1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
35 * The max size that a non-root user is allowed to grow the pipe. Can
36 * be set by root in /proc/sys/fs/pipe-max-size
38 unsigned int pipe_max_size
= 1048576;
40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41 * matches default values.
43 unsigned long pipe_user_pages_hard
;
44 unsigned long pipe_user_pages_soft
= PIPE_DEF_BUFFERS
* INR_OPEN_CUR
;
47 * We use head and tail indices that aren't masked off, except at the point of
48 * dereference, but rather they're allowed to wrap naturally. This means there
49 * isn't a dead spot in the buffer, but the ring has to be a power of two and
51 * -- David Howells 2019-09-23.
53 * Reads with count = 0 should always return 0.
54 * -- Julian Bradfield 1999-06-07.
56 * FIFOs and Pipes now generate SIGIO for both readers and writers.
57 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
59 * pipe_read & write cleanup
60 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
63 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
66 mutex_lock_nested(&pipe
->mutex
, subclass
);
69 void pipe_lock(struct pipe_inode_info
*pipe
)
72 * pipe_lock() nests non-pipe inode locks (for writing to a file)
74 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
76 EXPORT_SYMBOL(pipe_lock
);
78 void pipe_unlock(struct pipe_inode_info
*pipe
)
81 mutex_unlock(&pipe
->mutex
);
83 EXPORT_SYMBOL(pipe_unlock
);
85 static inline void __pipe_lock(struct pipe_inode_info
*pipe
)
87 mutex_lock_nested(&pipe
->mutex
, I_MUTEX_PARENT
);
90 static inline void __pipe_unlock(struct pipe_inode_info
*pipe
)
92 mutex_unlock(&pipe
->mutex
);
95 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
96 struct pipe_inode_info
*pipe2
)
98 BUG_ON(pipe1
== pipe2
);
101 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
102 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
104 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
105 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
109 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
110 struct pipe_buffer
*buf
)
112 struct page
*page
= buf
->page
;
115 * If nobody else uses this page, and we don't already have a
116 * temporary page, let's keep track of it as a one-deep
117 * allocation cache. (Otherwise just release our reference to it)
119 if (page_count(page
) == 1 && !pipe
->tmp_page
)
120 pipe
->tmp_page
= page
;
125 static bool anon_pipe_buf_try_steal(struct pipe_inode_info
*pipe
,
126 struct pipe_buffer
*buf
)
128 struct page
*page
= buf
->page
;
130 if (page_count(page
) != 1)
132 memcg_kmem_uncharge_page(page
, 0);
133 __SetPageLocked(page
);
138 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
139 * @pipe: the pipe that the buffer belongs to
140 * @buf: the buffer to attempt to steal
143 * This function attempts to steal the &struct page attached to
144 * @buf. If successful, this function returns 0 and returns with
145 * the page locked. The caller may then reuse the page for whatever
146 * he wishes; the typical use is insertion into a different file
149 bool generic_pipe_buf_try_steal(struct pipe_inode_info
*pipe
,
150 struct pipe_buffer
*buf
)
152 struct page
*page
= buf
->page
;
155 * A reference of one is golden, that means that the owner of this
156 * page is the only one holding a reference to it. lock the page
159 if (page_count(page
) == 1) {
165 EXPORT_SYMBOL(generic_pipe_buf_try_steal
);
168 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
169 * @pipe: the pipe that the buffer belongs to
170 * @buf: the buffer to get a reference to
173 * This function grabs an extra reference to @buf. It's used in
174 * in the tee() system call, when we duplicate the buffers in one
177 bool generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
179 return try_get_page(buf
->page
);
181 EXPORT_SYMBOL(generic_pipe_buf_get
);
184 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to put a reference to
189 * This function releases a reference to @buf.
