Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / f2fs / node.c
blob3a24423ac65fdb0ed521b52e22370e60169d576d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
41 return 0;
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
52 si_meminfo(&val);
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
97 return res;
100 static void clear_node_page_dirty(struct page *page)
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107 ClearPageUptodate(page);
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
139 set_to_next_nat(nm_i, nid);
141 return dst_page;
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 struct nat_entry *new;
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
156 return new;
159 static void __free_nat_entry(struct nat_entry *e)
161 kmem_cache_free(nat_entry_slab, e);
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
180 nm_i->nat_cnt[TOTAL_NAT]++;
181 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 return ne;
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
187 struct nat_entry *ne;
189 ne = radix_tree_lookup(&nm_i->nat_root, n);
191 /* for recent accessed nat entry, move it to tail of lru list */
192 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 spin_lock(&nm_i->nat_list_lock);
194 if (!list_empty(&ne->list))
195 list_move_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
199 return ne;
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 nid_t start, unsigned int nr, struct nat_entry **ep)
205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 nm_i->nat_cnt[TOTAL_NAT]--;
212 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 __free_nat_entry(e);
216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 struct nat_entry *ne)
219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 struct nat_entry_set *head;
222 head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 if (!head) {
224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
226 INIT_LIST_HEAD(&head->entry_list);
227 INIT_LIST_HEAD(&head->set_list);
228 head->set = set;
229 head->entry_cnt = 0;
230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
232 return head;
235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 struct nat_entry *ne)
238 struct nat_entry_set *head;
239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
241 if (!new_ne)
242 head = __grab_nat_entry_set(nm_i, ne);
245 * update entry_cnt in below condition:
246 * 1. update NEW_ADDR to valid block address;
247 * 2. update old block address to new one;
249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 !get_nat_flag(ne, IS_DIRTY)))
251 head->entry_cnt++;
253 set_nat_flag(ne, IS_PREALLOC, new_ne);
255 if (get_nat_flag(ne, IS_DIRTY))
256 goto refresh_list;
258 nm_i->nat_cnt[DIRTY_NAT]++;
259 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 spin_lock(&nm_i->nat_list_lock);
263 if (new_ne)
264 list_del_init(&ne->list);
265 else
266 list_move_tail(&ne->list, &head->entry_list);
267 spin_unlock(&nm_i->nat_list_lock);
270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 struct nat_entry_set *set, struct nat_entry *ne)
273 spin_lock(&nm_i->nat_list_lock);
274 list_move_tail(&ne->list, &nm_i->nat_entries);
275 spin_unlock(&nm_i->nat_list_lock);
277 set_nat_flag(ne, IS_DIRTY, false);
278 set->entry_cnt--;
279 nm_i->nat_cnt[DIRTY_NAT]--;
280 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 nid_t start, unsigned int nr, struct nat_entry_set **ep)
286 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 start, nr);
290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
292 return NODE_MAPPING(sbi) == page->mapping &&
293 IS_DNODE(page) && is_cold_node(page);
296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
298 spin_lock_init(&sbi->fsync_node_lock);
299 INIT_LIST_HEAD(&sbi->fsync_node_list);
300 sbi->fsync_seg_id = 0;
301 sbi->fsync_node_num = 0;
304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 struct page *page)
307 struct fsync_node_entry *fn;
308 unsigned long flags;
309 unsigned int seq_id;
311 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
313 get_page(page);
314 fn->page = page;
315 INIT_LIST_HEAD(&fn->list);
317 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 list_add_tail(&fn->list, &sbi->fsync_node_list);
319 fn->seq_id = sbi->fsync_seg_id++;
320 seq_id = fn->seq_id;
321 sbi->fsync_node_num++;
322 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
324 return seq_id;
327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
329 struct fsync_node_entry *fn;
330 unsigned long flags;
332 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 if (fn->page == page) {
335 list_del(&fn->list);
336 sbi->fsync_node_num--;
337 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 kmem_cache_free(fsync_node_entry_slab, fn);
339 put_page(page);
340 return;
343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 f2fs_bug_on(sbi, 1);
347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
349 unsigned long flags;
351 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 sbi->fsync_seg_id = 0;
353 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
358 struct f2fs_nm_info *nm_i = NM_I(sbi);
359 struct nat_entry *e;
360 bool need = false;
362 down_read(&nm_i->nat_tree_lock);
363 e = __lookup_nat_cache(nm_i, nid);
364 if (e) {
365 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 !get_nat_flag(e, HAS_FSYNCED_INODE))
367 need = true;
369 up_read(&nm_i->nat_tree_lock);
370 return need;
373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
375 struct f2fs_nm_info *nm_i = NM_I(sbi);
376 struct nat_entry *e;
377 bool is_cp = true;
379 down_read(&nm_i->nat_tree_lock);
380 e = __lookup_nat_cache(nm_i, nid);
381 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 is_cp = false;
383 up_read(&nm_i->nat_tree_lock);
384 return is_cp;
387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
389 struct f2fs_nm_info *nm_i = NM_I(sbi);
390 struct nat_entry *e;
391 bool need_update = true;
393 down_read(&nm_i->nat_tree_lock);
394 e = __lookup_nat_cache(nm_i, ino);
395 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 (get_nat_flag(e, IS_CHECKPOINTED) ||
397 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 need_update = false;
399 up_read(&nm_i->nat_tree_lock);
400 return need_update;
403 /* must be locked by nat_tree_lock */
404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 struct f2fs_nat_entry *ne)
407 struct f2fs_nm_info *nm_i = NM_I(sbi);
408 struct nat_entry *new, *e;
410 new = __alloc_nat_entry(nid, false);
411 if (!new)
412 return;
414 down_write(&nm_i->nat_tree_lock);
415 e = __lookup_nat_cache(nm_i, nid);
416 if (!e)
417 e = __init_nat_entry(nm_i, new, ne, false);
418 else
419 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 nat_get_blkaddr(e) !=
421 le32_to_cpu(ne->block_addr) ||
422 nat_get_version(e) != ne->version);
423 up_write(&nm_i->nat_tree_lock);
424 if (e != new)
425 __free_nat_entry(new);
428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 block_t new_blkaddr, bool fsync_done)
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *e;
433 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
435 down_write(&nm_i->nat_tree_lock);
436 e = __lookup_nat_cache(nm_i, ni->nid);
437 if (!e) {
438 e = __init_nat_entry(nm_i, new, NULL, true);
439 copy_node_info(&e->ni, ni);
440 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 } else if (new_blkaddr == NEW_ADDR) {
443 * when nid is reallocated,
444 * previous nat entry can be remained in nat cache.
445 * So, reinitialize it with new information.
447 copy_node_info(&e->ni, ni);
448 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
450 /* let's free early to reduce memory consumption */
451 if (e != new)
452 __free_nat_entry(new);
454 /* sanity check */
455 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 new_blkaddr == NULL_ADDR);
458 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 new_blkaddr == NEW_ADDR);
460 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 new_blkaddr == NEW_ADDR);
463 /* increment version no as node is removed */
464 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 unsigned char version = nat_get_version(e);
466 nat_set_version(e, inc_node_version(version));
469 /* change address */
470 nat_set_blkaddr(e, new_blkaddr);
471 if (!__is_valid_data_blkaddr(new_blkaddr))
472 set_nat_flag(e, IS_CHECKPOINTED, false);
473 __set_nat_cache_dirty(nm_i, e);
475 /* update fsync_mark if its inode nat entry is still alive */
476 if (ni->nid != ni->ino)
477 e = __lookup_nat_cache(nm_i, ni->ino);
478 if (e) {
479 if (fsync_done && ni->nid == ni->ino)
480 set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
483 up_write(&nm_i->nat_tree_lock);
486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
488 struct f2fs_nm_info *nm_i = NM_I(sbi);
489 int nr = nr_shrink;
491 if (!down_write_trylock(&nm_i->nat_tree_lock))
492 return 0;
494 spin_lock(&nm_i->nat_list_lock);
495 while (nr_shrink) {
496 struct nat_entry *ne;
498 if (list_empty(&nm_i->nat_entries))
499 break;
501 ne = list_first_entry(&nm_i->nat_entries,
502 struct nat_entry, list);
503 list_del(&ne->list);
504 spin_unlock(&nm_i->nat_list_lock);
506 __del_from_nat_cache(nm_i, ne);
507 nr_shrink--;
509 spin_lock(&nm_i->nat_list_lock);
511 spin_unlock(&nm_i->nat_list_lock);
513 up_write(&nm_i->nat_tree_lock);
514 return nr - nr_shrink;
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 struct node_info *ni)
520 struct f2fs_nm_info *nm_i = NM_I(sbi);
521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 struct f2fs_journal *journal = curseg->journal;
523 nid_t start_nid = START_NID(nid);
524 struct f2fs_nat_block *nat_blk;
525 struct page *page = NULL;
526 struct f2fs_nat_entry ne;
527 struct nat_entry *e;
528 pgoff_t index;
529 block_t blkaddr;
530 int i;
532 ni->nid = nid;
534 /* Check nat cache */
535 down_read(&nm_i->nat_tree_lock);
536 e = __lookup_nat_cache(nm_i, nid);
537 if (e) {
538 ni->ino = nat_get_ino(e);
539 ni->blk_addr = nat_get_blkaddr(e);
540 ni->version = nat_get_version(e);
541 up_read(&nm_i->nat_tree_lock);
542 return 0;
545 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
547 /* Check current segment summary */
548 down_read(&curseg->journal_rwsem);
549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 if (i >= 0) {
551 ne = nat_in_journal(journal, i);
552 node_info_from_raw_nat(ni, &ne);
554 up_read(&curseg->journal_rwsem);
555 if (i >= 0) {
556 up_read(&nm_i->nat_tree_lock);
557 goto cache;
560 /* Fill node_info from nat page */
561 index = current_nat_addr(sbi, nid);
562 up_read(&nm_i->nat_tree_lock);
564 page = f2fs_get_meta_page(sbi, index);
565 if (IS_ERR(page))
566 return PTR_ERR(page);
568 nat_blk = (struct f2fs_nat_block *)page_address(page);
569 ne = nat_blk->entries[nid - start_nid];
570 node_info_from_raw_nat(ni, &ne);
571 f2fs_put_page(page, 1);
572 cache:
573 blkaddr = le32_to_cpu(ne.block_addr);
574 if (__is_valid_data_blkaddr(blkaddr) &&
575 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 return -EFAULT;
578 /* cache nat entry */
579 cache_nat_entry(sbi, nid, &ne);
580 return 0;
584 * readahead MAX_RA_NODE number of node pages.
