and
989 * the data write be encapsulated in a single transaction. We cannot
990 * close off a transaction and start a new one between the ext4_get_block()
991 * and the commit_write(). So doing the jbd2_journal_start at the start of
992 * prepare_write() is the right place.
994 * Also, this function can nest inside ext4_writepage(). In that case, we
995 * *know* that ext4_writepage() has generated enough buffer credits to do the
996 * whole page. So we won't block on the journal in that case, which is good,
997 * because the caller may be PF_MEMALLOC.
999 * By accident, ext4 can be reentered when a transaction is open via
1000 * quota file writes. If we were to commit the transaction while thus
1001 * reentered, there can be a deadlock - we would be holding a quota
1002 * lock, and the commit would never complete if another thread had a
1003 * transaction open and was blocking on the quota lock - a ranking
1004 * violation.
1006 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1007 * will _not_ run commit under these circumstances because handle->h_ref
1008 * is elevated. We'll still have enough credits for the tiny quotafile
1009 * write.
1011 int do_journal_get_write_access(handle_t *handle,
1012 struct buffer_head *bh)
1014 int dirty = buffer_dirty(bh);
1015 int ret;
1017 if (!buffer_mapped(bh) || buffer_freed(bh))
1018 return 0;
1020 * __block_write_begin() could have dirtied some buffers. Clean
1021 * the dirty bit as jbd2_journal_get_write_access() could complain
1022 * otherwise about fs integrity issues. Setting of the dirty bit
1023 * by __block_write_begin() isn't a real problem here as we clear
1024 * the bit before releasing a page lock and thus writeback cannot
1025 * ever write the buffer.
1027 if (dirty)
1028 clear_buffer_dirty(bh);
1029 BUFFER_TRACE(bh, "get write access");
1030 ret = ext4_journal_get_write_access(handle, bh);
1031 if (!ret && dirty)
1032 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1033 return ret;
1036 #ifdef CONFIG_FS_ENCRYPTION
1037 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1038 get_block_t *get_block)
1040 unsigned from = pos & (PAGE_SIZE - 1);
1041 unsigned to = from + len;
1042 struct inode *inode = page->mapping->host;
1043 unsigned block_start, block_end;
1044 sector_t block;
1045 int err = 0;
1046 unsigned blocksize = inode->i_sb->s_blocksize;
1047 unsigned bbits;
1048 struct buffer_head *bh, *head, *wait[2];
1049 int nr_wait = 0;
1050 int i;
1052 BUG_ON(!PageLocked(page));
1053 BUG_ON(from > PAGE_SIZE);
1054 BUG_ON(to > PAGE_SIZE);
1055 BUG_ON(from > to);
1057 if (!page_has_buffers(page))
1058 create_empty_buffers(page, blocksize, 0);
1059 head = page_buffers(page);
1060 bbits = ilog2(blocksize);
1061 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063 for (bh = head, block_start = 0; bh != head || !block_start;
1064 block++, block_start = block_end, bh = bh->b_this_page) {
1065 block_end = block_start + blocksize;
1066 if (block_end <= from || block_start >= to) {
1067 if (PageUptodate(page)) {
1068 if (!buffer_uptodate(bh))
1069 set_buffer_uptodate(bh);
1071 continue;
1073 if (buffer_new(bh))
1074 clear_buffer_new(bh);
1075 if (!buffer_mapped(bh)) {
1076 WARN_ON(bh->b_size != blocksize);
1077 err = get_block(inode, block, bh, 1);
1078 if (err)
1079 break;
1080 if (buffer_new(bh)) {
1081 if (PageUptodate(page)) {
1082 clear_buffer_new(bh);
1083 set_buffer_uptodate(bh);
1084 mark_buffer_dirty(bh);
1085 continue;
1087 if (block_end > to || block_start < from)
1088 zero_user_segments(page, to, block_end,
1089 block_start, from);
1090 continue;
1093 if (PageUptodate(page)) {
1094 if (!buffer_uptodate(bh))
1095 set_buffer_uptodate(bh);
1096 continue;
1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 !buffer_unwritten(bh) &&
1100 (block_start < from || block_end > to)) {
1101 ext4_read_bh_lock(bh, 0, false);
1102 wait[nr_wait++] = bh;
1106 * If we issued read requests, let them complete.
1108 for (i = 0; i < nr_wait; i++) {
1109 wait_on_buffer(wait[i]);
1110 if (!buffer_uptodate(wait[i]))
1111 err = -EIO;
1113 if (unlikely(err)) {
1114 page_zero_new_buffers(page, from, to);
1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 for (i = 0; i < nr_wait; i++) {
1117 int err2;
1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 bh_offset(wait[i]));
1121 if (err2) {
1122 clear_buffer_uptodate(wait[i]);
1123 err = err2;
1128 return err;
1130 #endif
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned flags,
1134 struct page **pagep, void **fsdata)
1136 struct inode *inode = mapping->host;
1137 int ret, needed_blocks;
1138 handle_t *handle;
1139 int retries = 0;
1140 struct page *page;
1141 pgoff_t index;
1142 unsigned from, to;
1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145 return -EIO;
1147 trace_ext4_write_begin(inode, pos, len, flags);
1149 * Reserve one block more for addition to orphan list in case
1150 * we allocate blocks but write fails for some reason
1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 index = pos >> PAGE_SHIFT;
1154 from = pos & (PAGE_SIZE - 1);
1155 to = from + len;
1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159 flags, pagep);
1160 if (ret < 0)
1161 return ret;
1162 if (ret == 1)
1163 return 0;
1167 * grab_cache_page_write_begin() can take a long time if the
1168 * system is thrashing due to memory pressure, or if the page
1169 * is being written back. So grab it first before we start
1170 * the transaction handle. This also allows us to allocate
1171 * the page (if needed) without using GFP_NOFS.
1173 retry_grab:
1174 page = grab_cache_page_write_begin(mapping, index, flags);
1175 if (!page)
1176 return -ENOMEM;
1177 unlock_page(page);
1179 retry_journal:
1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 if (IS_ERR(handle)) {
1182 put_page(page);
1183 return PTR_ERR(handle);
1186 lock_page(page);
1187 if (page->mapping != mapping) {
1188 /* The page got truncated from under us */
1189 unlock_page(page);
1190 put_page(page);
1191 ext4_journal_stop(handle);
1192 goto retry_grab;
1194 /* In case writeback began while the page was unlocked */
1195 wait_for_stable_page(page);
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 if (ext4_should_dioread_nolock(inode))
1199 ret = ext4_block_write_begin(page, pos, len,
1200 ext4_get_block_unwritten);
1201 else
1202 ret = ext4_block_write_begin(page, pos, len,
1203 ext4_get_block);
1204 #else
1205 if (ext4_should_dioread_nolock(inode))
1206 ret = __block_write_begin(page, pos, len,
1207 ext4_get_block_unwritten);
1208 else
1209 ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211 if (!ret && ext4_should_journal_data(inode)) {
1212 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1213 from, to, NULL,
1214 do_journal_get_write_access);
1217 if (ret) {
1218 bool extended = (pos + len > inode->i_size) &&
1219 !ext4_verity_in_progress(inode);
1221 unlock_page(page);
1223 * __block_write_begin may have instantiated a few blocks
1224 * outside i_size. Trim these off again. Don't need
1225 * i_size_read because we hold i_mutex.
1227 * Add inode to orphan list in case we crash before
1228 * truncate finishes
1230 if (extended && ext4_can_truncate(inode))
1231 ext4_orphan_add(handle, inode);
1233 ext4_journal_stop(handle);
1234 if (extended) {
1235 ext4_truncate_failed_write(inode);
1237 * If truncate failed early the inode might
1238 * still be on the orphan list; we need to
1239 * make sure the inode is removed from the
1240 * orphan list in that case.
1242 if (inode->i_nlink)
1243 ext4_orphan_del(NULL, inode);
1246 if (ret == -ENOSPC &&
1247 ext4_should_retry_alloc(inode->i_sb, &retries))
1248 goto retry_journal;
1249 put_page(page);
1250 return ret;
1252 *pagep = page;
1253 return ret;
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1259 int ret;
1260 if (!buffer_mapped(bh) || buffer_freed(bh))
1261 return 0;
1262 set_buffer_uptodate(bh);
1263 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1264 clear_buffer_meta(bh);
1265 clear_buffer_prio(bh);
1266 return ret;
1270 * We need to pick up the new inode size which generic_commit_write gave us
1271 * `file' can be NULL - eg, when called from page_symlink().
1273 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1274 * buffers are managed internally.
1276 static int ext4_write_end(struct file *file,
1277 struct address_space *mapping,
1278 loff_t pos, unsigned len, unsigned copied,
1279 struct page *page, void *fsdata)
1281 handle_t *handle = ext4_journal_current_handle();
1282 struct inode *inode = mapping->host;
1283 loff_t old_size = inode->i_size;
1284 int ret = 0, ret2;
1285 int i_size_changed = 0;
1286 int inline_data = ext4_has_inline_data(inode);
1287 bool verity = ext4_verity_in_progress(inode);
1289 trace_ext4_write_end(inode, pos, len, copied);
1290 if (inline_data) {
1291 ret = ext4_write_inline_data_end(inode, pos, len,
1292 copied, page);
1293 if (ret < 0) {
1294 unlock_page(page);
1295 put_page(page);
1296 goto errout;
1298 copied = ret;
1299 } else
1300 copied = block_write_end(file, mapping, pos,
1301 len, copied, page, fsdata);
1303 * it's important to update i_size while still holding page lock:
1304 * page writeout could otherwise come in and zero beyond i_size.
1306 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1307 * blocks are being written past EOF, so skip the i_size update.
1309 if (!verity)
1310 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1311 unlock_page(page);
1312 put_page(page);
1314 if (old_size < pos && !verity)
1315 pagecache_isize_extended(inode, old_size, pos);
1317 * Don't mark the inode dirty under page lock. First, it unnecessarily
1318 * makes the holding time of page lock longer. Second, it forces lock
1319 * ordering of page lock and transaction start for journaling
1320 * filesystems.
1322 if (i_size_changed || inline_data)
1323 ret = ext4_mark_inode_dirty(handle, inode);
1325 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1326 /* if we have allocated more blocks and copied
1327 * less. We will have blocks allocated outside
1328 * inode->i_size. So truncate them
1330 ext4_orphan_add(handle, inode);
1331 errout:
1332 ret2 = ext4_journal_stop(handle);
1333 if (!ret)
1334 ret = ret2;
1336 if (pos + len > inode->i_size && !verity) {
1337 ext4_truncate_failed_write(inode);
1339 * If truncate failed early the inode might still be
1340 * on the orphan list; we need to make sure the inode
1341 * is removed from the orphan list in that case.
1343 if (inode->i_nlink)
1344 ext4_orphan_del(NULL, inode);
1347 return ret ? ret : copied;
1351 * This is a private version of page_zero_new_buffers() which doesn't
1352 * set the buffer to be dirty, since in data=journalled mode we need
1353 * to call ext4_handle_dirty_metadata() instead.
1355 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1356 struct page *page,
1357 unsigned from, unsigned to)
1359 unsigned int block_start = 0, block_end;
1360 struct buffer_head *head, *bh;
1362 bh = head = page_buffers(page);
1363 do {
1364 block_end = block_start + bh->b_size;
1365 if (buffer_new(bh)) {
1366 if (block_end > from && block_start < to) {
1367 if (!PageUptodate(page)) {
1368 unsigned start, size;
1370 start = max(from, block_start);
1371 size = min(to, block_end) - start;
1373 zero_user(page, start, size);
1374 write_end_fn(handle, bh);
1376 clear_buffer_new(bh);
1379 block_start = block_end;
1380 bh = bh->b_this_page;
1381 } while (bh != head);
1384 static int ext4_journalled_write_end(struct file *file,
1385 struct address_space *mapping,
1386 loff_t pos, unsigned len, unsigned copied,
1387 struct page *page, void *fsdata)
1389 handle_t *handle = ext4_journal_current_handle();
1390 struct inode *inode = mapping->host;
1391 loff_t old_size = inode->i_size;
1392 int ret = 0, ret2;
1393 int partial = 0;
1394 unsigned from, to;
1395 int size_changed = 0;
1396 int inline_data = ext4_has_inline_data(inode);
1397 bool verity = ext4_verity_in_progress(inode);
1399 trace_ext4_journalled_write_end(inode, pos, len, copied);
1400 from = pos & (PAGE_SIZE - 1);
1401 to = from + len;
1403 BUG_ON(!ext4_handle_valid(handle));
1405 if (inline_data) {
1406 ret = ext4_write_inline_data_end(inode, pos, len,
1407 copied, page);
1408 if (ret < 0) {
1409 unlock_page(page);
1410 put_page(page);
1411 goto errout;
1413 copied = ret;
1414 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1415 copied = 0;
1416 ext4_journalled_zero_new_buffers(handle, page, from, to);
1417 } else {
1418 if (unlikely(copied < len))
1419 ext4_journalled_zero_new_buffers(handle, page,
1420 from + copied, to);
1421 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1422 from + copied, &partial,
1423 write_end_fn);
1424 if (!partial)
1425 SetPageUptodate(page);
1427 if (!verity)
1428 size_changed = ext4_update_inode_size(inode, pos + copied);
1429 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1430 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1431 unlock_page(page);
1432 put_page(page);
1434 if (old_size < pos && !verity)
1435 pagecache_isize_extended(inode, old_size, pos);
1437 if (size_changed || inline_data) {
1438 ret2 = ext4_mark_inode_dirty(handle, inode);
1439 if (!ret)
1440 ret = ret2;
1443 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1444 /* if we have allocated more blocks and copied
1445 * less. We will have blocks allocated outside
1446 * inode->i_size. So truncate them
1448 ext4_orphan_add(handle, inode);
1450 errout:
1451 ret2 = ext4_journal_stop(handle);
1452 if (!ret)
1453 ret = ret2;
1454 if (pos + len > inode->i_size && !verity) {
1455 ext4_truncate_failed_write(inode);
1457 * If truncate failed early the inode might still be
1458 * on the orphan list; we need to make sure the inode
1459 * is removed from the orphan list in that case.
1461 if (inode->i_nlink)
1462 ext4_orphan_del(NULL, inode);
1465 return ret ? ret : copied;
1469 * Reserve space for a single cluster
1471 static int ext4_da_reserve_space(struct inode *inode)
1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 struct ext4_inode_info *ei = EXT4_I(inode);
1475 int ret;
1478 * We will charge metadata quota at writeout time; this saves
1479 * us from metadata over-estimation, though we may go over by
1480 * a small amount in the end. Here we just reserve for data.
1482 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1483 if (ret)
1484 return ret;
1486 spin_lock(&ei->i_block_reservation_lock);
1487 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1488 spin_unlock(&ei->i_block_reservation_lock);
1489 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1490 return -ENOSPC;
1492 ei->i_reserved_data_blocks++;
1493 trace_ext4_da_reserve_space(inode);
1494 spin_unlock(&ei->i_block_reservation_lock);
1496 return 0; /* success */
1499 void ext4_da_release_space(struct inode *inode, int to_free)
1501 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502 struct ext4_inode_info *ei = EXT4_I(inode);
1504 if (!to_free)
1505 return; /* Nothing to release, exit */
1507 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1509 trace_ext4_da_release_space(inode, to_free);
1510 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1512 * if there aren't enough reserved blocks, then the
1513 * counter is messed up somewhere. Since this
1514 * function is called from invalidate page, it's
1515 * harmless to return without any action.
1517 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1518 "ino %lu, to_free %d with only %d reserved "
1519 "data blocks", inode->i_ino, to_free,
1520 ei->i_reserved_data_blocks);
1521 WARN_ON(1);
1522 to_free = ei->i_reserved_data_blocks;
1524 ei->i_reserved_data_blocks -= to_free;
1526 /* update fs dirty data blocks counter */
1527 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1529 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1531 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1535 * Delayed allocation stuff
1538 struct mpage_da_data {
1539 struct inode *inode;
1540 struct writeback_control *wbc;
1542 pgoff_t first_page; /* The first page to write */
1543 pgoff_t next_page; /* Current page to examine */
1544 pgoff_t last_page; /* Last page to examine */
1546 * Extent to map - this can be after first_page because that can be
1547 * fully mapped. We somewhat abuse m_flags to store whether the extent
1548 * is delalloc or unwritten.
1550 struct ext4_map_blocks map;
1551 struct ext4_io_submit io_submit; /* IO submission data */
1552 unsigned int do_map:1;
1553 unsigned int scanned_until_end:1;
1556 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1557 bool invalidate)
1559 int nr_pages, i;
1560 pgoff_t index, end;
1561 struct pagevec pvec;
1562 struct inode *inode = mpd->inode;
1563 struct address_space *mapping = inode->i_mapping;
1565 /* This is necessary when next_page == 0. */
1566 if (mpd->first_page >= mpd->next_page)
1567 return;
1569 mpd->scanned_until_end = 0;
1570 index = mpd->first_page;
1571 end = mpd->next_page - 1;
1572 if (invalidate) {
1573 ext4_lblk_t start, last;
1574 start = index << (PAGE_SHIFT - inode->i_blkbits);
1575 last = end << (PAGE_SHIFT - inode->i_blkbits);
1576 ext4_es_remove_extent(inode, start, last - start + 1);
1579 pagevec_init(&pvec);
1580 while (index <= end) {
1581 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1582 if (nr_pages == 0)
1583 break;
1584 for (i = 0; i < nr_pages; i++) {
1585 struct page *page = pvec.pages[i];
1587 BUG_ON(!PageLocked(page));
1588 BUG_ON(PageWriteback(page));
1589 if (invalidate) {
1590 if (page_mapped(page))
1591 clear_page_dirty_for_io(page);
1592 block_invalidatepage(page, 0, PAGE_SIZE);
1593 ClearPageUptodate(page);
1595 unlock_page(page);
1597 pagevec_release(&pvec);
1601 static void ext4_print_free_blocks(struct inode *inode)
1603 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604 struct super_block *sb = inode->i_sb;
1605 struct ext4_inode_info *ei = EXT4_I(inode);
1607 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608 EXT4_C2B(EXT4_SB(inode->i_sb),
1609 ext4_count_free_clusters(sb)));
1610 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612 (long long) EXT4_C2B(EXT4_SB(sb),
1613 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615 (long long) EXT4_C2B(EXT4_SB(sb),
1616 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619 ei->i_reserved_data_blocks);
1620 return;
1623 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1625 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1629 * ext4_insert_delayed_block - adds a delayed block to the extents status
1630 * tree, incrementing the reserved cluster/block
1631 * count or making a pending reservation
1632 * where needed
1634 * @inode - file containing the newly added block
1635 * @lblk - logical block to be added
1637 * Returns 0 on success, negative error code on failure.
1639 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1641 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1642 int ret;
1643 bool allocated = false;
1646 * If the cluster containing lblk is shared with a delayed,
1647 * written, or unwritten extent in a bigalloc file system, it's
1648 * already been accounted for and does not need to be reserved.