191 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
192 struct pipe_buffer
*buf
)
196 EXPORT_SYMBOL(generic_pipe_buf_release
);
198 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
199 .release
= anon_pipe_buf_release
,
200 .try_steal
= anon_pipe_buf_try_steal
,
201 .get
= generic_pipe_buf_get
,
204 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
205 static inline bool pipe_readable(const struct pipe_inode_info
*pipe
)
207 unsigned int head
= READ_ONCE(pipe
->head
);
208 unsigned int tail
= READ_ONCE(pipe
->tail
);
209 unsigned int writers
= READ_ONCE(pipe
->writers
);
211 return !pipe_empty(head
, tail
) || !writers
;
215 pipe_read(struct kiocb
*iocb
, struct iov_iter
*to
)
217 size_t total_len
= iov_iter_count(to
);
218 struct file
*filp
= iocb
->ki_filp
;
219 struct pipe_inode_info
*pipe
= filp
->private_data
;
220 bool was_full
, wake_next_reader
= false;
223 /* Null read succeeds. */
224 if (unlikely(total_len
== 0))
231 * We only wake up writers if the pipe was full when we started
232 * reading in order to avoid unnecessary wakeups.
234 * But when we do wake up writers, we do so using a sync wakeup
235 * (WF_SYNC), because we want them to get going and generate more
238 was_full
= pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
);
240 unsigned int head
= pipe
->head
;
241 unsigned int tail
= pipe
->tail
;
242 unsigned int mask
= pipe
->ring_size
- 1;
244 #ifdef CONFIG_WATCH_QUEUE
245 if (pipe
->note_loss
) {
246 struct watch_notification n
;
254 n
.type
= WATCH_TYPE_META
;
255 n
.subtype
= WATCH_META_LOSS_NOTIFICATION
;
256 n
.info
= watch_sizeof(n
);
257 if (copy_to_iter(&n
, sizeof(n
), to
) != sizeof(n
)) {
263 total_len
-= sizeof(n
);
264 pipe
->note_loss
= false;
268 if (!pipe_empty(head
, tail
)) {
269 struct pipe_buffer
*buf
= &pipe
->bufs
[tail
& mask
];
270 size_t chars
= buf
->len
;
274 if (chars
> total_len
) {
275 if (buf
->flags
& PIPE_BUF_FLAG_WHOLE
) {
283 error
= pipe_buf_confirm(pipe
, buf
);
290 written
= copy_page_to_iter(buf
->page
, buf
->offset
, chars
, to
);
291 if (unlikely(written
< chars
)) {
297 buf
->offset
+= chars
;
300 /* Was it a packet buffer? Clean up and exit */
301 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
307 pipe_buf_release(pipe
, buf
);
308 spin_lock_irq(&pipe
->rd_wait
.lock
);
309 #ifdef CONFIG_WATCH_QUEUE
310 if (buf
->flags
& PIPE_BUF_FLAG_LOSS
)
311 pipe
->note_loss
= true;
315 spin_unlock_irq(&pipe
->rd_wait
.lock
);
319 break; /* common path: read succeeded */
320 if (!pipe_empty(head
, tail
)) /* More to do? */
328 if (filp
->f_flags
& O_NONBLOCK
) {
335 * We only get here if we didn't actually read anything.
337 * However, we could have seen (and removed) a zero-sized
338 * pipe buffer, and might have made space in the buffers
341 * You can't make zero-sized pipe buffers by doing an empty
342 * write (not even in packet mode), but they can happen if
343 * the writer gets an EFAULT when trying to fill a buffer
344 * that already got allocated and inserted in the buffer
347 * So we still need to wake up any pending writers in the
348 * _very_ unlikely case that the pipe was full, but we got
351 if (unlikely(was_full
)) {
352 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
);
353 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
357 * But because we didn't read anything, at this point we can
358 * just return directly with -ERESTARTSYS if we're interrupted,
359 * since we've done any required wakeups and there's no need
360 * to mark anything accessed. And we've dropped the lock.