586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
588 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 struct blk_plug plug;
590 int i, end;
591 nid_t nid;
593 blk_start_plug(&plug);
595 /* Then, try readahead for siblings of the desired node */
596 end = start + n;
597 end = min(end, NIDS_PER_BLOCK);
598 for (i = start; i < end; i++) {
599 nid = get_nid(parent, i, false);
600 f2fs_ra_node_page(sbi, nid);
603 blk_finish_plug(&plug);
606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
608 const long direct_index = ADDRS_PER_INODE(dn->inode);
609 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 int cur_level = dn->cur_level;
613 int max_level = dn->max_level;
614 pgoff_t base = 0;
616 if (!dn->max_level)
617 return pgofs + 1;
619 while (max_level-- > cur_level)
620 skipped_unit *= NIDS_PER_BLOCK;
622 switch (dn->max_level) {
623 case 3:
624 base += 2 * indirect_blks;
625 fallthrough;
626 case 2:
627 base += 2 * direct_blks;
628 fallthrough;
629 case 1:
630 base += direct_index;
631 break;
632 default:
633 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
636 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
640 * The maximum depth is four.
641 * Offset[0] will have raw inode offset.
643 static int get_node_path(struct inode *inode, long block,
644 int offset[4], unsigned int noffset[4])
646 const long direct_index = ADDRS_PER_INODE(inode);
647 const long direct_blks = ADDRS_PER_BLOCK(inode);
648 const long dptrs_per_blk = NIDS_PER_BLOCK;
649 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 int n = 0;
652 int level = 0;
654 noffset[0] = 0;
656 if (block < direct_index) {
657 offset[n] = block;
658 goto got;
660 block -= direct_index;
661 if (block < direct_blks) {
662 offset[n++] = NODE_DIR1_BLOCK;
663 noffset[n] = 1;
664 offset[n] = block;
665 level = 1;
666 goto got;
668 block -= direct_blks;
669 if (block < direct_blks) {
670 offset[n++] = NODE_DIR2_BLOCK;
671 noffset[n] = 2;
672 offset[n] = block;
673 level = 1;
674 goto got;
676 block -= direct_blks;
677 if (block < indirect_blks) {
678 offset[n++] = NODE_IND1_BLOCK;
679 noffset[n] = 3;
680 offset[n++] = block / direct_blks;
681 noffset[n] = 4 + offset[n - 1];
682 offset[n] = block % direct_blks;
683 level = 2;
684 goto got;
686 block -= indirect_blks;
687 if (block < indirect_blks) {
688 offset[n++] = NODE_IND2_BLOCK;
689 noffset[n] = 4 + dptrs_per_blk;
690 offset[n++] = block / direct_blks;
691 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 offset[n] = block % direct_blks;
693 level = 2;
694 goto got;
696 block -= indirect_blks;
697 if (block < dindirect_blks) {
698 offset[n++] = NODE_DIND_BLOCK;
699 noffset[n] = 5 + (dptrs_per_blk * 2);
700 offset[n++] = block / indirect_blks;
701 noffset[n] = 6 + (dptrs_per_blk * 2) +
702 offset[n - 1] * (dptrs_per_blk + 1);
703 offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 noffset[n] = 7 + (dptrs_per_blk * 2) +
705 offset[n - 2] * (dptrs_per_blk + 1) +
706 offset[n - 1];
707 offset[n] = block % direct_blks;
708 level = 3;
709 goto got;
710 } else {
711 return -E2BIG;
713 got:
714 return level;
718 * Caller should call f2fs_put_dnode(dn).
719 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
787 done = true;
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 return 0;
815 release_pages:
816 f2fs_put_page(parent, 1);
817 if (i > 1)
818 f2fs_put_page(npage[0], 0);
819 release_out:
820 dn->inode_page = NULL;
821 dn->node_page = NULL;
822 if (err == -ENOENT) {
823 dn->cur_level = i;
824 dn->max_level = level;
825 dn->ofs_in_node = offset[level];
827 return err;
830 static int truncate_node(struct dnode_of_data *dn)
832 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 struct node_info ni;
834 int err;
835 pgoff_t index;
837 err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 if (err)
839 return err;
841 /* Deallocate node address */
842 f2fs_invalidate_blocks(sbi, ni.blk_addr);
843 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
844 set_node_addr(sbi, &ni, NULL_ADDR, false);
846 if (dn->nid == dn->inode->i_ino) {
847 f2fs_remove_orphan_inode(sbi, dn->nid);
848 dec_valid_inode_count(sbi);
849 f2fs_inode_synced(dn->inode);
852 clear_node_page_dirty(dn->node_page);
853 set_sbi_flag(sbi, SBI_IS_DIRTY);
855 index = dn->node_page->index;
856 f2fs_put_page(dn->node_page, 1);
858 invalidate_mapping_pages(NODE_MAPPING(sbi),
859 index, index);
861 dn->node_page = NULL;
862 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
864 return 0;
867 static int truncate_dnode(struct dnode_of_data *dn)
869 struct page *page;
870 int err;
872 if (dn->nid == 0)
873 return 1;
875 /* get direct node */
876 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
877 if (PTR_ERR(page) == -ENOENT)
878 return 1;
879 else if (IS_ERR(page))
880 return PTR_ERR(page);
882 /* Make dnode_of_data for parameter */
883 dn->node_page = page;
884 dn->ofs_in_node = 0;
885 f2fs_truncate_data_blocks(dn);
886 err = truncate_node(dn);
887 if (err)
888 return err;
890 return 1;
893 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
894 int ofs, int depth)
896 struct dnode_of_data rdn = *dn;
897 struct page *page;
898 struct f2fs_node *rn;
899 nid_t child_nid;
900 unsigned int child_nofs;
901 int freed = 0;
902 int i, ret;
904 if (dn->nid == 0)
905 return NIDS_PER_BLOCK + 1;
907 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
909 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
910 if (IS_ERR(page)) {
911 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
912 return PTR_ERR(page);
915 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
917 rn = F2FS_NODE(page);
918 if (depth < 3) {
919 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
920 child_nid = le32_to_cpu(rn->in.nid[i]);
921 if (child_nid == 0)
922 continue;
923 rdn.nid = child_nid;
924 ret = truncate_dnode(&rdn);
925 if (ret < 0)
926 goto out_err;
927 if (set_nid(page, i, 0, false))
928 dn->node_changed = true;
930 } else {
931 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
932 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
933 child_nid = le32_to_cpu(rn->in.nid[i]);
934 if (child_nid == 0) {
935 child_nofs += NIDS_PER_BLOCK + 1;
936 continue;
938 rdn.nid = child_nid;
939 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
940 if (ret == (NIDS_PER_BLOCK + 1)) {
941 if (set_nid(page, i, 0, false))
942 dn->node_changed = true;
943 child_nofs += ret;
944 } else if (ret < 0 && ret != -ENOENT) {
945 goto out_err;
948 freed = child_nofs;
951 if (!ofs) {
952 /* remove current indirect node */
953 dn->node_page = page;
954 ret = truncate_node(dn);
955 if (ret)
956 goto out_err;
957 freed++;
958 } else {
959 f2fs_put_page(page, 1);
961 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
962 return freed;
964 out_err:
965 f2fs_put_page(page, 1);
966 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
967 return ret;
970 static int truncate_partial_nodes(struct dnode_of_data *dn,
971 struct f2fs_inode *ri, int *offset, int depth)
973 struct page *pages[2];
974 nid_t nid[3];
975 nid_t child_nid;
976 int err = 0;
977 int i;
978 int idx = depth - 2;
980 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
981 if (!nid[0])
982 return 0;
984 /* get indirect nodes in the path */
985 for (i = 0; i < idx + 1; i++) {
986 /* reference count'll be increased */
987 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
988 if (IS_ERR(pages[i])) {
989 err = PTR_ERR(pages[i]);
990 idx = i - 1;
991 goto fail;
993 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
996 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
998 /* free direct nodes linked to a partial indirect node */
999 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1000 child_nid = get_nid(pages[idx], i, false);
1001 if (!child_nid)
1002 continue;
1003 dn->nid = child_nid;
1004 err = truncate_dnode(dn);
1005 if (err < 0)
1006 goto fail;
1007 if (set_nid(pages[idx], i, 0, false))
1008 dn->node_changed = true;
1011 if (offset[idx + 1] == 0) {
1012 dn->node_page = pages[idx];
1013 dn->nid = nid[idx];
1014 err = truncate_node(dn);
1015 if (err)
1016 goto fail;
1017 } else {
1018 f2fs_put_page(pages[idx], 1);
1020 offset[idx]++;
1021 offset[idx + 1] = 0;
1022 idx--;
1023 fail:
1024 for (i = idx; i >= 0; i--)
1025 f2fs_put_page(pages[i], 1);
1027 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029 return err;
1033 * All the block addresses of data and nodes should be nullified.