1649 * A pending reservation must be made for the cluster if it's
1650 * shared with a written or unwritten extent and doesn't already
1651 * have one. Written and unwritten extents can be purged from the
1652 * extents status tree if the system is under memory pressure, so
1653 * it's necessary to examine the extent tree if a search of the
1654 * extents status tree doesn't get a match.
1656 if (sbi->s_cluster_ratio == 1) {
1657 ret = ext4_da_reserve_space(inode);
1658 if (ret != 0) /* ENOSPC */
1659 goto errout;
1660 } else { /* bigalloc */
1661 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1662 if (!ext4_es_scan_clu(inode,
1663 &ext4_es_is_mapped, lblk)) {
1664 ret = ext4_clu_mapped(inode,
1665 EXT4_B2C(sbi, lblk));
1666 if (ret < 0)
1667 goto errout;
1668 if (ret == 0) {
1669 ret = ext4_da_reserve_space(inode);
1670 if (ret != 0) /* ENOSPC */
1671 goto errout;
1672 } else {
1673 allocated = true;
1675 } else {
1676 allocated = true;
1681 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1683 errout:
1684 return ret;
1688 * This function is grabs code from the very beginning of
1689 * ext4_map_blocks, but assumes that the caller is from delayed write
1690 * time. This function looks up the requested blocks and sets the
1691 * buffer delay bit under the protection of i_data_sem.
1693 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1694 struct ext4_map_blocks *map,
1695 struct buffer_head *bh)
1697 struct extent_status es;
1698 int retval;
1699 sector_t invalid_block = ~((sector_t) 0xffff);
1700 #ifdef ES_AGGRESSIVE_TEST
1701 struct ext4_map_blocks orig_map;
1703 memcpy(&orig_map, map, sizeof(*map));
1704 #endif
1706 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1707 invalid_block = ~0;
1709 map->m_flags = 0;
1710 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1711 (unsigned long) map->m_lblk);
1713 /* Lookup extent status tree firstly */
1714 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1715 if (ext4_es_is_hole(&es)) {
1716 retval = 0;
1717 down_read(&EXT4_I(inode)->i_data_sem);
1718 goto add_delayed;
1722 * Delayed extent could be allocated by fallocate.
1723 * So we need to check it.
1725 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1726 map_bh(bh, inode->i_sb, invalid_block);
1727 set_buffer_new(bh);
1728 set_buffer_delay(bh);
1729 return 0;
1732 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1733 retval = es.es_len - (iblock - es.es_lblk);
1734 if (retval > map->m_len)
1735 retval = map->m_len;
1736 map->m_len = retval;
1737 if (ext4_es_is_written(&es))
1738 map->m_flags |= EXT4_MAP_MAPPED;
1739 else if (ext4_es_is_unwritten(&es))
1740 map->m_flags |= EXT4_MAP_UNWRITTEN;
1741 else
1742 BUG();
1744 #ifdef ES_AGGRESSIVE_TEST
1745 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1746 #endif
1747 return retval;
1751 * Try to see if we can get the block without requesting a new
1752 * file system block.
1754 down_read(&EXT4_I(inode)->i_data_sem);
1755 if (ext4_has_inline_data(inode))
1756 retval = 0;
1757 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1758 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1759 else
1760 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1762 add_delayed:
1763 if (retval == 0) {
1764 int ret;
1767 * XXX: __block_prepare_write() unmaps passed block,
1768 * is it OK?
1771 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1772 if (ret != 0) {
1773 retval = ret;
1774 goto out_unlock;
1777 map_bh(bh, inode->i_sb, invalid_block);
1778 set_buffer_new(bh);
1779 set_buffer_delay(bh);
1780 } else if (retval > 0) {
1781 int ret;
1782 unsigned int status;
1784 if (unlikely(retval != map->m_len)) {
1785 ext4_warning(inode->i_sb,
1786 "ES len assertion failed for inode "
1787 "%lu: retval %d != map->m_len %d",
1788 inode->i_ino, retval, map->m_len);
1789 WARN_ON(1);
1792 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1793 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1794 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1795 map->m_pblk, status);
1796 if (ret != 0)
1797 retval = ret;
1800 out_unlock:
1801 up_read((&EXT4_I(inode)->i_data_sem));
1803 return retval;
1807 * This is a special get_block_t callback which is used by
1808 * ext4_da_write_begin(). It will either return mapped block or
1809 * reserve space for a single block.
1811 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1812 * We also have b_blocknr = -1 and b_bdev initialized properly
1814 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1815 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1816 * initialized properly.
1818 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1819 struct buffer_head *bh, int create)
1821 struct ext4_map_blocks map;
1822 int ret = 0;
1824 BUG_ON(create == 0);
1825 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1827 map.m_lblk = iblock;
1828 map.m_len = 1;
1831 * first, we need to know whether the block is allocated already
1832 * preallocated blocks are unmapped but should treated
1833 * the same as allocated blocks.
1835 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1836 if (ret <= 0)
1837 return ret;
1839 map_bh(bh, inode->i_sb, map.m_pblk);
1840 ext4_update_bh_state(bh, map.m_flags);
1842 if (buffer_unwritten(bh)) {
1843 /* A delayed write to unwritten bh should be marked
1844 * new and mapped. Mapped ensures that we don't do
1845 * get_block multiple times when we write to the same
1846 * offset and new ensures that we do proper zero out
1847 * for partial write.
1849 set_buffer_new(bh);
1850 set_buffer_mapped(bh);
1852 return 0;
1855 static int bget_one(handle_t *handle, struct buffer_head *bh)
1857 get_bh(bh);
1858 return 0;
1861 static int bput_one(handle_t *handle, struct buffer_head *bh)
1863 put_bh(bh);
1864 return 0;
1867 static int __ext4_journalled_writepage(struct page *page,
1868 unsigned int len)
1870 struct address_space *mapping = page->mapping;
1871 struct inode *inode = mapping->host;
1872 struct buffer_head *page_bufs = NULL;
1873 handle_t *handle = NULL;
1874 int ret = 0, err = 0;
1875 int inline_data = ext4_has_inline_data(inode);
1876 struct buffer_head *inode_bh = NULL;
1878 ClearPageChecked(page);
1880 if (inline_data) {
1881 BUG_ON(page->index != 0);
1882 BUG_ON(len > ext4_get_max_inline_size(inode));
1883 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1884 if (inode_bh == NULL)
1885 goto out;
1886 } else {
1887 page_bufs = page_buffers(page);
1888 if (!page_bufs) {
1889 BUG();
1890 goto out;
1892 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1893 NULL, bget_one);
1896 * We need to release the page lock before we start the
1897 * journal, so grab a reference so the page won't disappear
1898 * out from under us.
1900 get_page(page);
1901 unlock_page(page);
1903 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1904 ext4_writepage_trans_blocks(inode));
1905 if (IS_ERR(handle)) {
1906 ret = PTR_ERR(handle);
1907 put_page(page);
1908 goto out_no_pagelock;
1910 BUG_ON(!ext4_handle_valid(handle));
1912 lock_page(page);
1913 put_page(page);
1914 if (page->mapping != mapping) {
1915 /* The page got truncated from under us */
1916 ext4_journal_stop(handle);
1917 ret = 0;
1918 goto out;
1921 if (inline_data) {
1922 ret = ext4_mark_inode_dirty(handle, inode);
1923 } else {
1924 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1925 do_journal_get_write_access);
1927 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1928 write_end_fn);
1930 if (ret == 0)
1931 ret = err;
1932 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1933 if (ret == 0)
1934 ret = err;
1935 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1936 err = ext4_journal_stop(handle);
1937 if (!ret)
1938 ret = err;
1940 if (!ext4_has_inline_data(inode))
1941 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1942 NULL, bput_one);
1943 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1944 out:
1945 unlock_page(page);
1946 out_no_pagelock:
1947 brelse(inode_bh);
1948 return ret;
1952 * Note that we don't need to start a transaction unless we're journaling data
1953 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1954 * need to file the inode to the transaction's list in ordered mode because if
1955 * we are writing back data added by write(), the inode is already there and if
1956 * we are writing back data modified via mmap(), no one guarantees in which
1957 * transaction the data will hit the disk. In case we are journaling data, we
1958 * cannot start transaction directly because transaction start ranks above page
1959 * lock so we have to do some magic.
1961 * This function can get called via...
1962 * - ext4_writepages after taking page lock (have journal handle)
1963 * - journal_submit_inode_data_buffers (no journal handle)
1964 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1965 * - grab_page_cache when doing write_begin (have journal handle)
1967 * We don't do any block allocation in this function. If we have page with
1968 * multiple blocks we need to write those buffer_heads that are mapped. This
1969 * is important for mmaped based write. So if we do with blocksize 1K
1970 * truncate(f, 1024);
1971 * a = mmap(f, 0, 4096);
1972 * a[0] = 'a';
1973 * truncate(f, 4096);
1974 * we have in the page first buffer_head mapped via page_mkwrite call back
1975 * but other buffer_heads would be unmapped but dirty (dirty done via the
1976 * do_wp_page). So writepage should write the first block. If we modify
1977 * the mmap area beyond 1024 we will again get a page_fault and the
1978 * page_mkwrite callback will do the block allocation and mark the
1979 * buffer_heads mapped.
1981 * We redirty the page if we have any buffer_heads that is either delay or
1982 * unwritten in the page.
1984 * We can get recursively called as show below.
1986 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1987 * ext4_writepage()
1989 * But since we don't do any block allocation we should not deadlock.
1990 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1992 static int ext4_writepage(struct page *page,
1993 struct writeback_control *wbc)
1995 int ret = 0;
1996 loff_t size;
1997 unsigned int len;
1998 struct buffer_head *page_bufs = NULL;
1999 struct inode *inode = page->mapping->host;
2000 struct ext4_io_submit io_submit;
2001 bool keep_towrite = false;
2003 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2004 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2005 unlock_page(page);
2006 return -EIO;
2009 trace_ext4_writepage(page);
2010 size = i_size_read(inode);
2011 if (page->index == size >> PAGE_SHIFT &&
2012 !ext4_verity_in_progress(inode))
2013 len = size & ~PAGE_MASK;
2014 else
2015 len = PAGE_SIZE;
2017 page_bufs = page_buffers(page);
2019 * We cannot do block allocation or other extent handling in this
2020 * function. If there are buffers needing that, we have to redirty
2021 * the page. But we may reach here when we do a journal commit via
2022 * journal_submit_inode_data_buffers() and in that case we must write
2023 * allocated buffers to achieve data=ordered mode guarantees.
2025 * Also, if there is only one buffer per page (the fs block
2026 * size == the page size), if one buffer needs block
2027 * allocation or needs to modify the extent tree to clear the
2028 * unwritten flag, we know that the page can't be written at
2029 * all, so we might as well refuse the write immediately.
2030 * Unfortunately if the block size != page size, we can't as
2031 * easily detect this case using ext4_walk_page_buffers(), but
2032 * for the extremely common case, this is an optimization that
2033 * skips a useless round trip through ext4_bio_write_page().
2035 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2036 ext4_bh_delay_or_unwritten)) {
2037 redirty_page_for_writepage(wbc, page);
2038 if ((current->flags & PF_MEMALLOC) ||
2039 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2041 * For memory cleaning there's no point in writing only
2042 * some buffers. So just bail out. Warn if we came here
2043 * from direct reclaim.
2045 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2046 == PF_MEMALLOC);
2047 unlock_page(page);
2048 return 0;
2050 keep_towrite = true;
2053 if (PageChecked(page) && ext4_should_journal_data(inode))
2055 * It's mmapped pagecache. Add buffers and journal it. There
2056 * doesn't seem much point in redirtying the page here.
2058 return __ext4_journalled_writepage(page, len);
2060 ext4_io_submit_init(&io_submit, wbc);
2061 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2062 if (!io_submit.io_end) {
2063 redirty_page_for_writepage(wbc, page);
2064 unlock_page(page);
2065 return -ENOMEM;
2067 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2068 ext4_io_submit(&io_submit);
2069 /* Drop io_end reference we got from init */
2070 ext4_put_io_end_defer(io_submit.io_end);
2071 return ret;
2074 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2076 int len;
2077 loff_t size;
2078 int err;
2080 BUG_ON(page->index != mpd->first_page);
2081 clear_page_dirty_for_io(page);
2083 * We have to be very careful here! Nothing protects writeback path
2084 * against i_size changes and the page can be writeably mapped into
2085 * page tables. So an application can be growing i_size and writing
2086 * data through mmap while writeback runs. clear_page_dirty_for_io()
2087 * write-protects our page in page tables and the page cannot get
2088 * written to again until we release page lock. So only after
2089 * clear_page_dirty_for_io() we are safe to sample i_size for
2090 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2091 * on the barrier provided by TestClearPageDirty in
2092 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2093 * after page tables are updated.
2095 size = i_size_read(mpd->inode);
2096 if (page->index == size >> PAGE_SHIFT &&
2097 !ext4_verity_in_progress(mpd->inode))
2098 len = size & ~PAGE_MASK;
2099 else
2100 len = PAGE_SIZE;
2101 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2102 if (!err)
2103 mpd->wbc->nr_to_write--;
2104 mpd->first_page++;
2106 return err;
2109 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2112 * mballoc gives us at most this number of blocks...
2113 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2114 * The rest of mballoc seems to handle chunks up to full group size.
2116 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2119 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2121 * @mpd - extent of blocks
2122 * @lblk - logical number of the block in the file
2123 * @bh - buffer head we want to add to the extent
2125 * The function is used to collect contig. blocks in the same state. If the
2126 * buffer doesn't require mapping for writeback and we haven't started the
2127 * extent of buffers to map yet, the function returns 'true' immediately - the
2128 * caller can write the buffer right away. Otherwise the function returns true
2129 * if the block has been added to the extent, false if the block couldn't be
2130 * added.
2132 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2133 struct buffer_head *bh)
2135 struct ext4_map_blocks *map = &mpd->map;
2137 /* Buffer that doesn't need mapping for writeback? */
2138 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2139 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2140 /* So far no extent to map => we write the buffer right away */
2141 if (map->m_len == 0)
2142 return true;
2143 return false;
2146 /* First block in the extent? */
2147 if (map->m_len == 0) {
2148 /* We cannot map unless handle is started... */
2149 if (!mpd->do_map)
2150 return false;
2151 map->m_lblk = lblk;
2152 map->m_len = 1;
2153 map->m_flags = bh->b_state & BH_FLAGS;
2154 return true;
2157 /* Don't go larger than mballoc is willing to allocate */
2158 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2159 return false;
2161 /* Can we merge the block to our big extent? */
2162 if (lblk == map->m_lblk + map->m_len &&
2163 (bh->b_state & BH_FLAGS) == map->m_flags) {
2164 map->m_len++;
2165 return true;
2167 return false;
2171 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2173 * @mpd - extent of blocks for mapping
2174 * @head - the first buffer in the page
2175 * @bh - buffer we should start processing from
2176 * @lblk - logical number of the block in the file corresponding to @bh
2178 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2179 * the page for IO if all buffers in this page were mapped and there's no
2180 * accumulated extent of buffers to map or add buffers in the page to the
2181 * extent of buffers to map. The function returns 1 if the caller can continue
2182 * by processing the next page, 0 if it should stop adding buffers to the
2183 * extent to map because we cannot extend it anymore. It can also return value
2184 * < 0 in case of error during IO submission.
2186 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2187 struct buffer_head *head,
2188 struct buffer_head *bh,
2189 ext4_lblk_t lblk)
2191 struct inode *inode = mpd->inode;
2192 int err;
2193 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2194 >> inode->i_blkbits;
2196 if (ext4_verity_in_progress(inode))
2197 blocks = EXT_MAX_BLOCKS;
2199 do {
2200 BUG_ON(buffer_locked(bh));
2202 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2203 /* Found extent to map? */
2204 if (mpd->map.m_len)
2205 return 0;
2206 /* Buffer needs mapping and handle is not started? */
2207 if (!mpd->do_map)
2208 return 0;
2209 /* Everything mapped so far and we hit EOF */
2210 break;
2212 } while (lblk++, (bh = bh->b_this_page) != head);
2213 /* So far everything mapped? Submit the page for IO. */
2214 if (mpd->map.m_len == 0) {
2215 err = mpage_submit_page(mpd, head->b_page);
2216 if (err < 0)
2217 return err;
2219 if (lblk >= blocks) {
2220 mpd->scanned_until_end = 1;
2221 return 0;
2223 return 1;
2227 * mpage_process_page - update page buffers corresponding to changed extent and
2228 * may submit fully mapped page for IO
2230 * @mpd - description of extent to map, on return next extent to map
2231 * @m_lblk - logical block mapping.
2232 * @m_pblk - corresponding physical mapping.
2233 * @map_bh - determines on return whether this page requires any further
2234 * mapping or not.
2235 * Scan given page buffers corresponding to changed extent and update buffer
2236 * state according to new extent state.
2237 * We map delalloc buffers to their physical location, clear unwritten bits.
2238 * If the given page is not fully mapped, we update @map to the next extent in
2239 * the given page that needs mapping & return @map_bh as true.
2241 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2242 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2243 bool *map_bh)
2245 struct buffer_head *head, *bh;
2246 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2247 ext4_lblk_t lblk = *m_lblk;
2248 ext4_fsblk_t pblock = *m_pblk;
2249 int err = 0;
2250 int blkbits = mpd->inode->i_blkbits;
2251 ssize_t io_end_size = 0;
2252 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2254 bh = head = page_buffers(page);
2255 do {
2256 if (lblk < mpd->map.m_lblk)
2257 continue;
2258 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2260 * Buffer after end of mapped extent.
2261 * Find next buffer in the page to map.
2263 mpd->map.m_len = 0;
2264 mpd->map.m_flags = 0;
2265 io_end_vec->size += io_end_size;
2266 io_end_size = 0;
2268 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2269 if (err > 0)
2270 err = 0;
2271 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2272 io_end_vec = ext4_alloc_io_end_vec(io_end);
2273 if (IS_ERR(io_end_vec)) {
2274 err = PTR_ERR(io_end_vec);
2275 goto out;
2277 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2279 *map_bh = true;
2280 goto out;
2282 if (buffer_delay(bh)) {
2283 clear_buffer_delay(bh);
2284 bh->b_blocknr = pblock++;
2286 clear_buffer_unwritten(bh);
2287 io_end_size += (1 << blkbits);
2288 } while (lblk++, (bh = bh->b_this_page) != head);
2290 io_end_vec->size += io_end_size;
2291 io_end_size = 0;
2292 *map_bh = false;
2293 out:
2294 *m_lblk = lblk;
2295 *m_pblk = pblock;
2296 return err;
2300 * mpage_map_buffers - update buffers corresponding to changed extent and
2301 * submit fully mapped pages for IO
2303 * @mpd - description of extent to map, on return next extent to map
2305 * Scan buffers corresponding to changed extent (we expect corresponding pages
2306 * to be already locked) and update buffer state according to new extent state.