362 if (wait_event_interruptible_exclusive(pipe
->rd_wait
, pipe_readable(pipe
)) < 0)
366 was_full
= pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
);
367 wake_next_reader
= true;
369 if (pipe_empty(pipe
->head
, pipe
->tail
))
370 wake_next_reader
= false;
374 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
);
375 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
377 if (wake_next_reader
)
378 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
);
384 static inline int is_packetized(struct file
*file
)
386 return (file
->f_flags
& O_DIRECT
) != 0;
389 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
390 static inline bool pipe_writable(const struct pipe_inode_info
*pipe
)
392 unsigned int head
= READ_ONCE(pipe
->head
);
393 unsigned int tail
= READ_ONCE(pipe
->tail
);
394 unsigned int max_usage
= READ_ONCE(pipe
->max_usage
);
396 return !pipe_full(head
, tail
, max_usage
) ||
397 !READ_ONCE(pipe
->readers
);
401 pipe_write(struct kiocb
*iocb
, struct iov_iter
*from
)
403 struct file
*filp
= iocb
->ki_filp
;
404 struct pipe_inode_info
*pipe
= filp
->private_data
;
407 size_t total_len
= iov_iter_count(from
);
409 bool was_empty
= false;
410 bool wake_next_writer
= false;
412 /* Null write succeeds. */
413 if (unlikely(total_len
== 0))
418 if (!pipe
->readers
) {
419 send_sig(SIGPIPE
, current
, 0);
424 #ifdef CONFIG_WATCH_QUEUE
425 if (pipe
->watch_queue
) {
432 * Only wake up if the pipe started out empty, since
433 * otherwise there should be no readers waiting.
435 * If it wasn't empty we try to merge new data into
438 * That naturally merges small writes, but it also
439 * page-aligs the rest of the writes for large writes
440 * spanning multiple pages.
443 was_empty
= pipe_empty(head
, pipe
->tail
);
444 chars
= total_len
& (PAGE_SIZE
-1);
445 if (chars
&& !was_empty
) {
446 unsigned int mask
= pipe
->ring_size
- 1;
447 struct pipe_buffer
*buf
= &pipe
->bufs
[(head
- 1) & mask
];
448 int offset
= buf
->offset
+ buf
->len
;
450 if ((buf
->flags
& PIPE_BUF_FLAG_CAN_MERGE
) &&
451 offset
+ chars
<= PAGE_SIZE
) {
452 ret
= pipe_buf_confirm(pipe
, buf
);
456 ret
= copy_page_from_iter(buf
->page
, offset
, chars
, from
);
457 if (unlikely(ret
< chars
)) {
463 if (!iov_iter_count(from
))
469 if (!pipe
->readers
) {
470 send_sig(SIGPIPE
, current
, 0);
477 if (!pipe_full(head
, pipe
->tail
, pipe
->max_usage
)) {
478 unsigned int mask
= pipe
->ring_size
- 1;
479 struct pipe_buffer
*buf
= &pipe
->bufs
[head
& mask
];
480 struct page
*page
= pipe
->tmp_page
;
484 page
= alloc_page(GFP_HIGHUSER
| __GFP_ACCOUNT
);
485 if (unlikely(!page
)) {
486 ret
= ret
? : -ENOMEM
;
489 pipe
->tmp_page
= page
;
492 /* Allocate a slot in the ring in advance and attach an
493 * empty buffer. If we fault or otherwise fail to use
494 * it, either the reader will consume it or it'll still
495 * be there for the next write.
497 spin_lock_irq(&pipe
->rd_wait
.lock
);
500 if (pipe_full(head
, pipe
->tail
, pipe
->max_usage
)) {
501 spin_unlock_irq(&pipe
->rd_wait
.lock
);
505 pipe
->head
= head
+ 1;
506 spin_unlock_irq(&pipe
->rd_wait
.lock
);
508 /* Insert it into the buffer array */
509 buf
= &pipe
->bufs
[head
& mask
];
511 buf
->ops
= &anon_pipe_buf_ops
;
514 if (is_packetized(filp
))
515 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
517 buf
->flags
= PIPE_BUF_FLAG_CAN_MERGE
;
518 pipe
->tmp_page
= NULL
;
520 copied
= copy_page_from_iter(page
, 0, PAGE_SIZE
, from
);
521 if (unlikely(copied
< PAGE_SIZE
&& iov_iter_count(from
))) {
530 if (!iov_iter_count(from
))
534 if (!pipe_full(head
, pipe
->tail
, pipe
->max_usage
))
537 /* Wait for buffer space to become available. */
538 if (filp
->f_flags
& O_NONBLOCK
) {
543 if (signal_pending(current
)) {
550 * We're going to release the pipe lock and wait for more
551 * space. We wake up any readers if necessary, and then
552 * after waiting we need to re-check whether the pipe
553 * become empty while we dropped the lock.