1035 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1038 int err = 0, cont = 1;
1039 int level, offset[4], noffset[4];
1040 unsigned int nofs = 0;
1041 struct f2fs_inode *ri;
1042 struct dnode_of_data dn;
1043 struct page *page;
1045 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047 level = get_node_path(inode, from, offset, noffset);
1048 if (level < 0) {
1049 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1050 return level;
1053 page = f2fs_get_node_page(sbi, inode->i_ino);
1054 if (IS_ERR(page)) {
1055 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1056 return PTR_ERR(page);
1059 set_new_dnode(&dn, inode, page, NULL, 0);
1060 unlock_page(page);
1062 ri = F2FS_INODE(page);
1063 switch (level) {
1064 case 0:
1065 case 1:
1066 nofs = noffset[1];
1067 break;
1068 case 2:
1069 nofs = noffset[1];
1070 if (!offset[level - 1])
1071 goto skip_partial;
1072 err = truncate_partial_nodes(&dn, ri, offset, level);
1073 if (err < 0 && err != -ENOENT)
1074 goto fail;
1075 nofs += 1 + NIDS_PER_BLOCK;
1076 break;
1077 case 3:
1078 nofs = 5 + 2 * NIDS_PER_BLOCK;
1079 if (!offset[level - 1])
1080 goto skip_partial;
1081 err = truncate_partial_nodes(&dn, ri, offset, level);
1082 if (err < 0 && err != -ENOENT)
1083 goto fail;
1084 break;
1085 default:
1086 BUG();
1089 skip_partial:
1090 while (cont) {
1091 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1092 switch (offset[0]) {
1093 case NODE_DIR1_BLOCK:
1094 case NODE_DIR2_BLOCK:
1095 err = truncate_dnode(&dn);
1096 break;
1098 case NODE_IND1_BLOCK:
1099 case NODE_IND2_BLOCK:
1100 err = truncate_nodes(&dn, nofs, offset[1], 2);
1101 break;
1103 case NODE_DIND_BLOCK:
1104 err = truncate_nodes(&dn, nofs, offset[1], 3);
1105 cont = 0;
1106 break;
1108 default:
1109 BUG();
1111 if (err < 0 && err != -ENOENT)
1112 goto fail;
1113 if (offset[1] == 0 &&
1114 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1115 lock_page(page);
1116 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1117 f2fs_wait_on_page_writeback(page, NODE, true, true);
1118 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1119 set_page_dirty(page);
1120 unlock_page(page);
1122 offset[1] = 0;
1123 offset[0]++;
1124 nofs += err;
1126 fail:
1127 f2fs_put_page(page, 0);
1128 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1129 return err > 0 ? 0 : err;
1132 /* caller must lock inode page */
1133 int f2fs_truncate_xattr_node(struct inode *inode)
1135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1137 struct dnode_of_data dn;
1138 struct page *npage;
1139 int err;
1141 if (!nid)
1142 return 0;
1144 npage = f2fs_get_node_page(sbi, nid);
1145 if (IS_ERR(npage))
1146 return PTR_ERR(npage);
1148 set_new_dnode(&dn, inode, NULL, npage, nid);
1149 err = truncate_node(&dn);
1150 if (err) {
1151 f2fs_put_page(npage, 1);
1152 return err;
1155 f2fs_i_xnid_write(inode, 0);
1157 return 0;
1161 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1162 * f2fs_unlock_op().
1164 int f2fs_remove_inode_page(struct inode *inode)
1166 struct dnode_of_data dn;
1167 int err;
1169 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1170 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1171 if (err)
1172 return err;
1174 err = f2fs_truncate_xattr_node(inode);
1175 if (err) {
1176 f2fs_put_dnode(&dn);
1177 return err;
1180 /* remove potential inline_data blocks */
1181 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1182 S_ISLNK(inode->i_mode))
1183 f2fs_truncate_data_blocks_range(&dn, 1);
1185 /* 0 is possible, after f2fs_new_inode() has failed */
1186 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1187 f2fs_put_dnode(&dn);
1188 return -EIO;
1191 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1192 f2fs_warn(F2FS_I_SB(inode),
1193 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1194 inode->i_ino, (unsigned long long)inode->i_blocks);
1195 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1198 /* will put inode & node pages */
1199 err = truncate_node(&dn);
1200 if (err) {
1201 f2fs_put_dnode(&dn);
1202 return err;
1204 return 0;
1207 struct page *f2fs_new_inode_page(struct inode *inode)
1209 struct dnode_of_data dn;
1211 /* allocate inode page for new inode */
1212 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1214 /* caller should f2fs_put_page(page, 1); */
1215 return f2fs_new_node_page(&dn, 0);
1218 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1220 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1221 struct node_info new_ni;
1222 struct page *page;
1223 int err;
1225 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1226 return ERR_PTR(-EPERM);
1228 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1229 if (!page)
1230 return ERR_PTR(-ENOMEM);
1232 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1233 goto fail;
1235 #ifdef CONFIG_F2FS_CHECK_FS
1236 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1237 if (err) {
1238 dec_valid_node_count(sbi, dn->inode, !ofs);
1239 goto fail;
1241 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1242 #endif
1243 new_ni.nid = dn->nid;
1244 new_ni.ino = dn->inode->i_ino;
1245 new_ni.blk_addr = NULL_ADDR;
1246 new_ni.flag = 0;
1247 new_ni.version = 0;
1248 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1250 f2fs_wait_on_page_writeback(page, NODE, true, true);
1251 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1252 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1253 if (!PageUptodate(page))
1254 SetPageUptodate(page);
1255 if (set_page_dirty(page))
1256 dn->node_changed = true;
1258 if (f2fs_has_xattr_block(ofs))
1259 f2fs_i_xnid_write(dn->inode, dn->nid);
1261 if (ofs == 0)
1262 inc_valid_inode_count(sbi);
1263 return page;
1265 fail:
1266 clear_node_page_dirty(page);
1267 f2fs_put_page(page, 1);
1268 return ERR_PTR(err);
1272 * Caller should do after getting the following values.
1273 * 0: f2fs_put_page(page, 0)
1274 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1276 static int read_node_page(struct page *page, int op_flags)
1278 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1279 struct node_info ni;
1280 struct f2fs_io_info fio = {
1281 .sbi = sbi,
1282 .type = NODE,
1283 .op = REQ_OP_READ,
1284 .op_flags = op_flags,
1285 .page = page,
1286 .encrypted_page = NULL,
1288 int err;
1290 if (PageUptodate(page)) {
1291 if (!f2fs_inode_chksum_verify(sbi, page)) {
1292 ClearPageUptodate(page);
1293 return -EFSBADCRC;
1295 return LOCKED_PAGE;
1298 err = f2fs_get_node_info(sbi, page->index, &ni);
1299 if (err)
1300 return err;
1302 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1303 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1304 ClearPageUptodate(page);
1305 return -ENOENT;
1308 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1310 err = f2fs_submit_page_bio(&fio);
1312 if (!err)
1313 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1315 return err;
1319 * Readahead a node page
1321 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1323 struct page *apage;
1324 int err;
1326 if (!nid)
1327 return;
1328 if (f2fs_check_nid_range(sbi, nid))
1329 return;
1331 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1332 if (apage)
1333 return;
1335 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1336 if (!apage)
1337 return;
1339 err = read_node_page(apage, REQ_RAHEAD);
1340 f2fs_put_page(apage, err ? 1 : 0);
1343 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1344 struct page *parent, int start)
1346 struct page *page;
1347 int err;
1349 if (!nid)
1350 return ERR_PTR(-ENOENT);
1351 if (f2fs_check_nid_range(sbi, nid))
1352 return ERR_PTR(-EINVAL);
1353 repeat:
1354 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1355 if (!page)
1356 return ERR_PTR(-ENOMEM);
1358 err = read_node_page(page, 0);
1359 if (err < 0) {
1360 f2fs_put_page(page, 1);
1361 return ERR_PTR(err);
1362 } else if (err == LOCKED_PAGE) {
1363 err = 0;
1364 goto page_hit;
1367 if (parent)
1368 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1370 lock_page(page);
1372 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1373 f2fs_put_page(page, 1);
1374 goto repeat;
1377 if (unlikely(!PageUptodate(page))) {
1378 err = -EIO;
1379 goto out_err;
1382 if (!f2fs_inode_chksum_verify(sbi, page)) {
1383 err = -EFSBADCRC;
1384 goto out_err;
1386 page_hit:
1387 if(unlikely(nid != nid_of_node(page))) {
1388 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1389 nid, nid_of_node(page), ino_of_node(page),
1390 ofs_of_node(page), cpver_of_node(page),
1391 next_blkaddr_of_node(page));
1392 err = -EINVAL;
1393 out_err:
1394 ClearPageUptodate(page);
1395 f2fs_put_page(page, 1);
1396 return ERR_PTR(err);
1398 return page;
1401 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1403 return __get_node_page(sbi, nid, NULL, 0);
1406 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1408 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1409 nid_t nid = get_nid(parent, start, false);
