Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / jbd2 / journal.c
blob2dc94444280286ba44a42379b557c92864848629
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
101 static int jbd2_journal_create_slab(size_t slab_size);
103 #ifdef CONFIG_JBD2_DEBUG
104 void __jbd2_debug(int level, const char *file, const char *func,
105 unsigned int line, const char *fmt, ...)
107 struct va_format vaf;
108 va_list args;
110 if (level > jbd2_journal_enable_debug)
111 return;
112 va_start(args, fmt);
113 vaf.fmt = fmt;
114 vaf.va = &args;
115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 va_end(args);
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
121 /* Checksumming functions */
122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
124 if (!jbd2_journal_has_csum_v2or3_feature(j))
125 return 1;
127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
132 __u32 csum;
133 __be32 old_csum;
135 old_csum = sb->s_checksum;
136 sb->s_checksum = 0;
137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 sb->s_checksum = old_csum;
140 return cpu_to_be32(csum);
144 * Helper function used to manage commit timeouts
147 static void commit_timeout(struct timer_list *t)
149 journal_t *journal = from_timer(journal, t, j_commit_timer);
151 wake_up_process(journal->j_task);
155 * kjournald2: The main thread function used to manage a logging device
156 * journal.
158 * This kernel thread is responsible for two things:
160 * 1) COMMIT: Every so often we need to commit the current state of the
161 * filesystem to disk. The journal thread is responsible for writing
162 * all of the metadata buffers to disk. If a fast commit is ongoing
163 * journal thread waits until it's done and then continues from
164 * there on.
166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167 * of the data in that part of the log has been rewritten elsewhere on
168 * the disk. Flushing these old buffers to reclaim space in the log is
169 * known as checkpointing, and this thread is responsible for that job.
172 static int kjournald2(void *arg)
174 journal_t *journal = arg;
175 transaction_t *transaction;
178 * Set up an interval timer which can be used to trigger a commit wakeup
179 * after the commit interval expires
181 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
183 set_freezable();
185 /* Record that the journal thread is running */
186 journal->j_task = current;
187 wake_up(&journal->j_wait_done_commit);
190 * Make sure that no allocations from this kernel thread will ever
191 * recurse to the fs layer because we are responsible for the
192 * transaction commit and any fs involvement might get stuck waiting for
193 * the trasn. commit.
195 memalloc_nofs_save();
198 * And now, wait forever for commit wakeup events.
200 write_lock(&journal->j_state_lock);
202 loop:
203 if (journal->j_flags & JBD2_UNMOUNT)
204 goto end_loop;
206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 journal->j_commit_sequence, journal->j_commit_request);
209 if (journal->j_commit_sequence != journal->j_commit_request) {
210 jbd_debug(1, "OK, requests differ\n");
211 write_unlock(&journal->j_state_lock);
212 del_timer_sync(&journal->j_commit_timer);
213 jbd2_journal_commit_transaction(journal);
214 write_lock(&journal->j_state_lock);
215 goto loop;
218 wake_up(&journal->j_wait_done_commit);
219 if (freezing(current)) {
221 * The simpler the better. Flushing journal isn't a
222 * good idea, because that depends on threads that may
223 * be already stopped.
225 jbd_debug(1, "Now suspending kjournald2\n");
226 write_unlock(&journal->j_state_lock);
227 try_to_freeze();
228 write_lock(&journal->j_state_lock);
229 } else {
231 * We assume on resume that commits are already there,
232 * so we don't sleep
234 DEFINE_WAIT(wait);
235 int should_sleep = 1;
237 prepare_to_wait(&journal->j_wait_commit, &wait,
238 TASK_INTERRUPTIBLE);
239 if (journal->j_commit_sequence != journal->j_commit_request)
240 should_sleep = 0;
241 transaction = journal->j_running_transaction;
242 if (transaction && time_after_eq(jiffies,
243 transaction->t_expires))
244 should_sleep = 0;
245 if (journal->j_flags & JBD2_UNMOUNT)
246 should_sleep = 0;
247 if (should_sleep) {
248 write_unlock(&journal->j_state_lock);
249 schedule();
250 write_lock(&journal->j_state_lock);
252 finish_wait(&journal->j_wait_commit, &wait);
255 jbd_debug(1, "kjournald2 wakes\n");
258 * Were we woken up by a commit wakeup event?
260 transaction = journal->j_running_transaction;
261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 journal->j_commit_request = transaction->t_tid;
263 jbd_debug(1, "woke because of timeout\n");
265 goto loop;
267 end_loop:
268 del_timer_sync(&journal->j_commit_timer);
269 journal->j_task = NULL;
270 wake_up(&journal->j_wait_done_commit);
271 jbd_debug(1, "Journal thread exiting.\n");
272 write_unlock(&journal->j_state_lock);
273 return 0;
276 static int jbd2_journal_start_thread(journal_t *journal)
278 struct task_struct *t;
280 t = kthread_run(kjournald2, journal, "jbd2/%s",
281 journal->j_devname);
282 if (IS_ERR(t))
283 return PTR_ERR(t);
285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 return 0;
289 static void journal_kill_thread(journal_t *journal)
291 write_lock(&journal->j_state_lock);
292 journal->j_flags |= JBD2_UNMOUNT;
294 while (journal->j_task) {
295 write_unlock(&journal->j_state_lock);
296 wake_up(&journal->j_wait_commit);
297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 write_lock(&journal->j_state_lock);
300 write_unlock(&journal->j_state_lock);
304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
306 * Writes a metadata buffer to a given disk block. The actual IO is not
307 * performed but a new buffer_head is constructed which labels the data
308 * to be written with the correct destination disk block.
310 * Any magic-number escaping which needs to be done will cause a
311 * copy-out here. If the buffer happens to start with the
312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313 * magic number is only written to the log for descripter blocks. In
314 * this case, we copy the data and replace the first word with 0, and we
315 * return a result code which indicates that this buffer needs to be
316 * marked as an escaped buffer in the corresponding log descriptor
317 * block. The missing word can then be restored when the block is read
318 * during recovery.
320 * If the source buffer has already been modified by a new transaction
321 * since we took the last commit snapshot, we use the frozen copy of
322 * that data for IO. If we end up using the existing buffer_head's data
323 * for the write, then we have to make sure nobody modifies it while the
324 * IO is in progress. do_get_write_access() handles this.
326 * The function returns a pointer to the buffer_head to be used for IO.
329 * Return value:
330 * <0: Error
331 * >=0: Finished OK
333 * On success:
334 * Bit 0 set == escape performed on the data
335 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 struct journal_head *jh_in,
340 struct buffer_head **bh_out,
341 sector_t blocknr)
343 int need_copy_out = 0;
344 int done_copy_out = 0;
345 int do_escape = 0;
346 char *mapped_data;
347 struct buffer_head *new_bh;
348 struct page *new_page;
349 unsigned int new_offset;
350 struct buffer_head *bh_in = jh2bh(jh_in);
351 journal_t *journal = transaction->t_journal;
354 * The buffer really shouldn't be locked: only the current committing
355 * transaction is allowed to write it, so nobody else is allowed
356 * to do any IO.
358 * akpm: except if we're journalling data, and write() output is
359 * also part of a shared mapping, and another thread has
360 * decided to launch a writepage() against this buffer.
362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
366 /* keep subsequent assertions sane */
367 atomic_set(&new_bh->b_count, 1);
369 spin_lock(&jh_in->b_state_lock);
370 repeat:
372 * If a new transaction has already done a buffer copy-out, then
373 * we use that version of the data for the commit.
375 if (jh_in->b_frozen_data) {
376 done_copy_out = 1;
377 new_page = virt_to_page(jh_in->b_frozen_data);
378 new_offset = offset_in_page(jh_in->b_frozen_data);
379 } else {
380 new_page = jh2bh(jh_in)->b_page;
381 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
384 mapped_data = kmap_atomic(new_page);
386 * Fire data frozen trigger if data already wasn't frozen. Do this
387 * before checking for escaping, as the trigger may modify the magic
388 * offset. If a copy-out happens afterwards, it will have the correct
389 * data in the buffer.
391 if (!done_copy_out)
392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 jh_in->b_triggers);
396 * Check for escaping
398 if (*((__be32 *)(mapped_data + new_offset)) ==
399 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 need_copy_out = 1;
401 do_escape = 1;
403 kunmap_atomic(mapped_data);
406 * Do we need to do a data copy?
408 if (need_copy_out && !done_copy_out) {
409 char *tmp;
411 spin_unlock(&jh_in->b_state_lock);
412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 if (!tmp) {
414 brelse(new_bh);
415 return -ENOMEM;
417 spin_lock(&jh_in->b_state_lock);
418 if (jh_in->b_frozen_data) {
419 jbd2_free(tmp, bh_in->b_size);
420 goto repeat;
423 jh_in->b_frozen_data = tmp;
424 mapped_data = kmap_atomic(new_page);
425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 kunmap_atomic(mapped_data);
428 new_page = virt_to_page(tmp);
429 new_offset = offset_in_page(tmp);
430 done_copy_out = 1;
433 * This isn't strictly necessary, as we're using frozen
434 * data for the escaping, but it keeps consistency with
435 * b_frozen_data usage.
437 jh_in->b_frozen_triggers = jh_in->b_triggers;
441 * Did we need to do an escaping? Now we've done all the
442 * copying, we can finally do so.
444 if (do_escape) {
445 mapped_data = kmap_atomic(new_page);
446 *((unsigned int *)(mapped_data + new_offset)) = 0;
447 kunmap_atomic(mapped_data);
450 set_bh_page(new_bh, new_page, new_offset);
451 new_bh->b_size = bh_in->b_size;
452 new_bh->b_bdev = journal->j_dev;
453 new_bh->b_blocknr = blocknr;
454 new_bh->b_private = bh_in;
455 set_buffer_mapped(new_bh);
456 set_buffer_dirty(new_bh);
458 *bh_out = new_bh;
461 * The to-be-written buffer needs to get moved to the io queue,
462 * and the original buffer whose contents we are shadowing or
463 * copying is moved to the transaction's shadow queue.
