1 // SPDX-License-Identifier: GPL-2.0
3 * Performance events core code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
59 #include <asm/irq_regs.h>
61 typedef int (*remote_function_f
)(void *);
63 struct remote_function_call
{
64 struct task_struct
*p
;
65 remote_function_f func
;
70 static void remote_function(void *data
)
72 struct remote_function_call
*tfc
= data
;
73 struct task_struct
*p
= tfc
->p
;
77 if (task_cpu(p
) != smp_processor_id())
81 * Now that we're on right CPU with IRQs disabled, we can test
82 * if we hit the right task without races.
85 tfc
->ret
= -ESRCH
; /* No such (running) process */
90 tfc
->ret
= tfc
->func(tfc
->info
);
94 * task_function_call - call a function on the cpu on which a task runs
95 * @p: the task to evaluate
96 * @func: the function to be called
97 * @info: the function call argument
99 * Calls the function @func when the task is currently running. This might
100 * be on the current CPU, which just calls the function directly. This will
101 * retry due to any failures in smp_call_function_single(), such as if the
102 * task_cpu() goes offline concurrently.
104 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
109 struct remote_function_call data
= {
118 ret
= smp_call_function_single(task_cpu(p
), remote_function
,
133 * cpu_function_call - call a function on the cpu
134 * @func: the function to be called
135 * @info: the function call argument
137 * Calls the function @func on the remote cpu.
139 * returns: @func return value or -ENXIO when the cpu is offline
141 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
143 struct remote_function_call data
= {
147 .ret
= -ENXIO
, /* No such CPU */
150 smp_call_function_single(cpu
, remote_function
, &data
, 1);
155 static inline struct perf_cpu_context
*
156 __get_cpu_context(struct perf_event_context
*ctx
)
158 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
161 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
162 struct perf_event_context
*ctx
)
164 raw_spin_lock(&cpuctx
->ctx
.lock
);
166 raw_spin_lock(&ctx
->lock
);
169 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
170 struct perf_event_context
*ctx
)
173 raw_spin_unlock(&ctx
->lock
);
174 raw_spin_unlock(&cpuctx
->ctx
.lock
);
177 #define TASK_TOMBSTONE ((void *)-1L)
179 static bool is_kernel_event(struct perf_event
*event
)
181 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
185 * On task ctx scheduling...
187 * When !ctx->nr_events a task context will not be scheduled. This means
188 * we can disable the scheduler hooks (for performance) without leaving
189 * pending task ctx state.
191 * This however results in two special cases:
193 * - removing the last event from a task ctx; this is relatively straight
194 * forward and is done in __perf_remove_from_context.
196 * - adding the first event to a task ctx; this is tricky because we cannot
197 * rely on ctx->is_active and therefore cannot use event_function_call().
198 * See perf_install_in_context().
200 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
204 struct perf_event_context
*, void *);
206 struct event_function_struct
{
207 struct perf_event
*event
;
212 static int event_function(void *info
)
214 struct event_function_struct
*efs
= info
;
215 struct perf_event
*event
= efs
->event
;
216 struct perf_event_context
*ctx
= event
->ctx
;
217 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
218 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
221 lockdep_assert_irqs_disabled();
223 perf_ctx_lock(cpuctx
, task_ctx
);
225 * Since we do the IPI call without holding ctx->lock things can have
226 * changed, double check we hit the task we set out to hit.
229 if (ctx
->task
!= current
) {
235 * We only use event_function_call() on established contexts,
236 * and event_function() is only ever called when active (or
237 * rather, we'll have bailed in task_function_call() or the
238 * above ctx->task != current test), therefore we must have
239 * ctx->is_active here.
241 WARN_ON_ONCE(!ctx
->is_active
);
243 * And since we have ctx->is_active, cpuctx->task_ctx must
246 WARN_ON_ONCE(task_ctx
!= ctx
);
248 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
251 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
253 perf_ctx_unlock(cpuctx
, task_ctx
);
258 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
260 struct perf_event_context
*ctx
= event
->ctx
;
261 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
262 struct event_function_struct efs
= {
268 if (!event
->parent
) {
270 * If this is a !child event, we must hold ctx::mutex to
271 * stabilize the the event->ctx relation. See
272 * perf_event_ctx_lock().
274 lockdep_assert_held(&ctx
->mutex
);
278 cpu_function_call(event
->cpu
, event_function
, &efs
);
282 if (task
== TASK_TOMBSTONE
)
286 if (!task_function_call(task
, event_function
, &efs
))
289 raw_spin_lock_irq(&ctx
->lock
);
291 * Reload the task pointer, it might have been changed by
292 * a concurrent perf_event_context_sched_out().
295 if (task
== TASK_TOMBSTONE
) {
296 raw_spin_unlock_irq(&ctx
->lock
);
299 if (ctx
->is_active
) {
300 raw_spin_unlock_irq(&ctx
->lock
);
303 func(event
, NULL
, ctx
, data
);
304 raw_spin_unlock_irq(&ctx
->lock
);
308 * Similar to event_function_call() + event_function(), but hard assumes IRQs
309 * are already disabled and we're on the right CPU.
311 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
313 struct perf_event_context
*ctx
= event
->ctx
;
314 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
315 struct task_struct
*task
= READ_ONCE(ctx
->task
);
316 struct perf_event_context
*task_ctx
= NULL
;
318 lockdep_assert_irqs_disabled();
321 if (task
== TASK_TOMBSTONE
)
327 perf_ctx_lock(cpuctx
, task_ctx
);
330 if (task
== TASK_TOMBSTONE
)
335 * We must be either inactive or active and the right task,
336 * otherwise we're screwed, since we cannot IPI to somewhere
339 if (ctx
->is_active
) {
340 if (WARN_ON_ONCE(task
!= current
))
343 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
347 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
350 func(event
, cpuctx
, ctx
, data
);
352 perf_ctx_unlock(cpuctx
, task_ctx
);
355 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
356 PERF_FLAG_FD_OUTPUT |\
357 PERF_FLAG_PID_CGROUP |\
358 PERF_FLAG_FD_CLOEXEC)
361 * branch priv levels that need permission checks
363 #define PERF_SAMPLE_BRANCH_PERM_PLM \
364 (PERF_SAMPLE_BRANCH_KERNEL |\
365 PERF_SAMPLE_BRANCH_HV)
368 EVENT_FLEXIBLE
= 0x1,
371 /* see ctx_resched() for details */
373 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
377 * perf_sched_events : >0 events exist
378 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381 static void perf_sched_delayed(struct work_struct
*work
);
382 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
383 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
384 static DEFINE_MUTEX(perf_sched_mutex
);
385 static atomic_t perf_sched_count
;
387 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
388 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
390 static atomic_t nr_mmap_events __read_mostly
;
391 static atomic_t nr_comm_events __read_mostly
;
392 static atomic_t nr_namespaces_events __read_mostly
;
393 static atomic_t nr_task_events __read_mostly
;
394 static atomic_t nr_freq_events __read_mostly
;
395 static atomic_t nr_switch_events __read_mostly
;
396 static atomic_t nr_ksymbol_events __read_mostly
;
397 static atomic_t nr_bpf_events __read_mostly
;
398 static atomic_t nr_cgroup_events __read_mostly
;
399 static atomic_t nr_text_poke_events __read_mostly
;
401 static LIST_HEAD(pmus
);
402 static DEFINE_MUTEX(pmus_lock
);
403 static struct srcu_struct pmus_srcu
;
404 static cpumask_var_t perf_online_mask
;
407 * perf event paranoia level:
408 * -1 - not paranoid at all
409 * 0 - disallow raw tracepoint access for unpriv
410 * 1 - disallow cpu events for unpriv
411 * 2 - disallow kernel profiling for unpriv
413 int sysctl_perf_event_paranoid __read_mostly
= 2;
415 /* Minimum for 512 kiB + 1 user control page */
416 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
419 * max perf event sample rate
421 #define DEFAULT_MAX_SAMPLE_RATE 100000
422 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
423 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
425 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
427 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
428 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
430 static int perf_sample_allowed_ns __read_mostly
=
431 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
433 static void update_perf_cpu_limits(void)
435 u64 tmp
= perf_sample_period_ns
;
437 tmp
*= sysctl_perf_cpu_time_max_percent
;
438 tmp
= div_u64(tmp
, 100);
442 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
445 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
);
447 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
448 void *buffer
, size_t *lenp
, loff_t
*ppos
)
451 int perf_cpu
= sysctl_perf_cpu_time_max_percent
;
453 * If throttling is disabled don't allow the write:
455 if (write
&& (perf_cpu
== 100 || perf_cpu
== 0))
458 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
462 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
463 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
464 update_perf_cpu_limits();
469 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
471 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
472 void *buffer
, size_t *lenp
, loff_t
*ppos
)
474 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
479 if (sysctl_perf_cpu_time_max_percent
== 100 ||
480 sysctl_perf_cpu_time_max_percent
== 0) {
482 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
483 WRITE_ONCE(perf_sample_allowed_ns
, 0);
485 update_perf_cpu_limits();
492 * perf samples are done in some very critical code paths (NMIs).
493 * If they take too much CPU time, the system can lock up and not
494 * get any real work done. This will drop the sample rate when
495 * we detect that events are taking too long.
497 #define NR_ACCUMULATED_SAMPLES 128
498 static DEFINE_PER_CPU(u64
, running_sample_length
);
500 static u64 __report_avg
;
501 static u64 __report_allowed
;
503 static void perf_duration_warn(struct irq_work
*w
)
505 printk_ratelimited(KERN_INFO
506 "perf: interrupt took too long (%lld > %lld), lowering "
507 "kernel.perf_event_max_sample_rate to %d\n",
508 __report_avg
, __report_allowed
,
509 sysctl_perf_event_sample_rate
);
512 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
514 void perf_sample_event_took(u64 sample_len_ns
)
516 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
524 /* Decay the counter by 1 average sample. */
525 running_len
= __this_cpu_read(running_sample_length
);
526 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
527 running_len
+= sample_len_ns
;
528 __this_cpu_write(running_sample_length
, running_len
);
531 * Note: this will be biased artifically low until we have
532 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
533 * from having to maintain a count.