557 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
);
558 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
560 wait_event_interruptible_exclusive(pipe
->wr_wait
, pipe_writable(pipe
));
562 was_empty
= pipe_empty(pipe
->head
, pipe
->tail
);
563 wake_next_writer
= true;
566 if (pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
))
567 wake_next_writer
= false;
571 * If we do do a wakeup event, we do a 'sync' wakeup, because we
572 * want the reader to start processing things asap, rather than
573 * leave the data pending.
575 * This is particularly important for small writes, because of
576 * how (for example) the GNU make jobserver uses small writes to
577 * wake up pending jobs
580 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
);
581 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
583 if (wake_next_writer
)
584 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
);
585 if (ret
> 0 && sb_start_write_trylock(file_inode(filp
)->i_sb
)) {
586 int err
= file_update_time(filp
);
589 sb_end_write(file_inode(filp
)->i_sb
);
594 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
596 struct pipe_inode_info
*pipe
= filp
->private_data
;
597 int count
, head
, tail
, mask
;
605 mask
= pipe
->ring_size
- 1;
607 while (tail
!= head
) {
608 count
+= pipe
->bufs
[tail
& mask
].len
;
613 return put_user(count
, (int __user
*)arg
);
615 #ifdef CONFIG_WATCH_QUEUE
616 case IOC_WATCH_QUEUE_SET_SIZE
: {
619 ret
= watch_queue_set_size(pipe
, arg
);
624 case IOC_WATCH_QUEUE_SET_FILTER
:
625 return watch_queue_set_filter(
626 pipe
, (struct watch_notification_filter __user
*)arg
);
634 /* No kernel lock held - fine */
636 pipe_poll(struct file
*filp
, poll_table
*wait
)
639 struct pipe_inode_info
*pipe
= filp
->private_data
;
640 unsigned int head
, tail
;
643 * Reading pipe state only -- no need for acquiring the semaphore.
645 * But because this is racy, the code has to add the
646 * entry to the poll table _first_ ..
648 if (filp
->f_mode
& FMODE_READ
)
649 poll_wait(filp
, &pipe
->rd_wait
, wait
);
650 if (filp
->f_mode
& FMODE_WRITE
)
651 poll_wait(filp
, &pipe
->wr_wait
, wait
);
654 * .. and only then can you do the racy tests. That way,
655 * if something changes and you got it wrong, the poll
656 * table entry will wake you up and fix it.
658 head
= READ_ONCE(pipe
->head
);
659 tail
= READ_ONCE(pipe
->tail
);
662 if (filp
->f_mode
& FMODE_READ
) {
663 if (!pipe_empty(head
, tail
))
664 mask
|= EPOLLIN
| EPOLLRDNORM
;
665 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
669 if (filp
->f_mode
& FMODE_WRITE
) {
670 if (!pipe_full(head
, tail
, pipe
->max_usage
))
671 mask
|= EPOLLOUT
| EPOLLWRNORM
;
673 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
674 * behave exactly like pipes for poll().
683 static void put_pipe_info(struct inode
*inode
, struct pipe_inode_info
*pipe
)
687 spin_lock(&inode
->i_lock
);
688 if (!--pipe
->files
) {
689 inode
->i_pipe
= NULL
;
692 spin_unlock(&inode
->i_lock
);
695 free_pipe_info(pipe
);
699 pipe_release(struct inode
*inode
, struct file
*file
)
701 struct pipe_inode_info
*pipe
= file
->private_data
;
704 if (file
->f_mode
& FMODE_READ
)
706 if (file
->f_mode
& FMODE_WRITE
)
709 /* Was that the last reader or writer, but not the other side? */
710 if (!pipe
->readers
!= !pipe
->writers
) {
711 wake_up_interruptible_all(&pipe
->rd_wait
);
712 wake_up_interruptible_all(&pipe
->wr_wait
);
713 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
714 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
718 put_pipe_info(inode
, pipe
);
723 pipe_fasync(int fd