2307 * We map delalloc buffers to their physical location, clear unwritten bits,
2308 * and mark buffers as uninit when we perform writes to unwritten extents
2309 * and do extent conversion after IO is finished. If the last page is not fully
2310 * mapped, we update @map to the next extent in the last page that needs
2311 * mapping. Otherwise we submit the page for IO.
2313 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2315 struct pagevec pvec;
2316 int nr_pages, i;
2317 struct inode *inode = mpd->inode;
2318 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2319 pgoff_t start, end;
2320 ext4_lblk_t lblk;
2321 ext4_fsblk_t pblock;
2322 int err;
2323 bool map_bh = false;
2325 start = mpd->map.m_lblk >> bpp_bits;
2326 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2327 lblk = start << bpp_bits;
2328 pblock = mpd->map.m_pblk;
2330 pagevec_init(&pvec);
2331 while (start <= end) {
2332 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2333 &start, end);
2334 if (nr_pages == 0)
2335 break;
2336 for (i = 0; i < nr_pages; i++) {
2337 struct page *page = pvec.pages[i];
2339 err = mpage_process_page(mpd, page, &lblk, &pblock,
2340 &map_bh);
2342 * If map_bh is true, means page may require further bh
2343 * mapping, or maybe the page was submitted for IO.
2344 * So we return to call further extent mapping.
2346 if (err < 0 || map_bh)
2347 goto out;
2348 /* Page fully mapped - let IO run! */
2349 err = mpage_submit_page(mpd, page);
2350 if (err < 0)
2351 goto out;
2353 pagevec_release(&pvec);
2355 /* Extent fully mapped and matches with page boundary. We are done. */
2356 mpd->map.m_len = 0;
2357 mpd->map.m_flags = 0;
2358 return 0;
2359 out:
2360 pagevec_release(&pvec);
2361 return err;
2364 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2366 struct inode *inode = mpd->inode;
2367 struct ext4_map_blocks *map = &mpd->map;
2368 int get_blocks_flags;
2369 int err, dioread_nolock;
2371 trace_ext4_da_write_pages_extent(inode, map);
2373 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2374 * to convert an unwritten extent to be initialized (in the case
2375 * where we have written into one or more preallocated blocks). It is
2376 * possible that we're going to need more metadata blocks than
2377 * previously reserved. However we must not fail because we're in
2378 * writeback and there is nothing we can do about it so it might result
2379 * in data loss. So use reserved blocks to allocate metadata if
2380 * possible.
2382 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2383 * the blocks in question are delalloc blocks. This indicates
2384 * that the blocks and quotas has already been checked when
2385 * the data was copied into the page cache.
2387 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2388 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2389 EXT4_GET_BLOCKS_IO_SUBMIT;
2390 dioread_nolock = ext4_should_dioread_nolock(inode);
2391 if (dioread_nolock)
2392 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2393 if (map->m_flags & BIT(BH_Delay))
2394 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2396 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2397 if (err < 0)
2398 return err;
2399 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2400 if (!mpd->io_submit.io_end->handle &&
2401 ext4_handle_valid(handle)) {
2402 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2403 handle->h_rsv_handle = NULL;
2405 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2408 BUG_ON(map->m_len == 0);
2409 return 0;
2413 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2414 * mpd->len and submit pages underlying it for IO
2416 * @handle - handle for journal operations
2417 * @mpd - extent to map
2418 * @give_up_on_write - we set this to true iff there is a fatal error and there
2419 * is no hope of writing the data. The caller should discard
2420 * dirty pages to avoid infinite loops.
2422 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2423 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2424 * them to initialized or split the described range from larger unwritten
2425 * extent. Note that we need not map all the described range since allocation
2426 * can return less blocks or the range is covered by more unwritten extents. We
2427 * cannot map more because we are limited by reserved transaction credits. On
2428 * the other hand we always make sure that the last touched page is fully
2429 * mapped so that it can be written out (and thus forward progress is
2430 * guaranteed). After mapping we submit all mapped pages for IO.
2432 static int mpage_map_and_submit_extent(handle_t *handle,
2433 struct mpage_da_data *mpd,
2434 bool *give_up_on_write)
2436 struct inode *inode = mpd->inode;
2437 struct ext4_map_blocks *map = &mpd->map;
2438 int err;
2439 loff_t disksize;
2440 int progress = 0;
2441 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2442 struct ext4_io_end_vec *io_end_vec;
2444 io_end_vec = ext4_alloc_io_end_vec(io_end);
2445 if (IS_ERR(io_end_vec))
2446 return PTR_ERR(io_end_vec);
2447 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2448 do {
2449 err = mpage_map_one_extent(handle, mpd);
2450 if (err < 0) {
2451 struct super_block *sb = inode->i_sb;
2453 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2454 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2455 goto invalidate_dirty_pages;
2457 * Let the uper layers retry transient errors.
2458 * In the case of ENOSPC, if ext4_count_free_blocks()
2459 * is non-zero, a commit should free up blocks.
2461 if ((err == -ENOMEM) ||
2462 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2463 if (progress)
2464 goto update_disksize;
2465 return err;
2467 ext4_msg(sb, KERN_CRIT,
2468 "Delayed block allocation failed for "
2469 "inode %lu at logical offset %llu with"
2470 " max blocks %u with error %d",
2471 inode->i_ino,
2472 (unsigned long long)map->m_lblk,
2473 (unsigned)map->m_len, -err);
2474 ext4_msg(sb, KERN_CRIT,
2475 "This should not happen!! Data will "
2476 "be lost\n");
2477 if (err == -ENOSPC)
2478 ext4_print_free_blocks(inode);
2479 invalidate_dirty_pages:
2480 *give_up_on_write = true;
2481 return err;
2483 progress = 1;
2485 * Update buffer state, submit mapped pages, and get us new
2486 * extent to map
2488 err = mpage_map_and_submit_buffers(mpd);
2489 if (err < 0)
2490 goto update_disksize;
2491 } while (map->m_len);
2493 update_disksize:
2495 * Update on-disk size after IO is submitted. Races with
2496 * truncate are avoided by checking i_size under i_data_sem.
2498 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2499 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2500 int err2;
2501 loff_t i_size;
2503 down_write(&EXT4_I(inode)->i_data_sem);
2504 i_size = i_size_read(inode);
2505 if (disksize > i_size)
2506 disksize = i_size;
2507 if (disksize > EXT4_I(inode)->i_disksize)
2508 EXT4_I(inode)->i_disksize = disksize;
2509 up_write(&EXT4_I(inode)->i_data_sem);
2510 err2 = ext4_mark_inode_dirty(handle, inode);
2511 if (err2) {
2512 ext4_error_err(inode->i_sb, -err2,
2513 "Failed to mark inode %lu dirty",
2514 inode->i_ino);
2516 if (!err)
2517 err = err2;
2519 return err;
2523 * Calculate the total number of credits to reserve for one writepages
2524 * iteration. This is called from ext4_writepages(). We map an extent of
2525 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2526 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2527 * bpp - 1 blocks in bpp different extents.
2529 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531 int bpp = ext4_journal_blocks_per_page(inode);
2533 return ext4_meta_trans_blocks(inode,
2534 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2538 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2539 * and underlying extent to map
2541 * @mpd - where to look for pages
2543 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2544 * IO immediately. When we find a page which isn't mapped we start accumulating
2545 * extent of buffers underlying these pages that needs mapping (formed by
2546 * either delayed or unwritten buffers). We also lock the pages containing
2547 * these buffers. The extent found is returned in @mpd structure (starting at
2548 * mpd->lblk with length mpd->len blocks).
2550 * Note that this function can attach bios to one io_end structure which are
2551 * neither logically nor physically contiguous. Although it may seem as an
2552 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2553 * case as we need to track IO to all buffers underlying a page in one io_end.
2555 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2557 struct address_space *mapping = mpd->inode->i_mapping;
2558 struct pagevec pvec;
2559 unsigned int nr_pages;
2560 long left = mpd->wbc->nr_to_write;
2561 pgoff_t index = mpd->first_page;
2562 pgoff_t end = mpd->last_page;
2563 xa_mark_t tag;
2564 int i, err = 0;
2565 int blkbits = mpd->inode->i_blkbits;
2566 ext4_lblk_t lblk;
2567 struct buffer_head *head;
2569 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2570 tag = PAGECACHE_TAG_TOWRITE;
2571 else
2572 tag = PAGECACHE_TAG_DIRTY;
2574 pagevec_init(&pvec);
2575 mpd->map.m_len = 0;
2576 mpd->next_page = index;
2577 while (index <= end) {
2578 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2579 tag);
2580 if (nr_pages == 0)
2581 break;
2583 for (i = 0; i < nr_pages; i++) {
2584 struct page *page = pvec.pages[i];
2587 * Accumulated enough dirty pages? This doesn't apply
2588 * to WB_SYNC_ALL mode. For integrity sync we have to
2589 * keep going because someone may be concurrently
2590 * dirtying pages, and we might have synced a lot of
2591 * newly appeared dirty pages, but have not synced all
2592 * of the old dirty pages.
2594 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2595 goto out;
2597 /* If we can't merge this page, we are done. */
2598 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2599 goto out;
2601 lock_page(page);
2603 * If the page is no longer dirty, or its mapping no
2604 * longer corresponds to inode we are writing (which
2605 * means it has been truncated or invalidated), or the
2606 * page is already under writeback and we are not doing
2607 * a data integrity writeback, skip the page
2609 if (!PageDirty(page) ||
2610 (PageWriteback(page) &&
2611 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2612 unlikely(page->mapping != mapping)) {
2613 unlock_page(page);
2614 continue;
2617 wait_on_page_writeback(page);
2618 BUG_ON(PageWriteback(page));
2620 if (mpd->map.m_len == 0)
2621 mpd->first_page = page->index;
2622 mpd->next_page = page->index + 1;
2623 /* Add all dirty buffers to mpd */
2624 lblk = ((ext4_lblk_t)page->index) <<
2625 (PAGE_SHIFT - blkbits);
2626 head = page_buffers(page);
2627 err = mpage_process_page_bufs(mpd, head, head, lblk);
2628 if (err <= 0)
2629 goto out;
2630 err = 0;
2631 left--;
2633 pagevec_release(&pvec);
2634 cond_resched();
2636 mpd->scanned_until_end = 1;
2637 return 0;
2638 out:
2639 pagevec_release(&pvec);
2640 return err;
2643 static int ext4_writepages(struct address_space *mapping,
2644 struct writeback_control *wbc)
2646 pgoff_t writeback_index = 0;
2647 long nr_to_write = wbc->nr_to_write;
2648 int range_whole = 0;
2649 int cycled = 1;
2650 handle_t *handle = NULL;
2651 struct mpage_da_data mpd;
2652 struct inode *inode = mapping->host;
2653 int needed_blocks, rsv_blocks = 0, ret = 0;
2654 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2655 struct blk_plug plug;
2656 bool give_up_on_write = false;
2658 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2659 return -EIO;
2661 percpu_down_read(&sbi->s_writepages_rwsem);
2662 trace_ext4_writepages(inode, wbc);
2665 * No pages to write? This is mainly a kludge to avoid starting
2666 * a transaction for special inodes like journal inode on last iput()
2667 * because that could violate lock ordering on umount
2669 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2670 goto out_writepages;
2672 if (ext4_should_journal_data(inode)) {
2673 ret = generic_writepages(mapping, wbc);
2674 goto out_writepages;
2678 * If the filesystem has aborted, it is read-only, so return
2679 * right away instead of dumping stack traces later on that
2680 * will obscure the real source of the problem. We test
2681 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2682 * the latter could be true if the filesystem is mounted
2683 * read-only, and in that case, ext4_writepages should
2684 * *never* be called, so if that ever happens, we would want
2685 * the stack trace.
2687 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2688 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2689 ret = -EROFS;
2690 goto out_writepages;
2694 * If we have inline data and arrive here, it means that
2695 * we will soon create the block for the 1st page, so
2696 * we'd better clear the inline data here.
2698 if (ext4_has_inline_data(inode)) {
2699 /* Just inode will be modified... */
2700 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2701 if (IS_ERR(handle)) {
2702 ret = PTR_ERR(handle);
2703 goto out_writepages;
2705 BUG_ON(ext4_test_inode_state(inode,
2706 EXT4_STATE_MAY_INLINE_DATA));
2707 ext4_destroy_inline_data(handle, inode);
2708 ext4_journal_stop(handle);
2711 if (ext4_should_dioread_nolock(inode)) {
2713 * We may need to convert up to one extent per block in
2714 * the page and we may dirty the inode.
2716 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2717 PAGE_SIZE >> inode->i_blkbits);
2720 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2721 range_whole = 1;
2723 if (wbc->range_cyclic) {
2724 writeback_index = mapping->writeback_index;
2725 if (writeback_index)
2726 cycled = 0;
2727 mpd.first_page = writeback_index;
2728 mpd.last_page = -1;
2729 } else {
2730 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2731 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2734 mpd.inode = inode;
2735 mpd.wbc = wbc;
2736 ext4_io_submit_init(&mpd.io_submit, wbc);
2737 retry:
2738 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2739 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2740 blk_start_plug(&plug);
2743 * First writeback pages that don't need mapping - we can avoid
2744 * starting a transaction unnecessarily and also avoid being blocked
2745 * in the block layer on device congestion while having transaction
2746 * started.
2748 mpd.do_map = 0;
2749 mpd.scanned_until_end = 0;
2750 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2751 if (!mpd.io_submit.io_end) {
2752 ret = -ENOMEM;
2753 goto unplug;
2755 ret = mpage_prepare_extent_to_map(&mpd);
2756 /* Unlock pages we didn't use */
2757 mpage_release_unused_pages(&mpd, false);
2758 /* Submit prepared bio */
2759 ext4_io_submit(&mpd.io_submit);
2760 ext4_put_io_end_defer(mpd.io_submit.io_end);
2761 mpd.io_submit.io_end = NULL;
2762 if (ret < 0)
2763 goto unplug;
2765 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2766 /* For each extent of pages we use new io_end */
2767 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2768 if (!mpd.io_submit.io_end) {
2769 ret = -ENOMEM;
2770 break;
2774 * We have two constraints: We find one extent to map and we
2775 * must always write out whole page (makes a difference when
2776 * blocksize < pagesize) so that we don't block on IO when we
2777 * try to write out the rest of the page. Journalled mode is
2778 * not supported by delalloc.
2780 BUG_ON(ext4_should_journal_data(inode));
2781 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2783 /* start a new transaction */
2784 handle = ext4_journal_start_with_reserve(inode,
2785 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2786 if (IS_ERR(handle)) {
2787 ret = PTR_ERR(handle);
2788 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2789 "%ld pages, ino %lu; err %d", __func__,
2790 wbc->nr_to_write, inode->i_ino, ret);
2791 /* Release allocated io_end */
2792 ext4_put_io_end(mpd.io_submit.io_end);
2793 mpd.io_submit.io_end = NULL;
2794 break;
2796 mpd.do_map = 1;
2798 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2799 ret = mpage_prepare_extent_to_map(&mpd);
2800 if (!ret && mpd.map.m_len)
2801 ret = mpage_map_and_submit_extent(handle, &mpd,
2802 &give_up_on_write);
2804 * Caution: If the handle is synchronous,
2805 * ext4_journal_stop() can wait for transaction commit
2806 * to finish which may depend on writeback of pages to
2807 * complete or on page lock to be released. In that
2808 * case, we have to wait until after we have
2809 * submitted all the IO, released page locks we hold,
2810 * and dropped io_end reference (for extent conversion
2811 * to be able to complete) before stopping the handle.
2813 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2814 ext4_journal_stop(handle);
2815 handle = NULL;
2816 mpd.do_map = 0;
2818 /* Unlock pages we didn't use */
2819 mpage_release_unused_pages(&mpd, give_up_on_write);
2820 /* Submit prepared bio */
2821 ext4_io_submit(&mpd.io_submit);
2824 * Drop our io_end reference we got from init. We have
2825 * to be careful and use deferred io_end finishing if
2826 * we are still holding the transaction as we can
2827 * release the last reference to io_end which may end
2828 * up doing unwritten extent conversion.
2830 if (handle) {
2831 ext4_put_io_end_defer(mpd.io_submit.io_end);
2832 ext4_journal_stop(handle);
2833 } else
2834 ext4_put_io_end(mpd.io_submit.io_end);
2835 mpd.io_submit.io_end = NULL;
2837 if (ret == -ENOSPC && sbi->s_journal) {
2839 * Commit the transaction which would
2840 * free blocks released in the transaction
2841 * and try again
2843 jbd2_journal_force_commit_nested(sbi->s_journal);
2844 ret = 0;
2845 continue;
2847 /* Fatal error - ENOMEM, EIO... */
2848 if (ret)
2849 break;
2851 unplug:
2852 blk_finish_plug(&plug);
2853 if (!ret && !cycled && wbc->nr_to_write > 0) {
2854 cycled = 1;
2855 mpd.last_page = writeback_index - 1;
2856 mpd.first_page = 0;
2857 goto retry;
2860 /* Update index */
2861 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2863 * Set the writeback_index so that range_cyclic
2864 * mode will write it back later
2866 mapping->writeback_index = mpd.first_page;
2868 out_writepages:
2869 trace_ext4_writepages_result(inode, wbc, ret,
2870 nr_to_write - wbc->nr_to_write);
2871 percpu_up_read(&sbi->s_writepages_rwsem);
2872 return ret;
2875 static int ext4_dax_writepages(struct address_space *mapping,
2876 struct writeback_control *wbc)
2878 int ret;
2879 long nr_to_write = wbc->nr_to_write;
2880 struct inode *inode = mapping->host;
2881 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2883 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2884 return -EIO;
2886 percpu_down_read(&sbi->s_writepages_rwsem);
2887 trace_ext4_writepages(inode, wbc);
2889 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2890 trace_ext4_writepages_result(inode, wbc, ret,
2891 nr_to_write - wbc->nr_to_write);
2892 percpu_up_read(&sbi->s_writepages_rwsem);
2893 return ret;
2896 static int ext4_nonda_switch(struct super_block *sb)
2898 s64 free_clusters, dirty_clusters;
2899 struct ext4_sb_info *sbi = EXT4_SB(sb);
2902 * switch to non delalloc mode if we are running low
2903 * on free block. The free block accounting via percpu
2904 * counters can get slightly wrong with percpu_counter_batch getting
2905 * accumulated on each CPU without updating global counters
2906 * Delalloc need an accurate free block accounting. So switch
2907 * to non delalloc when we are near to error range.
2909 free_clusters =
2910 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2911 dirty_clusters =
2912 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2914 * Start pushing delalloc when 1/2 of free blocks are dirty.