465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 spin_lock(&journal->j_list_lock);
467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 spin_unlock(&journal->j_list_lock);
469 set_buffer_shadow(bh_in);
470 spin_unlock(&jh_in->b_state_lock);
472 return do_escape | (done_copy_out << 1);
476 * Allocation code for the journal file. Manage the space left in the
477 * journal, so that we can begin checkpointing when appropriate.
481 * Called with j_state_lock locked for writing.
482 * Returns true if a transaction commit was started.
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
486 /* Return if the txn has already requested to be committed */
487 if (journal->j_commit_request == target)
488 return 0;
491 * The only transaction we can possibly wait upon is the
492 * currently running transaction (if it exists). Otherwise,
493 * the target tid must be an old one.
495 if (journal->j_running_transaction &&
496 journal->j_running_transaction->t_tid == target) {
498 * We want a new commit: OK, mark the request and wakeup the
499 * commit thread. We do _not_ do the commit ourselves.
502 journal->j_commit_request = target;
503 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 journal->j_commit_request,
505 journal->j_commit_sequence);
506 journal->j_running_transaction->t_requested = jiffies;
507 wake_up(&journal->j_wait_commit);
508 return 1;
509 } else if (!tid_geq(journal->j_commit_request, target))
510 /* This should never happen, but if it does, preserve
511 the evidence before kjournald goes into a loop and
512 increments j_commit_sequence beyond all recognition. */
513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 journal->j_commit_request,
515 journal->j_commit_sequence,
516 target, journal->j_running_transaction ?
517 journal->j_running_transaction->t_tid : 0);
518 return 0;
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
523 int ret;
525 write_lock(&journal->j_state_lock);
526 ret = __jbd2_log_start_commit(journal, tid);
527 write_unlock(&journal->j_state_lock);
528 return ret;
532 * Force and wait any uncommitted transactions. We can only force the running
533 * transaction if we don't have an active handle, otherwise, we will deadlock.
534 * Returns: <0 in case of error,
535 * 0 if nothing to commit,
536 * 1 if transaction was successfully committed.
538 static int __jbd2_journal_force_commit(journal_t *journal)
540 transaction_t *transaction = NULL;
541 tid_t tid;
542 int need_to_start = 0, ret = 0;
544 read_lock(&journal->j_state_lock);
545 if (journal->j_running_transaction && !current->journal_info) {
546 transaction = journal->j_running_transaction;
547 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 need_to_start = 1;
549 } else if (journal->j_committing_transaction)
550 transaction = journal->j_committing_transaction;
552 if (!transaction) {
553 /* Nothing to commit */
554 read_unlock(&journal->j_state_lock);
555 return 0;
557 tid = transaction->t_tid;
558 read_unlock(&journal->j_state_lock);
559 if (need_to_start)
560 jbd2_log_start_commit(journal, tid);
561 ret = jbd2_log_wait_commit(journal, tid);
562 if (!ret)
563 ret = 1;
565 return ret;
569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570 * calling process is not within transaction.
572 * @journal: journal to force
573 * Returns true if progress was made.
575 * This is used for forcing out undo-protected data which contains
576 * bitmaps, when the fs is running out of space.
578 int jbd2_journal_force_commit_nested(journal_t *journal)
580 int ret;
582 ret = __jbd2_journal_force_commit(journal);
583 return ret > 0;
587 * jbd2_journal_force_commit() - force any uncommitted transactions
588 * @journal: journal to force
590 * Caller want unconditional commit. We can only force the running transaction
591 * if we don't have an active handle, otherwise, we will deadlock.
593 int jbd2_journal_force_commit(journal_t *journal)
595 int ret;
597 J_ASSERT(!current->journal_info);
598 ret = __jbd2_journal_force_commit(journal);
599 if (ret > 0)
600 ret = 0;
601 return ret;
605 * Start a commit of the current running transaction (if any). Returns true
606 * if a transaction is going to be committed (or is currently already
607 * committing), and fills its tid in at *ptid
609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
611 int ret = 0;
613 write_lock(&journal->j_state_lock);
614 if (journal->j_running_transaction) {
615 tid_t tid = journal->j_running_transaction->t_tid;
617 __jbd2_log_start_commit(journal, tid);
618 /* There's a running transaction and we've just made sure
619 * it's commit has been scheduled. */
620 if (ptid)
621 *ptid = tid;
622 ret = 1;
623 } else if (journal->j_committing_transaction) {
625 * If commit has been started, then we have to wait for
626 * completion of that transaction.
628 if (ptid)
629 *ptid = journal->j_committing_transaction->t_tid;
630 ret = 1;
632 write_unlock(&journal->j_state_lock);
633 return ret;
637 * Return 1 if a given transaction has not yet sent barrier request
638 * connected with a transaction commit. If 0 is returned, transaction
639 * may or may not have sent the barrier. Used to avoid sending barrier
640 * twice in common cases.
642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
644 int ret = 0;
645 transaction_t *commit_trans;
647 if (!(journal->j_flags & JBD2_BARRIER))
648 return 0;
649 read_lock(&journal->j_state_lock);
650 /* Transaction already committed? */
651 if (tid_geq(journal->j_commit_sequence, tid))
652 goto out;
653 commit_trans = journal->j_committing_transaction;
654 if (!commit_trans || commit_trans->t_tid != tid) {
655 ret = 1;
656 goto out;
659 * Transaction is being committed and we already proceeded to
660 * submitting a flush to fs partition?
662 if (journal->j_fs_dev != journal->j_dev) {
663 if (!commit_trans->t_need_data_flush ||
664 commit_trans->t_state >= T_COMMIT_DFLUSH)
665 goto out;
666 } else {
667 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 goto out;
670 ret = 1;
671 out:
672 read_unlock(&journal->j_state_lock);
673 return ret;
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
678 * Wait for a specified commit to complete.
679 * The caller may not hold the journal lock.
681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
683 int err = 0;
685 read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
688 * Some callers make sure transaction is already committing and in that
689 * case we cannot block on open handles anymore. So don't warn in that
690 * case.
692 if (tid_gt(tid, journal->j_commit_sequence) &&
693 (!journal->j_committing_transaction ||
694 journal->j_committing_transaction->t_tid != tid)) {
695 read_unlock(&journal->j_state_lock);
696 jbd2_might_wait_for_commit(journal);
697 read_lock(&journal->j_state_lock);
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 if (!tid_geq(journal->j_commit_request, tid)) {
702 printk(KERN_ERR
703 "%s: error: j_commit_request=%u, tid=%u\n",
704 __func__, journal->j_commit_request, tid);
706 #endif
707 while (tid_gt(tid, journal->j_commit_sequence)) {
708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 tid, journal->j_commit_sequence);
710 read_unlock(&journal->j_state_lock);
711 wake_up(&journal->j_wait_commit);
712 wait_event(journal->j_wait_done_commit,
713 !tid_gt(tid, journal->j_commit_sequence));
714 read_lock(&journal->j_state_lock);
716 read_unlock(&journal->j_state_lock);
718 if (unlikely(is_journal_aborted(journal)))
719 err = -EIO;
720 return err;
724 * Start a fast commit. If there's an ongoing fast or full commit wait for
725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726 * if a fast commit is not needed, either because there's an already a commit
727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728 * commit has yet been performed.
730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
732 if (unlikely(is_journal_aborted(journal)))
733 return -EIO;
735 * Fast commits only allowed if at least one full commit has
736 * been processed.
738 if (!journal->j_stats.ts_tid)
739 return -EINVAL;
741 write_lock(&journal->j_state_lock);
742 if (tid <= journal->j_commit_sequence) {
743 write_unlock(&journal->j_state_lock);
744 return -EALREADY;
747 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 DEFINE_WAIT(wait);
751 prepare_to_wait(&journal->j_fc_wait, &wait,
752 TASK_UNINTERRUPTIBLE);
753 write_unlock(&journal->j_state_lock);
754 schedule();
755 finish_wait(&journal->j_fc_wait, &wait);
756 return -EALREADY;
758 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 write_unlock(&journal->j_state_lock);
761 return 0;
763 EXPORT_SYMBOL(jbd2_fc_begin_commit);
766 * Stop a fast commit. If fallback is set, this function starts commit of
767 * TID tid before any other fast commit can start.
769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
771 if (journal->j_fc_cleanup_callback)
772 journal->j_fc_cleanup_callback(journal, 0);
773 write_lock(&journal->j_state_lock);
774 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
775 if (fallback)
776 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
777 write_unlock(&journal->j_state_lock);
778 wake_up(&journal->j_fc_wait);
779 if (fallback)
780 return jbd2_complete_transaction(journal, tid);
781 return 0;
784 int jbd2_fc_end_commit(journal_t *journal)
786 return __jbd2_fc_end_commit(journal, 0, false);
788 EXPORT_SYMBOL(jbd2_fc_end_commit);
790 int jbd2_fc_end_commit_fallback(journal_t *journal)
792 tid_t tid;
794 read_lock(&journal->j_state_lock);
795 tid = journal->j_running_transaction ?
796 journal->j_running_transaction->t_tid : 0;
797 read_unlock(&journal->j_state_lock);
798 return __jbd2_fc_end_commit(journal, tid, true);
800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
802 /* Return 1 when transaction with given tid has already committed. */
803 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
805 int ret = 1;
807 read_lock(&journal->j_state_lock);
808 if (journal->j_running_transaction &&
809 journal->j_running_transaction->t_tid == tid)
810 ret = 0;
811 if (journal->j_committing_transaction &&
812 journal->j_committing_transaction->t_tid == tid)
813 ret = 0;
814 read_unlock(&journal->j_state_lock);
815 return ret;
817 EXPORT_SYMBOL(jbd2_transaction_committed);
820 * When this function returns the transaction corresponding to tid
821 * will be completed. If the transaction has currently running, start
822 * committing that transaction before waiting for it to complete. If
823 * the transaction id is stale, it is by definition already completed,
824 * so just return SUCCESS.