, struct file
*filp
, int on
)
725 struct pipe_inode_info
*pipe
= filp
->private_data
;
729 if (filp
->f_mode
& FMODE_READ
)
730 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
731 if ((filp
->f_mode
& FMODE_WRITE
) && retval
>= 0) {
732 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
733 if (retval
< 0 && (filp
->f_mode
& FMODE_READ
))
734 /* this can happen only if on == T */
735 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
741 unsigned long account_pipe_buffers(struct user_struct
*user
,
742 unsigned long old
, unsigned long new)
744 return atomic_long_add_return(new - old
, &user
->pipe_bufs
);
747 bool too_many_pipe_buffers_soft(unsigned long user_bufs
)
749 unsigned long soft_limit
= READ_ONCE(pipe_user_pages_soft
);
751 return soft_limit
&& user_bufs
> soft_limit
;
754 bool too_many_pipe_buffers_hard(unsigned long user_bufs
)
756 unsigned long hard_limit
= READ_ONCE(pipe_user_pages_hard
);
758 return hard_limit
&& user_bufs
> hard_limit
;
761 bool pipe_is_unprivileged_user(void)
763 return !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
);
766 struct pipe_inode_info
*alloc_pipe_info(void)
768 struct pipe_inode_info
*pipe
;
769 unsigned long pipe_bufs
= PIPE_DEF_BUFFERS
;
770 struct user_struct
*user
= get_current_user();
771 unsigned long user_bufs
;
772 unsigned int max_size
= READ_ONCE(pipe_max_size
);
774 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL_ACCOUNT
);
778 if (pipe_bufs
* PAGE_SIZE
> max_size
&& !capable(CAP_SYS_RESOURCE
))
779 pipe_bufs
= max_size
>> PAGE_SHIFT
;
781 user_bufs
= account_pipe_buffers(user
, 0, pipe_bufs
);
783 if (too_many_pipe_buffers_soft(user_bufs
) && pipe_is_unprivileged_user()) {
784 user_bufs
= account_pipe_buffers(user
, pipe_bufs
, 1);
788 if (too_many_pipe_buffers_hard(user_bufs
) && pipe_is_unprivileged_user())
789 goto out_revert_acct
;
791 pipe
->bufs
= kcalloc(pipe_bufs
, sizeof(struct pipe_buffer
),
795 init_waitqueue_head(&pipe
->rd_wait
);
796 init_waitqueue_head(&pipe
->wr_wait
);
797 pipe
->r_counter
= pipe
->w_counter
= 1;
798 pipe
->max_usage
= pipe_bufs
;
799 pipe
->ring_size
= pipe_bufs
;
800 pipe
->nr_accounted
= pipe_bufs
;
802 mutex_init(&pipe
->mutex
);
807 (void) account_pipe_buffers(user
, pipe_bufs
, 0);
814 void free_pipe_info(struct pipe_inode_info
*pipe
)
818 #ifdef CONFIG_WATCH_QUEUE
819 if (pipe
->watch_queue
) {
820 watch_queue_clear(pipe
->watch_queue
);
821 put_watch_queue(pipe
->watch_queue
);
825 (void) account_pipe_buffers(pipe
->user
, pipe
->nr_accounted
, 0);
826 free_uid(pipe
->user
);
827 for (i
= 0; i
< pipe
->ring_size
; i
++) {
828 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
830 pipe_buf_release(pipe
, buf
);
833 __free_page(pipe
->tmp_page
);
838 static struct vfsmount
*pipe_mnt __read_mostly
;
841 * pipefs_dname() is called from d_path().
843 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
845 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
846 d_inode(dentry
)->i_ino
);
849 static const struct dentry_operations pipefs_dentry_operations
= {
850 .d_dname
= pipefs_dname
,
853 static struct inode
* get_pipe_inode(void)
855 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
856 struct pipe_inode_info
*pipe
;
861 inode
->i_ino
= get_next_ino();
863 pipe
= alloc_pipe_info();
867 inode
->i_pipe
= pipe
;
869 pipe
->readers
= pipe
->writers
= 1;
870 inode
->i_fop
= &pipefifo_fops
;
873 * Mark the inode dirty from the very beginning,
874 * that way it will never be moved to the dirty
875 * list because "mark_inode_dirty()" will think
876 * that it already _is_ on the dirty list.