535 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
536 if (avg_len
<= max_len
)
539 __report_avg
= avg_len
;
540 __report_allowed
= max_len
;
543 * Compute a throttle threshold 25% below the current duration.
545 avg_len
+= avg_len
/ 4;
546 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
552 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
553 WRITE_ONCE(max_samples_per_tick
, max
);
555 sysctl_perf_event_sample_rate
= max
* HZ
;
556 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
558 if (!irq_work_queue(&perf_duration_work
)) {
559 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
560 "kernel.perf_event_max_sample_rate to %d\n",
561 __report_avg
, __report_allowed
,
562 sysctl_perf_event_sample_rate
);
566 static atomic64_t perf_event_id
;
568 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
569 enum event_type_t event_type
);
571 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
572 enum event_type_t event_type
,
573 struct task_struct
*task
);
575 static void update_context_time(struct perf_event_context
*ctx
);
576 static u64
perf_event_time(struct perf_event
*event
);
578 void __weak
perf_event_print_debug(void) { }
580 extern __weak
const char *perf_pmu_name(void)
585 static inline u64
perf_clock(void)
587 return local_clock();
590 static inline u64
perf_event_clock(struct perf_event
*event
)
592 return event
->clock();
596 * State based event timekeeping...
598 * The basic idea is to use event->state to determine which (if any) time
599 * fields to increment with the current delta. This means we only need to
600 * update timestamps when we change state or when they are explicitly requested
603 * Event groups make things a little more complicated, but not terribly so. The
604 * rules for a group are that if the group leader is OFF the entire group is
605 * OFF, irrespecive of what the group member states are. This results in
606 * __perf_effective_state().
608 * A futher ramification is that when a group leader flips between OFF and
609 * !OFF, we need to update all group member times.
612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613 * need to make sure the relevant context time is updated before we try and
614 * update our timestamps.
617 static __always_inline
enum perf_event_state
618 __perf_effective_state(struct perf_event
*event
)
620 struct perf_event
*leader
= event
->group_leader
;
622 if (leader
->state
<= PERF_EVENT_STATE_OFF
)
623 return leader
->state
;
628 static __always_inline
void
629 __perf_update_times(struct perf_event
*event
, u64 now
, u64
*enabled
, u64
*running
)
631 enum perf_event_state state
= __perf_effective_state(event
);
632 u64 delta
= now
- event
->tstamp
;
634 *enabled
= event
->total_time_enabled
;
635 if (state
>= PERF_EVENT_STATE_INACTIVE
)
638 *running
= event
->total_time_running
;
639 if (state
>= PERF_EVENT_STATE_ACTIVE
)
643 static void perf_event_update_time(struct perf_event
*event
)
645 u64 now
= perf_event_time(event
);
647 __perf_update_times(event
, now
, &event
->total_time_enabled
,
648 &event
->total_time_running
);
652 static void perf_event_update_sibling_time(struct perf_event
*leader
)
654 struct perf_event
*sibling
;
656 for_each_sibling_event(sibling
, leader
)
657 perf_event_update_time(sibling
);
661 perf_event_set_state(struct perf_event
*event
, enum perf_event_state state
)
663 if (event
->state
== state
)
666 perf_event_update_time(event
);
668 * If a group leader gets enabled/disabled all its siblings
671 if ((event
->state
< 0) ^ (state
< 0))
672 perf_event_update_sibling_time(event
);
674 WRITE_ONCE(event
->state
, state
);
677 #ifdef CONFIG_CGROUP_PERF
680 perf_cgroup_match(struct perf_event
*event
)
682 struct perf_event_context
*ctx
= event
->ctx
;
683 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
685 /* @event doesn't care about cgroup */
689 /* wants specific cgroup scope but @cpuctx isn't associated with any */
694 * Cgroup scoping is recursive. An event enabled for a cgroup is
695 * also enabled for all its descendant cgroups. If @cpuctx's
696 * cgroup is a descendant of @event's (the test covers identity
697 * case), it's a match.
699 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
700 event
->cgrp
->css
.cgroup
);
703 static inline void perf_detach_cgroup(struct perf_event
*event
)
705 css_put(&event
->cgrp
->css
);
709 static inline int is_cgroup_event(struct perf_event
*event
)
711 return event
->cgrp
!= NULL
;
714 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
716 struct perf_cgroup_info
*t
;
718 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
722 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
724 struct perf_cgroup_info
*info
;
729 info
= this_cpu_ptr(cgrp
->info
);
731 info
->time
+= now
- info
->timestamp
;
732 info
->timestamp
= now
;
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
737 struct perf_cgroup
*cgrp
= cpuctx
->cgrp
;
738 struct cgroup_subsys_state
*css
;
741 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
742 cgrp
= container_of(css
, struct perf_cgroup
, css
);
743 __update_cgrp_time(cgrp
);
748 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
750 struct perf_cgroup
*cgrp
;
753 * ensure we access cgroup data only when needed and
754 * when we know the cgroup is pinned (css_get)
756 if (!is_cgroup_event(event
))
759 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
761 * Do not update time when cgroup is not active
763 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
764 __update_cgrp_time(event
->cgrp
);
768 perf_cgroup_set_timestamp(struct task_struct
*task
,
769 struct perf_event_context
*ctx
)
771 struct perf_cgroup
*cgrp
;
772 struct perf_cgroup_info
*info
;
773 struct cgroup_subsys_state
*css
;
776 * ctx->lock held by caller
777 * ensure we do not access cgroup data
778 * unless we have the cgroup pinned (css_get)
780 if (!task
|| !ctx
->nr_cgroups
)
783 cgrp
= perf_cgroup_from_task(task
, ctx
);
785 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
786 cgrp
= container_of(css
, struct perf_cgroup
, css
);
787 info
= this_cpu_ptr(cgrp
->info
);
788 info
->timestamp
= ctx
->timestamp
;
792 static DEFINE_PER_CPU(struct list_head
, cgrp_cpuctx_list
);
794 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
798 * reschedule events based on the cgroup constraint of task.
800 * mode SWOUT : schedule out everything
801 * mode SWIN : schedule in based on cgroup for next
803 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
805 struct perf_cpu_context
*cpuctx
;
806 struct list_head
*list
;
810 * Disable interrupts and preemption to avoid this CPU's
811 * cgrp_cpuctx_entry to change under us.
813 local_irq_save(flags
);
815 list
= this_cpu_ptr(&cgrp_cpuctx_list
);
816 list_for_each_entry(cpuctx
, list
, cgrp_cpuctx_entry
) {
817 WARN_ON_ONCE(cpuctx
->ctx
.nr_cgroups
== 0);
819 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
820 perf_pmu_disable(cpuctx
->ctx
.pmu
);
822 if (mode
& PERF_CGROUP_SWOUT
) {
823 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
825 * must not be done before ctxswout due
826 * to event_filter_match() in event_sched_out()
831 if (mode
& PERF_CGROUP_SWIN
) {
832 WARN_ON_ONCE(cpuctx
->cgrp
);
834 * set cgrp before ctxsw in to allow
835 * event_filter_match() to not have to pass
837 * we pass the cpuctx->ctx to perf_cgroup_from_task()
838 * because cgorup events are only per-cpu
840 cpuctx
->cgrp
= perf_cgroup_from_task(task
,
842 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
844 perf_pmu_enable(cpuctx
->ctx
.pmu
);
845 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
848 local_irq_restore(flags
);
851 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
852 struct task_struct
*next
)
854 struct perf_cgroup
*cgrp1
;
855 struct perf_cgroup
*cgrp2
= NULL
;
859 * we come here when we know perf_cgroup_events > 0
860 * we do not need to pass the ctx here because we know
861 * we are holding the rcu lock
863 cgrp1
= perf_cgroup_from_task(task
, NULL
);
864 cgrp2
= perf_cgroup_from_task(next
, NULL
);
867 * only schedule out current cgroup events if we know
868 * that we are switching to a different cgroup. Otherwise,
869 * do no touch the cgroup events.
872 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
877 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
878 struct task_struct
*task
)
880 struct perf_cgroup
*cgrp1
;
881 struct perf_cgroup
*cgrp2
= NULL
;
885 * we come here when we know perf_cgroup_events > 0
886 * we do not need to pass the ctx here because we know
887 * we are holding the rcu lock
889 cgrp1
= perf_cgroup_from_task(task
, NULL
);
890 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
893 * only need to schedule in cgroup events if we are changing
894 * cgroup during ctxsw. Cgroup events were not scheduled
895 * out of ctxsw out if that was not the case.
898 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
903 static int perf_cgroup_ensure_storage(struct perf_event
*event
,
904 struct cgroup_subsys_state
*css
)
906 struct perf_cpu_context
*cpuctx
;
907 struct perf_event
**storage
;
908 int cpu
, heap_size
, ret
= 0;
911 * Allow storage to have sufficent space for an iterator for each
912 * possibly nested cgroup plus an iterator for events with no cgroup.