2916 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2917 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2919 if (2 * free_clusters < 3 * dirty_clusters ||
2920 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2922 * free block count is less than 150% of dirty blocks
2923 * or free blocks is less than watermark
2925 return 1;
2927 return 0;
2930 /* We always reserve for an inode update; the superblock could be there too */
2931 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2933 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2934 return 1;
2936 if (pos + len <= 0x7fffffffULL)
2937 return 1;
2939 /* We might need to update the superblock to set LARGE_FILE */
2940 return 2;
2943 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2944 loff_t pos, unsigned len, unsigned flags,
2945 struct page **pagep, void **fsdata)
2947 int ret, retries = 0;
2948 struct page *page;
2949 pgoff_t index;
2950 struct inode *inode = mapping->host;
2951 handle_t *handle;
2953 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2954 return -EIO;
2956 index = pos >> PAGE_SHIFT;
2958 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2959 ext4_verity_in_progress(inode)) {
2960 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2961 return ext4_write_begin(file, mapping, pos,
2962 len, flags, pagep, fsdata);
2964 *fsdata = (void *)0;
2965 trace_ext4_da_write_begin(inode, pos, len, flags);
2967 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2968 ret = ext4_da_write_inline_data_begin(mapping, inode,
2969 pos, len, flags,
2970 pagep, fsdata);
2971 if (ret < 0)
2972 return ret;
2973 if (ret == 1)
2974 return 0;
2978 * grab_cache_page_write_begin() can take a long time if the
2979 * system is thrashing due to memory pressure, or if the page
2980 * is being written back. So grab it first before we start
2981 * the transaction handle. This also allows us to allocate
2982 * the page (if needed) without using GFP_NOFS.
2984 retry_grab:
2985 page = grab_cache_page_write_begin(mapping, index, flags);
2986 if (!page)
2987 return -ENOMEM;
2988 unlock_page(page);
2991 * With delayed allocation, we don't log the i_disksize update
2992 * if there is delayed block allocation. But we still need
2993 * to journalling the i_disksize update if writes to the end
2994 * of file which has an already mapped buffer.
2996 retry_journal:
2997 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2998 ext4_da_write_credits(inode, pos, len));
2999 if (IS_ERR(handle)) {
3000 put_page(page);
3001 return PTR_ERR(handle);
3004 lock_page(page);
3005 if (page->mapping != mapping) {
3006 /* The page got truncated from under us */
3007 unlock_page(page);
3008 put_page(page);
3009 ext4_journal_stop(handle);
3010 goto retry_grab;
3012 /* In case writeback began while the page was unlocked */
3013 wait_for_stable_page(page);
3015 #ifdef CONFIG_FS_ENCRYPTION
3016 ret = ext4_block_write_begin(page, pos, len,
3017 ext4_da_get_block_prep);
3018 #else
3019 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3020 #endif
3021 if (ret < 0) {
3022 unlock_page(page);
3023 ext4_journal_stop(handle);
3025 * block_write_begin may have instantiated a few blocks
3026 * outside i_size. Trim these off again. Don't need
3027 * i_size_read because we hold i_mutex.
3029 if (pos + len > inode->i_size)
3030 ext4_truncate_failed_write(inode);
3032 if (ret == -ENOSPC &&
3033 ext4_should_retry_alloc(inode->i_sb, &retries))
3034 goto retry_journal;
3036 put_page(page);
3037 return ret;
3040 *pagep = page;
3041 return ret;
3045 * Check if we should update i_disksize
3046 * when write to the end of file but not require block allocation
3048 static int ext4_da_should_update_i_disksize(struct page *page,
3049 unsigned long offset)
3051 struct buffer_head *bh;
3052 struct inode *inode = page->mapping->host;
3053 unsigned int idx;
3054 int i;
3056 bh = page_buffers(page);
3057 idx = offset >> inode->i_blkbits;
3059 for (i = 0; i < idx; i++)
3060 bh = bh->b_this_page;
3062 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3063 return 0;
3064 return 1;
3067 static int ext4_da_write_end(struct file *file,
3068 struct address_space *mapping,
3069 loff_t pos, unsigned len, unsigned copied,
3070 struct page *page, void *fsdata)
3072 struct inode *inode = mapping->host;
3073 int ret = 0, ret2;
3074 handle_t *handle = ext4_journal_current_handle();
3075 loff_t new_i_size;
3076 unsigned long start, end;
3077 int write_mode = (int)(unsigned long)fsdata;
3079 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3080 return ext4_write_end(file, mapping, pos,
3081 len, copied, page, fsdata);
3083 trace_ext4_da_write_end(inode, pos, len, copied);
3084 start = pos & (PAGE_SIZE - 1);
3085 end = start + copied - 1;
3088 * generic_write_end() will run mark_inode_dirty() if i_size
3089 * changes. So let's piggyback the i_disksize mark_inode_dirty
3090 * into that.
3092 new_i_size = pos + copied;
3093 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3094 if (ext4_has_inline_data(inode) ||
3095 ext4_da_should_update_i_disksize(page, end)) {
3096 ext4_update_i_disksize(inode, new_i_size);
3097 /* We need to mark inode dirty even if
3098 * new_i_size is less that inode->i_size
3099 * bu greater than i_disksize.(hint delalloc)
3101 ret = ext4_mark_inode_dirty(handle, inode);
3105 if (write_mode != CONVERT_INLINE_DATA &&
3106 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3107 ext4_has_inline_data(inode))
3108 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3109 page);
3110 else
3111 ret2 = generic_write_end(file, mapping, pos, len, copied,
3112 page, fsdata);
3114 copied = ret2;
3115 if (ret2 < 0)
3116 ret = ret2;
3117 ret2 = ext4_journal_stop(handle);
3118 if (unlikely(ret2 && !ret))
3119 ret = ret2;
3121 return ret ? ret : copied;
3125 * Force all delayed allocation blocks to be allocated for a given inode.
3127 int ext4_alloc_da_blocks(struct inode *inode)
3129 trace_ext4_alloc_da_blocks(inode);
3131 if (!EXT4_I(inode)->i_reserved_data_blocks)
3132 return 0;
3135 * We do something simple for now. The filemap_flush() will
3136 * also start triggering a write of the data blocks, which is
3137 * not strictly speaking necessary (and for users of
3138 * laptop_mode, not even desirable). However, to do otherwise
3139 * would require replicating code paths in:
3141 * ext4_writepages() ->
3142 * write_cache_pages() ---> (via passed in callback function)
3143 * __mpage_da_writepage() -->
3144 * mpage_add_bh_to_extent()
3145 * mpage_da_map_blocks()
3147 * The problem is that write_cache_pages(), located in
3148 * mm/page-writeback.c, marks pages clean in preparation for
3149 * doing I/O, which is not desirable if we're not planning on
3150 * doing I/O at all.
3152 * We could call write_cache_pages(), and then redirty all of
3153 * the pages by calling redirty_page_for_writepage() but that
3154 * would be ugly in the extreme. So instead we would need to
3155 * replicate parts of the code in the above functions,
3156 * simplifying them because we wouldn't actually intend to
3157 * write out the pages, but rather only collect contiguous
3158 * logical block extents, call the multi-block allocator, and
3159 * then update the buffer heads with the block allocations.
3161 * For now, though, we'll cheat by calling filemap_flush(),
3162 * which will map the blocks, and start the I/O, but not
3163 * actually wait for the I/O to complete.
3165 return filemap_flush(inode->i_mapping);
3169 * bmap() is special. It gets used by applications such as lilo and by
3170 * the swapper to find the on-disk block of a specific piece of data.
3172 * Naturally, this is dangerous if the block concerned is still in the
3173 * journal. If somebody makes a swapfile on an ext4 data-journaling
3174 * filesystem and enables swap, then they may get a nasty shock when the
3175 * data getting swapped to that swapfile suddenly gets overwritten by
3176 * the original zero's written out previously to the journal and
3177 * awaiting writeback in the kernel's buffer cache.
3179 * So, if we see any bmap calls here on a modified, data-journaled file,
3180 * take extra steps to flush any blocks which might be in the cache.
3182 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3184 struct inode *inode = mapping->host;
3185 journal_t *journal;
3186 int err;
3189 * We can get here for an inline file via the FIBMAP ioctl
3191 if (ext4_has_inline_data(inode))
3192 return 0;
3194 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3195 test_opt(inode->i_sb, DELALLOC)) {
3197 * With delalloc we want to sync the file
3198 * so that we can make sure we allocate
3199 * blocks for file
3201 filemap_write_and_wait(mapping);
3204 if (EXT4_JOURNAL(inode) &&
3205 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3207 * This is a REALLY heavyweight approach, but the use of
3208 * bmap on dirty files is expected to be extremely rare:
3209 * only if we run lilo or swapon on a freshly made file
3210 * do we expect this to happen.
3212 * (bmap requires CAP_SYS_RAWIO so this does not
3213 * represent an unprivileged user DOS attack --- we'd be
3214 * in trouble if mortal users could trigger this path at
3215 * will.)
3217 * NB. EXT4_STATE_JDATA is not set on files other than
3218 * regular files. If somebody wants to bmap a directory
3219 * or symlink and gets confused because the buffer
3220 * hasn't yet been flushed to disk, they deserve
3221 * everything they get.
3224 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3225 journal = EXT4_JOURNAL(inode);
3226 jbd2_journal_lock_updates(journal);
3227 err = jbd2_journal_flush(journal);
3228 jbd2_journal_unlock_updates(journal);
3230 if (err)
3231 return 0;
3234 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3237 static int ext4_readpage(struct file *file, struct page *page)
3239 int ret = -EAGAIN;
3240 struct inode *inode = page->mapping->host;
3242 trace_ext4_readpage(page);
3244 if (ext4_has_inline_data(inode))
3245 ret = ext4_readpage_inline(inode, page);
3247 if (ret == -EAGAIN)
3248 return ext4_mpage_readpages(inode, NULL, page);
3250 return ret;
3253 static void ext4_readahead(struct readahead_control *rac)
3255 struct inode *inode = rac->mapping->host;
3257 /* If the file has inline data, no need to do readahead. */
3258 if (ext4_has_inline_data(inode))
3259 return;
3261 ext4_mpage_readpages(inode, rac, NULL);
3264 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3265 unsigned int length)
3267 trace_ext4_invalidatepage(page, offset, length);
3269 /* No journalling happens on data buffers when this function is used */
3270 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3272 block_invalidatepage(page, offset, length);
3275 static int __ext4_journalled_invalidatepage(struct page *page,
3276 unsigned int offset,
3277 unsigned int length)
3279 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3281 trace_ext4_journalled_invalidatepage(page, offset, length);
3284 * If it's a full truncate we just forget about the pending dirtying
3286 if (offset == 0 && length == PAGE_SIZE)
3287 ClearPageChecked(page);
3289 return jbd2_journal_invalidatepage(journal, page, offset, length);
3292 /* Wrapper for aops... */
3293 static void ext4_journalled_invalidatepage(struct page *page,
3294 unsigned int offset,
3295 unsigned int length)
3297 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3300 static int ext4_releasepage(struct page *page, gfp_t wait)
3302 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3304 trace_ext4_releasepage(page);
3306 /* Page has dirty journalled data -> cannot release */
3307 if (PageChecked(page))
3308 return 0;
3309 if (journal)
3310 return jbd2_journal_try_to_free_buffers(journal, page);
3311 else
3312 return try_to_free_buffers(page);
3315 static bool ext4_inode_datasync_dirty(struct inode *inode)
3317 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3319 if (journal) {
3320 if (jbd2_transaction_committed(journal,
3321 EXT4_I(inode)->i_datasync_tid))
3322 return false;
3323 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3324 return !list_empty(&EXT4_I(inode)->i_fc_list);
3325 return true;
3328 /* Any metadata buffers to write? */
3329 if (!list_empty(&inode->i_mapping->private_list))
3330 return true;
3331 return inode->i_state & I_DIRTY_DATASYNC;
3334 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3335 struct ext4_map_blocks *map, loff_t offset,
3336 loff_t length)
3338 u8 blkbits = inode->i_blkbits;
3341 * Writes that span EOF might trigger an I/O size update on completion,
3342 * so consider them to be dirty for the purpose of O_DSYNC, even if
3343 * there is no other metadata changes being made or are pending.
3345 iomap->flags = 0;
3346 if (ext4_inode_datasync_dirty(inode) ||
3347 offset + length > i_size_read(inode))
3348 iomap->flags |= IOMAP_F_DIRTY;
3350 if (map->m_flags & EXT4_MAP_NEW)
3351 iomap->flags |= IOMAP_F_NEW;
3353 iomap->bdev = inode->i_sb->s_bdev;
3354 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3355 iomap->offset = (u64) map->m_lblk << blkbits;
3356 iomap->length = (u64) map->m_len << blkbits;
3358 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3359 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3360 iomap->flags |= IOMAP_F_MERGED;
3363 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3364 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3365 * set. In order for any allocated unwritten extents to be converted
3366 * into written extents correctly within the ->end_io() handler, we
3367 * need to ensure that the iomap->type is set appropriately. Hence, the
3368 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3369 * been set first.
3371 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3372 iomap->type = IOMAP_UNWRITTEN;
3373 iomap->addr = (u64) map->m_pblk << blkbits;
3374 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3375 iomap->type = IOMAP_MAPPED;
3376 iomap->addr = (u64) map->m_pblk << blkbits;
3377 } else {
3378 iomap->type = IOMAP_HOLE;
3379 iomap->addr = IOMAP_NULL_ADDR;
3383 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3384 unsigned int flags)
3386 handle_t *handle;
3387 u8 blkbits = inode->i_blkbits;
3388 int ret, dio_credits, m_flags = 0, retries = 0;
3391 * Trim the mapping request to the maximum value that we can map at
3392 * once for direct I/O.
3394 if (map->m_len > DIO_MAX_BLOCKS)
3395 map->m_len = DIO_MAX_BLOCKS;
3396 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3398 retry:
3400 * Either we allocate blocks and then don't get an unwritten extent, so
3401 * in that case we have reserved enough credits. Or, the blocks are
3402 * already allocated and unwritten. In that case, the extent conversion
3403 * fits into the credits as well.
3405 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3406 if (IS_ERR(handle))
3407 return PTR_ERR(handle);
3410 * DAX and direct I/O are the only two operations that are currently
3411 * supported with IOMAP_WRITE.
3413 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3414 if (IS_DAX(inode))
3415 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3417 * We use i_size instead of i_disksize here because delalloc writeback
3418 * can complete at any point during the I/O and subsequently push the
3419 * i_disksize out to i_size. This could be beyond where direct I/O is
3420 * happening and thus expose allocated blocks to direct I/O reads.
3422 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3423 m_flags = EXT4_GET_BLOCKS_CREATE;
3424 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3425 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3427 ret = ext4_map_blocks(handle, inode, map, m_flags);
3430 * We cannot fill holes in indirect tree based inodes as that could
3431 * expose stale data in the case of a crash. Use the magic error code
3432 * to fallback to buffered I/O.
3434 if (!m_flags && !ret)
3435 ret = -ENOTBLK;
3437 ext4_journal_stop(handle);
3438 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3439 goto retry;
3441 return ret;
3445 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3446 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3448 int ret;
3449 struct ext4_map_blocks map;
3450 u8 blkbits = inode->i_blkbits;
3452 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3453 return -EINVAL;
3455 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3456 return -ERANGE;
3459 * Calculate the first and last logical blocks respectively.
3461 map.m_lblk = offset >> blkbits;
3462 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3463 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3465 if (flags & IOMAP_WRITE) {
3467 * We check here if the blocks are already allocated, then we
3468 * don't need to start a journal txn and we can directly return
3469 * the mapping information. This could boost performance
3470 * especially in multi-threaded overwrite requests.
3472 if (offset + length <= i_size_read(inode)) {
3473 ret = ext4_map_blocks(NULL, inode, &map, 0);
3474 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3475 goto out;
3477 ret = ext4_iomap_alloc(inode, &map, flags);
3478 } else {
3479 ret = ext4_map_blocks(NULL, inode, &map, 0);
3482 if (ret < 0)
3483 return ret;
3484 out:
3485 ext4_set_iomap(inode, iomap, &map, offset, length);
3487 return 0;
3490 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3491 loff_t length, unsigned flags, struct iomap *iomap,
3492 struct iomap *srcmap)
3494 int ret;
3497 * Even for writes we don't need to allocate blocks, so just pretend
3498 * we are reading to save overhead of starting a transaction.
3500 flags &= ~IOMAP_WRITE;
3501 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3502 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3503 return ret;
3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3507 ssize_t written, unsigned flags, struct iomap *iomap)
3510 * Check to see whether an error occurred while writing out the data to
3511 * the allocated blocks. If so, return the magic error code so that we
3512 * fallback to buffered I/O and attempt to complete the remainder of
3513 * the I/O. Any blocks that may have been allocated in preparation for
3514 * the direct I/O will be reused during buffered I/O.
3516 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3517 return -ENOTBLK;
3519 return 0;
3522 const struct iomap_ops ext4_iomap_ops = {
3523 .iomap_begin = ext4_iomap_begin,
3524 .iomap_end = ext4_iomap_end,
3527 const struct iomap_ops ext4_iomap_overwrite_ops = {
3528 .iomap_begin = ext4_iomap_overwrite_begin,
3529 .iomap_end = ext4_iomap_end,
3532 static bool ext4_iomap_is_delalloc(struct inode *inode,
3533 struct ext4_map_blocks *map)
3535 struct extent_status es;
3536 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3538 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3539 map->m_lblk, end, &es);
3541 if (!es.es_len || es.es_lblk > end)
3542 return false;
3544 if (es.es_lblk > map->m_lblk) {
3545 map->m_len = es.es_lblk - map->m_lblk;
3546 return false;
3549 offset = map->m_lblk - es.es_lblk;
3550 map->m_len = es.es_len - offset;
3552 return true;
3555 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3556 loff_t length, unsigned int flags,
3557 struct iomap *iomap, struct iomap *srcmap)
3559 int ret;
3560 bool delalloc = false;
3561 struct ext4_map_blocks map;
3562 u8 blkbits = inode->i_blkbits;
3564 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3565 return -EINVAL;
3567 if (ext4_has_inline_data(inode)) {
3568 ret = ext4_inline_data_iomap(inode, iomap);
3569 if (ret != -EAGAIN) {
3570 if (ret == 0 && offset >= iomap->length)
3571 ret = -ENOENT;
3572 return ret;
3577 * Calculate the first and last logical block respectively.
3579 map.m_lblk = offset >> blkbits;
3580 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3581 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3584 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3585 * So handle it here itself instead of querying ext4_map_blocks().
3586 * Since ext4_map_blocks() will warn about it and will return
3587 * -EIO error.
3589 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3590 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3592 if (offset >= sbi->s_bitmap_maxbytes) {
3593 map.m_flags = 0;
3594 goto set_iomap;
3598 ret = ext4_map_blocks(NULL, inode, &map, 0);
3599 if (ret < 0)
3600 return ret;
3601 if (ret == 0)
3602 delalloc = ext4_iomap_is_delalloc(inode, &map);
3604 set_iomap:
3605 ext4_set_iomap(inode, iomap, &map, offset, length);
3606 if (delalloc && iomap->type == IOMAP_HOLE)
3607 iomap->type = IOMAP_DELALLOC;
3609 return 0;
3612 const struct iomap_ops ext4_iomap_report_ops = {
3613 .iomap_begin = ext4_iomap_begin_report,
3617 * Pages can be marked dirty completely asynchronously from ext4's journalling
3618 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3619 * much here because ->set_page_dirty is called under VFS locks. The page is
3620 * not necessarily locked.