878 inode
->i_state
= I_DIRTY
;
879 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
880 inode
->i_uid
= current_fsuid();
881 inode
->i_gid
= current_fsgid();
882 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
893 int create_pipe_files(struct file
**res
, int flags
)
895 struct inode
*inode
= get_pipe_inode();
902 if (flags
& O_NOTIFICATION_PIPE
) {
903 error
= watch_queue_init(inode
->i_pipe
);
905 free_pipe_info(inode
->i_pipe
);
911 f
= alloc_file_pseudo(inode
, pipe_mnt
, "",
912 O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
)),
915 free_pipe_info(inode
->i_pipe
);
920 f
->private_data
= inode
->i_pipe
;
922 res
[0] = alloc_file_clone(f
, O_RDONLY
| (flags
& O_NONBLOCK
),
924 if (IS_ERR(res
[0])) {
925 put_pipe_info(inode
, inode
->i_pipe
);
927 return PTR_ERR(res
[0]);
929 res
[0]->private_data
= inode
->i_pipe
;
931 stream_open(inode
, res
[0]);
932 stream_open(inode
, res
[1]);
936 static int __do_pipe_flags(int *fd
, struct file
**files
, int flags
)
941 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
| O_NOTIFICATION_PIPE
))
944 error
= create_pipe_files(files
, flags
);
948 error
= get_unused_fd_flags(flags
);
953 error
= get_unused_fd_flags(flags
);
958 audit_fd_pair(fdr
, fdw
);
971 int do_pipe_flags(int *fd
, int flags
)
973 struct file
*files
[2];
974 int error
= __do_pipe_flags(fd
, files
, flags
);
976 fd_install(fd
[0], files
[0]);
977 fd_install(fd
[1], files
[1]);
983 * sys_pipe() is the normal C calling standard for creating
984 * a pipe. It's not the way Unix traditionally does this, though.
986 static int do_pipe2(int __user
*fildes
, int flags
)
988 struct file
*files
[2];
992 error
= __do_pipe_flags(fd
, files
, flags
);
994 if (unlikely(copy_to_user(fildes
, fd
, sizeof(fd
)))) {
997 put_unused_fd(fd
[0]);
998 put_unused_fd(fd
[1]);
1001 fd_install(fd
[0], files
[0]);
1002 fd_install(fd
[1], files
[1]);
1008 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
1010 return do_pipe2(fildes
, flags
);
1013 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
1015 return do_pipe2(fildes
, 0);
1019 * This is the stupid "wait for pipe to be readable or writable"
1022 * See pipe_read/write() for the proper kind of exclusive wait,
1023 * but that requires that we wake up any other readers/writers
1024 * if we then do not end up reading everything (ie the whole
1025 * "wake_next_reader/writer" logic in pipe_read/write()).
1027 void pipe_wait_readable(struct pipe_inode_info
*pipe
)
1030 wait_event_interruptible(pipe
->rd_wait
, pipe_readable(pipe
));
1034 void pipe_wait_writable(struct pipe_inode_info
*pipe
)
1037 wait_event_interruptible(pipe
->wr_wait
, pipe_writable(pipe
));
1042 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1043 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1044 * race with the count check and waitqueue prep.
1046 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1047 * then check the condition you're waiting for, and only then sleep. But
1048 * because of the pipe lock, we can check the condition before being on
1051 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1053 static int wait_for_partner(struct pipe_inode_info
*pipe
, unsigned int *cnt
)
1055 DEFINE_WAIT(rdwait
);
1058 while (cur
== *cnt
) {
1059 prepare_to_wait(&pipe
->rd_wait
, &rdwait
, TASK_INTERRUPTIBLE
);
1062 finish_wait(&pipe
->rd_wait
, &rdwait
);
1064 if (signal_pending(current
))
1067 return cur
== *cnt
? -ERESTARTSYS
: 0;
1070 static void wake_up_partner(struct pipe_inode_info
*pipe
)
1072 wake_up_interruptible_all(&pipe
->rd_wait
);
1075 static int fifo_open(struct inode
*inode
, struct file
*filp
)
1077 struct pipe_inode_info
*pipe
;
1078 bool is_pipe
= inode
->i_sb
->s_magic
== PIPEFS_MAGIC
;
1081 filp
->f_version
= 0;
1083 spin_lock(&inode
->i_lock
);
1084 if (inode
->i_pipe
) {
1085 pipe
= inode
->i_pipe
;
1087 spin_unlock(&inode
->i_lock
);
1089 spin_unlock(&inode
->i_lock
);
1090 pipe
= alloc_pipe_info();
1094 spin_lock(&inode
->i_lock
);
1095 if (unlikely(inode
->i_pipe
)) {
1096 inode
->i_pipe
->files
++;
1097 spin_unlock(&inode
->i_lock
);
1098 free_pipe_info(pipe
);
1099 pipe
= inode
->i_pipe
;
1101 inode
->i_pipe
= pipe
;
1102 spin_unlock(&inode
->i_lock
);
1105 filp
->private_data
= pipe
;
1106 /* OK, we have a pipe and it's pinned down */
1110 /* We can only do regular read/write on fifos */
1111 stream_open(inode
, filp
);
1113 switch (filp
->f_mode
& (FMODE_READ
| FMODE_WRITE
)) {
1117 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1118 * opened, even when there is no process writing the FIFO.