1411 return __get_node_page(sbi, nid, parent, start);
1414 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1416 struct inode *inode;
1417 struct page *page;
1418 int ret;
1420 /* should flush inline_data before evict_inode */
1421 inode = ilookup(sbi->sb, ino);
1422 if (!inode)
1423 return;
1425 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1426 FGP_LOCK|FGP_NOWAIT, 0);
1427 if (!page)
1428 goto iput_out;
1430 if (!PageUptodate(page))
1431 goto page_out;
1433 if (!PageDirty(page))
1434 goto page_out;
1436 if (!clear_page_dirty_for_io(page))
1437 goto page_out;
1439 ret = f2fs_write_inline_data(inode, page);
1440 inode_dec_dirty_pages(inode);
1441 f2fs_remove_dirty_inode(inode);
1442 if (ret)
1443 set_page_dirty(page);
1444 page_out:
1445 f2fs_put_page(page, 1);
1446 iput_out:
1447 iput(inode);
1450 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1452 pgoff_t index;
1453 struct pagevec pvec;
1454 struct page *last_page = NULL;
1455 int nr_pages;
1457 pagevec_init(&pvec);
1458 index = 0;
1460 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1461 PAGECACHE_TAG_DIRTY))) {
1462 int i;
1464 for (i = 0; i < nr_pages; i++) {
1465 struct page *page = pvec.pages[i];
1467 if (unlikely(f2fs_cp_error(sbi))) {
1468 f2fs_put_page(last_page, 0);
1469 pagevec_release(&pvec);
1470 return ERR_PTR(-EIO);
1473 if (!IS_DNODE(page) || !is_cold_node(page))
1474 continue;
1475 if (ino_of_node(page) != ino)
1476 continue;
1478 lock_page(page);
1480 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1481 continue_unlock:
1482 unlock_page(page);
1483 continue;
1485 if (ino_of_node(page) != ino)
1486 goto continue_unlock;
1488 if (!PageDirty(page)) {
1489 /* someone wrote it for us */
1490 goto continue_unlock;
1493 if (last_page)
1494 f2fs_put_page(last_page, 0);
1496 get_page(page);
1497 last_page = page;
1498 unlock_page(page);
1500 pagevec_release(&pvec);
1501 cond_resched();
1503 return last_page;
1506 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1507 struct writeback_control *wbc, bool do_balance,
1508 enum iostat_type io_type, unsigned int *seq_id)
1510 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1511 nid_t nid;
1512 struct node_info ni;
1513 struct f2fs_io_info fio = {
1514 .sbi = sbi,
1515 .ino = ino_of_node(page),
1516 .type = NODE,
1517 .op = REQ_OP_WRITE,
1518 .op_flags = wbc_to_write_flags(wbc),
1519 .page = page,
1520 .encrypted_page = NULL,
1521 .submitted = false,
1522 .io_type = io_type,
1523 .io_wbc = wbc,
1525 unsigned int seq;
1527 trace_f2fs_writepage(page, NODE);
1529 if (unlikely(f2fs_cp_error(sbi))) {
1530 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1531 ClearPageUptodate(page);
1532 dec_page_count(sbi, F2FS_DIRTY_NODES);
1533 unlock_page(page);
1534 return 0;
1536 goto redirty_out;
1539 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1540 goto redirty_out;
1542 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1543 wbc->sync_mode == WB_SYNC_NONE &&
1544 IS_DNODE(page) && is_cold_node(page))
1545 goto redirty_out;
1547 /* get old block addr of this node page */
1548 nid = nid_of_node(page);
1549 f2fs_bug_on(sbi, page->index != nid);
1551 if (f2fs_get_node_info(sbi, nid, &ni))
1552 goto redirty_out;
1554 if (wbc->for_reclaim) {
1555 if (!down_read_trylock(&sbi->node_write))
1556 goto redirty_out;
1557 } else {
1558 down_read(&sbi->node_write);
1561 /* This page is already truncated */
1562 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1563 ClearPageUptodate(page);
1564 dec_page_count(sbi, F2FS_DIRTY_NODES);
1565 up_read(&sbi->node_write);
1566 unlock_page(page);
1567 return 0;
1570 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1571 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1572 DATA_GENERIC_ENHANCE)) {
1573 up_read(&sbi->node_write);
1574 goto redirty_out;
1577 if (atomic && !test_opt(sbi, NOBARRIER))
1578 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1580 /* should add to global list before clearing PAGECACHE status */
1581 if (f2fs_in_warm_node_list(sbi, page)) {
1582 seq = f2fs_add_fsync_node_entry(sbi, page);
1583 if (seq_id)
1584 *seq_id = seq;
1587 set_page_writeback(page);
1588 ClearPageError(page);
1590 fio.old_blkaddr = ni.blk_addr;
1591 f2fs_do_write_node_page(nid, &fio);
1592 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1593 dec_page_count(sbi, F2FS_DIRTY_NODES);
1594 up_read(&sbi->node_write);
1596 if (wbc->for_reclaim) {
1597 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1598 submitted = NULL;
1601 unlock_page(page);
1603 if (unlikely(f2fs_cp_error(sbi))) {
1604 f2fs_submit_merged_write(sbi, NODE);
1605 submitted = NULL;
1607 if (submitted)
1608 *submitted = fio.submitted;
1610 if (do_balance)
1611 f2fs_balance_fs(sbi, false);
1612 return 0;
1614 redirty_out:
1615 redirty_page_for_writepage(wbc, page);
1616 return AOP_WRITEPAGE_ACTIVATE;
1619 int f2fs_move_node_page(struct page *node_page, int gc_type)
1621 int err = 0;
1623 if (gc_type == FG_GC) {
1624 struct writeback_control wbc = {
1625 .sync_mode = WB_SYNC_ALL,
1626 .nr_to_write = 1,
1627 .for_reclaim = 0,
1630 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1632 set_page_dirty(node_page);
1634 if (!clear_page_dirty_for_io(node_page)) {
1635 err = -EAGAIN;
1636 goto out_page;
1639 if (__write_node_page(node_page, false, NULL,
1640 &wbc, false, FS_GC_NODE_IO, NULL)) {
1641 err = -EAGAIN;
1642 unlock_page(node_page);
1644 goto release_page;
1645 } else {
1646 /* set page dirty and write it */
1647 if (!PageWriteback(node_page))
1648 set_page_dirty(node_page);
1650 out_page:
1651 unlock_page(node_page);
1652 release_page:
1653 f2fs_put_page(node_page, 0);
1654 return err;
1657 static int f2fs_write_node_page(struct page *page,
1658 struct writeback_control *wbc)
1660 return __write_node_page(page, false, NULL, wbc, false,
1661 FS_NODE_IO, NULL);
1664 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1665 struct writeback_control *wbc, bool atomic,
1666 unsigned int *seq_id)
1668 pgoff_t index;
1669 struct pagevec pvec;
1670 int ret = 0;
1671 struct page *last_page = NULL;
1672 bool marked = false;
1673 nid_t ino = inode->i_ino;
1674 int nr_pages;
1675 int nwritten = 0;
1677 if (atomic) {
1678 last_page = last_fsync_dnode(sbi, ino);
1679 if (IS_ERR_OR_NULL(last_page))
1680 return PTR_ERR_OR_ZERO(last_page);
1682 retry:
1683 pagevec_init(&pvec);
1684 index = 0;
1686 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1687 PAGECACHE_TAG_DIRTY))) {
1688 int i;
1690 for (i = 0; i < nr_pages; i++) {
1691 struct page *page = pvec.pages[i];
1692 bool submitted = false;
1694 if (unlikely(f2fs_cp_error(sbi))) {
1695 f2fs_put_page(last_page, 0);
1696 pagevec_release(&pvec);
1697 ret = -EIO;
1698 goto out;
1701 if (!IS_DNODE(page) || !is_cold_node(page))
1702 continue;
1703 if (ino_of_node(page) != ino)
1704 continue;
1706 lock_page(page);
1708 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1709 continue_unlock:
1710 unlock_page(page);
1711 continue;
1713 if (ino_of_node(page) != ino)
1714 goto continue_unlock;
1716 if (!PageDirty(page) && page != last_page) {
1717 /* someone wrote it for us */
1718 goto continue_unlock;
1721 f2fs_wait_on_page_writeback(page, NODE, true, true);
1723 set_fsync_mark(page, 0);
1724 set_dentry_mark(page, 0);
1726 if (!atomic || page == last_page) {
1727 set_fsync_mark(page, 1);
1728 if (IS_INODE(page)) {
1729 if (is_inode_flag_set(inode,
1730 FI_DIRTY_INODE))
1731 f2fs_update_inode(inode, page);
1732 set_dentry_mark(page,
1733 f2fs_need_dentry_mark(sbi, ino));
1735 /* may be written by other thread */
1736 if (!PageDirty(page))
1737 set_page_dirty(page);
1740 if (!clear_page_dirty_for_io(page))
1741 goto continue_unlock;
1743 ret = __write_node_page(page, atomic &&
1744 page == last_page,
1745 &submitted, wbc, true,
1746 FS_NODE_IO, seq_id);
1747 if (ret) {
1748 unlock_page(page);
1749 f2fs_put_page(last_page, 0);
1750 break;
1751 } else if (submitted) {
1752 nwritten++;
1755 if (page == last_page) {
1756 f2fs_put_page(page, 0);
1757 marked = true;
1758 break;
1761 pagevec_release(&pvec);
1762 cond_resched();
1764 if (ret || marked)
1765 break;
1767 if (!ret && atomic && !marked) {
1768 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1769 ino, last_page->index);
1770 lock_page(last_page);
1771 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1772 set_page_dirty(last_page);
1773 unlock_page(last_page);
1774 goto retry;
1776 out:
1777 if (nwritten)
1778 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1779 return ret ? -EIO: 0;
1782 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1784 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1785 bool clean;
1787 if (inode->i_ino != ino)
1788 return 0;
1790 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1791 return 0;
1793 spin_lock(&sbi->inode_lock[DIRTY_META]);