3622 * We cannot just dirty the page and leave attached buffers clean, because the
3623 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3624 * or jbddirty because all the journalling code will explode.
3626 * So what we do is to mark the page "pending dirty" and next time writepage
3627 * is called, propagate that into the buffers appropriately.
3629 static int ext4_journalled_set_page_dirty(struct page *page)
3631 SetPageChecked(page);
3632 return __set_page_dirty_nobuffers(page);
3635 static int ext4_set_page_dirty(struct page *page)
3637 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3638 WARN_ON_ONCE(!page_has_buffers(page));
3639 return __set_page_dirty_buffers(page);
3642 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3643 struct file *file, sector_t *span)
3645 return iomap_swapfile_activate(sis, file, span,
3646 &ext4_iomap_report_ops);
3649 static const struct address_space_operations ext4_aops = {
3650 .readpage = ext4_readpage,
3651 .readahead = ext4_readahead,
3652 .writepage = ext4_writepage,
3653 .writepages = ext4_writepages,
3654 .write_begin = ext4_write_begin,
3655 .write_end = ext4_write_end,
3656 .set_page_dirty = ext4_set_page_dirty,
3657 .bmap = ext4_bmap,
3658 .invalidatepage = ext4_invalidatepage,
3659 .releasepage = ext4_releasepage,
3660 .direct_IO = noop_direct_IO,
3661 .migratepage = buffer_migrate_page,
3662 .is_partially_uptodate = block_is_partially_uptodate,
3663 .error_remove_page = generic_error_remove_page,
3664 .swap_activate = ext4_iomap_swap_activate,
3667 static const struct address_space_operations ext4_journalled_aops = {
3668 .readpage = ext4_readpage,
3669 .readahead = ext4_readahead,
3670 .writepage = ext4_writepage,
3671 .writepages = ext4_writepages,
3672 .write_begin = ext4_write_begin,
3673 .write_end = ext4_journalled_write_end,
3674 .set_page_dirty = ext4_journalled_set_page_dirty,
3675 .bmap = ext4_bmap,
3676 .invalidatepage = ext4_journalled_invalidatepage,
3677 .releasepage = ext4_releasepage,
3678 .direct_IO = noop_direct_IO,
3679 .is_partially_uptodate = block_is_partially_uptodate,
3680 .error_remove_page = generic_error_remove_page,
3681 .swap_activate = ext4_iomap_swap_activate,
3684 static const struct address_space_operations ext4_da_aops = {
3685 .readpage = ext4_readpage,
3686 .readahead = ext4_readahead,
3687 .writepage = ext4_writepage,
3688 .writepages = ext4_writepages,
3689 .write_begin = ext4_da_write_begin,
3690 .write_end = ext4_da_write_end,
3691 .set_page_dirty = ext4_set_page_dirty,
3692 .bmap = ext4_bmap,
3693 .invalidatepage = ext4_invalidatepage,
3694 .releasepage = ext4_releasepage,
3695 .direct_IO = noop_direct_IO,
3696 .migratepage = buffer_migrate_page,
3697 .is_partially_uptodate = block_is_partially_uptodate,
3698 .error_remove_page = generic_error_remove_page,
3699 .swap_activate = ext4_iomap_swap_activate,
3702 static const struct address_space_operations ext4_dax_aops = {
3703 .writepages = ext4_dax_writepages,
3704 .direct_IO = noop_direct_IO,
3705 .set_page_dirty = noop_set_page_dirty,
3706 .bmap = ext4_bmap,
3707 .invalidatepage = noop_invalidatepage,
3708 .swap_activate = ext4_iomap_swap_activate,
3711 void ext4_set_aops(struct inode *inode)
3713 switch (ext4_inode_journal_mode(inode)) {
3714 case EXT4_INODE_ORDERED_DATA_MODE:
3715 case EXT4_INODE_WRITEBACK_DATA_MODE:
3716 break;
3717 case EXT4_INODE_JOURNAL_DATA_MODE:
3718 inode->i_mapping->a_ops = &ext4_journalled_aops;
3719 return;
3720 default:
3721 BUG();
3723 if (IS_DAX(inode))
3724 inode->i_mapping->a_ops = &ext4_dax_aops;
3725 else if (test_opt(inode->i_sb, DELALLOC))
3726 inode->i_mapping->a_ops = &ext4_da_aops;
3727 else
3728 inode->i_mapping->a_ops = &ext4_aops;
3731 static int __ext4_block_zero_page_range(handle_t *handle,
3732 struct address_space *mapping, loff_t from, loff_t length)
3734 ext4_fsblk_t index = from >> PAGE_SHIFT;
3735 unsigned offset = from & (PAGE_SIZE-1);
3736 unsigned blocksize, pos;
3737 ext4_lblk_t iblock;
3738 struct inode *inode = mapping->host;
3739 struct buffer_head *bh;
3740 struct page *page;
3741 int err = 0;
3743 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3744 mapping_gfp_constraint(mapping, ~__GFP_FS));
3745 if (!page)
3746 return -ENOMEM;
3748 blocksize = inode->i_sb->s_blocksize;
3750 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3752 if (!page_has_buffers(page))
3753 create_empty_buffers(page, blocksize, 0);
3755 /* Find the buffer that contains "offset" */
3756 bh = page_buffers(page);
3757 pos = blocksize;
3758 while (offset >= pos) {
3759 bh = bh->b_this_page;
3760 iblock++;
3761 pos += blocksize;
3763 if (buffer_freed(bh)) {
3764 BUFFER_TRACE(bh, "freed: skip");
3765 goto unlock;
3767 if (!buffer_mapped(bh)) {
3768 BUFFER_TRACE(bh, "unmapped");
3769 ext4_get_block(inode, iblock, bh, 0);
3770 /* unmapped? It's a hole - nothing to do */
3771 if (!buffer_mapped(bh)) {
3772 BUFFER_TRACE(bh, "still unmapped");
3773 goto unlock;
3777 /* Ok, it's mapped. Make sure it's up-to-date */
3778 if (PageUptodate(page))
3779 set_buffer_uptodate(bh);
3781 if (!buffer_uptodate(bh)) {
3782 err = ext4_read_bh_lock(bh, 0, true);
3783 if (err)
3784 goto unlock;
3785 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3786 /* We expect the key to be set. */
3787 BUG_ON(!fscrypt_has_encryption_key(inode));
3788 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3789 bh_offset(bh));
3790 if (err) {
3791 clear_buffer_uptodate(bh);
3792 goto unlock;
3796 if (ext4_should_journal_data(inode)) {
3797 BUFFER_TRACE(bh, "get write access");
3798 err = ext4_journal_get_write_access(handle, bh);
3799 if (err)
3800 goto unlock;
3802 zero_user(page, offset, length);
3803 BUFFER_TRACE(bh, "zeroed end of block");
3805 if (ext4_should_journal_data(inode)) {
3806 err = ext4_handle_dirty_metadata(handle, inode, bh);
3807 } else {
3808 err = 0;
3809 mark_buffer_dirty(bh);
3810 if (ext4_should_order_data(inode))
3811 err = ext4_jbd2_inode_add_write(handle, inode, from,
3812 length);
3815 unlock:
3816 unlock_page(page);
3817 put_page(page);
3818 return err;
3822 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3823 * starting from file offset 'from'. The range to be zero'd must
3824 * be contained with in one block. If the specified range exceeds
3825 * the end of the block it will be shortened to end of the block
3826 * that cooresponds to 'from'
3828 static int ext4_block_zero_page_range(handle_t *handle,
3829 struct address_space *mapping, loff_t from, loff_t length)
3831 struct inode *inode = mapping->host;
3832 unsigned offset = from & (PAGE_SIZE-1);
3833 unsigned blocksize = inode->i_sb->s_blocksize;
3834 unsigned max = blocksize - (offset & (blocksize - 1));
3837 * correct length if it does not fall between
3838 * 'from' and the end of the block
3840 if (length > max || length < 0)
3841 length = max;
3843 if (IS_DAX(inode)) {
3844 return iomap_zero_range(inode, from, length, NULL,
3845 &ext4_iomap_ops);
3847 return __ext4_block_zero_page_range(handle, mapping, from, length);
3851 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3852 * up to the end of the block which corresponds to `from'.
3853 * This required during truncate. We need to physically zero the tail end
3854 * of that block so it doesn't yield old data if the file is later grown.
3856 static int ext4_block_truncate_page(handle_t *handle,
3857 struct address_space *mapping, loff_t from)
3859 unsigned offset = from & (PAGE_SIZE-1);
3860 unsigned length;
3861 unsigned blocksize;
3862 struct inode *inode = mapping->host;
3864 /* If we are processing an encrypted inode during orphan list handling */
3865 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3866 return 0;
3868 blocksize = inode->i_sb->s_blocksize;
3869 length = blocksize - (offset & (blocksize - 1));
3871 return ext4_block_zero_page_range(handle, mapping, from, length);
3874 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3875 loff_t lstart, loff_t length)
3877 struct super_block *sb = inode->i_sb;
3878 struct address_space *mapping = inode->i_mapping;
3879 unsigned partial_start, partial_end;
3880 ext4_fsblk_t start, end;
3881 loff_t byte_end = (lstart + length - 1);
3882 int err = 0;
3884 partial_start = lstart & (sb->s_blocksize - 1);
3885 partial_end = byte_end & (sb->s_blocksize - 1);
3887 start = lstart >> sb->s_blocksize_bits;
3888 end = byte_end >> sb->s_blocksize_bits;
3890 /* Handle partial zero within the single block */
3891 if (start == end &&
3892 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3893 err = ext4_block_zero_page_range(handle, mapping,
3894 lstart, length);
3895 return err;
3897 /* Handle partial zero out on the start of the range */
3898 if (partial_start) {
3899 err = ext4_block_zero_page_range(handle, mapping,
3900 lstart, sb->s_blocksize);
3901 if (err)
3902 return err;
3904 /* Handle partial zero out on the end of the range */
3905 if (partial_end != sb->s_blocksize - 1)
3906 err = ext4_block_zero_page_range(handle, mapping,
3907 byte_end - partial_end,
3908 partial_end + 1);
3909 return err;
3912 int ext4_can_truncate(struct inode *inode)
3914 if (S_ISREG(inode->i_mode))
3915 return 1;
3916 if (S_ISDIR(inode->i_mode))
3917 return 1;
3918 if (S_ISLNK(inode->i_mode))
3919 return !ext4_inode_is_fast_symlink(inode);
3920 return 0;
3924 * We have to make sure i_disksize gets properly updated before we truncate
3925 * page cache due to hole punching or zero range. Otherwise i_disksize update
3926 * can get lost as it may have been postponed to submission of writeback but
3927 * that will never happen after we truncate page cache.
3929 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3930 loff_t len)
3932 handle_t *handle;
3933 int ret;
3935 loff_t size = i_size_read(inode);
3937 WARN_ON(!inode_is_locked(inode));
3938 if (offset > size || offset + len < size)
3939 return 0;
3941 if (EXT4_I(inode)->i_disksize >= size)
3942 return 0;
3944 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3945 if (IS_ERR(handle))
3946 return PTR_ERR(handle);
3947 ext4_update_i_disksize(inode, size);
3948 ret = ext4_mark_inode_dirty(handle, inode);
3949 ext4_journal_stop(handle);
3951 return ret;
3954 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3956 up_write(&ei->i_mmap_sem);
3957 schedule();
3958 down_write(&ei->i_mmap_sem);
3961 int ext4_break_layouts(struct inode *inode)
3963 struct ext4_inode_info *ei = EXT4_I(inode);
3964 struct page *page;
3965 int error;
3967 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3968 return -EINVAL;
3970 do {
3971 page = dax_layout_busy_page(inode->i_mapping);
3972 if (!page)
3973 return 0;
3975 error = ___wait_var_event(&page->_refcount,
3976 atomic_read(&page->_refcount) == 1,
3977 TASK_INTERRUPTIBLE, 0, 0,
3978 ext4_wait_dax_page(ei));
3979 } while (error == 0);
3981 return error;
3985 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3986 * associated with the given offset and length
3988 * @inode: File inode
3989 * @offset: The offset where the hole will begin
3990 * @len: The length of the hole
3992 * Returns: 0 on success or negative on failure
3995 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3997 struct super_block *sb = inode->i_sb;
3998 ext4_lblk_t first_block, stop_block;
3999 struct address_space *mapping = inode->i_mapping;
4000 loff_t first_block_offset, last_block_offset;
4001 handle_t *handle;
4002 unsigned int credits;
4003 int ret = 0, ret2 = 0;
4005 trace_ext4_punch_hole(inode, offset, length, 0);
4007 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4008 if (ext4_has_inline_data(inode)) {
4009 down_write(&EXT4_I(inode)->i_mmap_sem);
4010 ret = ext4_convert_inline_data(inode);
4011 up_write(&EXT4_I(inode)->i_mmap_sem);
4012 if (ret)
4013 return ret;
4017 * Write out all dirty pages to avoid race conditions
4018 * Then release them.
4020 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4021 ret = filemap_write_and_wait_range(mapping, offset,
4022 offset + length - 1);
4023 if (ret)
4024 return ret;
4027 inode_lock(inode);
4029 /* No need to punch hole beyond i_size */
4030 if (offset >= inode->i_size)
4031 goto out_mutex;
4034 * If the hole extends beyond i_size, set the hole
4035 * to end after the page that contains i_size
4037 if (offset + length > inode->i_size) {
4038 length = inode->i_size +
4039 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4040 offset;
4043 if (offset & (sb->s_blocksize - 1) ||
4044 (offset + length) & (sb->s_blocksize - 1)) {
4046 * Attach jinode to inode for jbd2 if we do any zeroing of
4047 * partial block
4049 ret = ext4_inode_attach_jinode(inode);
4050 if (ret < 0)
4051 goto out_mutex;
4055 /* Wait all existing dio workers, newcomers will block on i_mutex */
4056 inode_dio_wait(inode);
4059 * Prevent page faults from reinstantiating pages we have released from
4060 * page cache.
4062 down_write(&EXT4_I(inode)->i_mmap_sem);
4064 ret = ext4_break_layouts(inode);
4065 if (ret)
4066 goto out_dio;
4068 first_block_offset = round_up(offset, sb->s_blocksize);
4069 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4071 /* Now release the pages and zero block aligned part of pages*/
4072 if (last_block_offset > first_block_offset) {
4073 ret = ext4_update_disksize_before_punch(inode, offset, length);
4074 if (ret)
4075 goto out_dio;
4076 truncate_pagecache_range(inode, first_block_offset,
4077 last_block_offset);
4080 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4081 credits = ext4_writepage_trans_blocks(inode);
4082 else
4083 credits = ext4_blocks_for_truncate(inode);
4084 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4085 if (IS_ERR(handle)) {
4086 ret = PTR_ERR(handle);
4087 ext4_std_error(sb, ret);
4088 goto out_dio;
4091 ret = ext4_zero_partial_blocks(handle, inode, offset,
4092 length);
4093 if (ret)
4094 goto out_stop;
4096 first_block = (offset + sb->s_blocksize - 1) >>
4097 EXT4_BLOCK_SIZE_BITS(sb);
4098 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4100 /* If there are blocks to remove, do it */
4101 if (stop_block > first_block) {
4103 down_write(&EXT4_I(inode)->i_data_sem);
4104 ext4_discard_preallocations(inode, 0);
4106 ret = ext4_es_remove_extent(inode, first_block,
4107 stop_block - first_block);
4108 if (ret) {
4109 up_write(&EXT4_I(inode)->i_data_sem);
4110 goto out_stop;
4113 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4114 ret = ext4_ext_remove_space(inode, first_block,
4115 stop_block - 1);
4116 else
4117 ret = ext4_ind_remove_space(handle, inode, first_block,
4118 stop_block);
4120 up_write(&EXT4_I(inode)->i_data_sem);
4122 ext4_fc_track_range(handle, inode, first_block, stop_block);
4123 if (IS_SYNC(inode))
4124 ext4_handle_sync(handle);
4126 inode->i_mtime = inode->i_ctime = current_time(inode);
4127 ret2 = ext4_mark_inode_dirty(handle, inode);
4128 if (unlikely(ret2))
4129 ret = ret2;
4130 if (ret >= 0)
4131 ext4_update_inode_fsync_trans(handle, inode, 1);
4132 out_stop:
4133 ext4_journal_stop(handle);
4134 out_dio:
4135 up_write(&EXT4_I(inode)->i_mmap_sem);
4136 out_mutex:
4137 inode_unlock(inode);
4138 return ret;
4141 int ext4_inode_attach_jinode(struct inode *inode)
4143 struct ext4_inode_info *ei = EXT4_I(inode);
4144 struct jbd2_inode *jinode;
4146 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4147 return 0;
4149 jinode = jbd2_alloc_inode(GFP_KERNEL);
4150 spin_lock(&inode->i_lock);
4151 if (!ei->jinode) {
4152 if (!jinode) {
4153 spin_unlock(&inode->i_lock);
4154 return -ENOMEM;
4156 ei->jinode = jinode;
4157 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4158 jinode = NULL;
4160 spin_unlock(&inode->i_lock);
4161 if (unlikely(jinode != NULL))
4162 jbd2_free_inode(jinode);
4163 return 0;
4167 * ext4_truncate()
4169 * We block out ext4_get_block() block instantiations across the entire
4170 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4171 * simultaneously on behalf of the same inode.
4173 * As we work through the truncate and commit bits of it to the journal there
4174 * is one core, guiding principle: the file's tree must always be consistent on
4175 * disk. We must be able to restart the truncate after a crash.
4177 * The file's tree may be transiently inconsistent in memory (although it
4178 * probably isn't), but whenever we close off and commit a journal transaction,
4179 * the contents of (the filesystem + the journal) must be consistent and
4180 * restartable. It's pretty simple, really: bottom up, right to left (although
4181 * left-to-right works OK too).
4183 * Note that at recovery time, journal replay occurs *before* the restart of
4184 * truncate against the orphan inode list.
4186 * The committed inode has the new, desired i_size (which is the same as
4187 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4188 * that this inode's truncate did not complete and it will again call
4189 * ext4_truncate() to have another go. So there will be instantiated blocks
4190 * to the right of the truncation point in a crashed ext4 filesystem. But
4191 * that's fine - as long as they are linked from the inode, the post-crash
4192 * ext4_truncate() run will find them and release them.
4194 int ext4_truncate(struct inode *inode)
4196 struct ext4_inode_info *ei = EXT4_I(inode);
4197 unsigned int credits;
4198 int err = 0, err2;
4199 handle_t *handle;
4200 struct address_space *mapping = inode->i_mapping;
4203 * There is a possibility that we're either freeing the inode
4204 * or it's a completely new inode. In those cases we might not
4205 * have i_mutex locked because it's not necessary.