826 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
828 int need_to_wait = 1;
830 read_lock(&journal->j_state_lock);
831 if (journal->j_running_transaction &&
832 journal->j_running_transaction->t_tid == tid) {
833 if (journal->j_commit_request != tid) {
834 /* transaction not yet started, so request it */
835 read_unlock(&journal->j_state_lock);
836 jbd2_log_start_commit(journal, tid);
837 goto wait_commit;
839 } else if (!(journal->j_committing_transaction &&
840 journal->j_committing_transaction->t_tid == tid))
841 need_to_wait = 0;
842 read_unlock(&journal->j_state_lock);
843 if (!need_to_wait)
844 return 0;
845 wait_commit:
846 return jbd2_log_wait_commit(journal, tid);
848 EXPORT_SYMBOL(jbd2_complete_transaction);
851 * Log buffer allocation routines:
854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
856 unsigned long blocknr;
858 write_lock(&journal->j_state_lock);
859 J_ASSERT(journal->j_free > 1);
861 blocknr = journal->j_head;
862 journal->j_head++;
863 journal->j_free--;
864 if (journal->j_head == journal->j_last)
865 journal->j_head = journal->j_first;
866 write_unlock(&journal->j_state_lock);
867 return jbd2_journal_bmap(journal, blocknr, retp);
870 /* Map one fast commit buffer for use by the file system */
871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
873 unsigned long long pblock;
874 unsigned long blocknr;
875 int ret = 0;
876 struct buffer_head *bh;
877 int fc_off;
879 *bh_out = NULL;
881 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
882 fc_off = journal->j_fc_off;
883 blocknr = journal->j_fc_first + fc_off;
884 journal->j_fc_off++;
885 } else {
886 ret = -EINVAL;
889 if (ret)
890 return ret;
892 ret = jbd2_journal_bmap(journal, blocknr, &pblock);
893 if (ret)
894 return ret;
896 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
897 if (!bh)
898 return -ENOMEM;
901 journal->j_fc_wbuf[fc_off] = bh;
903 *bh_out = bh;
905 return 0;
907 EXPORT_SYMBOL(jbd2_fc_get_buf);
910 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
911 * for completion.
913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
915 struct buffer_head *bh;
916 int i, j_fc_off;
918 j_fc_off = journal->j_fc_off;
921 * Wait in reverse order to minimize chances of us being woken up before
922 * all IOs have completed
924 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
925 bh = journal->j_fc_wbuf[i];
926 wait_on_buffer(bh);
927 put_bh(bh);
928 journal->j_fc_wbuf[i] = NULL;
929 if (unlikely(!buffer_uptodate(bh)))
930 return -EIO;
933 return 0;
935 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
938 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
939 * for completion.
941 int jbd2_fc_release_bufs(journal_t *journal)
943 struct buffer_head *bh;
944 int i, j_fc_off;
946 j_fc_off = journal->j_fc_off;
949 * Wait in reverse order to minimize chances of us being woken up before
950 * all IOs have completed
952 for (i = j_fc_off - 1; i >= 0; i--) {
953 bh = journal->j_fc_wbuf[i];
954 if (!bh)
955 break;
956 put_bh(bh);
957 journal->j_fc_wbuf[i] = NULL;
960 return 0;
962 EXPORT_SYMBOL(jbd2_fc_release_bufs);
965 * Conversion of logical to physical block numbers for the journal
967 * On external journals the journal blocks are identity-mapped, so
968 * this is a no-op. If needed, we can use j_blk_offset - everything is
969 * ready.
971 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
972 unsigned long long *retp)
974 int err = 0;
975 unsigned long long ret;
976 sector_t block = 0;
978 if (journal->j_inode) {
979 block = blocknr;
980 ret = bmap(journal->j_inode, &block);
982 if (ret || !block) {
983 printk(KERN_ALERT "%s: journal block not found "
984 "at offset %lu on %s\n",
985 __func__, blocknr, journal->j_devname);
986 err = -EIO;
987 jbd2_journal_abort(journal, err);
988 } else {
989 *retp = block;
992 } else {
993 *retp = blocknr; /* +journal->j_blk_offset */
995 return err;
999 * We play buffer_head aliasing tricks to write data/metadata blocks to
1000 * the journal without copying their contents, but for journal
1001 * descriptor blocks we do need to generate bona fide buffers.
1003 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1004 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1005 * But we don't bother doing that, so there will be coherency problems with
1006 * mmaps of blockdevs which hold live JBD-controlled filesystems.
1008 struct buffer_head *
1009 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1011 journal_t *journal = transaction->t_journal;
1012 struct buffer_head *bh;
1013 unsigned long long blocknr;
1014 journal_header_t *header;
1015 int err;
1017 err = jbd2_journal_next_log_block(journal, &blocknr);
1019 if (err)
1020 return NULL;
1022 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1023 if (!bh)
1024 return NULL;
1025 atomic_dec(&transaction->t_outstanding_credits);
1026 lock_buffer(bh);
1027 memset(bh->b_data, 0, journal->j_blocksize);
1028 header = (journal_header_t *)bh->b_data;
1029 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1030 header->h_blocktype = cpu_to_be32(type);
1031 header->h_sequence = cpu_to_be32(transaction->t_tid);
1032 set_buffer_uptodate(bh);
1033 unlock_buffer(bh);
1034 BUFFER_TRACE(bh, "return this buffer");
1035 return bh;
1038 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1040 struct jbd2_journal_block_tail *tail;
1041 __u32 csum;
1043 if (!jbd2_journal_has_csum_v2or3(j))
1044 return;
1046 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1047 sizeof(struct jbd2_journal_block_tail));
1048 tail->t_checksum = 0;
1049 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1050 tail->t_checksum = cpu_to_be32(csum);
1054 * Return tid of the oldest transaction in the journal and block in the journal
1055 * where the transaction starts.
1057 * If the journal is now empty, return which will be the next transaction ID
1058 * we will write and where will that transaction start.
1060 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1061 * it can.
1063 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1064 unsigned long *block)
1066 transaction_t *transaction;
1067 int ret;
1069 read_lock(&journal->j_state_lock);
1070 spin_lock(&journal->j_list_lock);
1071 transaction = journal->j_checkpoint_transactions;
1072 if (transaction) {
1073 *tid = transaction->t_tid;
1074 *block = transaction->t_log_start;
1075 } else if ((transaction = journal->j_committing_transaction) != NULL) {
1076 *tid = transaction->t_tid;
1077 *block = transaction->t_log_start;
1078 } else if ((transaction = journal->j_running_transaction) != NULL) {
1079 *tid = transaction->t_tid;
1080 *block = journal->j_head;
1081 } else {
1082 *tid = journal->j_transaction_sequence;
1083 *block = journal->j_head;
1085 ret = tid_gt(*tid, journal->j_tail_sequence);
1086 spin_unlock(&journal->j_list_lock);
1087 read_unlock(&journal->j_state_lock);
1089 return ret;
1093 * Update information in journal structure and in on disk journal superblock
1094 * about log tail. This function does not check whether information passed in
1095 * really pushes log tail further. It's responsibility of the caller to make
1096 * sure provided log tail information is valid (e.g. by holding
1097 * j_checkpoint_mutex all the time between computing log tail and calling this
1098 * function as is the case with jbd2_cleanup_journal_tail()).
1100 * Requires j_checkpoint_mutex
1102 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1104 unsigned long freed;
1105 int ret;
1107 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1110 * We cannot afford for write to remain in drive's caches since as
1111 * soon as we update j_tail, next transaction can start reusing journal
1112 * space and if we lose sb update during power failure we'd replay
1113 * old transaction with possibly newly overwritten data.
1115 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1116 REQ_SYNC | REQ_FUA);
1117 if (ret)
1118 goto out;
1120 write_lock(&journal->j_state_lock);
1121 freed = block - journal->j_tail;
1122 if (block < journal->j_tail)
1123 freed += journal->j_last - journal->j_first;
1125 trace_jbd2_update_log_tail(journal, tid, block, freed);
1126 jbd_debug(1,
1127 "Cleaning journal tail from %u to %u (offset %lu), "
1128 "freeing %lu\n",
1129 journal->j_tail_sequence, tid, block, freed);
1131 journal->j_free += freed;
1132 journal->j_tail_sequence = tid;
1133 journal->j_tail = block;
1134 write_unlock(&journal->j_state_lock);
1136 out:
1137 return ret;
1141 * This is a variation of __jbd2_update_log_tail which checks for validity of
1142 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1143 * with other threads updating log tail.