1794 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1795 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1797 if (clean)
1798 return 0;
1800 inode = igrab(inode);
1801 if (!inode)
1802 return 0;
1803 return 1;
1806 static bool flush_dirty_inode(struct page *page)
1808 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1809 struct inode *inode;
1810 nid_t ino = ino_of_node(page);
1812 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1813 if (!inode)
1814 return false;
1816 f2fs_update_inode(inode, page);
1817 unlock_page(page);
1819 iput(inode);
1820 return true;
1823 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1825 pgoff_t index = 0;
1826 struct pagevec pvec;
1827 int nr_pages;
1829 pagevec_init(&pvec);
1831 while ((nr_pages = pagevec_lookup_tag(&pvec,
1832 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1833 int i;
1835 for (i = 0; i < nr_pages; i++) {
1836 struct page *page = pvec.pages[i];
1838 if (!IS_DNODE(page))
1839 continue;
1841 lock_page(page);
1843 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1844 continue_unlock:
1845 unlock_page(page);
1846 continue;
1849 if (!PageDirty(page)) {
1850 /* someone wrote it for us */
1851 goto continue_unlock;
1854 /* flush inline_data, if it's async context. */
1855 if (is_inline_node(page)) {
1856 clear_inline_node(page);
1857 unlock_page(page);
1858 flush_inline_data(sbi, ino_of_node(page));
1859 continue;
1861 unlock_page(page);
1863 pagevec_release(&pvec);
1864 cond_resched();
1868 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1869 struct writeback_control *wbc,
1870 bool do_balance, enum iostat_type io_type)
1872 pgoff_t index;
1873 struct pagevec pvec;
1874 int step = 0;
1875 int nwritten = 0;
1876 int ret = 0;
1877 int nr_pages, done = 0;
1879 pagevec_init(&pvec);
1881 next_step:
1882 index = 0;
1884 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1885 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1886 int i;
1888 for (i = 0; i < nr_pages; i++) {
1889 struct page *page = pvec.pages[i];
1890 bool submitted = false;
1891 bool may_dirty = true;
1893 /* give a priority to WB_SYNC threads */
1894 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1895 wbc->sync_mode == WB_SYNC_NONE) {
1896 done = 1;
1897 break;
1901 * flushing sequence with step:
1902 * 0. indirect nodes
1903 * 1. dentry dnodes
1904 * 2. file dnodes
1906 if (step == 0 && IS_DNODE(page))
1907 continue;
1908 if (step == 1 && (!IS_DNODE(page) ||
1909 is_cold_node(page)))
1910 continue;
1911 if (step == 2 && (!IS_DNODE(page) ||
1912 !is_cold_node(page)))
1913 continue;
1914 lock_node:
1915 if (wbc->sync_mode == WB_SYNC_ALL)
1916 lock_page(page);
1917 else if (!trylock_page(page))
1918 continue;
1920 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1921 continue_unlock:
1922 unlock_page(page);
1923 continue;
1926 if (!PageDirty(page)) {
1927 /* someone wrote it for us */
1928 goto continue_unlock;
1931 /* flush inline_data/inode, if it's async context. */
1932 if (!do_balance)
1933 goto write_node;
1935 /* flush inline_data */
1936 if (is_inline_node(page)) {
1937 clear_inline_node(page);
1938 unlock_page(page);
1939 flush_inline_data(sbi, ino_of_node(page));
1940 goto lock_node;
1943 /* flush dirty inode */
1944 if (IS_INODE(page) && may_dirty) {
1945 may_dirty = false;
1946 if (flush_dirty_inode(page))
1947 goto lock_node;
1949 write_node:
1950 f2fs_wait_on_page_writeback(page, NODE, true, true);
1952 if (!clear_page_dirty_for_io(page))
1953 goto continue_unlock;
1955 set_fsync_mark(page, 0);
1956 set_dentry_mark(page, 0);
1958 ret = __write_node_page(page, false, &submitted,
1959 wbc, do_balance, io_type, NULL);
1960 if (ret)
1961 unlock_page(page);
1962 else if (submitted)
1963 nwritten++;
1965 if (--wbc->nr_to_write == 0)
1966 break;
1968 pagevec_release(&pvec);
1969 cond_resched();
1971 if (wbc->nr_to_write == 0) {
1972 step = 2;
1973 break;
1977 if (step < 2) {
1978 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1979 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1980 goto out;
1981 step++;
1982 goto next_step;
1984 out:
1985 if (nwritten)
1986 f2fs_submit_merged_write(sbi, NODE);
1988 if (unlikely(f2fs_cp_error(sbi)))
1989 return -EIO;
1990 return ret;
1993 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1994 unsigned int seq_id)
1996 struct fsync_node_entry *fn;
1997 struct page *page;
1998 struct list_head *head = &sbi->fsync_node_list;
1999 unsigned long flags;
2000 unsigned int cur_seq_id = 0;
2001 int ret2, ret = 0;
2003 while (seq_id && cur_seq_id < seq_id) {
2004 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2005 if (list_empty(head)) {
2006 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2007 break;
2009 fn = list_first_entry(head, struct fsync_node_entry, list);
2010 if (fn->seq_id > seq_id) {
2011 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2012 break;
2014 cur_seq_id = fn->seq_id;
2015 page = fn->page;
2016 get_page(page);
2017 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2019 f2fs_wait_on_page_writeback(page, NODE, true, false);
2020 if (TestClearPageError(page))
2021 ret = -EIO;
2023 put_page(page);
2025 if (ret)
2026 break;
2029 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2030 if (!ret)
2031 ret = ret2;
2033 return ret;
2036 static int f2fs_write_node_pages(struct address_space *mapping,
2037 struct writeback_control *wbc)
2039 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2040 struct blk_plug plug;
2041 long diff;
2043 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2044 goto skip_write;
2046 /* balancing f2fs's metadata in background */
2047 f2fs_balance_fs_bg(sbi, true);
2049 /* collect a number of dirty node pages and write together */
2050 if (wbc->sync_mode != WB_SYNC_ALL &&
2051 get_pages(sbi, F2FS_DIRTY_NODES) <
2052 nr_pages_to_skip(sbi, NODE))
2053 goto skip_write;
2055 if (wbc->sync_mode == WB_SYNC_ALL)
2056 atomic_inc(&sbi->wb_sync_req[NODE]);
2057 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2058 goto skip_write;
2060 trace_f2fs_writepages(mapping->host, wbc, NODE);
2062 diff = nr_pages_to_write(sbi, NODE, wbc);
2063 blk_start_plug(&plug);
2064 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2065 blk_finish_plug(&plug);
2066 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2068 if (wbc->sync_mode == WB_SYNC_ALL)
2069 atomic_dec(&sbi->wb_sync_req[NODE]);
2070 return 0;
2072 skip_write:
2073 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2074 trace_f2fs_writepages(mapping->host, wbc, NODE);
2075 return 0;
2078 static int f2fs_set_node_page_dirty(struct page *page)
2080 trace_f2fs_set_page_dirty(page, NODE);
2082 if (!PageUptodate(page))
2083 SetPageUptodate(page);
2084 #ifdef CONFIG_F2FS_CHECK_FS
2085 if (IS_INODE(page))
2086 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2087 #endif
2088 if (!PageDirty(page)) {
2089 __set_page_dirty_nobuffers(page);
2090 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2091 f2fs_set_page_private(page, 0);
2092 f2fs_trace_pid(page);
2093 return 1;
2095 return 0;
2099 * Structure of the f2fs node operations
2101 const struct address_space_operations f2fs_node_aops = {
2102 .writepage = f2fs_write_node_page,
2103 .writepages = f2fs_write_node_pages,
2104 .set_page_dirty = f2fs_set_node_page_dirty,
2105 .invalidatepage = f2fs_invalidate_page,
2106 .releasepage = f2fs_release_page,
2107 #ifdef CONFIG_MIGRATION
2108 .migratepage = f2fs_migrate_page,
2109 #endif
2112 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2113 nid_t n)
2115 return radix_tree_lookup(&nm_i->free_nid_root, n);
2118 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2119 struct free_nid *i)
2121 struct f2fs_nm_info *nm_i = NM_I(sbi);
2123 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2124 if (err)
2125 return err;
2127 nm_i->nid_cnt[FREE_NID]++;
2128 list_add_tail(&i->list, &nm_i->free_nid_list);
2129 return 0;
2132 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2133 struct free_nid *i, enum nid_state state)
2135 struct f2fs_nm_info *nm_i = NM_I(sbi);
2137 f2fs_bug_on(sbi, state != i->state);
2138 nm_i->nid_cnt[state]--;
2139 if (state == FREE_NID)
2140 list_del(&i->list);
2141 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2144 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2145 enum nid_state org_state, enum nid_state dst_state)
2147 struct f2fs_nm_info *nm_i = NM_I(sbi);
2149 f2fs_bug_on(sbi, org_state != i->state);
2150 i->state = dst_state;
2151 nm_i->nid_cnt[org_state]--;
2152 nm_i->nid_cnt[dst_state]++;
2154 switch (dst_state) {
2155 case PREALLOC_NID:
2156 list_del(&i->list);
2157 break;
2158 case FREE_NID:
2159 list_add_tail(&i->list, &nm_i->free_nid_list);
2160 break;
2161 default:
2162 BUG_ON(1);
2166 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2167 bool set, bool build)
2169 struct f2fs_nm_info *nm_i = NM_I(sbi);