4207 if (!(inode->i_state & (I_NEW|I_FREEING)))
4208 WARN_ON(!inode_is_locked(inode));
4209 trace_ext4_truncate_enter(inode);
4211 if (!ext4_can_truncate(inode))
4212 goto out_trace;
4214 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4215 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4217 if (ext4_has_inline_data(inode)) {
4218 int has_inline = 1;
4220 err = ext4_inline_data_truncate(inode, &has_inline);
4221 if (err || has_inline)
4222 goto out_trace;
4225 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4226 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4227 if (ext4_inode_attach_jinode(inode) < 0)
4228 goto out_trace;
4231 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4232 credits = ext4_writepage_trans_blocks(inode);
4233 else
4234 credits = ext4_blocks_for_truncate(inode);
4236 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4237 if (IS_ERR(handle)) {
4238 err = PTR_ERR(handle);
4239 goto out_trace;
4242 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4243 ext4_block_truncate_page(handle, mapping, inode->i_size);
4246 * We add the inode to the orphan list, so that if this
4247 * truncate spans multiple transactions, and we crash, we will
4248 * resume the truncate when the filesystem recovers. It also
4249 * marks the inode dirty, to catch the new size.
4251 * Implication: the file must always be in a sane, consistent
4252 * truncatable state while each transaction commits.
4254 err = ext4_orphan_add(handle, inode);
4255 if (err)
4256 goto out_stop;
4258 down_write(&EXT4_I(inode)->i_data_sem);
4260 ext4_discard_preallocations(inode, 0);
4262 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4263 err = ext4_ext_truncate(handle, inode);
4264 else
4265 ext4_ind_truncate(handle, inode);
4267 up_write(&ei->i_data_sem);
4268 if (err)
4269 goto out_stop;
4271 if (IS_SYNC(inode))
4272 ext4_handle_sync(handle);
4274 out_stop:
4276 * If this was a simple ftruncate() and the file will remain alive,
4277 * then we need to clear up the orphan record which we created above.
4278 * However, if this was a real unlink then we were called by
4279 * ext4_evict_inode(), and we allow that function to clean up the
4280 * orphan info for us.
4282 if (inode->i_nlink)
4283 ext4_orphan_del(handle, inode);
4285 inode->i_mtime = inode->i_ctime = current_time(inode);
4286 err2 = ext4_mark_inode_dirty(handle, inode);
4287 if (unlikely(err2 && !err))
4288 err = err2;
4289 ext4_journal_stop(handle);
4291 out_trace:
4292 trace_ext4_truncate_exit(inode);
4293 return err;
4297 * ext4_get_inode_loc returns with an extra refcount against the inode's
4298 * underlying buffer_head on success. If 'in_mem' is true, we have all
4299 * data in memory that is needed to recreate the on-disk version of this
4300 * inode.
4302 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4303 struct ext4_iloc *iloc, int in_mem,
4304 ext4_fsblk_t *ret_block)
4306 struct ext4_group_desc *gdp;
4307 struct buffer_head *bh;
4308 ext4_fsblk_t block;
4309 struct blk_plug plug;
4310 int inodes_per_block, inode_offset;
4312 iloc->bh = NULL;
4313 if (ino < EXT4_ROOT_INO ||
4314 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4315 return -EFSCORRUPTED;
4317 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4318 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4319 if (!gdp)
4320 return -EIO;
4323 * Figure out the offset within the block group inode table
4325 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4326 inode_offset = ((ino - 1) %
4327 EXT4_INODES_PER_GROUP(sb));
4328 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4329 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4331 bh = sb_getblk(sb, block);
4332 if (unlikely(!bh))
4333 return -ENOMEM;
4334 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4335 goto simulate_eio;
4336 if (!buffer_uptodate(bh)) {
4337 lock_buffer(bh);
4339 if (ext4_buffer_uptodate(bh)) {
4340 /* someone brought it uptodate while we waited */
4341 unlock_buffer(bh);
4342 goto has_buffer;
4346 * If we have all information of the inode in memory and this
4347 * is the only valid inode in the block, we need not read the
4348 * block.
4350 if (in_mem) {
4351 struct buffer_head *bitmap_bh;
4352 int i, start;
4354 start = inode_offset & ~(inodes_per_block - 1);
4356 /* Is the inode bitmap in cache? */
4357 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4358 if (unlikely(!bitmap_bh))
4359 goto make_io;
4362 * If the inode bitmap isn't in cache then the
4363 * optimisation may end up performing two reads instead
4364 * of one, so skip it.
4366 if (!buffer_uptodate(bitmap_bh)) {
4367 brelse(bitmap_bh);
4368 goto make_io;
4370 for (i = start; i < start + inodes_per_block; i++) {
4371 if (i == inode_offset)
4372 continue;
4373 if (ext4_test_bit(i, bitmap_bh->b_data))
4374 break;
4376 brelse(bitmap_bh);
4377 if (i == start + inodes_per_block) {
4378 /* all other inodes are free, so skip I/O */
4379 memset(bh->b_data, 0, bh->b_size);
4380 set_buffer_uptodate(bh);
4381 unlock_buffer(bh);
4382 goto has_buffer;
4386 make_io:
4388 * If we need to do any I/O, try to pre-readahead extra
4389 * blocks from the inode table.
4391 blk_start_plug(&plug);
4392 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4393 ext4_fsblk_t b, end, table;
4394 unsigned num;
4395 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4397 table = ext4_inode_table(sb, gdp);
4398 /* s_inode_readahead_blks is always a power of 2 */
4399 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4400 if (table > b)
4401 b = table;
4402 end = b + ra_blks;
4403 num = EXT4_INODES_PER_GROUP(sb);
4404 if (ext4_has_group_desc_csum(sb))
4405 num -= ext4_itable_unused_count(sb, gdp);
4406 table += num / inodes_per_block;
4407 if (end > table)
4408 end = table;
4409 while (b <= end)
4410 ext4_sb_breadahead_unmovable(sb, b++);
4414 * There are other valid inodes in the buffer, this inode
4415 * has in-inode xattrs, or we don't have this inode in memory.
4416 * Read the block from disk.
4418 trace_ext4_load_inode(sb, ino);
4419 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4420 blk_finish_plug(&plug);
4421 wait_on_buffer(bh);
4422 if (!buffer_uptodate(bh)) {
4423 simulate_eio:
4424 if (ret_block)
4425 *ret_block = block;
4426 brelse(bh);
4427 return -EIO;
4430 has_buffer:
4431 iloc->bh = bh;
4432 return 0;
4435 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4436 struct ext4_iloc *iloc)
4438 ext4_fsblk_t err_blk;
4439 int ret;
4441 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4442 &err_blk);
4444 if (ret == -EIO)
4445 ext4_error_inode_block(inode, err_blk, EIO,
4446 "unable to read itable block");
4448 return ret;
4451 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4453 ext4_fsblk_t err_blk;
4454 int ret;
4456 /* We have all inode data except xattrs in memory here. */
4457 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4458 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4460 if (ret == -EIO)
4461 ext4_error_inode_block(inode, err_blk, EIO,
4462 "unable to read itable block");
4464 return ret;
4468 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4469 struct ext4_iloc *iloc)
4471 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4474 static bool ext4_should_enable_dax(struct inode *inode)
4476 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4478 if (test_opt2(inode->i_sb, DAX_NEVER))
4479 return false;
4480 if (!S_ISREG(inode->i_mode))
4481 return false;
4482 if (ext4_should_journal_data(inode))
4483 return false;
4484 if (ext4_has_inline_data(inode))
4485 return false;
4486 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4487 return false;
4488 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4489 return false;
4490 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4491 return false;
4492 if (test_opt(inode->i_sb, DAX_ALWAYS))
4493 return true;
4495 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4498 void ext4_set_inode_flags(struct inode *inode, bool init)
4500 unsigned int flags = EXT4_I(inode)->i_flags;
4501 unsigned int new_fl = 0;
4503 WARN_ON_ONCE(IS_DAX(inode) && init);
4505 if (flags & EXT4_SYNC_FL)
4506 new_fl |= S_SYNC;
4507 if (flags & EXT4_APPEND_FL)
4508 new_fl |= S_APPEND;
4509 if (flags & EXT4_IMMUTABLE_FL)
4510 new_fl |= S_IMMUTABLE;
4511 if (flags & EXT4_NOATIME_FL)
4512 new_fl |= S_NOATIME;
4513 if (flags & EXT4_DIRSYNC_FL)
4514 new_fl |= S_DIRSYNC;
4516 /* Because of the way inode_set_flags() works we must preserve S_DAX
4517 * here if already set. */
4518 new_fl |= (inode->i_flags & S_DAX);
4519 if (init && ext4_should_enable_dax(inode))
4520 new_fl |= S_DAX;
4522 if (flags & EXT4_ENCRYPT_FL)
4523 new_fl |= S_ENCRYPTED;
4524 if (flags & EXT4_CASEFOLD_FL)
4525 new_fl |= S_CASEFOLD;
4526 if (flags & EXT4_VERITY_FL)
4527 new_fl |= S_VERITY;
4528 inode_set_flags(inode, new_fl,
4529 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4530 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4533 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4534 struct ext4_inode_info *ei)
4536 blkcnt_t i_blocks ;
4537 struct inode *inode = &(ei->vfs_inode);
4538 struct super_block *sb = inode->i_sb;
4540 if (ext4_has_feature_huge_file(sb)) {
4541 /* we are using combined 48 bit field */
4542 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4543 le32_to_cpu(raw_inode->i_blocks_lo);
4544 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4545 /* i_blocks represent file system block size */
4546 return i_blocks << (inode->i_blkbits - 9);
4547 } else {
4548 return i_blocks;
4550 } else {
4551 return le32_to_cpu(raw_inode->i_blocks_lo);
4555 static inline int ext4_iget_extra_inode(struct inode *inode,
4556 struct ext4_inode *raw_inode,
4557 struct ext4_inode_info *ei)
4559 __le32 *magic = (void *)raw_inode +
4560 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4562 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4563 EXT4_INODE_SIZE(inode->i_sb) &&
4564 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4565 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4566 return ext4_find_inline_data_nolock(inode);
4567 } else
4568 EXT4_I(inode)->i_inline_off = 0;
4569 return 0;
4572 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4574 if (!ext4_has_feature_project(inode->i_sb))
4575 return -EOPNOTSUPP;
4576 *projid = EXT4_I(inode)->i_projid;
4577 return 0;
4581 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4582 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4583 * set.
4585 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4587 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4588 inode_set_iversion_raw(inode, val);
4589 else
4590 inode_set_iversion_queried(inode, val);
4592 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4594 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4595 return inode_peek_iversion_raw(inode);
4596 else
4597 return inode_peek_iversion(inode);
4600 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4601 ext4_iget_flags flags, const char *function,
4602 unsigned int line)
4604 struct ext4_iloc iloc;
4605 struct ext4_inode *raw_inode;
4606 struct ext4_inode_info *ei;
4607 struct inode *inode;
4608 journal_t *journal = EXT4_SB(sb)->s_journal;
4609 long ret;
4610 loff_t size;
4611 int block;
4612 uid_t i_uid;
4613 gid_t i_gid;
4614 projid_t i_projid;
4616 if ((!(flags & EXT4_IGET_SPECIAL) &&
4617 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4618 (ino < EXT4_ROOT_INO) ||
4619 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4620 if (flags & EXT4_IGET_HANDLE)
4621 return ERR_PTR(-ESTALE);
4622 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4623 "inode #%lu: comm %s: iget: illegal inode #",
4624 ino, current->comm);
4625 return ERR_PTR(-EFSCORRUPTED);
4628 inode = iget_locked(sb, ino);
4629 if (!inode)
4630 return ERR_PTR(-ENOMEM);
4631 if (!(inode->i_state & I_NEW))
4632 return inode;
4634 ei = EXT4_I(inode);
4635 iloc.bh = NULL;
4637 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4638 if (ret < 0)
4639 goto bad_inode;
4640 raw_inode = ext4_raw_inode(&iloc);
4642 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4643 ext4_error_inode(inode, function, line, 0,
4644 "iget: root inode unallocated");
4645 ret = -EFSCORRUPTED;
4646 goto bad_inode;
4649 if ((flags & EXT4_IGET_HANDLE) &&
4650 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4651 ret = -ESTALE;
4652 goto bad_inode;
4655 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4656 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4657 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4658 EXT4_INODE_SIZE(inode->i_sb) ||
4659 (ei->i_extra_isize & 3)) {
4660 ext4_error_inode(inode, function, line, 0,
4661 "iget: bad extra_isize %u "
4662 "(inode size %u)",
4663 ei->i_extra_isize,
4664 EXT4_INODE_SIZE(inode->i_sb));
4665 ret = -EFSCORRUPTED;
4666 goto bad_inode;
4668 } else
4669 ei->i_extra_isize = 0;
4671 /* Precompute checksum seed for inode metadata */
4672 if (ext4_has_metadata_csum(sb)) {
4673 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4674 __u32 csum;
4675 __le32 inum = cpu_to_le32(inode->i_ino);
4676 __le32 gen = raw_inode->i_generation;
4677 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4678 sizeof(inum));
4679 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4680 sizeof(gen));
4683 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4684 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4685 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4686 ext4_error_inode_err(inode, function, line, 0,
4687 EFSBADCRC, "iget: checksum invalid");
4688 ret = -EFSBADCRC;
4689 goto bad_inode;
4692 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4693 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4694 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4695 if (ext4_has_feature_project(sb) &&
4696 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4697 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4698 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4699 else
4700 i_projid = EXT4_DEF_PROJID;
4702 if (!(test_opt(inode->i_sb, NO_UID32))) {
4703 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4704 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4706 i_uid_write(inode, i_uid);
4707 i_gid_write(inode, i_gid);
4708 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4709 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4711 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4712 ei->i_inline_off = 0;
4713 ei->i_dir_start_lookup = 0;
4714 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4715 /* We now have enough fields to check if the inode was active or not.
4716 * This is needed because nfsd might try to access dead inodes
4717 * the test is that same one that e2fsck uses
4718 * NeilBrown 1999oct15
4720 if (inode->i_nlink == 0) {
4721 if ((inode->i_mode == 0 ||
4722 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4723 ino != EXT4_BOOT_LOADER_INO) {
4724 /* this inode is deleted */
4725 ret = -ESTALE;
4726 goto bad_inode;
4728 /* The only unlinked inodes we let through here have
4729 * valid i_mode and are being read by the orphan
4730 * recovery code: that's fine, we're about to complete
4731 * the process of deleting those.
4732 * OR it is the EXT4_BOOT_LOADER_INO which is
4733 * not initialized on a new filesystem. */
4735 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4736 ext4_set_inode_flags(inode, true);
4737 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4738 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4739 if (ext4_has_feature_64bit(sb))
4740 ei->i_file_acl |=
4741 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4742 inode->i_size = ext4_isize(sb, raw_inode);
4743 if ((size = i_size_read(inode)) < 0) {
4744 ext4_error_inode(inode, function, line, 0,
4745 "iget: bad i_size value: %lld", size);
4746 ret = -EFSCORRUPTED;
4747 goto bad_inode;
4750 * If dir_index is not enabled but there's dir with INDEX flag set,
4751 * we'd normally treat htree data as empty space. But with metadata
4752 * checksumming that corrupts checksums so forbid that.
4754 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4755 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4756 ext4_error_inode(inode, function, line, 0,
4757 "iget: Dir with htree data on filesystem without dir_index feature.");
4758 ret = -EFSCORRUPTED;
4759 goto bad_inode;
4761 ei->i_disksize = inode->i_size;
4762 #ifdef CONFIG_QUOTA
4763 ei->i_reserved_quota = 0;
4764 #endif
4765 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4766 ei->i_block_group = iloc.block_group;
4767 ei->i_last_alloc_group = ~0;
4769 * NOTE! The in-memory inode i_data array is in little-endian order
4770 * even on big-endian machines: we do NOT byteswap the block numbers!
4772 for (block = 0; block < EXT4_N_BLOCKS; block++)
4773 ei->i_data[block] = raw_inode->i_block[block];
4774 INIT_LIST_HEAD(&ei->i_orphan);
4775 ext4_fc_init_inode(&ei->vfs_inode);
4778 * Set transaction id's of transactions that have to be committed
4779 * to finish f[data]sync. We set them to currently running transaction
4780 * as we cannot be sure that the inode or some of its metadata isn't
4781 * part of the transaction - the inode could have been reclaimed and
4782 * now it is reread from disk.