1145 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1147 mutex_lock_io(&journal->j_checkpoint_mutex);
1148 if (tid_gt(tid, journal->j_tail_sequence))
1149 __jbd2_update_log_tail(journal, tid, block);
1150 mutex_unlock(&journal->j_checkpoint_mutex);
1153 struct jbd2_stats_proc_session {
1154 journal_t *journal;
1155 struct transaction_stats_s *stats;
1156 int start;
1157 int max;
1160 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1162 return *pos ? NULL : SEQ_START_TOKEN;
1165 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1167 (*pos)++;
1168 return NULL;
1171 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1173 struct jbd2_stats_proc_session *s = seq->private;
1175 if (v != SEQ_START_TOKEN)
1176 return 0;
1177 seq_printf(seq, "%lu transactions (%lu requested), "
1178 "each up to %u blocks\n",
1179 s->stats->ts_tid, s->stats->ts_requested,
1180 s->journal->j_max_transaction_buffers);
1181 if (s->stats->ts_tid == 0)
1182 return 0;
1183 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1184 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1185 seq_printf(seq, " %ums request delay\n",
1186 (s->stats->ts_requested == 0) ? 0 :
1187 jiffies_to_msecs(s->stats->run.rs_request_delay /
1188 s->stats->ts_requested));
1189 seq_printf(seq, " %ums running transaction\n",
1190 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1191 seq_printf(seq, " %ums transaction was being locked\n",
1192 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1193 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1194 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1195 seq_printf(seq, " %ums logging transaction\n",
1196 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1197 seq_printf(seq, " %lluus average transaction commit time\n",
1198 div_u64(s->journal->j_average_commit_time, 1000));
1199 seq_printf(seq, " %lu handles per transaction\n",
1200 s->stats->run.rs_handle_count / s->stats->ts_tid);
1201 seq_printf(seq, " %lu blocks per transaction\n",
1202 s->stats->run.rs_blocks / s->stats->ts_tid);
1203 seq_printf(seq, " %lu logged blocks per transaction\n",
1204 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1205 return 0;
1208 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1212 static const struct seq_operations jbd2_seq_info_ops = {
1213 .start = jbd2_seq_info_start,
1214 .next = jbd2_seq_info_next,
1215 .stop = jbd2_seq_info_stop,
1216 .show = jbd2_seq_info_show,
1219 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1221 journal_t *journal = PDE_DATA(inode);
1222 struct jbd2_stats_proc_session *s;
1223 int rc, size;
1225 s = kmalloc(sizeof(*s), GFP_KERNEL);
1226 if (s == NULL)
1227 return -ENOMEM;
1228 size = sizeof(struct transaction_stats_s);
1229 s->stats = kmalloc(size, GFP_KERNEL);
1230 if (s->stats == NULL) {
1231 kfree(s);
1232 return -ENOMEM;
1234 spin_lock(&journal->j_history_lock);
1235 memcpy(s->stats, &journal->j_stats, size);
1236 s->journal = journal;
1237 spin_unlock(&journal->j_history_lock);
1239 rc = seq_open(file, &jbd2_seq_info_ops);
1240 if (rc == 0) {
1241 struct seq_file *m = file->private_data;
1242 m->private = s;
1243 } else {
1244 kfree(s->stats);
1245 kfree(s);
1247 return rc;
1251 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1253 struct seq_file *seq = file->private_data;
1254 struct jbd2_stats_proc_session *s = seq->private;
1255 kfree(s->stats);
1256 kfree(s);
1257 return seq_release(inode, file);
1260 static const struct proc_ops jbd2_info_proc_ops = {
1261 .proc_open = jbd2_seq_info_open,
1262 .proc_read = seq_read,
1263 .proc_lseek = seq_lseek,
1264 .proc_release = jbd2_seq_info_release,
1267 static struct proc_dir_entry *proc_jbd2_stats;
1269 static void jbd2_stats_proc_init(journal_t *journal)
1271 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1272 if (journal->j_proc_entry) {
1273 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1274 &jbd2_info_proc_ops, journal);
1278 static void jbd2_stats_proc_exit(journal_t *journal)
1280 remove_proc_entry("info", journal->j_proc_entry);
1281 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1284 /* Minimum size of descriptor tag */
1285 static int jbd2_min_tag_size(void)
1288 * Tag with 32-bit block numbers does not use last four bytes of the
1289 * structure
1291 return sizeof(journal_block_tag_t) - 4;
1295 * Management for journal control blocks: functions to create and
1296 * destroy journal_t structures, and to initialise and read existing
1297 * journal blocks from disk. */
1299 /* First: create and setup a journal_t object in memory. We initialise
1300 * very few fields yet: that has to wait until we have created the
1301 * journal structures from from scratch, or loaded them from disk. */
1303 static journal_t *journal_init_common(struct block_device *bdev,
1304 struct block_device *fs_dev,
1305 unsigned long long start, int len, int blocksize)
1307 static struct lock_class_key jbd2_trans_commit_key;
1308 journal_t *journal;
1309 int err;
1310 struct buffer_head *bh;
1311 int n;
1313 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1314 if (!journal)
1315 return NULL;
1317 init_waitqueue_head(&journal->j_wait_transaction_locked);
1318 init_waitqueue_head(&journal->j_wait_done_commit);
1319 init_waitqueue_head(&journal->j_wait_commit);
1320 init_waitqueue_head(&journal->j_wait_updates);
1321 init_waitqueue_head(&journal->j_wait_reserved);
1322 init_waitqueue_head(&journal->j_fc_wait);
1323 mutex_init(&journal->j_abort_mutex);
1324 mutex_init(&journal->j_barrier);
1325 mutex_init(&journal->j_checkpoint_mutex);
1326 spin_lock_init(&journal->j_revoke_lock);
1327 spin_lock_init(&journal->j_list_lock);
1328 rwlock_init(&journal->j_state_lock);
1330 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1331 journal->j_min_batch_time = 0;
1332 journal->j_max_batch_time = 15000; /* 15ms */
1333 atomic_set(&journal->j_reserved_credits, 0);
1335 /* The journal is marked for error until we succeed with recovery! */
1336 journal->j_flags = JBD2_ABORT;
1338 /* Set up a default-sized revoke table for the new mount. */
1339 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1340 if (err)
1341 goto err_cleanup;
1343 spin_lock_init(&journal->j_history_lock);
1345 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1346 &jbd2_trans_commit_key, 0);
1348 /* journal descriptor can store up to n blocks -bzzz */
1349 journal->j_blocksize = blocksize;
1350 journal->j_dev = bdev;
1351 journal->j_fs_dev = fs_dev;
1352 journal->j_blk_offset = start;
1353 journal->j_total_len = len;
1354 /* We need enough buffers to write out full descriptor block. */
1355 n = journal->j_blocksize / jbd2_min_tag_size();
1356 journal->j_wbufsize = n;
1357 journal->j_fc_wbuf = NULL;
1358 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1359 GFP_KERNEL);
1360 if (!journal->j_wbuf)
1361 goto err_cleanup;
1363 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1364 if (!bh) {
1365 pr_err("%s: Cannot get buffer for journal superblock\n",
1366 __func__);
1367 goto err_cleanup;
1369 journal->j_sb_buffer = bh;
1370 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1372 return journal;
1374 err_cleanup:
1375 kfree(journal->j_wbuf);
1376 jbd2_journal_destroy_revoke(journal);
1377 kfree(journal);
1378 return NULL;
1381 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1383 * Create a journal structure assigned some fixed set of disk blocks to
1384 * the journal. We don't actually touch those disk blocks yet, but we
1385 * need to set up all of the mapping information to tell the journaling
1386 * system where the journal blocks are.
1391 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1392 * @bdev: Block device on which to create the journal
1393 * @fs_dev: Device which hold journalled filesystem for this journal.
1394 * @start: Block nr Start of journal.
1395 * @len: Length of the journal in blocks.
1396 * @blocksize: blocksize of journalling device
1398 * Returns: a newly created journal_t *
1400 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1401 * range of blocks on an arbitrary block device.
1404 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1405 struct block_device *fs_dev,
1406 unsigned long long start, int len, int blocksize)
1408 journal_t *journal;
1410 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1411 if (!journal)
1412 return NULL;
1414 bdevname(journal->j_dev, journal->j_devname);
1415 strreplace(journal->j_devname, '/', '!');
1416 jbd2_stats_proc_init(journal);
1418 return journal;
1422 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1423 * @inode: An inode to create the journal in
1425 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1426 * the journal. The inode must exist already, must support bmap() and
1427 * must have all data blocks preallocated.
1429 journal_t *jbd2_journal_init_inode(struct inode *inode)
1431 journal_t *journal;
1432 sector_t blocknr;
1433 char *p;
1434 int err = 0;
1436 blocknr = 0;
1437 err = bmap(inode, &blocknr);
1439 if (err || !blocknr) {
1440 pr_err("%s: Cannot locate journal superblock\n",
1441 __func__);
1442 return NULL;
1445 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1446 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1447 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1449 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1450 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1451 inode->i_sb->s_blocksize);
1452 if (!journal)
1453 return NULL;
1455 journal->j_inode = inode;
1456 bdevname(journal->j_dev, journal->j_devname);
1457 p = strreplace(journal->j_devname, '/', '!');
1458 sprintf(p, "-%lu", journal->j_inode->i_ino);
1459 jbd2_stats_proc_init(journal);
1461 return journal;
1465 * If the journal init or create aborts, we need to mark the journal
1466 * superblock as being NULL to prevent the journal destroy from writing
1467 * back a bogus superblock.
1469 static void journal_fail_superblock(journal_t *journal)
1471 struct buffer_head *bh = journal->j_sb_buffer;
1472 brelse(bh);
1473 journal->j_sb_buffer = NULL;
1477 * Given a journal_t structure, initialise the various fields for
1478 * startup of a new journaling session. We use this both when creating
1479 * a journal, and after recovering an old journal to reset it for
1480 * subsequent use.
1483 static int journal_reset(journal_t *journal)
1485 journal_superblock_t *sb = journal->j_superblock;
1486 unsigned long long first, last;
1488 first = be32_to_cpu(sb->s_first);
1489 last = be32_to_cpu(sb->s_maxlen);
1490 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1491 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1492 first, last);
1493 journal_fail_superblock(journal);
1494 return -EINVAL;
1497 journal->j_first = first;
1498 journal->j_last = last;
1500 journal->j_head = journal->j_first;
1501 journal->j_tail = journal->j_first;
1502 journal->j_free = journal->j_last - journal->j_first;
1504 journal->j_tail_sequence = journal->j_transaction_sequence;
1505 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1506 journal->j_commit_request = journal->j_commit_sequence;
1508 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1511 * Now that journal recovery is done, turn fast commits off here. This
1512 * way, if fast commit was enabled before the crash but if now FS has
1513 * disabled it, we don't enable fast commits.
1515 jbd2_clear_feature_fast_commit(journal);
1518 * As a special case, if the on-disk copy is already marked as needing
1519 * no recovery (s_start == 0), then we can safely defer the superblock
1520 * update until the next commit by setting JBD2_FLUSHED. This avoids
1521 * attempting a write to a potential-readonly device.
1523 if (sb->s_start == 0) {
1524 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1525 "(start %ld, seq %u, errno %d)\n",
1526 journal->j_tail, journal->j_tail_sequence,
1527 journal->j_errno);
1528 journal->j_flags |= JBD2_FLUSHED;
1529 } else {
1530 /* Lock here to make assertions happy... */
1531 mutex_lock_io(&journal->j_checkpoint_mutex);
1533 * Update log tail information. We use REQ_FUA since new
1534 * transaction will start reusing journal space and so we
1535 * must make sure information about current log tail is on
1536 * disk before that.
1538 jbd2_journal_update_sb_log_tail(journal,
1539 journal->j_tail_sequence,
1540 journal->j_tail,
1541 REQ_SYNC | REQ_FUA);
1542 mutex_unlock(&journal->j_checkpoint_mutex);
1544 return jbd2_journal_start_thread(journal);
1548 * This function expects that the caller will have locked the journal
1549 * buffer head, and will return with it unlocked
1551 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1553 struct buffer_head *bh = journal->j_sb_buffer;
1554 journal_superblock_t *sb = journal->j_superblock;
1555 int ret;
1557 /* Buffer got discarded which means block device got invalidated */
1558 if (!buffer_mapped(bh)) {
1559 unlock_buffer(bh);
1560 return -EIO;
1563 trace_jbd2_write_superblock(journal, write_flags);
1564 if (!(journal->j_flags & JBD2_BARRIER))
1565 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1566 if (buffer_write_io_error(bh)) {
1568 * Oh, dear. A previous attempt to write the journal
1569 * superblock failed. This could happen because the
1570 * USB device was yanked out. Or it could happen to
1571 * be a transient write error and maybe the block will
1572 * be remapped. Nothing we can do but to retry the
1573 * write and hope for the best.
