Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / ext4 / page-io.c
blob03a44a0de86addd1d0ed643053ab5ff84a9df9d1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/page-io.c
5 * This contains the new page_io functions for ext4
7 * Written by Theodore Ts'o, 2010.
8 */
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
36 int __init ext4_init_pageio(void)
38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 if (io_end_cachep == NULL)
40 return -ENOMEM;
42 io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 if (io_end_vec_cachep == NULL) {
44 kmem_cache_destroy(io_end_cachep);
45 return -ENOMEM;
47 return 0;
50 void ext4_exit_pageio(void)
52 kmem_cache_destroy(io_end_cachep);
53 kmem_cache_destroy(io_end_vec_cachep);
56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
58 struct ext4_io_end_vec *io_end_vec;
60 io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
61 if (!io_end_vec)
62 return ERR_PTR(-ENOMEM);
63 INIT_LIST_HEAD(&io_end_vec->list);
64 list_add_tail(&io_end_vec->list, &io_end->list_vec);
65 return io_end_vec;
68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
70 struct ext4_io_end_vec *io_end_vec, *tmp;
72 if (list_empty(&io_end->list_vec))
73 return;
74 list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 list_del(&io_end_vec->list);
76 kmem_cache_free(io_end_vec_cachep, io_end_vec);
80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
82 BUG_ON(list_empty(&io_end->list_vec));
83 return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
87 * Print an buffer I/O error compatible with the fs/buffer.c. This
88 * provides compatibility with dmesg scrapers that look for a specific
89 * buffer I/O error message. We really need a unified error reporting
90 * structure to userspace ala Digital Unix's uerf system, but it's
91 * probably not going to happen in my lifetime, due to LKML politics...
93 static void buffer_io_error(struct buffer_head *bh)
95 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
96 bh->b_bdev,
97 (unsigned long long)bh->b_blocknr);
100 static void ext4_finish_bio(struct bio *bio)
102 struct bio_vec *bvec;
103 struct bvec_iter_all iter_all;
105 bio_for_each_segment_all(bvec, bio, iter_all) {
106 struct page *page = bvec->bv_page;
107 struct page *bounce_page = NULL;
108 struct buffer_head *bh, *head;
109 unsigned bio_start = bvec->bv_offset;
110 unsigned bio_end = bio_start + bvec->bv_len;
111 unsigned under_io = 0;
112 unsigned long flags;
114 if (fscrypt_is_bounce_page(page)) {
115 bounce_page = page;
116 page = fscrypt_pagecache_page(bounce_page);
119 if (bio->bi_status) {
120 SetPageError(page);
121 mapping_set_error(page->mapping, -EIO);
123 bh = head = page_buffers(page);
125 * We check all buffers in the page under b_uptodate_lock
126 * to avoid races with other end io clearing async_write flags
128 spin_lock_irqsave(&head->b_uptodate_lock, flags);
129 do {
130 if (bh_offset(bh) < bio_start ||
131 bh_offset(bh) + bh->b_size > bio_end) {
132 if (buffer_async_write(bh))
133 under_io++;
134 continue;
136 clear_buffer_async_write(bh);
137 if (bio->bi_status)
138 buffer_io_error(bh);
139 } while ((bh = bh->b_this_page) != head);
140 spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
141 if (!under_io) {
142 fscrypt_free_bounce_page(bounce_page);
143 end_page_writeback(page);
148 static void ext4_release_io_end(ext4_io_end_t *io_end)
150 struct bio *bio, *next_bio;
152 BUG_ON(!list_empty(&io_end->list));
153 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
154 WARN_ON(io_end->handle);
156 for (bio = io_end->bio; bio; bio = next_bio) {
157 next_bio = bio->bi_private;
158 ext4_finish_bio(bio);
159 bio_put(bio);
161 ext4_free_io_end_vec(io_end);
162 kmem_cache_free(io_end_cachep, io_end);
166 * Check a range of space and convert unwritten extents to written. Note that
167 * we are protected from truncate touching same part of extent tree by the
168 * fact that truncate code waits for all DIO to finish (thus exclusion from
169 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
170 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
171 * completed (happens from ext4_free_ioend()).