1121 if (pipe
->readers
++ == 0)
1122 wake_up_partner(pipe
);
1124 if (!is_pipe
&& !pipe
->writers
) {
1125 if ((filp
->f_flags
& O_NONBLOCK
)) {
1126 /* suppress EPOLLHUP until we have
1128 filp
->f_version
= pipe
->w_counter
;
1130 if (wait_for_partner(pipe
, &pipe
->w_counter
))
1139 * POSIX.1 says that O_NONBLOCK means return -1 with
1140 * errno=ENXIO when there is no process reading the FIFO.
1143 if (!is_pipe
&& (filp
->f_flags
& O_NONBLOCK
) && !pipe
->readers
)
1147 if (!pipe
->writers
++)
1148 wake_up_partner(pipe
);
1150 if (!is_pipe
&& !pipe
->readers
) {
1151 if (wait_for_partner(pipe
, &pipe
->r_counter
))
1156 case FMODE_READ
| FMODE_WRITE
:
1159 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1160 * This implementation will NEVER block on a O_RDWR open, since
1161 * the process can at least talk to itself.
1168 if (pipe
->readers
== 1 || pipe
->writers
== 1)
1169 wake_up_partner(pipe
);
1178 __pipe_unlock(pipe
);
1182 if (!--pipe
->readers
)
1183 wake_up_interruptible(&pipe
->wr_wait
);
1188 if (!--pipe
->writers
)
1189 wake_up_interruptible_all(&pipe
->rd_wait
);
1194 __pipe_unlock(pipe
);
1196 put_pipe_info(inode
, pipe
);
1200 const struct file_operations pipefifo_fops
= {
1202 .llseek
= no_llseek
,
1203 .read_iter
= pipe_read
,
1204 .write_iter
= pipe_write
,
1206 .unlocked_ioctl
= pipe_ioctl
,
1207 .release
= pipe_release
,
1208 .fasync
= pipe_fasync
,
1212 * Currently we rely on the pipe array holding a power-of-2 number
1213 * of pages. Returns 0 on error.
1215 unsigned int round_pipe_size(unsigned long size
)
1217 if (size
> (1U << 31))
1220 /* Minimum pipe size, as required by POSIX */
1221 if (size
< PAGE_SIZE
)
1224 return roundup_pow_of_two(size
);
1228 * Resize the pipe ring to a number of slots.
1230 int pipe_resize_ring(struct pipe_inode_info
*pipe
, unsigned int nr_slots
)
1232 struct pipe_buffer
*bufs
;
1233 unsigned int head
, tail
, mask
, n
;
1236 * We can shrink the pipe, if arg is greater than the ring occupancy.
1237 * Since we don't expect a lot of shrink+grow operations, just free and
1238 * allocate again like we would do for growing. If the pipe currently
1239 * contains more buffers than arg, then return busy.
1241 mask
= pipe
->ring_size
- 1;
1244 n
= pipe_occupancy(pipe
->head
, pipe
->tail
);
1248 bufs
= kcalloc(nr_slots
, sizeof(*bufs
),
1249 GFP_KERNEL_ACCOUNT
| __GFP_NOWARN
);
1250 if (unlikely(!bufs
))
1254 * The pipe array wraps around, so just start the new one at zero
1255 * and adjust the indices.