1575 printk(KERN_ERR "JBD2: previous I/O error detected "
1576 "for journal superblock update for %s.\n",
1577 journal->j_devname);
1578 clear_buffer_write_io_error(bh);
1579 set_buffer_uptodate(bh);
1581 if (jbd2_journal_has_csum_v2or3(journal))
1582 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1583 get_bh(bh);
1584 bh->b_end_io = end_buffer_write_sync;
1585 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1586 wait_on_buffer(bh);
1587 if (buffer_write_io_error(bh)) {
1588 clear_buffer_write_io_error(bh);
1589 set_buffer_uptodate(bh);
1590 ret = -EIO;
1592 if (ret) {
1593 printk(KERN_ERR "JBD2: Error %d detected when updating "
1594 "journal superblock for %s.\n", ret,
1595 journal->j_devname);
1596 if (!is_journal_aborted(journal))
1597 jbd2_journal_abort(journal, ret);
1600 return ret;
1604 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1605 * @journal: The journal to update.
1606 * @tail_tid: TID of the new transaction at the tail of the log
1607 * @tail_block: The first block of the transaction at the tail of the log
1608 * @write_op: With which operation should we write the journal sb
1610 * Update a journal's superblock information about log tail and write it to
1611 * disk, waiting for the IO to complete.
1613 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1614 unsigned long tail_block, int write_op)
1616 journal_superblock_t *sb = journal->j_superblock;
1617 int ret;
1619 if (is_journal_aborted(journal))
1620 return -EIO;
1622 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1623 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1624 tail_block, tail_tid);
1626 lock_buffer(journal->j_sb_buffer);
1627 sb->s_sequence = cpu_to_be32(tail_tid);
1628 sb->s_start = cpu_to_be32(tail_block);
1630 ret = jbd2_write_superblock(journal, write_op);
1631 if (ret)
1632 goto out;
1634 /* Log is no longer empty */
1635 write_lock(&journal->j_state_lock);
1636 WARN_ON(!sb->s_sequence);
1637 journal->j_flags &= ~JBD2_FLUSHED;
1638 write_unlock(&journal->j_state_lock);
1640 out:
1641 return ret;
1645 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1646 * @journal: The journal to update.
1647 * @write_op: With which operation should we write the journal sb
1649 * Update a journal's dynamic superblock fields to show that journal is empty.
1650 * Write updated superblock to disk waiting for IO to complete.
1652 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1654 journal_superblock_t *sb = journal->j_superblock;
1655 bool had_fast_commit = false;
1657 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1658 lock_buffer(journal->j_sb_buffer);
1659 if (sb->s_start == 0) { /* Is it already empty? */
1660 unlock_buffer(journal->j_sb_buffer);
1661 return;
1664 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1665 journal->j_tail_sequence);
1667 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1668 sb->s_start = cpu_to_be32(0);
1669 if (jbd2_has_feature_fast_commit(journal)) {
1671 * When journal is clean, no need to commit fast commit flag and
1672 * make file system incompatible with older kernels.
1674 jbd2_clear_feature_fast_commit(journal);
1675 had_fast_commit = true;
1678 jbd2_write_superblock(journal, write_op);
1680 if (had_fast_commit)
1681 jbd2_set_feature_fast_commit(journal);
1683 /* Log is no longer empty */
1684 write_lock(&journal->j_state_lock);
1685 journal->j_flags |= JBD2_FLUSHED;
1686 write_unlock(&journal->j_state_lock);
1691 * jbd2_journal_update_sb_errno() - Update error in the journal.
1692 * @journal: The journal to update.
1694 * Update a journal's errno. Write updated superblock to disk waiting for IO
1695 * to complete.
1697 void jbd2_journal_update_sb_errno(journal_t *journal)
1699 journal_superblock_t *sb = journal->j_superblock;
1700 int errcode;
1702 lock_buffer(journal->j_sb_buffer);
1703 errcode = journal->j_errno;
1704 if (errcode == -ESHUTDOWN)
1705 errcode = 0;
1706 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1707 sb->s_errno = cpu_to_be32(errcode);
1709 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1711 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1713 static int journal_revoke_records_per_block(journal_t *journal)
1715 int record_size;
1716 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1718 if (jbd2_has_feature_64bit(journal))
1719 record_size = 8;
1720 else
1721 record_size = 4;
1723 if (jbd2_journal_has_csum_v2or3(journal))
1724 space -= sizeof(struct jbd2_journal_block_tail);
1725 return space / record_size;
1729 * Read the superblock for a given journal, performing initial
1730 * validation of the format.
1732 static int journal_get_superblock(journal_t *journal)
1734 struct buffer_head *bh;
1735 journal_superblock_t *sb;
1736 int err = -EIO;
1738 bh = journal->j_sb_buffer;
1740 J_ASSERT(bh != NULL);
1741 if (!buffer_uptodate(bh)) {
1742 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1743 wait_on_buffer(bh);
1744 if (!buffer_uptodate(bh)) {
1745 printk(KERN_ERR
1746 "JBD2: IO error reading journal superblock\n");
1747 goto out;
1751 if (buffer_verified(bh))
1752 return 0;
1754 sb = journal->j_superblock;
1756 err = -EINVAL;
1758 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1759 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1760 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1761 goto out;
1764 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1765 case JBD2_SUPERBLOCK_V1:
1766 journal->j_format_version = 1;
1767 break;
1768 case JBD2_SUPERBLOCK_V2:
1769 journal->j_format_version = 2;
1770 break;
1771 default:
1772 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1773 goto out;
1776 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1777 journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1778 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1779 printk(KERN_WARNING "JBD2: journal file too short\n");
1780 goto out;
1783 if (be32_to_cpu(sb->s_first) == 0 ||
1784 be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1785 printk(KERN_WARNING
1786 "JBD2: Invalid start block of journal: %u\n",
1787 be32_to_cpu(sb->s_first));
1788 goto out;
1791 if (jbd2_has_feature_csum2(journal) &&
1792 jbd2_has_feature_csum3(journal)) {
1793 /* Can't have checksum v2 and v3 at the same time! */
1794 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1795 "at the same time!\n");
1796 goto out;
1799 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1800 jbd2_has_feature_checksum(journal)) {
1801 /* Can't have checksum v1 and v2 on at the same time! */
1802 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1803 "at the same time!\n");
1804 goto out;
1807 if (!jbd2_verify_csum_type(journal, sb)) {
1808 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1809 goto out;
1812 /* Load the checksum driver */
1813 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1814 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1815 if (IS_ERR(journal->j_chksum_driver)) {
1816 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1817 err = PTR_ERR(journal->j_chksum_driver);
1818 journal->j_chksum_driver = NULL;
1819 goto out;
1823 if (jbd2_journal_has_csum_v2or3(journal)) {
1824 /* Check superblock checksum */
1825 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1826 printk(KERN_ERR "JBD2: journal checksum error\n");
1827 err = -EFSBADCRC;
1828 goto out;
1831 /* Precompute checksum seed for all metadata */
1832 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1833 sizeof(sb->s_uuid));
1836 journal->j_revoke_records_per_block =
1837 journal_revoke_records_per_block(journal);
1838 set_buffer_verified(bh);
1840 return 0;
1842 out:
1843 journal_fail_superblock(journal);
1844 return err;
1848 * Load the on-disk journal superblock and read the key fields into the
1849 * journal_t.
1852 static int load_superblock(journal_t *journal)
1854 int err;
1855 journal_superblock_t *sb;
1856 int num_fc_blocks;
1858 err = journal_get_superblock(journal);
1859 if (err)
1860 return err;
1862 sb = journal->j_superblock;
1864 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1865 journal->j_tail = be32_to_cpu(sb->s_start);
1866 journal->j_first = be32_to_cpu(sb->s_first);
1867 journal->j_errno = be32_to_cpu(sb->s_errno);
1868 journal->j_last = be32_to_cpu(sb->s_maxlen);
1870 if (jbd2_has_feature_fast_commit(journal)) {
1871 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1872 num_fc_blocks = jbd2_journal_get_num_fc_blks(sb);
1873 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
1874 journal->j_last = journal->j_fc_last - num_fc_blocks;
1875 journal->j_fc_first = journal->j_last + 1;
1876 journal->j_fc_off = 0;
1879 return 0;
1884 * jbd2_journal_load() - Read journal from disk.
1885 * @journal: Journal to act on.
1887 * Given a journal_t structure which tells us which disk blocks contain
1888 * a journal, read the journal from disk to initialise the in-memory
1889 * structures.
1891 int jbd2_journal_load(journal_t *journal)
1893 int err;
1894 journal_superblock_t *sb;
1896 err = load_superblock(journal);
1897 if (err)
1898 return err;
1900 sb = journal->j_superblock;
1901 /* If this is a V2 superblock, then we have to check the
1902 * features flags on it. */
1904 if (journal->j_format_version >= 2) {
1905 if ((sb->s_feature_ro_compat &
1906 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1907 (sb->s_feature_incompat &
1908 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1909 printk(KERN_WARNING
1910 "JBD2: Unrecognised features on journal\n");
1911 return -EINVAL;
1916 * Create a slab for this blocksize
1918 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1919 if (err)
1920 return err;
1922 /* Let the recovery code check whether it needs to recover any
1923 * data from the journal. */
1924 if (jbd2_journal_recover(journal))
1925 goto recovery_error;
1927 if (journal->j_failed_commit) {
1928 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1929 "is corrupt.\n", journal->j_failed_commit,
1930 journal->j_devname);
1931 return -EFSCORRUPTED;
1934 * clear JBD2_ABORT flag initialized in journal_init_common
1935 * here to update log tail information with the newest seq.