4784 if (journal) {
4785 transaction_t *transaction;
4786 tid_t tid;
4788 read_lock(&journal->j_state_lock);
4789 if (journal->j_running_transaction)
4790 transaction = journal->j_running_transaction;
4791 else
4792 transaction = journal->j_committing_transaction;
4793 if (transaction)
4794 tid = transaction->t_tid;
4795 else
4796 tid = journal->j_commit_sequence;
4797 read_unlock(&journal->j_state_lock);
4798 ei->i_sync_tid = tid;
4799 ei->i_datasync_tid = tid;
4802 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4803 if (ei->i_extra_isize == 0) {
4804 /* The extra space is currently unused. Use it. */
4805 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4806 ei->i_extra_isize = sizeof(struct ext4_inode) -
4807 EXT4_GOOD_OLD_INODE_SIZE;
4808 } else {
4809 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4810 if (ret)
4811 goto bad_inode;
4815 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4816 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4817 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4818 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4820 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4821 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4823 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4824 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4825 ivers |=
4826 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4828 ext4_inode_set_iversion_queried(inode, ivers);
4831 ret = 0;
4832 if (ei->i_file_acl &&
4833 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4834 ext4_error_inode(inode, function, line, 0,
4835 "iget: bad extended attribute block %llu",
4836 ei->i_file_acl);
4837 ret = -EFSCORRUPTED;
4838 goto bad_inode;
4839 } else if (!ext4_has_inline_data(inode)) {
4840 /* validate the block references in the inode */
4841 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4842 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4843 (S_ISLNK(inode->i_mode) &&
4844 !ext4_inode_is_fast_symlink(inode)))) {
4845 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4846 ret = ext4_ext_check_inode(inode);
4847 else
4848 ret = ext4_ind_check_inode(inode);
4851 if (ret)
4852 goto bad_inode;
4854 if (S_ISREG(inode->i_mode)) {
4855 inode->i_op = &ext4_file_inode_operations;
4856 inode->i_fop = &ext4_file_operations;
4857 ext4_set_aops(inode);
4858 } else if (S_ISDIR(inode->i_mode)) {
4859 inode->i_op = &ext4_dir_inode_operations;
4860 inode->i_fop = &ext4_dir_operations;
4861 } else if (S_ISLNK(inode->i_mode)) {
4862 /* VFS does not allow setting these so must be corruption */
4863 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4864 ext4_error_inode(inode, function, line, 0,
4865 "iget: immutable or append flags "
4866 "not allowed on symlinks");
4867 ret = -EFSCORRUPTED;
4868 goto bad_inode;
4870 if (IS_ENCRYPTED(inode)) {
4871 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4872 ext4_set_aops(inode);
4873 } else if (ext4_inode_is_fast_symlink(inode)) {
4874 inode->i_link = (char *)ei->i_data;
4875 inode->i_op = &ext4_fast_symlink_inode_operations;
4876 nd_terminate_link(ei->i_data, inode->i_size,
4877 sizeof(ei->i_data) - 1);
4878 } else {
4879 inode->i_op = &ext4_symlink_inode_operations;
4880 ext4_set_aops(inode);
4882 inode_nohighmem(inode);
4883 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4884 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4885 inode->i_op = &ext4_special_inode_operations;
4886 if (raw_inode->i_block[0])
4887 init_special_inode(inode, inode->i_mode,
4888 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4889 else
4890 init_special_inode(inode, inode->i_mode,
4891 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4892 } else if (ino == EXT4_BOOT_LOADER_INO) {
4893 make_bad_inode(inode);
4894 } else {
4895 ret = -EFSCORRUPTED;
4896 ext4_error_inode(inode, function, line, 0,
4897 "iget: bogus i_mode (%o)", inode->i_mode);
4898 goto bad_inode;
4900 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4901 ext4_error_inode(inode, function, line, 0,
4902 "casefold flag without casefold feature");
4903 brelse(iloc.bh);
4905 unlock_new_inode(inode);
4906 return inode;
4908 bad_inode:
4909 brelse(iloc.bh);
4910 iget_failed(inode);
4911 return ERR_PTR(ret);
4914 static int ext4_inode_blocks_set(handle_t *handle,
4915 struct ext4_inode *raw_inode,
4916 struct ext4_inode_info *ei)
4918 struct inode *inode = &(ei->vfs_inode);
4919 u64 i_blocks = READ_ONCE(inode->i_blocks);
4920 struct super_block *sb = inode->i_sb;
4922 if (i_blocks <= ~0U) {
4924 * i_blocks can be represented in a 32 bit variable
4925 * as multiple of 512 bytes
4927 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4928 raw_inode->i_blocks_high = 0;
4929 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4930 return 0;
4932 if (!ext4_has_feature_huge_file(sb))
4933 return -EFBIG;
4935 if (i_blocks <= 0xffffffffffffULL) {
4937 * i_blocks can be represented in a 48 bit variable
4938 * as multiple of 512 bytes
4940 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4941 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4942 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4943 } else {
4944 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4945 /* i_block is stored in file system block size */
4946 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4947 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4948 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4950 return 0;
4953 static void __ext4_update_other_inode_time(struct super_block *sb,
4954 unsigned long orig_ino,
4955 unsigned long ino,
4956 struct ext4_inode *raw_inode)
4958 struct inode *inode;
4960 inode = find_inode_by_ino_rcu(sb, ino);
4961 if (!inode)
4962 return;
4964 if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4965 I_DIRTY_INODE)) ||
4966 ((inode->i_state & I_DIRTY_TIME) == 0))
4967 return;
4969 spin_lock(&inode->i_lock);
4970 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4971 I_DIRTY_INODE)) == 0) &&
4972 (inode->i_state & I_DIRTY_TIME)) {
4973 struct ext4_inode_info *ei = EXT4_I(inode);
4975 inode->i_state &= ~I_DIRTY_TIME;
4976 spin_unlock(&inode->i_lock);
4978 spin_lock(&ei->i_raw_lock);
4979 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4980 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4981 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4982 ext4_inode_csum_set(inode, raw_inode, ei);
4983 spin_unlock(&ei->i_raw_lock);
4984 trace_ext4_other_inode_update_time(inode, orig_ino);
4985 return;
4987 spin_unlock(&inode->i_lock);
4991 * Opportunistically update the other time fields for other inodes in
4992 * the same inode table block.
4994 static void ext4_update_other_inodes_time(struct super_block *sb,
4995 unsigned long orig_ino, char *buf)
4997 unsigned long ino;
4998 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4999 int inode_size = EXT4_INODE_SIZE(sb);
5002 * Calculate the first inode in the inode table block. Inode
5003 * numbers are one-based. That is, the first inode in a block
5004 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5006 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5007 rcu_read_lock();
5008 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5009 if (ino == orig_ino)
5010 continue;
5011 __ext4_update_other_inode_time(sb, orig_ino, ino,
5012 (struct ext4_inode *)buf);
5014 rcu_read_unlock();
5018 * Post the struct inode info into an on-disk inode location in the
5019 * buffer-cache. This gobbles the caller's reference to the
5020 * buffer_head in the inode location struct.
5022 * The caller must have write access to iloc->bh.
5024 static int ext4_do_update_inode(handle_t *handle,
5025 struct inode *inode,
5026 struct ext4_iloc *iloc)
5028 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5029 struct ext4_inode_info *ei = EXT4_I(inode);
5030 struct buffer_head *bh = iloc->bh;
5031 struct super_block *sb = inode->i_sb;
5032 int err = 0, rc, block;
5033 int need_datasync = 0, set_large_file = 0;
5034 uid_t i_uid;
5035 gid_t i_gid;
5036 projid_t i_projid;
5038 spin_lock(&ei->i_raw_lock);
5040 /* For fields not tracked in the in-memory inode,
5041 * initialise them to zero for new inodes. */
5042 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5043 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5045 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5046 if (err) {
5047 spin_unlock(&ei->i_raw_lock);
5048 goto out_brelse;
5051 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5052 i_uid = i_uid_read(inode);
5053 i_gid = i_gid_read(inode);
5054 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5055 if (!(test_opt(inode->i_sb, NO_UID32))) {
5056 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5057 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5059 * Fix up interoperability with old kernels. Otherwise, old inodes get
5060 * re-used with the upper 16 bits of the uid/gid intact
5062 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5063 raw_inode->i_uid_high = 0;
5064 raw_inode->i_gid_high = 0;
5065 } else {
5066 raw_inode->i_uid_high =
5067 cpu_to_le16(high_16_bits(i_uid));
5068 raw_inode->i_gid_high =
5069 cpu_to_le16(high_16_bits(i_gid));
5071 } else {
5072 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5073 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5074 raw_inode->i_uid_high = 0;
5075 raw_inode->i_gid_high = 0;
5077 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5079 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5080 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5081 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5082 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5084 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5085 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5086 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5087 raw_inode->i_file_acl_high =
5088 cpu_to_le16(ei->i_file_acl >> 32);
5089 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5090 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5091 ext4_isize_set(raw_inode, ei->i_disksize);
5092 need_datasync = 1;
5094 if (ei->i_disksize > 0x7fffffffULL) {
5095 if (!ext4_has_feature_large_file(sb) ||
5096 EXT4_SB(sb)->s_es->s_rev_level ==
5097 cpu_to_le32(EXT4_GOOD_OLD_REV))
5098 set_large_file = 1;
5100 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5101 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5102 if (old_valid_dev(inode->i_rdev)) {
5103 raw_inode->i_block[0] =
5104 cpu_to_le32(old_encode_dev(inode->i_rdev));
5105 raw_inode->i_block[1] = 0;
5106 } else {
5107 raw_inode->i_block[0] = 0;
5108 raw_inode->i_block[1] =
5109 cpu_to_le32(new_encode_dev(inode->i_rdev));
5110 raw_inode->i_block[2] = 0;
5112 } else if (!ext4_has_inline_data(inode)) {
5113 for (block = 0; block < EXT4_N_BLOCKS; block++)
5114 raw_inode->i_block[block] = ei->i_data[block];
5117 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5118 u64 ivers = ext4_inode_peek_iversion(inode);
5120 raw_inode->i_disk_version = cpu_to_le32(ivers);
5121 if (ei->i_extra_isize) {
5122 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5123 raw_inode->i_version_hi =
5124 cpu_to_le32(ivers >> 32);
5125 raw_inode->i_extra_isize =
5126 cpu_to_le16(ei->i_extra_isize);
5130 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5131 i_projid != EXT4_DEF_PROJID);
5133 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5134 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5135 raw_inode->i_projid = cpu_to_le32(i_projid);
5137 ext4_inode_csum_set(inode, raw_inode, ei);
5138 spin_unlock(&ei->i_raw_lock);
5139 if (inode->i_sb->s_flags & SB_LAZYTIME)
5140 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5141 bh->b_data);
5143 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5144 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5145 if (!err)
5146 err = rc;
5147 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5148 if (set_large_file) {
5149 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5150 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5151 if (err)
5152 goto out_brelse;
5153 ext4_set_feature_large_file(sb);
5154 ext4_handle_sync(handle);
5155 err = ext4_handle_dirty_super(handle, sb);
5157 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5158 out_brelse:
5159 brelse(bh);
5160 ext4_std_error(inode->i_sb, err);
5161 return err;
5165 * ext4_write_inode()
5167 * We are called from a few places:
5169 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5170 * Here, there will be no transaction running. We wait for any running
5171 * transaction to commit.
5173 * - Within flush work (sys_sync(), kupdate and such).
5174 * We wait on commit, if told to.
5176 * - Within iput_final() -> write_inode_now()
5177 * We wait on commit, if told to.
5179 * In all cases it is actually safe for us to return without doing anything,
5180 * because the inode has been copied into a raw inode buffer in
5181 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5182 * writeback.
5184 * Note that we are absolutely dependent upon all inode dirtiers doing the
5185 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5186 * which we are interested.
5188 * It would be a bug for them to not do this. The code:
5190 * mark_inode_dirty(inode)
5191 * stuff();
5192 * inode->i_size = expr;
5194 * is in error because write_inode() could occur while `stuff()' is running,
5195 * and the new i_size will be lost. Plus the inode will no longer be on the
5196 * superblock's dirty inode list.
5198 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5200 int err;
5202 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5203 sb_rdonly(inode->i_sb))
5204 return 0;
5206 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5207 return -EIO;
5209 if (EXT4_SB(inode->i_sb)->s_journal) {
5210 if (ext4_journal_current_handle()) {
5211 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5212 dump_stack();
5213 return -EIO;
5217 * No need to force transaction in WB_SYNC_NONE mode. Also
5218 * ext4_sync_fs() will force the commit after everything is
5219 * written.
5221 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5222 return 0;
5224 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5225 EXT4_I(inode)->i_sync_tid);
5226 } else {
5227 struct ext4_iloc iloc;
5229 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5230 if (err)
5231 return err;
5233 * sync(2) will flush the whole buffer cache. No need to do
5234 * it here separately for each inode.
5236 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5237 sync_dirty_buffer(iloc.bh);
5238 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5239 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5240 "IO error syncing inode");
5241 err = -EIO;
5243 brelse(iloc.bh);
5245 return err;
5249 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5250 * buffers that are attached to a page stradding i_size and are undergoing
5251 * commit. In that case we have to wait for commit to finish and try again.
5253 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5255 struct page *page;
5256 unsigned offset;
5257 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5258 tid_t commit_tid = 0;
5259 int ret;
5261 offset = inode->i_size & (PAGE_SIZE - 1);
5263 * If the page is fully truncated, we don't need to wait for any commit
5264 * (and we even should not as __ext4_journalled_invalidatepage() may
5265 * strip all buffers from the page but keep the page dirty which can then
5266 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5267 * buffers). Also we don't need to wait for any commit if all buffers in
5268 * the page remain valid. This is most beneficial for the common case of
5269 * blocksize == PAGESIZE.
5271 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5272 return;
5273 while (1) {
5274 page = find_lock_page(inode->i_mapping,
5275 inode->i_size >> PAGE_SHIFT);
5276 if (!page)
5277 return;
5278 ret = __ext4_journalled_invalidatepage(page, offset,
5279 PAGE_SIZE - offset);
5280 unlock_page(page);
5281 put_page(page);
5282 if (ret != -EBUSY)
5283 return;
5284 commit_tid = 0;
5285 read_lock(&journal->j_state_lock);
5286 if (journal->j_committing_transaction)
5287 commit_tid = journal->j_committing_transaction->t_tid;
5288 read_unlock(&journal->j_state_lock);
5289 if (commit_tid)
5290 jbd2_log_wait_commit(journal, commit_tid);
5295 * ext4_setattr()
5297 * Called from notify_change.
5299 * We want to trap VFS attempts to truncate the file as soon as
5300 * possible. In particular, we want to make sure that when the VFS
5301 * shrinks i_size, we put the inode on the orphan list and modify
5302 * i_disksize immediately, so that during the subsequent flushing of
5303 * dirty pages and freeing of disk blocks, we can guarantee that any
5304 * commit will leave the blocks being flushed in an unused state on
5305 * disk. (On recovery, the inode will get truncated and the blocks will
5306 * be freed, so we have a strong guarantee that no future commit will
5307 * leave these blocks visible to the user.)
5309 * Another thing we have to assure is that if we are in ordered mode
5310 * and inode is still attached to the committing transaction, we must
5311 * we start writeout of all the dirty pages which are being truncated.
5312 * This way we are sure that all the data written in the previous
5313 * transaction are already on disk (truncate waits for pages under
5314 * writeback).
5316 * Called with inode->i_mutex down.
5318 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5320 struct inode *inode = d_inode(dentry);
5321 int error, rc = 0;
5322 int orphan = 0;
5323 const unsigned int ia_valid = attr->ia_valid;
5325 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5326 return -EIO;
5328 if (unlikely(IS_IMMUTABLE(inode)))
5329 return -EPERM;
5331 if (unlikely(IS_APPEND(inode) &&
5332 (ia_valid & (ATTR_MODE | ATTR_UID |
5333 ATTR_GID | ATTR_TIMES_SET))))
5334 return -EPERM;
5336 error = setattr_prepare(dentry, attr);
5337 if (error)
5338 return error;
5340 error = fscrypt_prepare_setattr(dentry, attr);
5341 if (error)
5342 return error;
5344 error = fsverity_prepare_setattr(dentry, attr);
5345 if (error)
5346 return error;
5348 if (is_quota_modification(inode, attr)) {
5349 error = dquot_initialize(inode);
5350 if (error)
5351 return error;
5353 ext4_fc_start_update(inode);
5354 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5355 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5356 handle_t *handle;
5358 /* (user+group)*(old+new) structure, inode write (sb,
5359 * inode block, ? - but truncate inode update has it) */
5360 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5361 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5362 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5363 if (IS_ERR(handle)) {
5364 error = PTR_ERR(handle);
5365 goto err_out;
5368 /* dquot_transfer() calls back ext4_get_inode_usage() which
5369 * counts xattr inode references.
5371 down_read(&EXT4_I(inode)->xattr_sem);
5372 error = dquot_transfer(inode, attr);
5373 up_read(&EXT4_I(inode)->xattr_sem);
5375 if (error) {
5376 ext4_journal_stop(handle);
5377 ext4_fc_stop_update(inode);
5378 return error;
5380 /* Update corresponding info in inode so that everything is in
5381 * one transaction */
5382 if (attr->ia_valid & ATTR_UID)
5383 inode->i_uid = attr->ia_uid;
5384 if (attr->ia_valid & ATTR_GID)
5385 inode->i_gid = attr->ia_gid;
5386 error = ext4_mark_inode_dirty(handle, inode);
5387 ext4_journal_stop(handle);
5388 if (unlikely(error))
5389 return error;
5392 if (attr->ia_valid & ATTR_SIZE) {
5393 handle_t *handle;
5394 loff_t oldsize = inode->i_size;
5395 int shrink = (attr->ia_size < inode->i_size);
5397 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5398 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5400 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5401 ext4_fc_stop_update(inode);
5402 return -EFBIG;
5405 if (!S_ISREG(inode->i_mode)) {
5406 ext4_fc_stop_update(inode);
5407 return -EINVAL;
5410 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5411 inode_inc_iversion(inode);
5413 if (shrink) {
5414 if (ext4_should_order_data(inode)) {
5415 error = ext4_begin_ordered_truncate(inode,
5416 attr->ia_size);
5417 if (error)
5418 goto err_out;
5421 * Blocks are going to be removed from the inode. Wait
5422 * for dio in flight.
5424 inode_dio_wait(inode);
5427 down_write(&EXT4_I(inode)->i_mmap_sem);
5429 rc = ext4_break_layouts(inode);
5430 if (rc) {
5431 up_write(&EXT4_I(inode)->i_mmap_sem);
5432 goto err_out;
5435 if (attr->ia_size != inode->i_size) {
5436 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5437 if (IS_ERR(handle)) {
5438 error = PTR_ERR(handle);
5439 goto out_mmap_sem;
5441 if (ext4_handle_valid(handle) && shrink) {
5442 error = ext4_orphan_add(handle, inode);
5443 orphan = 1;
5446 * Update c/mtime on truncate up, ext4_truncate() will
5447 * update c/mtime in shrink case below
5449 if (!shrink) {
5450 inode->i_mtime = current_time(inode);
5451 inode->i_ctime = inode->i_mtime;
5454 if (shrink)
5455 ext4_fc_track_range(handle, inode,
5456 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5457 inode->i_sb->s_blocksize_bits,
5458 (oldsize > 0 ? oldsize - 1 : 0) >>
5459 inode->i_sb->s_blocksize_bits);
5460 else
5461 ext4_fc_track_range(
5462 handle, inode,
5463 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5464 inode->i_sb->s_blocksize_bits,
5465 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5466 inode->i_sb->s_blocksize_bits);
5468 down_write(&EXT4_I(inode)->i_data_sem);
5469 EXT4_I(inode)->i_disksize = attr->ia_size;
5470 rc = ext4_mark_inode_dirty(handle, inode);
5471 if (!error)
5472 error = rc;
5474 * We have to update i_size under i_data_sem together
5475 * with i_disksize to avoid races with writeback code
5476 * running ext4_wb_update_i_disksize().
5478 if (!error)
5479 i_size_write(inode, attr->ia_size);
5480 up_write(&EXT4_I(inode)->i_data_sem);
5481 ext4_journal_stop(handle);
5482 if (error)
5483 goto out_mmap_sem;
5484 if (!shrink) {
5485 pagecache_isize_extended(inode, oldsize,
5486 inode->i_size);
5487 } else if (ext4_should_journal_data(inode)) {
5488 ext4_wait_for_tail_page_commit(inode);
5493 * Truncate pagecache after we've waited for commit
5494 * in data=journal mode to make pages freeable.
5496 truncate_pagecache(inode, inode->i_size);
5498 * Call ext4_truncate() even if i_size didn't change to
5499 * truncate possible preallocated blocks.
5501 if (attr->ia_size <= oldsize) {
5502 rc = ext4_truncate(inode);
5503 if (rc)
5504 error = rc;
5506 out_mmap_sem:
5507 up_write(&EXT4_I(inode)->i_mmap_sem);
5510 if (!error) {
5511 setattr_copy(inode, attr);
5512 mark_inode_dirty(inode);
5516 * If the call to ext4_truncate failed to get a transaction handle at
5517 * all, we need to clean up the in-core orphan list manually.