914 for (heap_size
= 1; css
; css
= css
->parent
)
917 for_each_possible_cpu(cpu
) {
918 cpuctx
= per_cpu_ptr(event
->pmu
->pmu_cpu_context
, cpu
);
919 if (heap_size
<= cpuctx
->heap_size
)
922 storage
= kmalloc_node(heap_size
* sizeof(struct perf_event
*),
923 GFP_KERNEL
, cpu_to_node(cpu
));
929 raw_spin_lock_irq(&cpuctx
->ctx
.lock
);
930 if (cpuctx
->heap_size
< heap_size
) {
931 swap(cpuctx
->heap
, storage
);
932 if (storage
== cpuctx
->heap_default
)
934 cpuctx
->heap_size
= heap_size
;
936 raw_spin_unlock_irq(&cpuctx
->ctx
.lock
);
944 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
945 struct perf_event_attr
*attr
,
946 struct perf_event
*group_leader
)
948 struct perf_cgroup
*cgrp
;
949 struct cgroup_subsys_state
*css
;
950 struct fd f
= fdget(fd
);
956 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
957 &perf_event_cgrp_subsys
);
963 ret
= perf_cgroup_ensure_storage(event
, css
);
967 cgrp
= container_of(css
, struct perf_cgroup
, css
);
971 * all events in a group must monitor
972 * the same cgroup because a task belongs
973 * to only one perf cgroup at a time
975 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
976 perf_detach_cgroup(event
);
985 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
987 struct perf_cgroup_info
*t
;
988 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
989 event
->shadow_ctx_time
= now
- t
->timestamp
;
993 perf_cgroup_event_enable(struct perf_event
*event
, struct perf_event_context
*ctx
)
995 struct perf_cpu_context
*cpuctx
;
997 if (!is_cgroup_event(event
))
1001 * Because cgroup events are always per-cpu events,
1002 * @ctx == &cpuctx->ctx.
1004 cpuctx
= container_of(ctx
, struct perf_cpu_context
, ctx
);
1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 * matching the event's cgroup, we must do this for every new event,
1009 * because if the first would mismatch, the second would not try again
1010 * and we would leave cpuctx->cgrp unset.
1012 if (ctx
->is_active
&& !cpuctx
->cgrp
) {
1013 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
1015 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
1016 cpuctx
->cgrp
= cgrp
;
1019 if (ctx
->nr_cgroups
++)
1022 list_add(&cpuctx
->cgrp_cpuctx_entry
,
1023 per_cpu_ptr(&cgrp_cpuctx_list
, event
->cpu
));
1027 perf_cgroup_event_disable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1029 struct perf_cpu_context
*cpuctx
;
1031 if (!is_cgroup_event(event
))
1035 * Because cgroup events are always per-cpu events,
1036 * @ctx == &cpuctx->ctx.
1038 cpuctx
= container_of(ctx
, struct perf_cpu_context
, ctx
);
1040 if (--ctx
->nr_cgroups
)
1043 if (ctx
->is_active
&& cpuctx
->cgrp
)
1044 cpuctx
->cgrp
= NULL
;
1046 list_del(&cpuctx
->cgrp_cpuctx_entry
);
1049 #else /* !CONFIG_CGROUP_PERF */
1052 perf_cgroup_match(struct perf_event
*event
)
1057 static inline void perf_detach_cgroup(struct perf_event
*event
)
1060 static inline int is_cgroup_event(struct perf_event
*event
)
1065 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
1073 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
1074 struct task_struct
*next
)
1078 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
1079 struct task_struct
*task
)
1083 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
1084 struct perf_event_attr
*attr
,
1085 struct perf_event
*group_leader
)
1091 perf_cgroup_set_timestamp(struct task_struct
*task
,
1092 struct perf_event_context
*ctx
)
1097 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
1102 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
1106 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
1112 perf_cgroup_event_enable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1117 perf_cgroup_event_disable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1123 * set default to be dependent on timer tick just
1124 * like original code
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1128 * function must be called with interrupts disabled
1130 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1132 struct perf_cpu_context
*cpuctx
;
1135 lockdep_assert_irqs_disabled();
1137 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1138 rotations
= perf_rotate_context(cpuctx
);
1140 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1142 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1144 cpuctx
->hrtimer_active
= 0;
1145 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1147 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1152 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1153 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1156 /* no multiplexing needed for SW PMU */
1157 if (pmu
->task_ctx_nr
== perf_sw_context
)
1161 * check default is sane, if not set then force to
1162 * default interval (1/tick)
1164 interval
= pmu
->hrtimer_interval_ms
;
1166 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1168 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1170 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1171 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED_HARD
);
1172 timer
->function
= perf_mux_hrtimer_handler
;
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1177 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1178 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1179 unsigned long flags
;
1181 /* not for SW PMU */
1182 if (pmu
->task_ctx_nr
== perf_sw_context
)
1185 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1186 if (!cpuctx
->hrtimer_active
) {
1187 cpuctx
->hrtimer_active
= 1;
1188 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1189 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED_HARD
);
1191 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1196 void perf_pmu_disable(struct pmu
*pmu
)
1198 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1200 pmu
->pmu_disable(pmu
);
1203 void perf_pmu_enable(struct pmu
*pmu
)
1205 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1207 pmu
->pmu_enable(pmu
);
1210 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1213 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214 * perf_event_task_tick() are fully serialized because they're strictly cpu
1215 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216 * disabled, while perf_event_task_tick is called from IRQ context.
1218 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1220 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1222 lockdep_assert_irqs_disabled();
1224 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1226 list_add(&ctx
->active_ctx_list
, head
);
1229 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1231 lockdep_assert_irqs_disabled();
1233 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1235 list_del_init(&ctx
->active_ctx_list
);
1238 static void get_ctx(struct perf_event_context
*ctx
)
1240 refcount_inc(&ctx
->refcount
);
1243 static void *alloc_task_ctx_data(struct pmu
*pmu
)
1245 if (pmu
->task_ctx_cache
)
1246 return kmem_cache_zalloc(pmu
->task_ctx_cache
, GFP_KERNEL
);
1251 static void free_task_ctx_data(struct pmu
*pmu
, void *task_ctx_data
)
1253 if (pmu
->task_ctx_cache
&& task_ctx_data
)
1254 kmem_cache_free(pmu
->task_ctx_cache
, task_ctx_data
);
1257 static void free_ctx(struct rcu_head
*head
)
1259 struct perf_event_context
*ctx
;
1261 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1262 free_task_ctx_data(ctx
->pmu
, ctx
->task_ctx_data
);
1266 static void put_ctx(struct perf_event_context
*ctx
)
1268 if (refcount_dec_and_test(&ctx
->refcount
)) {
1269 if (ctx
->parent_ctx
)
1270 put_ctx(ctx
->parent_ctx
);
1271 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1272 put_task_struct(ctx
->task
);
1273 call_rcu(&ctx
->rcu_head
, free_ctx
);
1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279 * perf_pmu_migrate_context() we need some magic.
1281 * Those places that change perf_event::ctx will hold both
1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1284 * Lock ordering is by mutex address. There are two other sites where
1285 * perf_event_context::mutex nests and those are:
1287 * - perf_event_exit_task_context() [ child , 0 ]
1288 * perf_event_exit_event()
1289 * put_event() [ parent, 1 ]
1291 * - perf_event_init_context() [ parent, 0 ]
1292 * inherit_task_group()
1295 * perf_event_alloc()
1297 * perf_try_init_event() [ child , 1 ]
1299 * While it appears there is an obvious deadlock here -- the parent and child
1300 * nesting levels are inverted between the two. This is in fact safe because
1301 * life-time rules separate them. That is an exiting task cannot fork, and a
1302 * spawning task cannot (yet) exit.
1304 * But remember that that these are parent<->child context relations, and
1305 * migration does not affect children, therefore these two orderings should not
1308 * The change in perf_event::ctx does not affect children (as claimed above)
1309 * because the sys_perf_event_open() case will install a new event and break
1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311 * concerned with cpuctx and that doesn't have children.
1313 * The places that change perf_event::ctx will issue:
1315 * perf_remove_from_context();
1316 * synchronize_rcu();
1317 * perf_install_in_context();
1319 * to affect the change. The remove_from_context() + synchronize_rcu() should
1320 * quiesce the event, after which we can install it in the new location. This
1321 * means that only external vectors (perf_fops, prctl) can perturb the event
1322 * while in transit. Therefore all such accessors should also acquire
1323 * perf_event_context::mutex to serialize against this.
1325 * However; because event->ctx can change while we're waiting to acquire
1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1331 * task_struct::perf_event_mutex
1332 * perf_event_context::mutex
1333 * perf_event::child_mutex;
1334 * perf_event_context::lock
1335 * perf_event::mmap_mutex
1337 * perf_addr_filters_head::lock
1341 * cpuctx->mutex / perf_event_context::mutex
1343 static struct perf_event_context
*
1344 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1346 struct perf_event_context
*ctx
;
1350 ctx
= READ_ONCE(event
->ctx
);
1351 if (!refcount_inc_not_zero(&ctx
->refcount
)) {
1357 mutex_lock_nested(&ctx
->mutex
, nesting
);
1358 if (event
->ctx
!= ctx
) {
1359 mutex_unlock(&ctx
->mutex
);
1367 static inline struct perf_event_context
*
1368 perf_event_ctx_lock(struct perf_event
*event
)
1370 return perf_event_ctx_lock_nested(event
, 0);
1373 static void perf_event_ctx_unlock(struct perf_event
*event
,
1374 struct perf_event_context
*ctx
)
1376 mutex_unlock(&ctx
->mutex
);
1381 * This must be done under the ctx->lock, such as to serialize against
1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383 * calling scheduler related locks and ctx->lock nests inside those.
1385 static __must_check
struct perf_event_context
*
1386 unclone_ctx(struct perf_event_context
*ctx
)
1388 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1390 lockdep_assert_held(&ctx
->lock
);
1393 ctx
->parent_ctx
= NULL
;
1399 static u32
perf_event_pid_type(struct perf_event
*event
, struct task_struct
*p
,
1404 * only top level events have the pid namespace they were created in
1407 event
= event
->parent
;
1409 nr
= __task_pid_nr_ns(p
, type
, event
->ns
);
1410 /* avoid -1 if it is idle thread or runs in another ns */
1411 if (!nr
&& !pid_alive(p
))
1416 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1418 return perf_event_pid_type(event
, p
, PIDTYPE_TGID
);
1421 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1423 return perf_event_pid_type(event
, p
, PIDTYPE_PID
);
1427 * If we inherit events we want to return the parent event id
1430 static u64
primary_event_id(struct perf_event
*event
)
1435 id
= event
->parent
->id
;
1441 * Get the perf_event_context for a task and lock it.
1443 * This has to cope with with the fact that until it is locked,
1444 * the context could get moved to another task.