1937 journal->j_flags &= ~JBD2_ABORT;
1939 /* OK, we've finished with the dynamic journal bits:
1940 * reinitialise the dynamic contents of the superblock in memory
1941 * and reset them on disk. */
1942 if (journal_reset(journal))
1943 goto recovery_error;
1945 journal->j_flags |= JBD2_LOADED;
1946 return 0;
1948 recovery_error:
1949 printk(KERN_WARNING "JBD2: recovery failed\n");
1950 return -EIO;
1954 * jbd2_journal_destroy() - Release a journal_t structure.
1955 * @journal: Journal to act on.
1957 * Release a journal_t structure once it is no longer in use by the
1958 * journaled object.
1959 * Return <0 if we couldn't clean up the journal.
1961 int jbd2_journal_destroy(journal_t *journal)
1963 int err = 0;
1965 /* Wait for the commit thread to wake up and die. */
1966 journal_kill_thread(journal);
1968 /* Force a final log commit */
1969 if (journal->j_running_transaction)
1970 jbd2_journal_commit_transaction(journal);
1972 /* Force any old transactions to disk */
1974 /* Totally anal locking here... */
1975 spin_lock(&journal->j_list_lock);
1976 while (journal->j_checkpoint_transactions != NULL) {
1977 spin_unlock(&journal->j_list_lock);
1978 mutex_lock_io(&journal->j_checkpoint_mutex);
1979 err = jbd2_log_do_checkpoint(journal);
1980 mutex_unlock(&journal->j_checkpoint_mutex);
1982 * If checkpointing failed, just free the buffers to avoid
1983 * looping forever
1985 if (err) {
1986 jbd2_journal_destroy_checkpoint(journal);
1987 spin_lock(&journal->j_list_lock);
1988 break;
1990 spin_lock(&journal->j_list_lock);
1993 J_ASSERT(journal->j_running_transaction == NULL);
1994 J_ASSERT(journal->j_committing_transaction == NULL);
1995 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1996 spin_unlock(&journal->j_list_lock);
1998 if (journal->j_sb_buffer) {
1999 if (!is_journal_aborted(journal)) {
2000 mutex_lock_io(&journal->j_checkpoint_mutex);
2002 write_lock(&journal->j_state_lock);
2003 journal->j_tail_sequence =
2004 ++journal->j_transaction_sequence;
2005 write_unlock(&journal->j_state_lock);
2007 jbd2_mark_journal_empty(journal,
2008 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2009 mutex_unlock(&journal->j_checkpoint_mutex);
2010 } else
2011 err = -EIO;
2012 brelse(journal->j_sb_buffer);
2015 if (journal->j_proc_entry)
2016 jbd2_stats_proc_exit(journal);
2017 iput(journal->j_inode);
2018 if (journal->j_revoke)
2019 jbd2_journal_destroy_revoke(journal);
2020 if (journal->j_chksum_driver)
2021 crypto_free_shash(journal->j_chksum_driver);
2022 kfree(journal->j_fc_wbuf);
2023 kfree(journal->j_wbuf);
2024 kfree(journal);
2026 return err;
2031 * jbd2_journal_check_used_features() - Check if features specified are used.
2032 * @journal: Journal to check.
2033 * @compat: bitmask of compatible features
2034 * @ro: bitmask of features that force read-only mount
2035 * @incompat: bitmask of incompatible features
2037 * Check whether the journal uses all of a given set of
2038 * features. Return true (non-zero) if it does.
2041 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2042 unsigned long ro, unsigned long incompat)
2044 journal_superblock_t *sb;
2046 if (!compat && !ro && !incompat)
2047 return 1;
2048 /* Load journal superblock if it is not loaded yet. */
2049 if (journal->j_format_version == 0 &&
2050 journal_get_superblock(journal) != 0)
2051 return 0;
2052 if (journal->j_format_version == 1)
2053 return 0;
2055 sb = journal->j_superblock;
2057 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2058 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2059 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2060 return 1;
2062 return 0;
2066 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2067 * @journal: Journal to check.
2068 * @compat: bitmask of compatible features
2069 * @ro: bitmask of features that force read-only mount
2070 * @incompat: bitmask of incompatible features
2072 * Check whether the journaling code supports the use of
2073 * all of a given set of features on this journal. Return true
2074 * (non-zero) if it can. */
2076 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2077 unsigned long ro, unsigned long incompat)
2079 if (!compat && !ro && !incompat)
2080 return 1;
2082 /* We can support any known requested features iff the
2083 * superblock is in version 2. Otherwise we fail to support any
2084 * extended sb features. */
2086 if (journal->j_format_version != 2)
2087 return 0;
2089 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2090 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2091 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2092 return 1;
2094 return 0;
2097 static int
2098 jbd2_journal_initialize_fast_commit(journal_t *journal)
2100 journal_superblock_t *sb = journal->j_superblock;
2101 unsigned long long num_fc_blks;
2103 num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2104 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2105 return -ENOSPC;
2107 /* Are we called twice? */
2108 WARN_ON(journal->j_fc_wbuf != NULL);
2109 journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2110 sizeof(struct buffer_head *), GFP_KERNEL);
2111 if (!journal->j_fc_wbuf)
2112 return -ENOMEM;
2114 journal->j_fc_wbufsize = num_fc_blks;
2115 journal->j_fc_last = journal->j_last;
2116 journal->j_last = journal->j_fc_last - num_fc_blks;
2117 journal->j_fc_first = journal->j_last + 1;
2118 journal->j_fc_off = 0;
2119 journal->j_free = journal->j_last - journal->j_first;
2120 journal->j_max_transaction_buffers =
2121 jbd2_journal_get_max_txn_bufs(journal);
2123 return 0;
2127 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2128 * @journal: Journal to act on.
2129 * @compat: bitmask of compatible features
2130 * @ro: bitmask of features that force read-only mount
2131 * @incompat: bitmask of incompatible features
2133 * Mark a given journal feature as present on the
2134 * superblock. Returns true if the requested features could be set.
2138 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2139 unsigned long ro, unsigned long incompat)
2141 #define INCOMPAT_FEATURE_ON(f) \
2142 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2143 #define COMPAT_FEATURE_ON(f) \
2144 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2145 journal_superblock_t *sb;
2147 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2148 return 1;
2150 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2151 return 0;
2153 /* If enabling v2 checksums, turn on v3 instead */
2154 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2155 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2156 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2159 /* Asking for checksumming v3 and v1? Only give them v3. */
2160 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2161 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2162 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2164 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2165 compat, ro, incompat);
2167 sb = journal->j_superblock;
2169 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2170 if (jbd2_journal_initialize_fast_commit(journal)) {
2171 pr_err("JBD2: Cannot enable fast commits.\n");
2172 return 0;
2176 /* Load the checksum driver if necessary */
2177 if ((journal->j_chksum_driver == NULL) &&
2178 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2179 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2180 if (IS_ERR(journal->j_chksum_driver)) {
2181 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2182 journal->j_chksum_driver = NULL;
2183 return 0;
2185 /* Precompute checksum seed for all metadata */
2186 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2187 sizeof(sb->s_uuid));
2190 lock_buffer(journal->j_sb_buffer);
2192 /* If enabling v3 checksums, update superblock */
2193 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2194 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2195 sb->s_feature_compat &=
2196 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2199 /* If enabling v1 checksums, downgrade superblock */
2200 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2201 sb->s_feature_incompat &=
2202 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2203 JBD2_FEATURE_INCOMPAT_CSUM_V3);
2205 sb->s_feature_compat |= cpu_to_be32(compat);
2206 sb->s_feature_ro_compat |= cpu_to_be32(ro);
2207 sb->s_feature_incompat |= cpu_to_be32(incompat);
2208 unlock_buffer(journal->j_sb_buffer);
2209 journal->j_revoke_records_per_block =
2210 journal_revoke_records_per_block(journal);
2212 return 1;
2213 #undef COMPAT_FEATURE_ON
2214 #undef INCOMPAT_FEATURE_ON
2218 * jbd2_journal_clear_features() - Clear a given journal feature in the
2219 * superblock
2220 * @journal: Journal to act on.
2221 * @compat: bitmask of compatible features
2222 * @ro: bitmask of features that force read-only mount
2223 * @incompat: bitmask of incompatible features
2225 * Clear a given journal feature as present on the
2226 * superblock.
2228 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2229 unsigned long ro, unsigned long incompat)
2231 journal_superblock_t *sb;
2233 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2234 compat, ro, incompat);
2236 sb = journal->j_superblock;
2238 sb->s_feature_compat &= ~cpu_to_be32(compat);
2239 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2240 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
2241 journal->j_revoke_records_per_block =
2242 journal_revoke_records_per_block(journal);
2244 EXPORT_SYMBOL(jbd2_journal_clear_features);
2247 * jbd2_journal_flush() - Flush journal
2248 * @journal: Journal to act on.
2250 * Flush all data for a given journal to disk and empty the journal.
2251 * Filesystems can use this when remounting readonly to ensure that
2252 * recovery does not need to happen on remount.
2255 int jbd2_journal_flush(journal_t *journal)
2257 int err = 0;
2258 transaction_t *transaction = NULL;
2260 write_lock(&journal->j_state_lock);
2262 /* Force everything buffered to the log... */
2263 if (journal->j_running_transaction) {
2264 transaction = journal->j_running_transaction;
2265 __jbd2_log_start_commit(journal, transaction->t_tid);
2266 } else if (journal->j_committing_transaction)
2267 transaction = journal->j_committing_transaction;
2269 /* Wait for the log commit to complete... */
2270 if (transaction) {
2271 tid_t tid = transaction->t_tid;
2273 write_unlock(&journal->j_state_lock);
2274 jbd2_log_wait_commit(journal, tid);
2275 } else {
2276 write_unlock(&journal->j_state_lock);
2279 /* ...and flush everything in the log out to disk. */
2280 spin_lock(&journal->j_list_lock);
2281 while (!err && journal->j_checkpoint_transactions != NULL) {
2282 spin_unlock(&journal->j_list_lock);
2283 mutex_lock_io(&journal->j_checkpoint_mutex);
2284 err = jbd2_log_do_checkpoint(journal);
2285 mutex_unlock(&journal->j_checkpoint_mutex);
2286 spin_lock(&journal->j_list_lock);
2288 spin_unlock(&journal->j_list_lock);
2290 if (is_journal_aborted(journal))
2291 return -EIO;
2293 mutex_lock_io(&journal->j_checkpoint_mutex);
2294 if (!err) {
2295 err = jbd2_cleanup_journal_tail(journal);
2296 if (err < 0) {
2297 mutex_unlock(&journal->j_checkpoint_mutex);
2298 goto out;
2300 err = 0;
2303 /* Finally, mark the journal as really needing no recovery.