173 static int ext4_end_io_end(ext4_io_end_t *io_end)
175 struct inode *inode = io_end->inode;
176 handle_t *handle = io_end->handle;
177 int ret = 0;
179 ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
180 "list->prev 0x%p\n",
181 io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
183 io_end->handle = NULL; /* Following call will use up the handle */
184 ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
185 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
186 ext4_msg(inode->i_sb, KERN_EMERG,
187 "failed to convert unwritten extents to written "
188 "extents -- potential data loss! "
189 "(inode %lu, error %d)", inode->i_ino, ret);
191 ext4_clear_io_unwritten_flag(io_end);
192 ext4_release_io_end(io_end);
193 return ret;
196 static void dump_completed_IO(struct inode *inode, struct list_head *head)
198 #ifdef EXT4FS_DEBUG
199 struct list_head *cur, *before, *after;
200 ext4_io_end_t *io_end, *io_end0, *io_end1;
202 if (list_empty(head))
203 return;
205 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
206 list_for_each_entry(io_end, head, list) {
207 cur = &io_end->list;
208 before = cur->prev;
209 io_end0 = container_of(before, ext4_io_end_t, list);
210 after = cur->next;
211 io_end1 = container_of(after, ext4_io_end_t, list);
213 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
214 io_end, inode->i_ino, io_end0, io_end1);
216 #endif
219 /* Add the io_end to per-inode completed end_io list. */
220 static void ext4_add_complete_io(ext4_io_end_t *io_end)
222 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
223 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
224 struct workqueue_struct *wq;
225 unsigned long flags;
227 /* Only reserved conversions from writeback should enter here */
228 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
229 WARN_ON(!io_end->handle && sbi->s_journal);
230 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
231 wq = sbi->rsv_conversion_wq;
232 if (list_empty(&ei->i_rsv_conversion_list))
233 queue_work(wq, &ei->i_rsv_conversion_work);
234 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
235 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
238 static int ext4_do_flush_completed_IO(struct inode *inode,
239 struct list_head *head)
241 ext4_io_end_t *io_end;
242 struct list_head unwritten;
243 unsigned long flags;
244 struct ext4_inode_info *ei = EXT4_I(inode);
245 int err, ret = 0;
247 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
248 dump_completed_IO(inode, head);
249 list_replace_init(head, &unwritten);
250 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
252 while (!list_empty(&unwritten)) {
253 io_end = list_entry(unwritten.next, ext4_io_end_t, list);
254 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
255 list_del_init(&io_end->list);
257 err = ext4_end_io_end(io_end);
258 if (unlikely(!ret && err))
259 ret = err;
261 return ret;
265 * work on completed IO, to convert unwritten extents to extents
267 void ext4_end_io_rsv_work(struct work_struct *work)
269 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
270 i_rsv_conversion_work);
271 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
274 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
276 ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
278 if (io_end) {
279 io_end->inode = inode;
280 INIT_LIST_HEAD(&io_end->list);
281 INIT_LIST_HEAD(&io_end->list_vec);
282 atomic_set(&io_end->count, 1);
284 return io_end;
287 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
289 if (atomic_dec_and_test(&io_end->count)) {
290 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
291 list_empty(&io_end->list_vec)) {
292 ext4_release_io_end(io_end);
293 return;
295 ext4_add_complete_io(io_end);
299 int ext4_put_io_end(ext4_io_end_t *io_end)
301 int err = 0;
303 if (atomic_dec_and_test(&io_end->count)) {
304 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
305 err = ext4_convert_unwritten_io_end_vec(io_end->handle,
306 io_end);
307 io_end->handle = NULL;
308 ext4_clear_io_unwritten_flag(io_end);
310 ext4_release_io_end(io_end);
312 return err;
315 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
317 atomic_inc(&io_end->count);
318 return io_end;
321 /* BIO completion function for page writeback */
322 static void ext4_end_bio(struct bio *bio)
324 ext4_io_end_t *io_end = bio->bi_private;
325 sector_t bi_sector = bio->bi_iter.bi_sector;
326 char b[BDEVNAME_SIZE];
328 if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
329 bio_devname(bio, b),
330 (long long) bio->bi_iter.bi_sector,
331 (unsigned) bio_sectors(bio),
332 bio->bi_status)) {
333 ext4_finish_bio(bio);
334 bio_put(bio);
335 return;
337 bio->bi_end_io = NULL;
339 if (bio->bi_status) {
340 struct inode *inode = io_end->inode;
342 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
343 "starting block %llu)",
344 bio->bi_status, inode->i_ino,
345 (unsigned long long)
346 bi_sector >> (inode->i_blkbits - 9));
347 mapping_set_error(inode->i_mapping,
348 blk_status_to_errno(bio->bi_status));
351 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
353 * Link bio into list hanging from io_end. We have to do it
354 * atomically as bio completions can be racing against each
355 * other.
357 bio->bi_private = xchg(&io_end->bio, bio);
358 ext4_put_io_end_defer(io_end);
359 } else {
361 * Drop io_end reference early. Inode can get freed once
362 * we finish the bio.