1446 static struct perf_event_context
*
1447 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1449 struct perf_event_context
*ctx
;
1453 * One of the few rules of preemptible RCU is that one cannot do
1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 * part of the read side critical section was irqs-enabled -- see
1456 * rcu_read_unlock_special().
1458 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 * side critical section has interrupts disabled.
1461 local_irq_save(*flags
);
1463 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1466 * If this context is a clone of another, it might
1467 * get swapped for another underneath us by
1468 * perf_event_task_sched_out, though the
1469 * rcu_read_lock() protects us from any context
1470 * getting freed. Lock the context and check if it
1471 * got swapped before we could get the lock, and retry
1472 * if so. If we locked the right context, then it
1473 * can't get swapped on us any more.
1475 raw_spin_lock(&ctx
->lock
);
1476 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1477 raw_spin_unlock(&ctx
->lock
);
1479 local_irq_restore(*flags
);
1483 if (ctx
->task
== TASK_TOMBSTONE
||
1484 !refcount_inc_not_zero(&ctx
->refcount
)) {
1485 raw_spin_unlock(&ctx
->lock
);
1488 WARN_ON_ONCE(ctx
->task
!= task
);
1493 local_irq_restore(*flags
);
1498 * Get the context for a task and increment its pin_count so it
1499 * can't get swapped to another task. This also increments its
1500 * reference count so that the context can't get freed.
1502 static struct perf_event_context
*
1503 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1505 struct perf_event_context
*ctx
;
1506 unsigned long flags
;
1508 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1511 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1516 static void perf_unpin_context(struct perf_event_context
*ctx
)
1518 unsigned long flags
;
1520 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1522 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1526 * Update the record of the current time in a context.
1528 static void update_context_time(struct perf_event_context
*ctx
)
1530 u64 now
= perf_clock();
1532 ctx
->time
+= now
- ctx
->timestamp
;
1533 ctx
->timestamp
= now
;
1536 static u64
perf_event_time(struct perf_event
*event
)
1538 struct perf_event_context
*ctx
= event
->ctx
;
1540 if (is_cgroup_event(event
))
1541 return perf_cgroup_event_time(event
);
1543 return ctx
? ctx
->time
: 0;
1546 static enum event_type_t
get_event_type(struct perf_event
*event
)
1548 struct perf_event_context
*ctx
= event
->ctx
;
1549 enum event_type_t event_type
;
1551 lockdep_assert_held(&ctx
->lock
);
1554 * It's 'group type', really, because if our group leader is
1555 * pinned, so are we.
1557 if (event
->group_leader
!= event
)
1558 event
= event
->group_leader
;
1560 event_type
= event
->attr
.pinned
? EVENT_PINNED
: EVENT_FLEXIBLE
;
1562 event_type
|= EVENT_CPU
;
1568 * Helper function to initialize event group nodes.
1570 static void init_event_group(struct perf_event
*event
)
1572 RB_CLEAR_NODE(&event
->group_node
);
1573 event
->group_index
= 0;
1577 * Extract pinned or flexible groups from the context
1578 * based on event attrs bits.
1580 static struct perf_event_groups
*
1581 get_event_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1583 if (event
->attr
.pinned
)
1584 return &ctx
->pinned_groups
;
1586 return &ctx
->flexible_groups
;
1590 * Helper function to initializes perf_event_group trees.
1592 static void perf_event_groups_init(struct perf_event_groups
*groups
)
1594 groups
->tree
= RB_ROOT
;
1599 * Compare function for event groups;
1601 * Implements complex key that first sorts by CPU and then by virtual index
1602 * which provides ordering when rotating groups for the same CPU.
1605 perf_event_groups_less(struct perf_event
*left
, struct perf_event
*right
)
1607 if (left
->cpu
< right
->cpu
)
1609 if (left
->cpu
> right
->cpu
)
1612 #ifdef CONFIG_CGROUP_PERF
1613 if (left
->cgrp
!= right
->cgrp
) {
1614 if (!left
->cgrp
|| !left
->cgrp
->css
.cgroup
) {
1616 * Left has no cgroup but right does, no cgroups come
1621 if (!right
->cgrp
|| !right
->cgrp
->css
.cgroup
) {
1623 * Right has no cgroup but left does, no cgroups come
1628 /* Two dissimilar cgroups, order by id. */
1629 if (left
->cgrp
->css
.cgroup
->kn
->id
< right
->cgrp
->css
.cgroup
->kn
->id
)
1636 if (left
->group_index
< right
->group_index
)
1638 if (left
->group_index
> right
->group_index
)
1645 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1646 * key (see perf_event_groups_less). This places it last inside the CPU
1650 perf_event_groups_insert(struct perf_event_groups
*groups
,
1651 struct perf_event
*event
)
1653 struct perf_event
*node_event
;
1654 struct rb_node
*parent
;
1655 struct rb_node
**node
;
1657 event
->group_index
= ++groups
->index
;
1659 node
= &groups
->tree
.rb_node
;
1664 node_event
= container_of(*node
, struct perf_event
, group_node
);
1666 if (perf_event_groups_less(event
, node_event
))
1667 node
= &parent
->rb_left
;
1669 node
= &parent
->rb_right
;
1672 rb_link_node(&event
->group_node
, parent
, node
);
1673 rb_insert_color(&event
->group_node
, &groups
->tree
);
1677 * Helper function to insert event into the pinned or flexible groups.
1680 add_event_to_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1682 struct perf_event_groups
*groups
;
1684 groups
= get_event_groups(event
, ctx
);
1685 perf_event_groups_insert(groups
, event
);
1689 * Delete a group from a tree.
1692 perf_event_groups_delete(struct perf_event_groups
*groups
,
1693 struct perf_event
*event
)
1695 WARN_ON_ONCE(RB_EMPTY_NODE(&event
->group_node
) ||
1696 RB_EMPTY_ROOT(&groups
->tree
));
1698 rb_erase(&event
->group_node
, &groups
->tree
);
1699 init_event_group(event
);
1703 * Helper function to delete event from its groups.
1706 del_event_from_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1708 struct perf_event_groups
*groups
;
1710 groups
= get_event_groups(event
, ctx
);
1711 perf_event_groups_delete(groups
, event
);
1715 * Get the leftmost event in the cpu/cgroup subtree.
1717 static struct perf_event
*
1718 perf_event_groups_first(struct perf_event_groups
*groups
, int cpu
,
1719 struct cgroup
*cgrp
)
1721 struct perf_event
*node_event
= NULL
, *match
= NULL
;
1722 struct rb_node
*node
= groups
->tree
.rb_node
;
1723 #ifdef CONFIG_CGROUP_PERF
1724 u64 node_cgrp_id
, cgrp_id
= 0;
1727 cgrp_id
= cgrp
->kn
->id
;
1731 node_event
= container_of(node
, struct perf_event
, group_node
);
1733 if (cpu
< node_event
->cpu
) {
1734 node
= node
->rb_left
;
1737 if (cpu
> node_event
->cpu
) {
1738 node
= node
->rb_right
;
1741 #ifdef CONFIG_CGROUP_PERF
1743 if (node_event
->cgrp
&& node_event
->cgrp
->css
.cgroup
)
1744 node_cgrp_id
= node_event
->cgrp
->css
.cgroup
->kn
->id
;
1746 if (cgrp_id
< node_cgrp_id
) {
1747 node
= node
->rb_left
;
1750 if (cgrp_id
> node_cgrp_id
) {
1751 node
= node
->rb_right
;
1756 node
= node
->rb_left
;
1763 * Like rb_entry_next_safe() for the @cpu subtree.
1765 static struct perf_event
*
1766 perf_event_groups_next(struct perf_event
*event
)
1768 struct perf_event
*next
;
1769 #ifdef CONFIG_CGROUP_PERF
1770 u64 curr_cgrp_id
= 0;
1771 u64 next_cgrp_id
= 0;
1774 next
= rb_entry_safe(rb_next(&event
->group_node
), typeof(*event
), group_node
);
1775 if (next
== NULL
|| next
->cpu
!= event
->cpu
)
1778 #ifdef CONFIG_CGROUP_PERF
1779 if (event
->cgrp
&& event
->cgrp
->css
.cgroup
)
1780 curr_cgrp_id
= event
->cgrp
->css
.cgroup
->kn
->id
;
1782 if (next
->cgrp
&& next
->cgrp
->css
.cgroup
)
1783 next_cgrp_id
= next
->cgrp
->css
.cgroup
->kn
->id
;
1785 if (curr_cgrp_id
!= next_cgrp_id
)
1792 * Iterate through the whole groups tree.
1794 #define perf_event_groups_for_each(event, groups) \
1795 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1796 typeof(*event), group_node); event; \
1797 event = rb_entry_safe(rb_next(&event->group_node), \
1798 typeof(*event), group_node))
1801 * Add an event from the lists for its context.
1802 * Must be called with ctx->mutex and ctx->lock held.
1805 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1807 lockdep_assert_held(&ctx
->lock
);
1809 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1810 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1812 event
->tstamp
= perf_event_time(event
);
1815 * If we're a stand alone event or group leader, we go to the context
1816 * list, group events are kept attached to the group so that
1817 * perf_group_detach can, at all times, locate all siblings.
1819 if (event
->group_leader
== event
) {
1820 event
->group_caps
= event
->event_caps
;
1821 add_event_to_groups(event
, ctx
);
1824 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1826 if (event
->attr
.inherit_stat
)
1829 if (event
->state
> PERF_EVENT_STATE_OFF
)
1830 perf_cgroup_event_enable(event
, ctx
);
1836 * Initialize event state based on the perf_event_attr::disabled.