2304 * This sets s_start==0 in the underlying superblock, which is
2305 * the magic code for a fully-recovered superblock. Any future
2306 * commits of data to the journal will restore the current
2307 * s_start value. */
2308 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2309 mutex_unlock(&journal->j_checkpoint_mutex);
2310 write_lock(&journal->j_state_lock);
2311 J_ASSERT(!journal->j_running_transaction);
2312 J_ASSERT(!journal->j_committing_transaction);
2313 J_ASSERT(!journal->j_checkpoint_transactions);
2314 J_ASSERT(journal->j_head == journal->j_tail);
2315 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2316 write_unlock(&journal->j_state_lock);
2317 out:
2318 return err;
2322 * jbd2_journal_wipe() - Wipe journal contents
2323 * @journal: Journal to act on.
2324 * @write: flag (see below)
2326 * Wipe out all of the contents of a journal, safely. This will produce
2327 * a warning if the journal contains any valid recovery information.
2328 * Must be called between journal_init_*() and jbd2_journal_load().
2330 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2331 * we merely suppress recovery.
2334 int jbd2_journal_wipe(journal_t *journal, int write)
2336 int err = 0;
2338 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2340 err = load_superblock(journal);
2341 if (err)
2342 return err;
2344 if (!journal->j_tail)
2345 goto no_recovery;
2347 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2348 write ? "Clearing" : "Ignoring");
2350 err = jbd2_journal_skip_recovery(journal);
2351 if (write) {
2352 /* Lock to make assertions happy... */
2353 mutex_lock_io(&journal->j_checkpoint_mutex);
2354 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2355 mutex_unlock(&journal->j_checkpoint_mutex);
2358 no_recovery:
2359 return err;
2363 * jbd2_journal_abort () - Shutdown the journal immediately.
2364 * @journal: the journal to shutdown.
2365 * @errno: an error number to record in the journal indicating
2366 * the reason for the shutdown.
2368 * Perform a complete, immediate shutdown of the ENTIRE
2369 * journal (not of a single transaction). This operation cannot be
2370 * undone without closing and reopening the journal.
2372 * The jbd2_journal_abort function is intended to support higher level error
2373 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2374 * mode.
2376 * Journal abort has very specific semantics. Any existing dirty,
2377 * unjournaled buffers in the main filesystem will still be written to
2378 * disk by bdflush, but the journaling mechanism will be suspended
2379 * immediately and no further transaction commits will be honoured.
2381 * Any dirty, journaled buffers will be written back to disk without
2382 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2383 * filesystem, but we _do_ attempt to leave as much data as possible
2384 * behind for fsck to use for cleanup.
2386 * Any attempt to get a new transaction handle on a journal which is in
2387 * ABORT state will just result in an -EROFS error return. A
2388 * jbd2_journal_stop on an existing handle will return -EIO if we have
2389 * entered abort state during the update.
2391 * Recursive transactions are not disturbed by journal abort until the
2392 * final jbd2_journal_stop, which will receive the -EIO error.
2394 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2395 * which will be recorded (if possible) in the journal superblock. This
2396 * allows a client to record failure conditions in the middle of a
2397 * transaction without having to complete the transaction to record the
2398 * failure to disk. ext3_error, for example, now uses this
2399 * functionality.
2403 void jbd2_journal_abort(journal_t *journal, int errno)
2405 transaction_t *transaction;
2408 * Lock the aborting procedure until everything is done, this avoid
2409 * races between filesystem's error handling flow (e.g. ext4_abort()),
2410 * ensure panic after the error info is written into journal's
2411 * superblock.
2413 mutex_lock(&journal->j_abort_mutex);
2415 * ESHUTDOWN always takes precedence because a file system check
2416 * caused by any other journal abort error is not required after
2417 * a shutdown triggered.
2419 write_lock(&journal->j_state_lock);
2420 if (journal->j_flags & JBD2_ABORT) {
2421 int old_errno = journal->j_errno;
2423 write_unlock(&journal->j_state_lock);
2424 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2425 journal->j_errno = errno;
2426 jbd2_journal_update_sb_errno(journal);
2428 mutex_unlock(&journal->j_abort_mutex);
2429 return;
2433 * Mark the abort as occurred and start current running transaction
2434 * to release all journaled buffer.
2436 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2438 journal->j_flags |= JBD2_ABORT;
2439 journal->j_errno = errno;
2440 transaction = journal->j_running_transaction;
2441 if (transaction)
2442 __jbd2_log_start_commit(journal, transaction->t_tid);
2443 write_unlock(&journal->j_state_lock);
2446 * Record errno to the journal super block, so that fsck and jbd2
2447 * layer could realise that a filesystem check is needed.
2449 jbd2_journal_update_sb_errno(journal);
2450 mutex_unlock(&journal->j_abort_mutex);
2454 * jbd2_journal_errno() - returns the journal's error state.
2455 * @journal: journal to examine.
2457 * This is the errno number set with jbd2_journal_abort(), the last
2458 * time the journal was mounted - if the journal was stopped
2459 * without calling abort this will be 0.
2461 * If the journal has been aborted on this mount time -EROFS will
2462 * be returned.
2464 int jbd2_journal_errno(journal_t *journal)
2466 int err;
2468 read_lock(&journal->j_state_lock);
2469 if (journal->j_flags & JBD2_ABORT)
2470 err = -EROFS;
2471 else
2472 err = journal->j_errno;
2473 read_unlock(&journal->j_state_lock);
2474 return err;
2478 * jbd2_journal_clear_err() - clears the journal's error state
2479 * @journal: journal to act on.
2481 * An error must be cleared or acked to take a FS out of readonly
2482 * mode.
2484 int jbd2_journal_clear_err(journal_t *journal)
2486 int err = 0;
2488 write_lock(&journal->j_state_lock);
2489 if (journal->j_flags & JBD2_ABORT)
2490 err = -EROFS;
2491 else
2492 journal->j_errno = 0;
2493 write_unlock(&journal->j_state_lock);
2494 return err;
2498 * jbd2_journal_ack_err() - Ack journal err.
2499 * @journal: journal to act on.
2501 * An error must be cleared or acked to take a FS out of readonly
2502 * mode.
2504 void jbd2_journal_ack_err(journal_t *journal)
2506 write_lock(&journal->j_state_lock);
2507 if (journal->j_errno)
2508 journal->j_flags |= JBD2_ACK_ERR;
2509 write_unlock(&journal->j_state_lock);
2512 int jbd2_journal_blocks_per_page(struct inode *inode)
2514 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2518 * helper functions to deal with 32 or 64bit block numbers.
2520 size_t journal_tag_bytes(journal_t *journal)
2522 size_t sz;
2524 if (jbd2_has_feature_csum3(journal))
2525 return sizeof(journal_block_tag3_t);
2527 sz = sizeof(journal_block_tag_t);
2529 if (jbd2_has_feature_csum2(journal))
2530 sz += sizeof(__u16);
2532 if (jbd2_has_feature_64bit(journal))
2533 return sz;
2534 else
2535 return sz - sizeof(__u32);
2539 * JBD memory management
2541 * These functions are used to allocate block-sized chunks of memory
2542 * used for making copies of buffer_head data. Very often it will be
2543 * page-sized chunks of data, but sometimes it will be in
2544 * sub-page-size chunks. (For example, 16k pages on Power systems
2545 * with a 4k block file system.) For blocks smaller than a page, we
2546 * use a SLAB allocator. There are slab caches for each block size,
2547 * which are allocated at mount time, if necessary, and we only free
2548 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2549 * this reason we don't need to a mutex to protect access to
2550 * jbd2_slab[] allocating or releasing memory; only in
2551 * jbd2_journal_create_slab().
2553 #define JBD2_MAX_SLABS 8
2554 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2556 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2557 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2558 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2562 static void jbd2_journal_destroy_slabs(void)
2564 int i;
2566 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2567 kmem_cache_destroy(jbd2_slab[i]);
2568 jbd2_slab[i] = NULL;
2572 static int jbd2_journal_create_slab(size_t size)
2574 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2575 int i = order_base_2(size) - 10;
2576 size_t slab_size;
2578 if (size == PAGE_SIZE)
2579 return 0;
2581 if (i >= JBD2_MAX_SLABS)
2582 return -EINVAL;
2584 if (unlikely(i < 0))
2585 i = 0;
2586 mutex_lock(&jbd2_slab_create_mutex);
2587 if (jbd2_slab[i]) {
2588 mutex_unlock(&jbd2_slab_create_mutex);
2589 return 0; /* Already created */
2592 slab_size = 1 << (i+10);
2593 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2594 slab_size, 0, NULL);
2595 mutex_unlock(&jbd2_slab_create_mutex);
2596 if (!jbd2_slab[i]) {
2597 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2598 return -ENOMEM;
2600 return 0;
2603 static struct kmem_cache *get_slab(size_t size)
2605 int i = order_base_2(size) - 10;
2607 BUG_ON(i >= JBD2_MAX_SLABS);
2608 if (unlikely(i < 0))
2609 i = 0;
2610 BUG_ON(jbd2_slab[i] == NULL);
2611 return jbd2_slab[i];
2614 void *jbd2_alloc(size_t size, gfp_t flags)
2616 void *ptr;
2618 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2620 if (size < PAGE_SIZE)
2621 ptr = kmem_cache_alloc(get_slab(size), flags);
2622 else
2623 ptr = (void *)__get_free_pages(flags, get_order(size));
2625 /* Check alignment; SLUB has gotten this wrong in the past,
2626 * and this can lead to user data corruption! */
2627 BUG_ON(((unsigned long) ptr) & (size-1));
2629 return ptr;
2632 void jbd2_free(void *ptr, size_t size)
2634 if (size < PAGE_SIZE)
2635 kmem_cache_free(get_slab(size), ptr);
2636 else
2637 free_pages((unsigned long)ptr, get_order(size));
2641 * Journal_head storage management
2643 static struct kmem_cache *jbd2_journal_head_cache;
2644 #ifdef CONFIG_JBD2_DEBUG
2645 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2646 #endif
2648 static int __init jbd2_journal_init_journal_head_cache(void)
2650 J_ASSERT(!jbd2_journal_head_cache);
2651 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2652 sizeof(struct journal_head),
2653 0, /* offset */
2654 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2655 NULL); /* ctor */
2656 if (!jbd2_journal_head_cache) {
2657 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2658 return -ENOMEM;
2660 return 0;
2663 static void jbd2_journal_destroy_journal_head_cache(void)
2665 kmem_cache_destroy(jbd2_journal_head_cache);
2666 jbd2_journal_head_cache = NULL;
2670 * journal_head splicing and dicing
2672 static struct journal_head *journal_alloc_journal_head(void)
2674 struct journal_head *ret;
2676 #ifdef CONFIG_JBD2_DEBUG
2677 atomic_inc(&nr_journal_heads);
2678 #endif
2679 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2680 if (!ret) {
2681 jbd_debug(1, "out of memory for journal_head\n");
2682 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2683 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2684 GFP_NOFS | __GFP_NOFAIL);
2686 if (ret)
2687 spin_lock_init(&ret->b_state_lock);
2688 return ret;
2691 static void journal_free_journal_head(struct journal_head *jh)
2693 #ifdef CONFIG_JBD2_DEBUG
2694 atomic_dec(&nr_journal_heads);
2695 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2696 #endif
2697 kmem_cache_free(jbd2_journal_head_cache, jh);
2701 * A journal_head is attached to a buffer_head whenever JBD has an
2702 * interest in the buffer.