364 ext4_put_io_end_defer(io_end);
365 ext4_finish_bio(bio);
366 bio_put(bio);
370 void ext4_io_submit(struct ext4_io_submit *io)
372 struct bio *bio = io->io_bio;
374 if (bio) {
375 int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
376 REQ_SYNC : 0;
377 io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
378 bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
379 submit_bio(io->io_bio);
381 io->io_bio = NULL;
384 void ext4_io_submit_init(struct ext4_io_submit *io,
385 struct writeback_control *wbc)
387 io->io_wbc = wbc;
388 io->io_bio = NULL;
389 io->io_end = NULL;
392 static void io_submit_init_bio(struct ext4_io_submit *io,
393 struct buffer_head *bh)
395 struct bio *bio;
398 * bio_alloc will _always_ be able to allocate a bio if
399 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
401 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
402 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
403 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
404 bio_set_dev(bio, bh->b_bdev);
405 bio->bi_end_io = ext4_end_bio;
406 bio->bi_private = ext4_get_io_end(io->io_end);
407 io->io_bio = bio;
408 io->io_next_block = bh->b_blocknr;
409 wbc_init_bio(io->io_wbc, bio);
412 static void io_submit_add_bh(struct ext4_io_submit *io,
413 struct inode *inode,
414 struct page *page,
415 struct buffer_head *bh)
417 int ret;
419 if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
420 !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
421 submit_and_retry:
422 ext4_io_submit(io);
424 if (io->io_bio == NULL) {
425 io_submit_init_bio(io, bh);
426 io->io_bio->bi_write_hint = inode->i_write_hint;
428 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
429 if (ret != bh->b_size)
430 goto submit_and_retry;
431 wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
432 io->io_next_block++;
435 int ext4_bio_write_page(struct ext4_io_submit *io,
436 struct page *page,
437 int len,
438 bool keep_towrite)
440 struct page *bounce_page = NULL;
441 struct inode *inode = page->mapping->host;
442 unsigned block_start;
443 struct buffer_head *bh, *head;
444 int ret = 0;
445 int nr_submitted = 0;
446 int nr_to_submit = 0;
447 struct writeback_control *wbc = io->io_wbc;
449 BUG_ON(!PageLocked(page));
450 BUG_ON(PageWriteback(page));
452 if (keep_towrite)
453 set_page_writeback_keepwrite(page);
454 else
455 set_page_writeback(page);
456 ClearPageError(page);
459 * Comments copied from block_write_full_page:
461 * The page straddles i_size. It must be zeroed out on each and every
462 * writepage invocation because it may be mmapped. "A file is mapped
463 * in multiples of the page size. For a file that is not a multiple of
464 * the page size, the remaining memory is zeroed when mapped, and
465 * writes to that region are not written out to the file."
467 if (len < PAGE_SIZE)
468 zero_user_segment(page, len, PAGE_SIZE);
470 * In the first loop we prepare and mark buffers to submit. We have to
471 * mark all buffers in the page before submitting so that
472 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
473 * on the first buffer finishes and we are still working on submitting
474 * the second buffer.
476 bh = head = page_buffers(page);
477 do {
478 block_start = bh_offset(bh);
479 if (block_start >= len) {
480 clear_buffer_dirty(bh);
481 set_buffer_uptodate(bh);
482 continue;
484 if (!buffer_dirty(bh) || buffer_delay(bh) ||
485 !buffer_mapped(bh) || buffer_unwritten(bh)) {
486 /* A hole? We can safely clear the dirty bit */
487 if (!buffer_mapped(bh))
488 clear_buffer_dirty(bh);
489 if (io->io_bio)
490 ext4_io_submit(io);
491 continue;
493 if (buffer_new(bh))
494 clear_buffer_new(bh);
495 set_buffer_async_write(bh);
496 nr_to_submit++;
497 } while ((bh = bh->b_this_page) != head);
499 bh = head = page_buffers(page);
502 * If any blocks are being written to an encrypted file, encrypt them
503 * into a bounce page. For simplicity, just encrypt until the last
504 * block which might be needed. This may cause some unneeded blocks
505 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
506 * can't happen in the common case of blocksize == PAGE_SIZE.
508 if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
509 gfp_t gfp_flags = GFP_NOFS;
510 unsigned int enc_bytes = round_up(len, i_blocksize(inode));
513 * Since bounce page allocation uses a mempool, we can only use
514 * a waiting mask (i.e. request guaranteed allocation) on the
515 * first page of the bio. Otherwise it can deadlock.
517 if (io->io_bio)
518 gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
519 retry_encrypt:
520 bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
521 0, gfp_flags);
522 if (IS_ERR(bounce_page)) {
523 ret = PTR_ERR(bounce_page);
524 if (ret == -ENOMEM &&
525 (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
526 gfp_flags = GFP_NOFS;
527 if (io->io_bio)
528 ext4_io_submit(io);
529 else
530 gfp_flags |= __GFP_NOFAIL;
531 congestion_wait(BLK_RW_ASYNC, HZ/50);
532 goto retry_encrypt;
535 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
536 redirty_page_for_writepage(wbc, page);
537 do {
538 clear_buffer_async_write(bh);
539 bh = bh->b_this_page;
540 } while (bh != head);
541 goto unlock;
545 /* Now submit buffers to write */
546 do {
547 if (!buffer_async_write(bh))
548 continue;
549 io_submit_add_bh(io, inode,
550 bounce_page ? bounce_page : page, bh);
551 nr_submitted++;
552 clear_buffer_dirty(bh);
553 } while ((bh = bh->b_this_page) != head);
555 unlock:
556 unlock_page(page);
557 /* Nothing submitted - we have to end page writeback */
558 if (!nr_submitted)
559 end_page_writeback(page);
560 return ret;