1838 static inline void perf_event__state_init(struct perf_event
*event
)
1840 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1841 PERF_EVENT_STATE_INACTIVE
;
1844 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1846 int entry
= sizeof(u64
); /* value */
1850 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1851 size
+= sizeof(u64
);
1853 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1854 size
+= sizeof(u64
);
1856 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1857 entry
+= sizeof(u64
);
1859 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1861 size
+= sizeof(u64
);
1865 event
->read_size
= size
;
1868 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1870 struct perf_sample_data
*data
;
1873 if (sample_type
& PERF_SAMPLE_IP
)
1874 size
+= sizeof(data
->ip
);
1876 if (sample_type
& PERF_SAMPLE_ADDR
)
1877 size
+= sizeof(data
->addr
);
1879 if (sample_type
& PERF_SAMPLE_PERIOD
)
1880 size
+= sizeof(data
->period
);
1882 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1883 size
+= sizeof(data
->weight
);
1885 if (sample_type
& PERF_SAMPLE_READ
)
1886 size
+= event
->read_size
;
1888 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1889 size
+= sizeof(data
->data_src
.val
);
1891 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1892 size
+= sizeof(data
->txn
);
1894 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
1895 size
+= sizeof(data
->phys_addr
);
1897 if (sample_type
& PERF_SAMPLE_CGROUP
)
1898 size
+= sizeof(data
->cgroup
);
1900 if (sample_type
& PERF_SAMPLE_DATA_PAGE_SIZE
)
1901 size
+= sizeof(data
->data_page_size
);
1903 if (sample_type
& PERF_SAMPLE_CODE_PAGE_SIZE
)
1904 size
+= sizeof(data
->code_page_size
);
1906 event
->header_size
= size
;
1910 * Called at perf_event creation and when events are attached/detached from a
1913 static void perf_event__header_size(struct perf_event
*event
)
1915 __perf_event_read_size(event
,
1916 event
->group_leader
->nr_siblings
);
1917 __perf_event_header_size(event
, event
->attr
.sample_type
);
1920 static void perf_event__id_header_size(struct perf_event
*event
)
1922 struct perf_sample_data
*data
;
1923 u64 sample_type
= event
->attr
.sample_type
;
1926 if (sample_type
& PERF_SAMPLE_TID
)
1927 size
+= sizeof(data
->tid_entry
);
1929 if (sample_type
& PERF_SAMPLE_TIME
)
1930 size
+= sizeof(data
->time
);
1932 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1933 size
+= sizeof(data
->id
);
1935 if (sample_type
& PERF_SAMPLE_ID
)
1936 size
+= sizeof(data
->id
);
1938 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1939 size
+= sizeof(data
->stream_id
);
1941 if (sample_type
& PERF_SAMPLE_CPU
)
1942 size
+= sizeof(data
->cpu_entry
);
1944 event
->id_header_size
= size
;
1947 static bool perf_event_validate_size(struct perf_event
*event
)
1950 * The values computed here will be over-written when we actually
1953 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1954 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1955 perf_event__id_header_size(event
);
1958 * Sum the lot; should not exceed the 64k limit we have on records.
1959 * Conservative limit to allow for callchains and other variable fields.
1961 if (event
->read_size
+ event
->header_size
+
1962 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1968 static void perf_group_attach(struct perf_event
*event
)
1970 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1972 lockdep_assert_held(&event
->ctx
->lock
);
1975 * We can have double attach due to group movement in perf_event_open.
1977 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1980 event
->attach_state
|= PERF_ATTACH_GROUP
;
1982 if (group_leader
== event
)
1985 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1987 group_leader
->group_caps
&= event
->event_caps
;
1989 list_add_tail(&event
->sibling_list
, &group_leader
->sibling_list
);
1990 group_leader
->nr_siblings
++;
1992 perf_event__header_size(group_leader
);
1994 for_each_sibling_event(pos
, group_leader
)
1995 perf_event__header_size(pos
);
1999 * Remove an event from the lists for its context.
2000 * Must be called with ctx->mutex and ctx->lock held.
2003 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
2005 WARN_ON_ONCE(event
->ctx
!= ctx
);
2006 lockdep_assert_held(&ctx
->lock
);
2009 * We can have double detach due to exit/hot-unplug + close.
2011 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
2014 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
2017 if (event
->attr
.inherit_stat
)
2020 list_del_rcu(&event
->event_entry
);
2022 if (event
->group_leader
== event
)
2023 del_event_from_groups(event
, ctx
);
2026 * If event was in error state, then keep it
2027 * that way, otherwise bogus counts will be
2028 * returned on read(). The only way to get out
2029 * of error state is by explicit re-enabling
2032 if (event
->state
> PERF_EVENT_STATE_OFF
) {
2033 perf_cgroup_event_disable(event
, ctx
);
2034 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
2041 perf_aux_output_match(struct perf_event
*event
, struct perf_event
*aux_event
)
2043 if (!has_aux(aux_event
))
2046 if (!event
->pmu
->aux_output_match
)
2049 return event
->pmu
->aux_output_match(aux_event
);
2052 static void put_event(struct perf_event
*event
);
2053 static void event_sched_out(struct perf_event
*event
,
2054 struct perf_cpu_context
*cpuctx
,
2055 struct perf_event_context
*ctx
);
2057 static void perf_put_aux_event(struct perf_event
*event
)
2059 struct perf_event_context
*ctx
= event
->ctx
;
2060 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2061 struct perf_event
*iter
;
2064 * If event uses aux_event tear down the link
2066 if (event
->aux_event
) {
2067 iter
= event
->aux_event
;
2068 event
->aux_event
= NULL
;
2074 * If the event is an aux_event, tear down all links to
2075 * it from other events.
2077 for_each_sibling_event(iter
, event
->group_leader
) {
2078 if (iter
->aux_event
!= event
)
2081 iter
->aux_event
= NULL
;
2085 * If it's ACTIVE, schedule it out and put it into ERROR
2086 * state so that we don't try to schedule it again. Note
2087 * that perf_event_enable() will clear the ERROR status.
2089 event_sched_out(iter
, cpuctx
, ctx
);
2090 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
2094 static bool perf_need_aux_event(struct perf_event
*event
)
2096 return !!event
->attr
.aux_output
|| !!event
->attr
.aux_sample_size
;
2099 static int perf_get_aux_event(struct perf_event
*event
,
2100 struct perf_event
*group_leader
)
2103 * Our group leader must be an aux event if we want to be
2104 * an aux_output. This way, the aux event will precede its
2105 * aux_output events in the group, and therefore will always
2112 * aux_output and aux_sample_size are mutually exclusive.
2114 if (event
->attr
.aux_output
&& event
->attr
.aux_sample_size
)
2117 if (event
->attr
.aux_output
&&
2118 !perf_aux_output_match(event
, group_leader
))
2121 if (event
->attr
.aux_sample_size
&& !group_leader
->pmu
->snapshot_aux
)
2124 if (!atomic_long_inc_not_zero(&group_leader
->refcount
))
2128 * Link aux_outputs to their aux event; this is undone in
2129 * perf_group_detach() by perf_put_aux_event(). When the
2130 * group in torn down, the aux_output events loose their
2131 * link to the aux_event and can't schedule any more.
2133 event
->aux_event
= group_leader
;
2138 static inline struct list_head
*get_event_list(struct perf_event
*event
)
2140 struct perf_event_context
*ctx
= event
->ctx
;
2141 return event
->attr
.pinned
? &ctx
->pinned_active
: &ctx
->flexible_active
;
2145 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2146 * cannot exist on their own, schedule them out and move them into the ERROR
2147 * state. Also see _perf_event_enable(), it will not be able to recover
2150 static inline void perf_remove_sibling_event(struct perf_event
*event
)
2152 struct perf_event_context
*ctx
= event
->ctx
;
2153 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2155 event_sched_out(event
, cpuctx
, ctx
);
2156 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
2159 static void perf_group_detach(struct perf_event
*event
)
2161 struct perf_event
*leader
= event
->group_leader
;
2162 struct perf_event
*sibling
, *tmp
;
2163 struct perf_event_context
*ctx
= event
->ctx
;
2165 lockdep_assert_held(&ctx
->lock
);
2168 * We can have double detach due to exit/hot-unplug + close.
2170 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
2173 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
2175 perf_put_aux_event(event
);
2178 * If this is a sibling, remove it from its group.
2180 if (leader
!= event
) {
2181 list_del_init(&event
->sibling_list
);
2182 event
->group_leader
->nr_siblings
--;
2187 * If this was a group event with sibling events then
2188 * upgrade the siblings to singleton events by adding them
2189 * to whatever list we are on.
2191 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, sibling_list
) {
2193 if (sibling
->event_caps
& PERF_EV_CAP_SIBLING
)
2194 perf_remove_sibling_event(sibling
);
2196 sibling
->group_leader
= sibling
;
2197 list_del_init(&sibling
->sibling_list
);
2199 /* Inherit group flags from the previous leader */
2200 sibling
->group_caps
= event
->group_caps
;
2202 if (!RB_EMPTY_NODE(&event
->group_node
)) {
2203 add_event_to_groups(sibling
, event
->ctx
);
2205 if (sibling
->state
== PERF_EVENT_STATE_ACTIVE
)
2206 list_add_tail(&sibling
->active_list
, get_event_list(sibling
));
2209 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
2213 for_each_sibling_event(tmp
, leader
)
2214 perf_event__header_size(tmp
);
2216 perf_event__header_size(leader
);
2219 static bool is_orphaned_event(struct perf_event
*event
)
2221 return event
->state
== PERF_EVENT_STATE_DEAD
;
2224 static inline int __pmu_filter_match(struct perf_event
*event
)
2226 struct pmu
*pmu
= event
->pmu
;
2227 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
2231 * Check whether we should attempt to schedule an event group based on
2232 * PMU-specific filtering. An event group can consist of HW and SW events,
2233 * potentially with a SW leader, so we must check all the filters, to
2234 * determine whether a group is schedulable:
2236 static inline int pmu_filter_match(struct perf_event
*event
)
2238 struct perf_event
*sibling
;
2240 if (!__pmu_filter_match(event
))
2243 for_each_sibling_event(sibling
, event
) {
2244 if (!__pmu_filter_match(sibling
))
2252 event_filter_match(struct perf_event
*event
)
2254 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
2255 perf_cgroup_match(event
) && pmu_filter_match(event
);
2259 event_sched_out(struct perf_event
*event
,
2260 struct perf_cpu_context
*cpuctx
,
2261 struct perf_event_context
*ctx
)
2263 enum perf_event_state state
= PERF_EVENT_STATE_INACTIVE
;
2265 WARN_ON_ONCE(event
->ctx
!= ctx
);
2266 lockdep_assert_held(&ctx
->lock
);
2268 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2272 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2273 * we can schedule events _OUT_ individually through things like
2274 * __perf_remove_from_context().