2704 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2705 * is set. This bit is tested in core kernel code where we need to take
2706 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2707 * there.
2709 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2711 * When a buffer has its BH_JBD bit set it is immune from being released by
2712 * core kernel code, mainly via ->b_count.
2714 * A journal_head is detached from its buffer_head when the journal_head's
2715 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2716 * transaction (b_cp_transaction) hold their references to b_jcount.
2718 * Various places in the kernel want to attach a journal_head to a buffer_head
2719 * _before_ attaching the journal_head to a transaction. To protect the
2720 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2721 * journal_head's b_jcount refcount by one. The caller must call
2722 * jbd2_journal_put_journal_head() to undo this.
2724 * So the typical usage would be:
2726 * (Attach a journal_head if needed. Increments b_jcount)
2727 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2728 * ...
2729 * (Get another reference for transaction)
2730 * jbd2_journal_grab_journal_head(bh);
2731 * jh->b_transaction = xxx;
2732 * (Put original reference)
2733 * jbd2_journal_put_journal_head(jh);
2737 * Give a buffer_head a journal_head.
2739 * May sleep.
2741 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2743 struct journal_head *jh;
2744 struct journal_head *new_jh = NULL;
2746 repeat:
2747 if (!buffer_jbd(bh))
2748 new_jh = journal_alloc_journal_head();
2750 jbd_lock_bh_journal_head(bh);
2751 if (buffer_jbd(bh)) {
2752 jh = bh2jh(bh);
2753 } else {
2754 J_ASSERT_BH(bh,
2755 (atomic_read(&bh->b_count) > 0) ||
2756 (bh->b_page && bh->b_page->mapping));
2758 if (!new_jh) {
2759 jbd_unlock_bh_journal_head(bh);
2760 goto repeat;
2763 jh = new_jh;
2764 new_jh = NULL; /* We consumed it */
2765 set_buffer_jbd(bh);
2766 bh->b_private = jh;
2767 jh->b_bh = bh;
2768 get_bh(bh);
2769 BUFFER_TRACE(bh, "added journal_head");
2771 jh->b_jcount++;
2772 jbd_unlock_bh_journal_head(bh);
2773 if (new_jh)
2774 journal_free_journal_head(new_jh);
2775 return bh->b_private;
2779 * Grab a ref against this buffer_head's journal_head. If it ended up not
2780 * having a journal_head, return NULL
2782 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2784 struct journal_head *jh = NULL;
2786 jbd_lock_bh_journal_head(bh);
2787 if (buffer_jbd(bh)) {
2788 jh = bh2jh(bh);
2789 jh->b_jcount++;
2791 jbd_unlock_bh_journal_head(bh);
2792 return jh;
2795 static void __journal_remove_journal_head(struct buffer_head *bh)
2797 struct journal_head *jh = bh2jh(bh);
2799 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2800 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2801 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2802 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2803 J_ASSERT_BH(bh, buffer_jbd(bh));
2804 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2805 BUFFER_TRACE(bh, "remove journal_head");
2807 /* Unlink before dropping the lock */
2808 bh->b_private = NULL;
2809 jh->b_bh = NULL; /* debug, really */
2810 clear_buffer_jbd(bh);
2813 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2815 if (jh->b_frozen_data) {
2816 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2817 jbd2_free(jh->b_frozen_data, b_size);
2819 if (jh->b_committed_data) {
2820 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2821 jbd2_free(jh->b_committed_data, b_size);
2823 journal_free_journal_head(jh);
2827 * Drop a reference on the passed journal_head. If it fell to zero then
2828 * release the journal_head from the buffer_head.
2830 void jbd2_journal_put_journal_head(struct journal_head *jh)
2832 struct buffer_head *bh = jh2bh(jh);
2834 jbd_lock_bh_journal_head(bh);
2835 J_ASSERT_JH(jh, jh->b_jcount > 0);
2836 --jh->b_jcount;
2837 if (!jh->b_jcount) {
2838 __journal_remove_journal_head(bh);
2839 jbd_unlock_bh_journal_head(bh);
2840 journal_release_journal_head(jh, bh->b_size);
2841 __brelse(bh);
2842 } else {
2843 jbd_unlock_bh_journal_head(bh);
2848 * Initialize jbd inode head
2850 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2852 jinode->i_transaction = NULL;
2853 jinode->i_next_transaction = NULL;
2854 jinode->i_vfs_inode = inode;
2855 jinode->i_flags = 0;
2856 jinode->i_dirty_start = 0;
2857 jinode->i_dirty_end = 0;
2858 INIT_LIST_HEAD(&jinode->i_list);
2862 * Function to be called before we start removing inode from memory (i.e.,
2863 * clear_inode() is a fine place to be called from). It removes inode from
2864 * transaction's lists.
2866 void jbd2_journal_release_jbd_inode(journal_t *journal,
2867 struct jbd2_inode *jinode)
2869 if (!journal)
2870 return;
2871 restart:
2872 spin_lock(&journal->j_list_lock);
2873 /* Is commit writing out inode - we have to wait */
2874 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2875 wait_queue_head_t *wq;
2876 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2877 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2878 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2879 spin_unlock(&journal->j_list_lock);
2880 schedule();
2881 finish_wait(wq, &wait.wq_entry);
2882 goto restart;
2885 if (jinode->i_transaction) {
2886 list_del(&jinode->i_list);
2887 jinode->i_transaction = NULL;
2889 spin_unlock(&journal->j_list_lock);
2893 #ifdef CONFIG_PROC_FS
2895 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2897 static void __init jbd2_create_jbd_stats_proc_entry(void)
2899 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2902 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2904 if (proc_jbd2_stats)
2905 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2908 #else
2910 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2911 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2913 #endif
2915 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2917 static int __init jbd2_journal_init_inode_cache(void)
2919 J_ASSERT(!jbd2_inode_cache);
2920 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2921 if (!jbd2_inode_cache) {
2922 pr_emerg("JBD2: failed to create inode cache\n");
2923 return -ENOMEM;
2925 return 0;
2928 static int __init jbd2_journal_init_handle_cache(void)
2930 J_ASSERT(!jbd2_handle_cache);
2931 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2932 if (!jbd2_handle_cache) {
2933 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2934 return -ENOMEM;
2936 return 0;
2939 static void jbd2_journal_destroy_inode_cache(void)
2941 kmem_cache_destroy(jbd2_inode_cache);
2942 jbd2_inode_cache = NULL;
2945 static void jbd2_journal_destroy_handle_cache(void)
2947 kmem_cache_destroy(jbd2_handle_cache);
2948 jbd2_handle_cache = NULL;
2952 * Module startup and shutdown
2955 static int __init journal_init_caches(void)
2957 int ret;
2959 ret = jbd2_journal_init_revoke_record_cache();
2960 if (ret == 0)
2961 ret = jbd2_journal_init_revoke_table_cache();
2962 if (ret == 0)
2963 ret = jbd2_journal_init_journal_head_cache();
2964 if (ret == 0)
2965 ret = jbd2_journal_init_handle_cache();
2966 if (ret == 0)
2967 ret = jbd2_journal_init_inode_cache();
2968 if (ret == 0)
2969 ret = jbd2_journal_init_transaction_cache();
2970 return ret;
2973 static void jbd2_journal_destroy_caches(void)
2975 jbd2_journal_destroy_revoke_record_cache();
2976 jbd2_journal_destroy_revoke_table_cache();
2977 jbd2_journal_destroy_journal_head_cache();
2978 jbd2_journal_destroy_handle_cache();
2979 jbd2_journal_destroy_inode_cache();
2980 jbd2_journal_destroy_transaction_cache();
2981 jbd2_journal_destroy_slabs();
2984 static int __init journal_init(void)
2986 int ret;
2988 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2990 ret = journal_init_caches();
2991 if (ret == 0) {
2992 jbd2_create_jbd_stats_proc_entry();
2993 } else {
2994 jbd2_journal_destroy_caches();
2996 return ret;
2999 static void __exit journal_exit(void)
3001 #ifdef CONFIG_JBD2_DEBUG
3002 int n = atomic_read(&nr_journal_heads);
3003 if (n)
3004 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3005 #endif
3006 jbd2_remove_jbd_stats_proc_entry();
3007 jbd2_journal_destroy_caches();
3010 MODULE_LICENSE("GPL");
3011 module_init(journal_init);
3012 module_exit(journal_exit);