2170 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2171 unsigned int nid_ofs = nid - START_NID(nid);
2173 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2174 return;
2176 if (set) {
2177 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2178 return;
2179 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2180 nm_i->free_nid_count[nat_ofs]++;
2181 } else {
2182 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2183 return;
2184 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2185 if (!build)
2186 nm_i->free_nid_count[nat_ofs]--;
2190 /* return if the nid is recognized as free */
2191 static bool add_free_nid(struct f2fs_sb_info *sbi,
2192 nid_t nid, bool build, bool update)
2194 struct f2fs_nm_info *nm_i = NM_I(sbi);
2195 struct free_nid *i, *e;
2196 struct nat_entry *ne;
2197 int err = -EINVAL;
2198 bool ret = false;
2200 /* 0 nid should not be used */
2201 if (unlikely(nid == 0))
2202 return false;
2204 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2205 return false;
2207 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2208 i->nid = nid;
2209 i->state = FREE_NID;
2211 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2213 spin_lock(&nm_i->nid_list_lock);
2215 if (build) {
2217 * Thread A Thread B
2218 * - f2fs_create
2219 * - f2fs_new_inode
2220 * - f2fs_alloc_nid
2221 * - __insert_nid_to_list(PREALLOC_NID)
2222 * - f2fs_balance_fs_bg
2223 * - f2fs_build_free_nids
2224 * - __f2fs_build_free_nids
2225 * - scan_nat_page
2226 * - add_free_nid
2227 * - __lookup_nat_cache
2228 * - f2fs_add_link
2229 * - f2fs_init_inode_metadata
2230 * - f2fs_new_inode_page
2231 * - f2fs_new_node_page
2232 * - set_node_addr
2233 * - f2fs_alloc_nid_done
2234 * - __remove_nid_from_list(PREALLOC_NID)
2235 * - __insert_nid_to_list(FREE_NID)
2237 ne = __lookup_nat_cache(nm_i, nid);
2238 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2239 nat_get_blkaddr(ne) != NULL_ADDR))
2240 goto err_out;
2242 e = __lookup_free_nid_list(nm_i, nid);
2243 if (e) {
2244 if (e->state == FREE_NID)
2245 ret = true;
2246 goto err_out;
2249 ret = true;
2250 err = __insert_free_nid(sbi, i);
2251 err_out:
2252 if (update) {
2253 update_free_nid_bitmap(sbi, nid, ret, build);
2254 if (!build)
2255 nm_i->available_nids++;
2257 spin_unlock(&nm_i->nid_list_lock);
2258 radix_tree_preload_end();
2260 if (err)
2261 kmem_cache_free(free_nid_slab, i);
2262 return ret;
2265 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2267 struct f2fs_nm_info *nm_i = NM_I(sbi);
2268 struct free_nid *i;
2269 bool need_free = false;
2271 spin_lock(&nm_i->nid_list_lock);
2272 i = __lookup_free_nid_list(nm_i, nid);
2273 if (i && i->state == FREE_NID) {
2274 __remove_free_nid(sbi, i, FREE_NID);
2275 need_free = true;
2277 spin_unlock(&nm_i->nid_list_lock);
2279 if (need_free)
2280 kmem_cache_free(free_nid_slab, i);
2283 static int scan_nat_page(struct f2fs_sb_info *sbi,
2284 struct page *nat_page, nid_t start_nid)
2286 struct f2fs_nm_info *nm_i = NM_I(sbi);
2287 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2288 block_t blk_addr;
2289 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2290 int i;
2292 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2294 i = start_nid % NAT_ENTRY_PER_BLOCK;
2296 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2297 if (unlikely(start_nid >= nm_i->max_nid))
2298 break;
2300 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2302 if (blk_addr == NEW_ADDR)
2303 return -EINVAL;
2305 if (blk_addr == NULL_ADDR) {
2306 add_free_nid(sbi, start_nid, true, true);
2307 } else {
2308 spin_lock(&NM_I(sbi)->nid_list_lock);
2309 update_free_nid_bitmap(sbi, start_nid, false, true);
2310 spin_unlock(&NM_I(sbi)->nid_list_lock);
2314 return 0;
2317 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2319 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2320 struct f2fs_journal *journal = curseg->journal;
2321 int i;
2323 down_read(&curseg->journal_rwsem);
2324 for (i = 0; i < nats_in_cursum(journal); i++) {
2325 block_t addr;
2326 nid_t nid;
2328 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2329 nid = le32_to_cpu(nid_in_journal(journal, i));
2330 if (addr == NULL_ADDR)
2331 add_free_nid(sbi, nid, true, false);
2332 else
2333 remove_free_nid(sbi, nid);
2335 up_read(&curseg->journal_rwsem);
2338 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2340 struct f2fs_nm_info *nm_i = NM_I(sbi);
2341 unsigned int i, idx;
2342 nid_t nid;
2344 down_read(&nm_i->nat_tree_lock);
2346 for (i = 0; i < nm_i->nat_blocks; i++) {
2347 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2348 continue;
2349 if (!nm_i->free_nid_count[i])
2350 continue;
2351 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2352 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2353 NAT_ENTRY_PER_BLOCK, idx);
2354 if (idx >= NAT_ENTRY_PER_BLOCK)
2355 break;
2357 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2358 add_free_nid(sbi, nid, true, false);
2360 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2361 goto out;
2364 out:
2365 scan_curseg_cache(sbi);
2367 up_read(&nm_i->nat_tree_lock);
2370 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2371 bool sync, bool mount)
2373 struct f2fs_nm_info *nm_i = NM_I(sbi);
2374 int i = 0, ret;
2375 nid_t nid = nm_i->next_scan_nid;
2377 if (unlikely(nid >= nm_i->max_nid))
2378 nid = 0;
2380 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2381 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2383 /* Enough entries */
2384 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2385 return 0;
2387 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2388 return 0;
2390 if (!mount) {
2391 /* try to find free nids in free_nid_bitmap */
2392 scan_free_nid_bits(sbi);
2394 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2395 return 0;
2398 /* readahead nat pages to be scanned */
2399 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2400 META_NAT, true);
2402 down_read(&nm_i->nat_tree_lock);
2404 while (1) {
2405 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2406 nm_i->nat_block_bitmap)) {
2407 struct page *page = get_current_nat_page(sbi, nid);
2409 if (IS_ERR(page)) {
2410 ret = PTR_ERR(page);
2411 } else {
2412 ret = scan_nat_page(sbi, page, nid);
2413 f2fs_put_page(page, 1);
2416 if (ret) {
2417 up_read(&nm_i->nat_tree_lock);
2418 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2419 return ret;
2423 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2424 if (unlikely(nid >= nm_i->max_nid))
2425 nid = 0;
2427 if (++i >= FREE_NID_PAGES)
2428 break;
2431 /* go to the next free nat pages to find free nids abundantly */
2432 nm_i->next_scan_nid = nid;
2434 /* find free nids from current sum_pages */
2435 scan_curseg_cache(sbi);
2437 up_read(&nm_i->nat_tree_lock);
2439 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2440 nm_i->ra_nid_pages, META_NAT, false);
2442 return 0;
2445 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2447 int ret;
2449 mutex_lock(&NM_I(sbi)->build_lock);
2450 ret = __f2fs_build_free_nids(sbi, sync, mount);
2451 mutex_unlock(&NM_I(sbi)->build_lock);
2453 return ret;
2457 * If this function returns success, caller can obtain a new nid
2458 * from second parameter of this function.
2459 * The returned nid could be used ino as well as nid when inode is created.
2461 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2463 struct f2fs_nm_info *nm_i = NM_I(sbi);
2464 struct free_nid *i = NULL;
2465 retry:
2466 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2467 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2468 return false;
2471 spin_lock(&nm_i->nid_list_lock);
2473 if (unlikely(nm_i->available_nids == 0)) {
2474 spin_unlock(&nm_i->nid_list_lock);
2475 return false;
2478 /* We should not use stale free nids created by f2fs_build_free_nids */
2479 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2480 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2481 i = list_first_entry(&nm_i->free_nid_list,
2482 struct free_nid, list);
2483 *nid = i->nid;
2485 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2486 nm_i->available_nids--;
2488 update_free_nid_bitmap(sbi, *nid, false, false);
2490 spin_unlock(&nm_i->nid_list_lock);
2491 return true;
2493 spin_unlock(&nm_i->nid_list_lock);
2495 /* Let's scan nat pages and its caches to get free nids */
2496 if (!f2fs_build_free_nids(sbi, true, false))
2497 goto retry;
2498 return false;
2502 * f2fs_alloc_nid() should be called prior to this function.
2504 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2506 struct f2fs_nm_info *nm_i = NM_I(sbi);
2507 struct free_nid *i;
2509 spin_lock(&nm_i->nid_list_lock);
2510 i = __lookup_free_nid_list(nm_i, nid);
2511 f2fs_bug_on(sbi, !i);
2512 __remove_free_nid(sbi, i, PREALLOC_NID);
2513 spin_unlock(&nm_i->nid_list_lock);
2515 kmem_cache_free(free_nid_slab, i);
2519 * f2fs_alloc_nid() should be called prior to this function.