2276 list_del_init(&event
->active_list
);
2278 perf_pmu_disable(event
->pmu
);
2280 event
->pmu
->del(event
, 0);
2283 if (READ_ONCE(event
->pending_disable
) >= 0) {
2284 WRITE_ONCE(event
->pending_disable
, -1);
2285 perf_cgroup_event_disable(event
, ctx
);
2286 state
= PERF_EVENT_STATE_OFF
;
2288 perf_event_set_state(event
, state
);
2290 if (!is_software_event(event
))
2291 cpuctx
->active_oncpu
--;
2292 if (!--ctx
->nr_active
)
2293 perf_event_ctx_deactivate(ctx
);
2294 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2296 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
2297 cpuctx
->exclusive
= 0;
2299 perf_pmu_enable(event
->pmu
);
2303 group_sched_out(struct perf_event
*group_event
,
2304 struct perf_cpu_context
*cpuctx
,
2305 struct perf_event_context
*ctx
)
2307 struct perf_event
*event
;
2309 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2312 perf_pmu_disable(ctx
->pmu
);
2314 event_sched_out(group_event
, cpuctx
, ctx
);
2317 * Schedule out siblings (if any):
2319 for_each_sibling_event(event
, group_event
)
2320 event_sched_out(event
, cpuctx
, ctx
);
2322 perf_pmu_enable(ctx
->pmu
);
2325 #define DETACH_GROUP 0x01UL
2328 * Cross CPU call to remove a performance event
2330 * We disable the event on the hardware level first. After that we
2331 * remove it from the context list.
2334 __perf_remove_from_context(struct perf_event
*event
,
2335 struct perf_cpu_context
*cpuctx
,
2336 struct perf_event_context
*ctx
,
2339 unsigned long flags
= (unsigned long)info
;
2341 if (ctx
->is_active
& EVENT_TIME
) {
2342 update_context_time(ctx
);
2343 update_cgrp_time_from_cpuctx(cpuctx
);
2346 event_sched_out(event
, cpuctx
, ctx
);
2347 if (flags
& DETACH_GROUP
)
2348 perf_group_detach(event
);
2349 list_del_event(event
, ctx
);
2351 if (!ctx
->nr_events
&& ctx
->is_active
) {
2353 ctx
->rotate_necessary
= 0;
2355 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2356 cpuctx
->task_ctx
= NULL
;
2362 * Remove the event from a task's (or a CPU's) list of events.
2364 * If event->ctx is a cloned context, callers must make sure that
2365 * every task struct that event->ctx->task could possibly point to
2366 * remains valid. This is OK when called from perf_release since
2367 * that only calls us on the top-level context, which can't be a clone.
2368 * When called from perf_event_exit_task, it's OK because the
2369 * context has been detached from its task.
2371 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
2373 struct perf_event_context
*ctx
= event
->ctx
;
2375 lockdep_assert_held(&ctx
->mutex
);
2377 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
2380 * The above event_function_call() can NO-OP when it hits
2381 * TASK_TOMBSTONE. In that case we must already have been detached
2382 * from the context (by perf_event_exit_event()) but the grouping
2383 * might still be in-tact.
2385 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
2386 if ((flags
& DETACH_GROUP
) &&
2387 (event
->attach_state
& PERF_ATTACH_GROUP
)) {
2389 * Since in that case we cannot possibly be scheduled, simply
2392 raw_spin_lock_irq(&ctx
->lock
);
2393 perf_group_detach(event
);
2394 raw_spin_unlock_irq(&ctx
->lock
);
2399 * Cross CPU call to disable a performance event
2401 static void __perf_event_disable(struct perf_event
*event
,
2402 struct perf_cpu_context
*cpuctx
,
2403 struct perf_event_context
*ctx
,
2406 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
2409 if (ctx
->is_active
& EVENT_TIME
) {
2410 update_context_time(ctx
);
2411 update_cgrp_time_from_event(event
);
2414 if (event
== event
->group_leader
)
2415 group_sched_out(event
, cpuctx
, ctx
);
2417 event_sched_out(event
, cpuctx
, ctx
);
2419 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
2420 perf_cgroup_event_disable(event
, ctx
);
2426 * If event->ctx is a cloned context, callers must make sure that
2427 * every task struct that event->ctx->task could possibly point to
2428 * remains valid. This condition is satisfied when called through
2429 * perf_event_for_each_child or perf_event_for_each because they
2430 * hold the top-level event's child_mutex, so any descendant that
2431 * goes to exit will block in perf_event_exit_event().
2433 * When called from perf_pending_event it's OK because event->ctx
2434 * is the current context on this CPU and preemption is disabled,
2435 * hence we can't get into perf_event_task_sched_out for this context.
2437 static void _perf_event_disable(struct perf_event
*event
)
2439 struct perf_event_context
*ctx
= event
->ctx
;
2441 raw_spin_lock_irq(&ctx
->lock
);
2442 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
2443 raw_spin_unlock_irq(&ctx
->lock
);
2446 raw_spin_unlock_irq(&ctx
->lock
);
2448 event_function_call(event
, __perf_event_disable
, NULL
);
2451 void perf_event_disable_local(struct perf_event
*event
)
2453 event_function_local(event
, __perf_event_disable
, NULL
);
2457 * Strictly speaking kernel users cannot create groups and therefore this
2458 * interface does not need the perf_event_ctx_lock() magic.
2460 void perf_event_disable(struct perf_event
*event
)
2462 struct perf_event_context
*ctx
;
2464 ctx
= perf_event_ctx_lock(event
);
2465 _perf_event_disable(event
);
2466 perf_event_ctx_unlock(event
, ctx
);
2468 EXPORT_SYMBOL_GPL(perf_event_disable
);
2470 void perf_event_disable_inatomic(struct perf_event
*event
)
2472 WRITE_ONCE(event
->pending_disable
, smp_processor_id());
2473 /* can fail, see perf_pending_event_disable() */
2474 irq_work_queue(&event
->pending
);
2477 static void perf_set_shadow_time(struct perf_event
*event
,
2478 struct perf_event_context
*ctx
)
2481 * use the correct time source for the time snapshot
2483 * We could get by without this by leveraging the
2484 * fact that to get to this function, the caller
2485 * has most likely already called update_context_time()
2486 * and update_cgrp_time_xx() and thus both timestamp
2487 * are identical (or very close). Given that tstamp is,
2488 * already adjusted for cgroup, we could say that:
2489 * tstamp - ctx->timestamp
2491 * tstamp - cgrp->timestamp.
2493 * Then, in perf_output_read(), the calculation would
2494 * work with no changes because:
2495 * - event is guaranteed scheduled in
2496 * - no scheduled out in between
2497 * - thus the timestamp would be the same
2499 * But this is a bit hairy.
2501 * So instead, we have an explicit cgroup call to remain
2502 * within the time time source all along. We believe it
2503 * is cleaner and simpler to understand.
2505 if (is_cgroup_event(event
))
2506 perf_cgroup_set_shadow_time(event
, event
->tstamp
);
2508 event
->shadow_ctx_time
= event
->tstamp
- ctx
->timestamp
;
2511 #define MAX_INTERRUPTS (~0ULL)
2513 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2514 static void perf_log_itrace_start(struct perf_event
*event
);
2517 event_sched_in(struct perf_event
*event
,
2518 struct perf_cpu_context
*cpuctx
,
2519 struct perf_event_context
*ctx
)
2523 WARN_ON_ONCE(event
->ctx
!= ctx
);
2525 lockdep_assert_held(&ctx
->lock
);
2527 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2530 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2532 * Order event::oncpu write to happen before the ACTIVE state is
2533 * visible. This allows perf_event_{stop,read}() to observe the correct
2534 * ->oncpu if it sees ACTIVE.
2537 perf_event_set_state(event
, PERF_EVENT_STATE_ACTIVE
);
2540 * Unthrottle events, since we scheduled we might have missed several
2541 * ticks already, also for a heavily scheduling task there is little
2542 * guarantee it'll get a tick in a timely manner.
2544 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2545 perf_log_throttle(event
, 1);
2546 event
->hw
.interrupts
= 0;
2549 perf_pmu_disable(event
->pmu
);
2551 perf_set_shadow_time(event
, ctx
);
2553 perf_log_itrace_start(event
);
2555 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2556 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2562 if (!is_software_event(event
))
2563 cpuctx
->active_oncpu
++;
2564 if (!ctx
->nr_active
++)
2565 perf_event_ctx_activate(ctx
);
2566 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2569 if (event
->attr
.exclusive
)
2570 cpuctx
->exclusive
= 1;
2573 perf_pmu_enable(event
->pmu
);
2579 group_sched_in(struct perf_event
*group_event
,
2580 struct perf_cpu_context
*cpuctx
,
2581 struct perf_event_context
*ctx
)
2583 struct perf_event
*event
, *partial_group
= NULL
;
2584 struct pmu
*pmu
= ctx
->pmu
;
2586 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2589 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2591 if (event_sched_in(group_event
, cpuctx
, ctx
))
2595 * Schedule in siblings as one group (if any):
2597 for_each_sibling_event(event
, group_event
) {
2598 if (event_sched_in(event
, cpuctx
, ctx
)) {
2599 partial_group
= event
;
2604 if (!pmu
->commit_txn(pmu
))
2609 * Groups can be scheduled in as one unit only, so undo any
2610 * partial group before returning:
2611 * The events up to the failed event are scheduled out normally.