5519 if (orphan && inode->i_nlink)
5520 ext4_orphan_del(NULL, inode);
5522 if (!error && (ia_valid & ATTR_MODE))
5523 rc = posix_acl_chmod(inode, inode->i_mode);
5525 err_out:
5526 if (error)
5527 ext4_std_error(inode->i_sb, error);
5528 if (!error)
5529 error = rc;
5530 ext4_fc_stop_update(inode);
5531 return error;
5534 int ext4_getattr(const struct path *path, struct kstat *stat,
5535 u32 request_mask, unsigned int query_flags)
5537 struct inode *inode = d_inode(path->dentry);
5538 struct ext4_inode *raw_inode;
5539 struct ext4_inode_info *ei = EXT4_I(inode);
5540 unsigned int flags;
5542 if ((request_mask & STATX_BTIME) &&
5543 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5544 stat->result_mask |= STATX_BTIME;
5545 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5546 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5549 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5550 if (flags & EXT4_APPEND_FL)
5551 stat->attributes |= STATX_ATTR_APPEND;
5552 if (flags & EXT4_COMPR_FL)
5553 stat->attributes |= STATX_ATTR_COMPRESSED;
5554 if (flags & EXT4_ENCRYPT_FL)
5555 stat->attributes |= STATX_ATTR_ENCRYPTED;
5556 if (flags & EXT4_IMMUTABLE_FL)
5557 stat->attributes |= STATX_ATTR_IMMUTABLE;
5558 if (flags & EXT4_NODUMP_FL)
5559 stat->attributes |= STATX_ATTR_NODUMP;
5560 if (flags & EXT4_VERITY_FL)
5561 stat->attributes |= STATX_ATTR_VERITY;
5563 stat->attributes_mask |= (STATX_ATTR_APPEND |
5564 STATX_ATTR_COMPRESSED |
5565 STATX_ATTR_ENCRYPTED |
5566 STATX_ATTR_IMMUTABLE |
5567 STATX_ATTR_NODUMP |
5568 STATX_ATTR_VERITY);
5570 generic_fillattr(inode, stat);
5571 return 0;
5574 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5575 u32 request_mask, unsigned int query_flags)
5577 struct inode *inode = d_inode(path->dentry);
5578 u64 delalloc_blocks;
5580 ext4_getattr(path, stat, request_mask, query_flags);
5583 * If there is inline data in the inode, the inode will normally not
5584 * have data blocks allocated (it may have an external xattr block).
5585 * Report at least one sector for such files, so tools like tar, rsync,
5586 * others don't incorrectly think the file is completely sparse.
5588 if (unlikely(ext4_has_inline_data(inode)))
5589 stat->blocks += (stat->size + 511) >> 9;
5592 * We can't update i_blocks if the block allocation is delayed
5593 * otherwise in the case of system crash before the real block
5594 * allocation is done, we will have i_blocks inconsistent with
5595 * on-disk file blocks.
5596 * We always keep i_blocks updated together with real
5597 * allocation. But to not confuse with user, stat
5598 * will return the blocks that include the delayed allocation
5599 * blocks for this file.
5601 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5602 EXT4_I(inode)->i_reserved_data_blocks);
5603 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5604 return 0;
5607 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5608 int pextents)
5610 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5611 return ext4_ind_trans_blocks(inode, lblocks);
5612 return ext4_ext_index_trans_blocks(inode, pextents);
5616 * Account for index blocks, block groups bitmaps and block group
5617 * descriptor blocks if modify datablocks and index blocks
5618 * worse case, the indexs blocks spread over different block groups
5620 * If datablocks are discontiguous, they are possible to spread over
5621 * different block groups too. If they are contiguous, with flexbg,
5622 * they could still across block group boundary.
5624 * Also account for superblock, inode, quota and xattr blocks
5626 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5627 int pextents)
5629 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5630 int gdpblocks;
5631 int idxblocks;
5632 int ret = 0;
5635 * How many index blocks need to touch to map @lblocks logical blocks
5636 * to @pextents physical extents?
5638 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5640 ret = idxblocks;
5643 * Now let's see how many group bitmaps and group descriptors need
5644 * to account
5646 groups = idxblocks + pextents;
5647 gdpblocks = groups;
5648 if (groups > ngroups)
5649 groups = ngroups;
5650 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5651 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5653 /* bitmaps and block group descriptor blocks */
5654 ret += groups + gdpblocks;
5656 /* Blocks for super block, inode, quota and xattr blocks */
5657 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5659 return ret;
5663 * Calculate the total number of credits to reserve to fit
5664 * the modification of a single pages into a single transaction,
5665 * which may include multiple chunks of block allocations.
5667 * This could be called via ext4_write_begin()
5669 * We need to consider the worse case, when
5670 * one new block per extent.
5672 int ext4_writepage_trans_blocks(struct inode *inode)
5674 int bpp = ext4_journal_blocks_per_page(inode);
5675 int ret;
5677 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5679 /* Account for data blocks for journalled mode */
5680 if (ext4_should_journal_data(inode))
5681 ret += bpp;
5682 return ret;
5686 * Calculate the journal credits for a chunk of data modification.
5688 * This is called from DIO, fallocate or whoever calling
5689 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5691 * journal buffers for data blocks are not included here, as DIO
5692 * and fallocate do no need to journal data buffers.
5694 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5696 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5700 * The caller must have previously called ext4_reserve_inode_write().
5701 * Give this, we know that the caller already has write access to iloc->bh.
5703 int ext4_mark_iloc_dirty(handle_t *handle,
5704 struct inode *inode, struct ext4_iloc *iloc)
5706 int err = 0;
5708 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5709 put_bh(iloc->bh);
5710 return -EIO;
5712 ext4_fc_track_inode(handle, inode);
5714 if (IS_I_VERSION(inode))
5715 inode_inc_iversion(inode);
5717 /* the do_update_inode consumes one bh->b_count */
5718 get_bh(iloc->bh);
5720 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5721 err = ext4_do_update_inode(handle, inode, iloc);
5722 put_bh(iloc->bh);
5723 return err;
5727 * On success, We end up with an outstanding reference count against
5728 * iloc->bh. This _must_ be cleaned up later.
5732 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5733 struct ext4_iloc *iloc)
5735 int err;
5737 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5738 return -EIO;
5740 err = ext4_get_inode_loc(inode, iloc);
5741 if (!err) {
5742 BUFFER_TRACE(iloc->bh, "get_write_access");
5743 err = ext4_journal_get_write_access(handle, iloc->bh);
5744 if (err) {
5745 brelse(iloc->bh);
5746 iloc->bh = NULL;
5749 ext4_std_error(inode->i_sb, err);
5750 return err;
5753 static int __ext4_expand_extra_isize(struct inode *inode,
5754 unsigned int new_extra_isize,
5755 struct ext4_iloc *iloc,
5756 handle_t *handle, int *no_expand)
5758 struct ext4_inode *raw_inode;
5759 struct ext4_xattr_ibody_header *header;
5760 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5761 struct ext4_inode_info *ei = EXT4_I(inode);
5762 int error;
5764 /* this was checked at iget time, but double check for good measure */
5765 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5766 (ei->i_extra_isize & 3)) {
5767 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5768 ei->i_extra_isize,
5769 EXT4_INODE_SIZE(inode->i_sb));
5770 return -EFSCORRUPTED;
5772 if ((new_extra_isize < ei->i_extra_isize) ||
5773 (new_extra_isize < 4) ||
5774 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5775 return -EINVAL; /* Should never happen */
5777 raw_inode = ext4_raw_inode(iloc);
5779 header = IHDR(inode, raw_inode);
5781 /* No extended attributes present */
5782 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5783 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5784 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5785 EXT4_I(inode)->i_extra_isize, 0,
5786 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5787 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5788 return 0;
5791 /* try to expand with EAs present */
5792 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5793 raw_inode, handle);
5794 if (error) {
5796 * Inode size expansion failed; don't try again
5798 *no_expand = 1;
5801 return error;
5805 * Expand an inode by new_extra_isize bytes.
5806 * Returns 0 on success or negative error number on failure.
5808 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5809 unsigned int new_extra_isize,
5810 struct ext4_iloc iloc,
5811 handle_t *handle)
5813 int no_expand;
5814 int error;
5816 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5817 return -EOVERFLOW;
5820 * In nojournal mode, we can immediately attempt to expand
5821 * the inode. When journaled, we first need to obtain extra
5822 * buffer credits since we may write into the EA block
5823 * with this same handle. If journal_extend fails, then it will
5824 * only result in a minor loss of functionality for that inode.
5825 * If this is felt to be critical, then e2fsck should be run to
5826 * force a large enough s_min_extra_isize.
5828 if (ext4_journal_extend(handle,
5829 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5830 return -ENOSPC;
5832 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5833 return -EBUSY;
5835 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5836 handle, &no_expand);
5837 ext4_write_unlock_xattr(inode, &no_expand);
5839 return error;
5842 int ext4_expand_extra_isize(struct inode *inode,
5843 unsigned int new_extra_isize,
5844 struct ext4_iloc *iloc)
5846 handle_t *handle;
5847 int no_expand;
5848 int error, rc;
5850 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5851 brelse(iloc->bh);
5852 return -EOVERFLOW;
5855 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5856 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5857 if (IS_ERR(handle)) {
5858 error = PTR_ERR(handle);
5859 brelse(iloc->bh);
5860 return error;
5863 ext4_write_lock_xattr(inode, &no_expand);
5865 BUFFER_TRACE(iloc->bh, "get_write_access");
5866 error = ext4_journal_get_write_access(handle, iloc->bh);
5867 if (error) {
5868 brelse(iloc->bh);
5869 goto out_unlock;
5872 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5873 handle, &no_expand);
5875 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5876 if (!error)
5877 error = rc;
5879 out_unlock:
5880 ext4_write_unlock_xattr(inode, &no_expand);
5881 ext4_journal_stop(handle);
5882 return error;
5886 * What we do here is to mark the in-core inode as clean with respect to inode
5887 * dirtiness (it may still be data-dirty).
5888 * This means that the in-core inode may be reaped by prune_icache
5889 * without having to perform any I/O. This is a very good thing,
5890 * because *any* task may call prune_icache - even ones which
5891 * have a transaction open against a different journal.
5893 * Is this cheating? Not really. Sure, we haven't written the
5894 * inode out, but prune_icache isn't a user-visible syncing function.
5895 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5896 * we start and wait on commits.
5898 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5899 const char *func, unsigned int line)
5901 struct ext4_iloc iloc;
5902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5903 int err;
5905 might_sleep();
5906 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5907 err = ext4_reserve_inode_write(handle, inode, &iloc);
5908 if (err)
5909 goto out;
5911 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5912 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5913 iloc, handle);
5915 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5916 out:
5917 if (unlikely(err))
5918 ext4_error_inode_err(inode, func, line, 0, err,
5919 "mark_inode_dirty error");
5920 return err;
5924 * ext4_dirty_inode() is called from __mark_inode_dirty()
5926 * We're really interested in the case where a file is being extended.
5927 * i_size has been changed by generic_commit_write() and we thus need
5928 * to include the updated inode in the current transaction.
5930 * Also, dquot_alloc_block() will always dirty the inode when blocks
5931 * are allocated to the file.
5933 * If the inode is marked synchronous, we don't honour that here - doing
5934 * so would cause a commit on atime updates, which we don't bother doing.
5935 * We handle synchronous inodes at the highest possible level.
5937 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5938 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939 * to copy into the on-disk inode structure are the timestamp files.
5941 void ext4_dirty_inode(struct inode *inode, int flags)
5943 handle_t *handle;
5945 if (flags == I_DIRTY_TIME)
5946 return;
5947 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5948 if (IS_ERR(handle))
5949 goto out;
5951 ext4_mark_inode_dirty(handle, inode);
5953 ext4_journal_stop(handle);
5954 out:
5955 return;
5958 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5960 journal_t *journal;
5961 handle_t *handle;
5962 int err;
5963 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5966 * We have to be very careful here: changing a data block's
5967 * journaling status dynamically is dangerous. If we write a
5968 * data block to the journal, change the status and then delete
5969 * that block, we risk forgetting to revoke the old log record
5970 * from the journal and so a subsequent replay can corrupt data.
5971 * So, first we make sure that the journal is empty and that
5972 * nobody is changing anything.
5975 journal = EXT4_JOURNAL(inode);
5976 if (!journal)
5977 return 0;
5978 if (is_journal_aborted(journal))
5979 return -EROFS;
5981 /* Wait for all existing dio workers */
5982 inode_dio_wait(inode);
5985 * Before flushing the journal and switching inode's aops, we have
5986 * to flush all dirty data the inode has. There can be outstanding
5987 * delayed allocations, there can be unwritten extents created by
5988 * fallocate or buffered writes in dioread_nolock mode covered by
5989 * dirty data which can be converted only after flushing the dirty
5990 * data (and journalled aops don't know how to handle these cases).
5992 if (val) {
5993 down_write(&EXT4_I(inode)->i_mmap_sem);
5994 err = filemap_write_and_wait(inode->i_mapping);
5995 if (err < 0) {
5996 up_write(&EXT4_I(inode)->i_mmap_sem);
5997 return err;
6001 percpu_down_write(&sbi->s_writepages_rwsem);
6002 jbd2_journal_lock_updates(journal);
6005 * OK, there are no updates running now, and all cached data is
6006 * synced to disk. We are now in a completely consistent state
6007 * which doesn't have anything in the journal, and we know that
6008 * no filesystem updates are running, so it is safe to modify
6009 * the inode's in-core data-journaling state flag now.
6012 if (val)
6013 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6014 else {
6015 err = jbd2_journal_flush(journal);
6016 if (err < 0) {
6017 jbd2_journal_unlock_updates(journal);
6018 percpu_up_write(&sbi->s_writepages_rwsem);
6019 return err;
6021 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6023 ext4_set_aops(inode);
6025 jbd2_journal_unlock_updates(journal);
6026 percpu_up_write(&sbi->s_writepages_rwsem);
6028 if (val)
6029 up_write(&EXT4_I(inode)->i_mmap_sem);
6031 /* Finally we can mark the inode as dirty. */
6033 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6034 if (IS_ERR(handle))
6035 return PTR_ERR(handle);
6037 ext4_fc_mark_ineligible(inode->i_sb,
6038 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6039 err = ext4_mark_inode_dirty(handle, inode);
6040 ext4_handle_sync(handle);
6041 ext4_journal_stop(handle);
6042 ext4_std_error(inode->i_sb, err);
6044 return err;
6047 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6049 return !buffer_mapped(bh);
6052 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6054 struct vm_area_struct *vma = vmf->vma;
6055 struct page *page = vmf->page;
6056 loff_t size;
6057 unsigned long len;
6058 int err;
6059 vm_fault_t ret;
6060 struct file *file = vma->vm_file;
6061 struct inode *inode = file_inode(file);
6062 struct address_space *mapping = inode->i_mapping;
6063 handle_t *handle;
6064 get_block_t *get_block;
6065 int retries = 0;
6067 if (unlikely(IS_IMMUTABLE(inode)))
6068 return VM_FAULT_SIGBUS;
6070 sb_start_pagefault(inode->i_sb);
6071 file_update_time(vma->vm_file);
6073 down_read(&EXT4_I(inode)->i_mmap_sem);
6075 err = ext4_convert_inline_data(inode);
6076 if (err)
6077 goto out_ret;
6080 * On data journalling we skip straight to the transaction handle:
6081 * there's no delalloc; page truncated will be checked later; the
6082 * early return w/ all buffers mapped (calculates size/len) can't
6083 * be used; and there's no dioread_nolock, so only ext4_get_block.
6085 if (ext4_should_journal_data(inode))
6086 goto retry_alloc;
6088 /* Delalloc case is easy... */
6089 if (test_opt(inode->i_sb, DELALLOC) &&
6090 !ext4_nonda_switch(inode->i_sb)) {
6091 do {
6092 err = block_page_mkwrite(vma, vmf,
6093 ext4_da_get_block_prep);
6094 } while (err == -ENOSPC &&
6095 ext4_should_retry_alloc(inode->i_sb, &retries));
6096 goto out_ret;
6099 lock_page(page);
6100 size = i_size_read(inode);
6101 /* Page got truncated from under us? */
6102 if (page->mapping != mapping || page_offset(page) > size) {
6103 unlock_page(page);
6104 ret = VM_FAULT_NOPAGE;
6105 goto out;
6108 if (page->index == size >> PAGE_SHIFT)
6109 len = size & ~PAGE_MASK;
6110 else
6111 len = PAGE_SIZE;
6113 * Return if we have all the buffers mapped. This avoids the need to do
6114 * journal_start/journal_stop which can block and take a long time
6116 * This cannot be done for data journalling, as we have to add the
6117 * inode to the transaction's list to writeprotect pages on commit.
6119 if (page_has_buffers(page)) {
6120 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6121 0, len, NULL,
6122 ext4_bh_unmapped)) {
6123 /* Wait so that we don't change page under IO */
6124 wait_for_stable_page(page);
6125 ret = VM_FAULT_LOCKED;
6126 goto out;
6129 unlock_page(page);
6130 /* OK, we need to fill the hole... */
6131 if (ext4_should_dioread_nolock(inode))
6132 get_block = ext4_get_block_unwritten;
6133 else
6134 get_block = ext4_get_block;
6135 retry_alloc:
6136 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6137 ext4_writepage_trans_blocks(inode));
6138 if (IS_ERR(handle)) {
6139 ret = VM_FAULT_SIGBUS;
6140 goto out;
6143 * Data journalling can't use block_page_mkwrite() because it
6144 * will set_buffer_dirty() before do_journal_get_write_access()
6145 * thus might hit warning messages for dirty metadata buffers.
6147 if (!ext4_should_journal_data(inode)) {
6148 err = block_page_mkwrite(vma, vmf, get_block);
6149 } else {
6150 lock_page(page);
6151 size = i_size_read(inode);
6152 /* Page got truncated from under us? */
6153 if (page->mapping != mapping || page_offset(page) > size) {
6154 ret = VM_FAULT_NOPAGE;
6155 goto out_error;
6158 if (page->index == size >> PAGE_SHIFT)
6159 len = size & ~PAGE_MASK;
6160 else
6161 len = PAGE_SIZE;
6163 err = __block_write_begin(page, 0, len, ext4_get_block);
6164 if (!err) {
6165 ret = VM_FAULT_SIGBUS;
6166 if (ext4_walk_page_buffers(handle, page_buffers(page),
6167 0, len, NULL, do_journal_get_write_access))
6168 goto out_error;
6169 if (ext4_walk_page_buffers(handle, page_buffers(page),
6170 0, len, NULL, write_end_fn))
6171 goto out_error;
6172 if (ext4_jbd2_inode_add_write(handle, inode,
6173 page_offset(page), len))
6174 goto out_error;
6175 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6176 } else {
6177 unlock_page(page);
6180 ext4_journal_stop(handle);
6181 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6182 goto retry_alloc;
6183 out_ret:
6184 ret = block_page_mkwrite_return(err);
6185 out:
6186 up_read(&EXT4_I(inode)->i_mmap_sem);
6187 sb_end_pagefault(inode->i_sb);
6188 return ret;
6189 out_error:
6190 unlock_page(page);
6191 ext4_journal_stop(handle);
6192 goto out;
6195 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6197 struct inode *inode = file_inode(vmf->vma->vm_file);
6198 vm_fault_t ret;
6200 down_read(&EXT4_I(inode)->i_mmap_sem);
6201 ret = filemap_fault(vmf);
6202 up_read(&EXT4_I(inode)->i_mmap_sem);
6204 return ret;