2521 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2523 struct f2fs_nm_info *nm_i = NM_I(sbi);
2524 struct free_nid *i;
2525 bool need_free = false;
2527 if (!nid)
2528 return;
2530 spin_lock(&nm_i->nid_list_lock);
2531 i = __lookup_free_nid_list(nm_i, nid);
2532 f2fs_bug_on(sbi, !i);
2534 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2535 __remove_free_nid(sbi, i, PREALLOC_NID);
2536 need_free = true;
2537 } else {
2538 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2541 nm_i->available_nids++;
2543 update_free_nid_bitmap(sbi, nid, true, false);
2545 spin_unlock(&nm_i->nid_list_lock);
2547 if (need_free)
2548 kmem_cache_free(free_nid_slab, i);
2551 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2553 struct f2fs_nm_info *nm_i = NM_I(sbi);
2554 int nr = nr_shrink;
2556 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2557 return 0;
2559 if (!mutex_trylock(&nm_i->build_lock))
2560 return 0;
2562 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2563 struct free_nid *i, *next;
2564 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2566 spin_lock(&nm_i->nid_list_lock);
2567 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2568 if (!nr_shrink || !batch ||
2569 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2570 break;
2571 __remove_free_nid(sbi, i, FREE_NID);
2572 kmem_cache_free(free_nid_slab, i);
2573 nr_shrink--;
2574 batch--;
2576 spin_unlock(&nm_i->nid_list_lock);
2579 mutex_unlock(&nm_i->build_lock);
2581 return nr - nr_shrink;
2584 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2586 void *src_addr, *dst_addr;
2587 size_t inline_size;
2588 struct page *ipage;
2589 struct f2fs_inode *ri;
2591 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2592 if (IS_ERR(ipage))
2593 return PTR_ERR(ipage);
2595 ri = F2FS_INODE(page);
2596 if (ri->i_inline & F2FS_INLINE_XATTR) {
2597 if (!f2fs_has_inline_xattr(inode)) {
2598 set_inode_flag(inode, FI_INLINE_XATTR);
2599 stat_inc_inline_xattr(inode);
2601 } else {
2602 if (f2fs_has_inline_xattr(inode)) {
2603 stat_dec_inline_xattr(inode);
2604 clear_inode_flag(inode, FI_INLINE_XATTR);
2606 goto update_inode;
2609 dst_addr = inline_xattr_addr(inode, ipage);
2610 src_addr = inline_xattr_addr(inode, page);
2611 inline_size = inline_xattr_size(inode);
2613 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2614 memcpy(dst_addr, src_addr, inline_size);
2615 update_inode:
2616 f2fs_update_inode(inode, ipage);
2617 f2fs_put_page(ipage, 1);
2618 return 0;
2621 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2623 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2624 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2625 nid_t new_xnid;
2626 struct dnode_of_data dn;
2627 struct node_info ni;
2628 struct page *xpage;
2629 int err;
2631 if (!prev_xnid)
2632 goto recover_xnid;
2634 /* 1: invalidate the previous xattr nid */
2635 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2636 if (err)
2637 return err;
2639 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2640 dec_valid_node_count(sbi, inode, false);
2641 set_node_addr(sbi, &ni, NULL_ADDR, false);
2643 recover_xnid:
2644 /* 2: update xattr nid in inode */
2645 if (!f2fs_alloc_nid(sbi, &new_xnid))
2646 return -ENOSPC;
2648 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2649 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2650 if (IS_ERR(xpage)) {
2651 f2fs_alloc_nid_failed(sbi, new_xnid);
2652 return PTR_ERR(xpage);
2655 f2fs_alloc_nid_done(sbi, new_xnid);
2656 f2fs_update_inode_page(inode);
2658 /* 3: update and set xattr node page dirty */
2659 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2661 set_page_dirty(xpage);
2662 f2fs_put_page(xpage, 1);
2664 return 0;
2667 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2669 struct f2fs_inode *src, *dst;
2670 nid_t ino = ino_of_node(page);
2671 struct node_info old_ni, new_ni;
2672 struct page *ipage;
2673 int err;
2675 err = f2fs_get_node_info(sbi, ino, &old_ni);
2676 if (err)
2677 return err;
2679 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2680 return -EINVAL;
2681 retry:
2682 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2683 if (!ipage) {
2684 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2685 goto retry;
2688 /* Should not use this inode from free nid list */
2689 remove_free_nid(sbi, ino);
2691 if (!PageUptodate(ipage))
2692 SetPageUptodate(ipage);
2693 fill_node_footer(ipage, ino, ino, 0, true);
2694 set_cold_node(ipage, false);
2696 src = F2FS_INODE(page);
2697 dst = F2FS_INODE(ipage);
2699 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2700 dst->i_size = 0;
2701 dst->i_blocks = cpu_to_le64(1);
2702 dst->i_links = cpu_to_le32(1);
2703 dst->i_xattr_nid = 0;
2704 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2705 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2706 dst->i_extra_isize = src->i_extra_isize;
2708 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2709 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2710 i_inline_xattr_size))
2711 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2713 if (f2fs_sb_has_project_quota(sbi) &&
2714 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2715 i_projid))
2716 dst->i_projid = src->i_projid;
2718 if (f2fs_sb_has_inode_crtime(sbi) &&
2719 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2720 i_crtime_nsec)) {
2721 dst->i_crtime = src->i_crtime;
2722 dst->i_crtime_nsec = src->i_crtime_nsec;
2726 new_ni = old_ni;
2727 new_ni.ino = ino;
2729 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2730 WARN_ON(1);
2731 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2732 inc_valid_inode_count(sbi);
2733 set_page_dirty(ipage);
2734 f2fs_put_page(ipage, 1);
2735 return 0;
2738 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2739 unsigned int segno, struct f2fs_summary_block *sum)
2741 struct f2fs_node *rn;
2742 struct f2fs_summary *sum_entry;
2743 block_t addr;
2744 int i, idx, last_offset, nrpages;
2746 /* scan the node segment */
2747 last_offset = sbi->blocks_per_seg;
2748 addr = START_BLOCK(sbi, segno);
2749 sum_entry = &sum->entries[0];
2751 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2752 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2754 /* readahead node pages */
2755 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2757 for (idx = addr; idx < addr + nrpages; idx++) {
2758 struct page *page = f2fs_get_tmp_page(sbi, idx);
2760 if (IS_ERR(page))
2761 return PTR_ERR(page);
2763 rn = F2FS_NODE(page);
2764 sum_entry->nid = rn->footer.nid;
2765 sum_entry->version = 0;
2766 sum_entry->ofs_in_node = 0;
2767 sum_entry++;
2768 f2fs_put_page(page, 1);
2771 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2772 addr + nrpages);
2774 return 0;
2777 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2779 struct f2fs_nm_info *nm_i = NM_I(sbi);
2780 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2781 struct f2fs_journal *journal = curseg->journal;
2782 int i;
2784 down_write(&curseg->journal_rwsem);
2785 for (i = 0; i < nats_in_cursum(journal); i++) {
2786 struct nat_entry *ne;
2787 struct f2fs_nat_entry raw_ne;
2788 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2790 raw_ne = nat_in_journal(journal, i);
2792 ne = __lookup_nat_cache(nm_i, nid);
2793 if (!ne) {
2794 ne = __alloc_nat_entry(nid, true);
2795 __init_nat_entry(nm_i, ne, &raw_ne, true);
2799 * if a free nat in journal has not been used after last
2800 * checkpoint, we should remove it from available nids,
2801 * since later we will add it again.
2803 if (!get_nat_flag(ne, IS_DIRTY) &&
2804 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2805 spin_lock(&nm_i->nid_list_lock);
2806 nm_i->available_nids--;
2807 spin_unlock(&nm_i->nid_list_lock);
2810 __set_nat_cache_dirty(nm_i, ne);
2812 update_nats_in_cursum(journal, -i);
2813 up_write(&curseg->journal_rwsem);
2816 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2817 struct list_head *head, int max)
2819 struct nat_entry_set *cur;
2821 if (nes->entry_cnt >= max)
2822 goto add_out;
2824 list_for_each_entry(cur, head, set_list) {
2825 if (cur->entry_cnt >= nes->entry_cnt) {
2826 list_add(&nes->set_list, cur->set_list.prev);
2827 return;
2830 add_out:
2831 list_add_tail(&nes->set_list, head);
2834 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2835 struct page *page)
2837 struct f2fs_nm_info *nm_i = NM_I(sbi);
2838 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2839 struct f2fs_nat_block *nat_blk = page_address(page);
2840 int valid = 0;
2841 int i = 0;
2843 if (!enabled_nat_bits(sbi, NULL))
2844 return;
2846 if (nat_index == 0) {
2847 valid = 1;
2848 i = 1;
2850 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2851 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2852 valid++;
2854 if (valid == 0) {
2855 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2856 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2857 return;
2860 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2861 if (valid == NAT_ENTRY_PER_BLOCK)
2862 __set_bit_le(nat_index, nm_i->full_nat_bits);
2863 else
2864 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2867 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2868 struct nat_entry_set *set, struct cp_control *cpc)
2870 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2871 struct f2fs_journal *journal = curseg->journal;
2872 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2873 bool to_journal = true;
2874 struct f2fs_nat_block *nat_blk;
2875 struct nat_entry *ne, *cur;
2876 struct page *page = NULL;
2879 * there are two steps to flush nat entries:
2880 * #1, flush nat entries to journal in current hot data summary block.
2881 * #2, flush nat entries to nat page.
2883 if (enabled_nat_bits(sbi, cpc) ||
2884 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2885 to_journal = false;
2887 if (to_journal) {
2888 down_write(&curseg->journal_rwsem);
2889 } else {
2890 page = get_next_nat_page(sbi, start_nid);
2891 if (IS_ERR(page))
2892 return PTR_ERR(page);
2894 nat_blk = page_address(page);
2895 f2fs_bug_on(sbi, !nat_blk);
2898 /* flush dirty nats in nat entry set */
2899 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2900 struct f2fs_nat_entry *raw_ne;
2901 nid_t nid = nat_get_nid(ne);
2902 int offset;
2904 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2906 if (to_journal) {
2907 offset = f2fs_lookup_journal_in_cursum(journal,
2908 NAT_JOURNAL, nid, 1);
2909 f2fs_bug_on(sbi, offset < 0);
2910 raw_ne = &nat_in_journal(journal, offset);
2911 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2912 } else {
2913 raw_ne = &nat_blk->entries[nid - start_nid];
2915 raw_nat_from_node_info(raw_ne, &ne->ni);
2916 nat_reset_flag(ne);
2917 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2918 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2919 add_free_nid(sbi, nid, false, true);
2920 } else {
2921 spin_lock(&NM_I(sbi)->nid_list_lock);
2922 update_free_nid_bitmap(sbi, nid, false, false);
2923 spin_unlock(&NM_I(sbi)->nid_list_lock);
2927 if (to_journal) {
2928 up_write(&curseg->journal_rwsem);
2929 } else {
2930 __update_nat_bits(sbi, start_nid, page);
2931 f2fs_put_page(page, 1);
2934 /* Allow dirty nats by node block allocation in write_begin */
2935 if (!set->entry_cnt) {
2936 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2937 kmem_cache_free(nat_entry_set_slab, set);
2939 return 0;
2943 * This function is called during the checkpointing process.
2945 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2947 struct f2fs_nm_info *nm_i = NM_I(sbi);
2948 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2949 struct f2fs_journal *journal = curseg->journal;
2950 struct nat_entry_set *setvec[SETVEC_SIZE];
2951 struct nat_entry_set *set, *tmp;
2952 unsigned int found;
2953 nid_t set_idx = 0;
2954 LIST_HEAD(sets);
2955 int err = 0;
2958 * during unmount, let's flush nat_bits before checking
2959 * nat_cnt[DIRTY_NAT].