2613 for_each_sibling_event(event
, group_event
) {
2614 if (event
== partial_group
)
2617 event_sched_out(event
, cpuctx
, ctx
);
2619 event_sched_out(group_event
, cpuctx
, ctx
);
2622 pmu
->cancel_txn(pmu
);
2627 * Work out whether we can put this event group on the CPU now.
2629 static int group_can_go_on(struct perf_event
*event
,
2630 struct perf_cpu_context
*cpuctx
,
2634 * Groups consisting entirely of software events can always go on.
2636 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2639 * If an exclusive group is already on, no other hardware
2642 if (cpuctx
->exclusive
)
2645 * If this group is exclusive and there are already
2646 * events on the CPU, it can't go on.
2648 if (event
->attr
.exclusive
&& !list_empty(get_event_list(event
)))
2651 * Otherwise, try to add it if all previous groups were able
2657 static void add_event_to_ctx(struct perf_event
*event
,
2658 struct perf_event_context
*ctx
)
2660 list_add_event(event
, ctx
);
2661 perf_group_attach(event
);
2664 static void ctx_sched_out(struct perf_event_context
*ctx
,
2665 struct perf_cpu_context
*cpuctx
,
2666 enum event_type_t event_type
);
2668 ctx_sched_in(struct perf_event_context
*ctx
,
2669 struct perf_cpu_context
*cpuctx
,
2670 enum event_type_t event_type
,
2671 struct task_struct
*task
);
2673 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2674 struct perf_event_context
*ctx
,
2675 enum event_type_t event_type
)
2677 if (!cpuctx
->task_ctx
)
2680 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2683 ctx_sched_out(ctx
, cpuctx
, event_type
);
2686 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2687 struct perf_event_context
*ctx
,
2688 struct task_struct
*task
)
2690 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2692 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2693 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2695 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2699 * We want to maintain the following priority of scheduling:
2700 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2701 * - task pinned (EVENT_PINNED)
2702 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2703 * - task flexible (EVENT_FLEXIBLE).
2705 * In order to avoid unscheduling and scheduling back in everything every
2706 * time an event is added, only do it for the groups of equal priority and
2709 * This can be called after a batch operation on task events, in which case
2710 * event_type is a bit mask of the types of events involved. For CPU events,
2711 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2713 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2714 struct perf_event_context
*task_ctx
,
2715 enum event_type_t event_type
)
2717 enum event_type_t ctx_event_type
;
2718 bool cpu_event
= !!(event_type
& EVENT_CPU
);
2721 * If pinned groups are involved, flexible groups also need to be
2724 if (event_type
& EVENT_PINNED
)
2725 event_type
|= EVENT_FLEXIBLE
;
2727 ctx_event_type
= event_type
& EVENT_ALL
;
2729 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2731 task_ctx_sched_out(cpuctx
, task_ctx
, event_type
);
2734 * Decide which cpu ctx groups to schedule out based on the types
2735 * of events that caused rescheduling:
2736 * - EVENT_CPU: schedule out corresponding groups;
2737 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2738 * - otherwise, do nothing more.
2741 cpu_ctx_sched_out(cpuctx
, ctx_event_type
);
2742 else if (ctx_event_type
& EVENT_PINNED
)
2743 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2745 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2746 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2749 void perf_pmu_resched(struct pmu
*pmu
)
2751 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2752 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2754 perf_ctx_lock(cpuctx
, task_ctx
);
2755 ctx_resched(cpuctx
, task_ctx
, EVENT_ALL
|EVENT_CPU
);
2756 perf_ctx_unlock(cpuctx
, task_ctx
);
2760 * Cross CPU call to install and enable a performance event
2762 * Very similar to remote_function() + event_function() but cannot assume that
2763 * things like ctx->is_active and cpuctx->task_ctx are set.
2765 static int __perf_install_in_context(void *info
)
2767 struct perf_event
*event
= info
;
2768 struct perf_event_context
*ctx
= event
->ctx
;
2769 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2770 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2771 bool reprogram
= true;
2774 raw_spin_lock(&cpuctx
->ctx
.lock
);
2776 raw_spin_lock(&ctx
->lock
);
2779 reprogram
= (ctx
->task
== current
);
2782 * If the task is running, it must be running on this CPU,
2783 * otherwise we cannot reprogram things.
2785 * If its not running, we don't care, ctx->lock will
2786 * serialize against it becoming runnable.
2788 if (task_curr(ctx
->task
) && !reprogram
) {
2793 WARN_ON_ONCE(reprogram
&& cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2794 } else if (task_ctx
) {
2795 raw_spin_lock(&task_ctx
->lock
);
2798 #ifdef CONFIG_CGROUP_PERF
2799 if (event
->state
> PERF_EVENT_STATE_OFF
&& is_cgroup_event(event
)) {
2801 * If the current cgroup doesn't match the event's
2802 * cgroup, we should not try to schedule it.
2804 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
2805 reprogram
= cgroup_is_descendant(cgrp
->css
.cgroup
,
2806 event
->cgrp
->css
.cgroup
);
2811 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2812 add_event_to_ctx(event
, ctx
);
2813 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2815 add_event_to_ctx(event
, ctx
);
2819 perf_ctx_unlock(cpuctx
, task_ctx
);
2824 static bool exclusive_event_installable(struct perf_event
*event
,
2825 struct perf_event_context
*ctx
);
2828 * Attach a performance event to a context.
2830 * Very similar to event_function_call, see comment there.
2833 perf_install_in_context(struct perf_event_context
*ctx
,
2834 struct perf_event
*event
,
2837 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2839 lockdep_assert_held(&ctx
->mutex
);
2841 WARN_ON_ONCE(!exclusive_event_installable(event
, ctx
));
2843 if (event
->cpu
!= -1)
2847 * Ensures that if we can observe event->ctx, both the event and ctx
2848 * will be 'complete'. See perf_iterate_sb_cpu().
2850 smp_store_release(&event
->ctx
, ctx
);
2853 * perf_event_attr::disabled events will not run and can be initialized
2854 * without IPI. Except when this is the first event for the context, in
2855 * that case we need the magic of the IPI to set ctx->is_active.
2857 * The IOC_ENABLE that is sure to follow the creation of a disabled
2858 * event will issue the IPI and reprogram the hardware.
2860 if (__perf_effective_state(event
) == PERF_EVENT_STATE_OFF
&& ctx
->nr_events
) {
2861 raw_spin_lock_irq(&ctx
->lock
);
2862 if (ctx
->task
== TASK_TOMBSTONE
) {
2863 raw_spin_unlock_irq(&ctx
->lock
);
2866 add_event_to_ctx(event
, ctx
);
2867 raw_spin_unlock_irq(&ctx
->lock
);
2872 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2877 * Should not happen, we validate the ctx is still alive before calling.
2879 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2883 * Installing events is tricky because we cannot rely on ctx->is_active
2884 * to be set in case this is the nr_events 0 -> 1 transition.
2886 * Instead we use task_curr(), which tells us if the task is running.
2887 * However, since we use task_curr() outside of rq::lock, we can race
2888 * against the actual state. This means the result can be wrong.
2890 * If we get a false positive, we retry, this is harmless.
2892 * If we get a false negative, things are complicated. If we are after
2893 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2894 * value must be correct. If we're before, it doesn't matter since
2895 * perf_event_context_sched_in() will program the counter.
2897 * However, this hinges on the remote context switch having observed
2898 * our task->perf_event_ctxp[] store, such that it will in fact take
2899 * ctx::lock in perf_event_context_sched_in().
2901 * We do this by task_function_call(), if the IPI fails to hit the task
2902 * we know any future context switch of task must see the
2903 * perf_event_ctpx[] store.
2907 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2908 * task_cpu() load, such that if the IPI then does not find the task
2909 * running, a future context switch of that task must observe the
2914 if (!task_function_call(task
, __perf_install_in_context
, event
))
2917 raw_spin_lock_irq(&ctx
->lock
);
2919 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2921 * Cannot happen because we already checked above (which also
2922 * cannot happen), and we hold ctx->mutex, which serializes us
2923 * against perf_event_exit_task_context().
2925 raw_spin_unlock_irq(&ctx
->lock
);
2929 * If the task is not running, ctx->lock will avoid it becoming so,
2930 * thus we can safely install the event.
2932 if (task_curr(task
)) {
2933 raw_spin_unlock_irq(&ctx
->lock
);
2936 add_event_to_ctx(event
, ctx
);
2937 raw_spin_unlock_irq(&ctx
->lock
);
2941 * Cross CPU call to enable a performance event
2943 static void __perf_event_enable(struct perf_event
*event
,
2944 struct perf_cpu_context
*cpuctx
,
2945 struct perf_event_context
*ctx
,
2948 struct perf_event
*leader
= event
->group_leader
;
2949 struct perf_event_context
*task_ctx
;
2951 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2952 event
->state
<= PERF_EVENT_STATE_ERROR
)
2956 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2958 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2959 perf_cgroup_event_enable(event
, ctx
);
2961 if (!ctx
->is_active
)
2964 if (!event_filter_match(event
)) {
2965 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2970 * If the event is in a group and isn't the group leader,
2971 * then don't put it on unless the group is on.
2973 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2974 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2978 task_ctx
= cpuctx
->task_ctx
;
2980 WARN_ON_ONCE(task_ctx
!= ctx
);
2982 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2988 * If event->ctx is a cloned context, callers must make sure that
2989 * every task struct that event->ctx->task could possibly point to
2990 * remains valid. This condition is satisfied when called through
2991 * perf_event_for_each_child or perf_event_for_each as described
2992 * for perf_event_disable.
2994 static void _perf_event_enable(struct perf_event
*event
)
2996 struct perf_event_context
*ctx
= event
->ctx
;
2998 raw_spin_lock_irq(&ctx
->lock
);
2999 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
3000 event
->state
< PERF_EVENT_STATE_ERROR
) {
3002 raw_spin_unlock_irq(&ctx
->lock
);
3007 * If the event is in error state, clear that first.