1258 unsigned int h
= head
& mask
;
1259 unsigned int t
= tail
& mask
;
1261 memcpy(bufs
, pipe
->bufs
+ t
,
1262 n
* sizeof(struct pipe_buffer
));
1264 unsigned int tsize
= pipe
->ring_size
- t
;
1266 memcpy(bufs
+ tsize
, pipe
->bufs
,
1267 h
* sizeof(struct pipe_buffer
));
1268 memcpy(bufs
, pipe
->bufs
+ t
,
1269 tsize
* sizeof(struct pipe_buffer
));
1278 pipe
->ring_size
= nr_slots
;
1279 if (pipe
->max_usage
> nr_slots
)
1280 pipe
->max_usage
= nr_slots
;
1284 /* This might have made more room for writers */
1285 wake_up_interruptible(&pipe
->wr_wait
);
1290 * Allocate a new array of pipe buffers and copy the info over. Returns the
1291 * pipe size if successful, or return -ERROR on error.
1293 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long arg
)
1295 unsigned long user_bufs
;
1296 unsigned int nr_slots
, size
;
1299 #ifdef CONFIG_WATCH_QUEUE
1300 if (pipe
->watch_queue
)
1304 size
= round_pipe_size(arg
);
1305 nr_slots
= size
>> PAGE_SHIFT
;
1311 * If trying to increase the pipe capacity, check that an
1312 * unprivileged user is not trying to exceed various limits
1313 * (soft limit check here, hard limit check just below).
1314 * Decreasing the pipe capacity is always permitted, even
1315 * if the user is currently over a limit.
1317 if (nr_slots
> pipe
->max_usage
&&
1318 size
> pipe_max_size
&& !capable(CAP_SYS_RESOURCE
))
1321 user_bufs
= account_pipe_buffers(pipe
->user
, pipe
->nr_accounted
, nr_slots
);
1323 if (nr_slots
> pipe
->max_usage
&&
1324 (too_many_pipe_buffers_hard(user_bufs
) ||
1325 too_many_pipe_buffers_soft(user_bufs
)) &&
1326 pipe_is_unprivileged_user()) {
1328 goto out_revert_acct
;
1331 ret
= pipe_resize_ring(pipe
, nr_slots
);
1333 goto out_revert_acct
;
1335 pipe
->max_usage
= nr_slots
;
1336 pipe
->nr_accounted
= nr_slots
;
1337 return pipe
->max_usage
* PAGE_SIZE
;
1340 (void) account_pipe_buffers(pipe
->user
, nr_slots
, pipe
->nr_accounted
);
1345 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1346 * not enough to verify that this is a pipe.
1348 struct pipe_inode_info
*get_pipe_info(struct file
*file
, bool for_splice
)
1350 struct pipe_inode_info
*pipe
= file
->private_data
;
1352 if (file
->f_op
!= &pipefifo_fops
|| !pipe
)
1354 #ifdef CONFIG_WATCH_QUEUE
1355 if (for_splice
&& pipe
->watch_queue
)
1361 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1363 struct pipe_inode_info
*pipe
;
1366 pipe
= get_pipe_info(file
, false);
1374 ret
= pipe_set_size(pipe
, arg
);
1377 ret
= pipe
->max_usage
* PAGE_SIZE
;
1384 __pipe_unlock(pipe
);
1388 static const struct super_operations pipefs_ops
= {
1389 .destroy_inode
= free_inode_nonrcu
,
1390 .statfs
= simple_statfs
,
1394 * pipefs should _never_ be mounted by userland - too much of security hassle,
1395 * no real gain from having the whole whorehouse mounted. So we don't need
1396 * any operations on the root directory. However, we need a non-trivial
1397 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1400 static int pipefs_init_fs_context(struct fs_context
*fc
)
1402 struct pseudo_fs_context
*ctx
= init_pseudo(fc
, PIPEFS_MAGIC
);
1405 ctx
->ops
= &pipefs_ops
;
1406 ctx
->dops
= &pipefs_dentry_operations
;
1410 static struct file_system_type pipe_fs_type
= {
1412 .init_fs_context
= pipefs_init_fs_context
,
1413 .kill_sb
= kill_anon_super
,
1416 static int __init
init_pipe_fs(void)
1418 int err
= register_filesystem(&pipe_fs_type
);
1421 pipe_mnt
= kern_mount(&pipe_fs_type
);
1422 if (IS_ERR(pipe_mnt
)) {
1423 err
= PTR_ERR(pipe_mnt
);
1424 unregister_filesystem(&pipe_fs_type
);
1430 fs_initcall(init_pipe_fs
);