2961 if (enabled_nat_bits(sbi, cpc)) {
2962 down_write(&nm_i->nat_tree_lock);
2963 remove_nats_in_journal(sbi);
2964 up_write(&nm_i->nat_tree_lock);
2967 if (!nm_i->nat_cnt[DIRTY_NAT])
2968 return 0;
2970 down_write(&nm_i->nat_tree_lock);
2973 * if there are no enough space in journal to store dirty nat
2974 * entries, remove all entries from journal and merge them
2975 * into nat entry set.
2977 if (enabled_nat_bits(sbi, cpc) ||
2978 !__has_cursum_space(journal,
2979 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2980 remove_nats_in_journal(sbi);
2982 while ((found = __gang_lookup_nat_set(nm_i,
2983 set_idx, SETVEC_SIZE, setvec))) {
2984 unsigned idx;
2985 set_idx = setvec[found - 1]->set + 1;
2986 for (idx = 0; idx < found; idx++)
2987 __adjust_nat_entry_set(setvec[idx], &sets,
2988 MAX_NAT_JENTRIES(journal));
2991 /* flush dirty nats in nat entry set */
2992 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2993 err = __flush_nat_entry_set(sbi, set, cpc);
2994 if (err)
2995 break;
2998 up_write(&nm_i->nat_tree_lock);
2999 /* Allow dirty nats by node block allocation in write_begin */
3001 return err;
3004 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3006 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3007 struct f2fs_nm_info *nm_i = NM_I(sbi);
3008 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3009 unsigned int i;
3010 __u64 cp_ver = cur_cp_version(ckpt);
3011 block_t nat_bits_addr;
3013 if (!enabled_nat_bits(sbi, NULL))
3014 return 0;
3016 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3017 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3018 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3019 if (!nm_i->nat_bits)
3020 return -ENOMEM;
3022 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3023 nm_i->nat_bits_blocks;
3024 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3025 struct page *page;
3027 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3028 if (IS_ERR(page))
3029 return PTR_ERR(page);
3031 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3032 page_address(page), F2FS_BLKSIZE);
3033 f2fs_put_page(page, 1);
3036 cp_ver |= (cur_cp_crc(ckpt) << 32);
3037 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3038 disable_nat_bits(sbi, true);
3039 return 0;
3042 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3043 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3045 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3046 return 0;
3049 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3051 struct f2fs_nm_info *nm_i = NM_I(sbi);
3052 unsigned int i = 0;
3053 nid_t nid, last_nid;
3055 if (!enabled_nat_bits(sbi, NULL))
3056 return;
3058 for (i = 0; i < nm_i->nat_blocks; i++) {
3059 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3060 if (i >= nm_i->nat_blocks)
3061 break;
3063 __set_bit_le(i, nm_i->nat_block_bitmap);
3065 nid = i * NAT_ENTRY_PER_BLOCK;
3066 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3068 spin_lock(&NM_I(sbi)->nid_list_lock);
3069 for (; nid < last_nid; nid++)
3070 update_free_nid_bitmap(sbi, nid, true, true);
3071 spin_unlock(&NM_I(sbi)->nid_list_lock);
3074 for (i = 0; i < nm_i->nat_blocks; i++) {
3075 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3076 if (i >= nm_i->nat_blocks)
3077 break;
3079 __set_bit_le(i, nm_i->nat_block_bitmap);
3083 static int init_node_manager(struct f2fs_sb_info *sbi)
3085 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3086 struct f2fs_nm_info *nm_i = NM_I(sbi);
3087 unsigned char *version_bitmap;
3088 unsigned int nat_segs;
3089 int err;
3091 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3093 /* segment_count_nat includes pair segment so divide to 2. */
3094 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3095 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3096 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3098 /* not used nids: 0, node, meta, (and root counted as valid node) */
3099 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3100 F2FS_RESERVED_NODE_NUM;
3101 nm_i->nid_cnt[FREE_NID] = 0;
3102 nm_i->nid_cnt[PREALLOC_NID] = 0;
3103 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3104 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3105 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3107 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3108 INIT_LIST_HEAD(&nm_i->free_nid_list);
3109 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3110 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3111 INIT_LIST_HEAD(&nm_i->nat_entries);
3112 spin_lock_init(&nm_i->nat_list_lock);
3114 mutex_init(&nm_i->build_lock);
3115 spin_lock_init(&nm_i->nid_list_lock);
3116 init_rwsem(&nm_i->nat_tree_lock);
3118 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3119 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3120 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3121 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3122 GFP_KERNEL);
3123 if (!nm_i->nat_bitmap)
3124 return -ENOMEM;
3126 err = __get_nat_bitmaps(sbi);
3127 if (err)
3128 return err;
3130 #ifdef CONFIG_F2FS_CHECK_FS
3131 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3132 GFP_KERNEL);
3133 if (!nm_i->nat_bitmap_mir)
3134 return -ENOMEM;
3135 #endif
3137 return 0;
3140 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3142 struct f2fs_nm_info *nm_i = NM_I(sbi);
3143 int i;
3145 nm_i->free_nid_bitmap =
3146 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3147 nm_i->nat_blocks),
3148 GFP_KERNEL);
3149 if (!nm_i->free_nid_bitmap)
3150 return -ENOMEM;
3152 for (i = 0; i < nm_i->nat_blocks; i++) {
3153 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3154 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3155 if (!nm_i->free_nid_bitmap[i])
3156 return -ENOMEM;
3159 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3160 GFP_KERNEL);
3161 if (!nm_i->nat_block_bitmap)
3162 return -ENOMEM;
3164 nm_i->free_nid_count =
3165 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3166 nm_i->nat_blocks),
3167 GFP_KERNEL);
3168 if (!nm_i->free_nid_count)
3169 return -ENOMEM;
3170 return 0;
3173 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3175 int err;
3177 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3178 GFP_KERNEL);
3179 if (!sbi->nm_info)
3180 return -ENOMEM;
3182 err = init_node_manager(sbi);
3183 if (err)
3184 return err;
3186 err = init_free_nid_cache(sbi);
3187 if (err)
3188 return err;
3190 /* load free nid status from nat_bits table */
3191 load_free_nid_bitmap(sbi);
3193 return f2fs_build_free_nids(sbi, true, true);
3196 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3198 struct f2fs_nm_info *nm_i = NM_I(sbi);
3199 struct free_nid *i, *next_i;
3200 struct nat_entry *natvec[NATVEC_SIZE];
3201 struct nat_entry_set *setvec[SETVEC_SIZE];
3202 nid_t nid = 0;
3203 unsigned int found;
3205 if (!nm_i)
3206 return;
3208 /* destroy free nid list */
3209 spin_lock(&nm_i->nid_list_lock);
3210 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3211 __remove_free_nid(sbi, i, FREE_NID);
3212 spin_unlock(&nm_i->nid_list_lock);
3213 kmem_cache_free(free_nid_slab, i);
3214 spin_lock(&nm_i->nid_list_lock);
3216 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3217 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3218 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3219 spin_unlock(&nm_i->nid_list_lock);
3221 /* destroy nat cache */
3222 down_write(&nm_i->nat_tree_lock);
3223 while ((found = __gang_lookup_nat_cache(nm_i,
3224 nid, NATVEC_SIZE, natvec))) {
3225 unsigned idx;
3227 nid = nat_get_nid(natvec[found - 1]) + 1;
3228 for (idx = 0; idx < found; idx++) {
3229 spin_lock(&nm_i->nat_list_lock);
3230 list_del(&natvec[idx]->list);
3231 spin_unlock(&nm_i->nat_list_lock);
3233 __del_from_nat_cache(nm_i, natvec[idx]);
3236 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3238 /* destroy nat set cache */
3239 nid = 0;
3240 while ((found = __gang_lookup_nat_set(nm_i,
3241 nid, SETVEC_SIZE, setvec))) {
3242 unsigned idx;
3244 nid = setvec[found - 1]->set + 1;
3245 for (idx = 0; idx < found; idx++) {
3246 /* entry_cnt is not zero, when cp_error was occurred */
3247 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3248 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3249 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3252 up_write(&nm_i->nat_tree_lock);
3254 kvfree(nm_i->nat_block_bitmap);
3255 if (nm_i->free_nid_bitmap) {
3256 int i;
3258 for (i = 0; i < nm_i->nat_blocks; i++)
3259 kvfree(nm_i->free_nid_bitmap[i]);
3260 kvfree(nm_i->free_nid_bitmap);
3262 kvfree(nm_i->free_nid_count);
3264 kvfree(nm_i->nat_bitmap);
3265 kvfree(nm_i->nat_bits);
3266 #ifdef CONFIG_F2FS_CHECK_FS
3267 kvfree(nm_i->nat_bitmap_mir);
3268 #endif
3269 sbi->nm_info = NULL;
3270 kfree(nm_i);
3273 int __init f2fs_create_node_manager_caches(void)
3275 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3276 sizeof(struct nat_entry));
3277 if (!nat_entry_slab)
3278 goto fail;
3280 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3281 sizeof(struct free_nid));
3282 if (!free_nid_slab)
3283 goto destroy_nat_entry;
3285 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3286 sizeof(struct nat_entry_set));
3287 if (!nat_entry_set_slab)
3288 goto destroy_free_nid;
3290 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3291 sizeof(struct fsync_node_entry));
3292 if (!fsync_node_entry_slab)
3293 goto destroy_nat_entry_set;
3294 return 0;
3296 destroy_nat_entry_set:
3297 kmem_cache_destroy(nat_entry_set_slab);
3298 destroy_free_nid:
3299 kmem_cache_destroy(free_nid_slab);
3300 destroy_nat_entry:
3301 kmem_cache_destroy(nat_entry_slab);
3302 fail:
3303 return -ENOMEM;
3306 void f2fs_destroy_node_manager_caches(void)
3308 kmem_cache_destroy(fsync_node_entry_slab);
3309 kmem_cache_destroy(nat_entry_set_slab);
3310 kmem_cache_destroy(free_nid_slab);
3311 kmem_cache_destroy(nat_entry_slab);