3009 * That way, if we see the event in error state below, we know that it
3010 * has gone back into error state, as distinct from the task having
3011 * been scheduled away before the cross-call arrived.
3013 if (event
->state
== PERF_EVENT_STATE_ERROR
) {
3015 * Detached SIBLING events cannot leave ERROR state.
3017 if (event
->event_caps
& PERF_EV_CAP_SIBLING
&&
3018 event
->group_leader
== event
)
3021 event
->state
= PERF_EVENT_STATE_OFF
;
3023 raw_spin_unlock_irq(&ctx
->lock
);
3025 event_function_call(event
, __perf_event_enable
, NULL
);
3029 * See perf_event_disable();
3031 void perf_event_enable(struct perf_event
*event
)
3033 struct perf_event_context
*ctx
;
3035 ctx
= perf_event_ctx_lock(event
);
3036 _perf_event_enable(event
);
3037 perf_event_ctx_unlock(event
, ctx
);
3039 EXPORT_SYMBOL_GPL(perf_event_enable
);
3041 struct stop_event_data
{
3042 struct perf_event
*event
;
3043 unsigned int restart
;
3046 static int __perf_event_stop(void *info
)
3048 struct stop_event_data
*sd
= info
;
3049 struct perf_event
*event
= sd
->event
;
3051 /* if it's already INACTIVE, do nothing */
3052 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
3055 /* matches smp_wmb() in event_sched_in() */
3059 * There is a window with interrupts enabled before we get here,
3060 * so we need to check again lest we try to stop another CPU's event.
3062 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
3065 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3068 * May race with the actual stop (through perf_pmu_output_stop()),
3069 * but it is only used for events with AUX ring buffer, and such
3070 * events will refuse to restart because of rb::aux_mmap_count==0,
3071 * see comments in perf_aux_output_begin().
3073 * Since this is happening on an event-local CPU, no trace is lost
3077 event
->pmu
->start(event
, 0);
3082 static int perf_event_stop(struct perf_event
*event
, int restart
)
3084 struct stop_event_data sd
= {
3091 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
3094 /* matches smp_wmb() in event_sched_in() */
3098 * We only want to restart ACTIVE events, so if the event goes
3099 * inactive here (event->oncpu==-1), there's nothing more to do;
3100 * fall through with ret==-ENXIO.
3102 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
3103 __perf_event_stop
, &sd
);
3104 } while (ret
== -EAGAIN
);
3110 * In order to contain the amount of racy and tricky in the address filter
3111 * configuration management, it is a two part process:
3113 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3114 * we update the addresses of corresponding vmas in
3115 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3116 * (p2) when an event is scheduled in (pmu::add), it calls
3117 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3118 * if the generation has changed since the previous call.
3120 * If (p1) happens while the event is active, we restart it to force (p2).
3122 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3123 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3125 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3126 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3128 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3131 void perf_event_addr_filters_sync(struct perf_event
*event
)
3133 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
3135 if (!has_addr_filter(event
))
3138 raw_spin_lock(&ifh
->lock
);
3139 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
3140 event
->pmu
->addr_filters_sync(event
);
3141 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
3143 raw_spin_unlock(&ifh
->lock
);
3145 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
3147 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
3150 * not supported on inherited events
3152 if (event
->attr
.inherit
|| !is_sampling_event(event
))
3155 atomic_add(refresh
, &event
->event_limit
);
3156 _perf_event_enable(event
);
3162 * See perf_event_disable()
3164 int perf_event_refresh(struct perf_event
*event
, int refresh
)
3166 struct perf_event_context
*ctx
;
3169 ctx
= perf_event_ctx_lock(event
);
3170 ret
= _perf_event_refresh(event
, refresh
);
3171 perf_event_ctx_unlock(event
, ctx
);
3175 EXPORT_SYMBOL_GPL(perf_event_refresh
);
3177 static int perf_event_modify_breakpoint(struct perf_event
*bp
,
3178 struct perf_event_attr
*attr
)
3182 _perf_event_disable(bp
);
3184 err
= modify_user_hw_breakpoint_check(bp
, attr
, true);
3186 if (!bp
->attr
.disabled
)
3187 _perf_event_enable(bp
);
3192 static int perf_event_modify_attr(struct perf_event
*event
,
3193 struct perf_event_attr
*attr
)
3195 if (event
->attr
.type
!= attr
->type
)
3198 switch (event
->attr
.type
) {
3199 case PERF_TYPE_BREAKPOINT
:
3200 return perf_event_modify_breakpoint(event
, attr
);
3202 /* Place holder for future additions. */
3207 static void ctx_sched_out(struct perf_event_context
*ctx
,
3208 struct perf_cpu_context
*cpuctx
,
3209 enum event_type_t event_type
)
3211 struct perf_event
*event
, *tmp
;
3212 int is_active
= ctx
->is_active
;
3214 lockdep_assert_held(&ctx
->lock
);
3216 if (likely(!ctx
->nr_events
)) {
3218 * See __perf_remove_from_context().
3220 WARN_ON_ONCE(ctx
->is_active
);
3222 WARN_ON_ONCE(cpuctx
->task_ctx
);
3226 ctx
->is_active
&= ~event_type
;
3227 if (!(ctx
->is_active
& EVENT_ALL
))
3231 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3232 if (!ctx
->is_active
)
3233 cpuctx
->task_ctx
= NULL
;
3237 * Always update time if it was set; not only when it changes.
3238 * Otherwise we can 'forget' to update time for any but the last
3239 * context we sched out. For example:
3241 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3242 * ctx_sched_out(.event_type = EVENT_PINNED)
3244 * would only update time for the pinned events.
3246 if (is_active
& EVENT_TIME
) {
3247 /* update (and stop) ctx time */
3248 update_context_time(ctx
);
3249 update_cgrp_time_from_cpuctx(cpuctx
);
3252 is_active
^= ctx
->is_active
; /* changed bits */
3254 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
3257 perf_pmu_disable(ctx
->pmu
);
3258 if (is_active
& EVENT_PINNED
) {
3259 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_active
, active_list
)
3260 group_sched_out(event
, cpuctx
, ctx
);
3263 if (is_active
& EVENT_FLEXIBLE
) {
3264 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_active
, active_list
)
3265 group_sched_out(event
, cpuctx
, ctx
);
3268 * Since we cleared EVENT_FLEXIBLE, also clear
3269 * rotate_necessary, is will be reset by
3270 * ctx_flexible_sched_in() when needed.
3272 ctx
->rotate_necessary
= 0;
3274 perf_pmu_enable(ctx
->pmu
);
3278 * Test whether two contexts are equivalent, i.e. whether they have both been
3279 * cloned from the same version of the same context.
3281 * Equivalence is measured using a generation number in the context that is
3282 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3283 * and list_del_event().
3285 static int context_equiv(struct perf_event_context
*ctx1
,
3286 struct perf_event_context
*ctx2
)
3288 lockdep_assert_held(&ctx1
->lock
);
3289 lockdep_assert_held(&ctx2
->lock
);
3291 /* Pinning disables the swap optimization */
3292 if (ctx1
->pin_count
|| ctx2
->pin_count
)
3295 /* If ctx1 is the parent of ctx2 */
3296 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
3299 /* If ctx2 is the parent of ctx1 */
3300 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
3304 * If ctx1 and ctx2 have the same parent; we flatten the parent
3305 * hierarchy, see perf_event_init_context().
3307 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
3308 ctx1
->parent_gen
== ctx2
->parent_gen
)
3315 static void __perf_event_sync_stat(struct perf_event
*event
,
3316 struct perf_event
*next_event
)
3320 if (!event
->attr
.inherit_stat
)
3324 * Update the event value, we cannot use perf_event_read()
3325 * because we're in the middle of a context switch and have IRQs
3326 * disabled, which upsets smp_call_function_single(), however
3327 * we know the event must be on the current CPU, therefore we
3328 * don't need to use it.
3330 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3331 event
->pmu
->read(event
);
3333 perf_event_update_time(event
);
3336 * In order to keep per-task stats reliable we need to flip the event
3337 * values when we flip the contexts.
3339 value
= local64_read(&next_event
->count
);
3340 value
= local64_xchg(&event
->count
, value
);
3341 local64_set(&next_event
->count
, value
);
3343 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
3344 swap(event
->total_time_running
, next_event
->total_time_running
);
3347 * Since we swizzled the values, update the user visible data too.
3349 perf_event_update_userpage(event
);
3350 perf_event_update_userpage(next_event
);
3353 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
3354 struct perf_event_context
*next_ctx
)
3356 struct perf_event
*event
, *next_event
;
3361 update_context_time(ctx
);
3363 event
= list_first_entry(&ctx
->event_list
,
3364 struct perf_event
, event_entry
);
3366 next_event
= list_first_entry(&next_ctx
->event_list
,
3367 struct perf_event
, event_entry
);
3369 while (&event
->event_entry
!= &ctx
->event_list
&&
3370 &next_event
->event_entry
!= &next_ctx
->event_list
) {
3372 __perf_event_sync_stat(event
, next_event
);
3374 event
= list_next_entry(event
, event_entry
);
3375 next_event
= list_next_entry(next_event
, event_entry
);
3379 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
3380 struct task_struct
*next
)
3382 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
3383 struct perf_event_context
*next_ctx
;
3384 struct perf_event_context
*parent
, *next_parent
;
3385 struct perf_cpu_context
*cpuctx
;
3393 cpuctx
= __get_cpu_context(ctx
);
3394 if (!cpuctx
->task_ctx
)
3398 next_ctx
= next
->perf_event_ctxp
[ctxn
];
3402 parent
= rcu_dereference(ctx
->parent_ctx
);
3403 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
3405 /* If neither context have a parent context; they cannot be clones. */
3406 if (!parent
&& !next_parent
)
3409 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
3411 * Looks like the two contexts are clones, so we might be
3412 * able to optimize the context switch. We lock both
3413 * contexts and check that they are clones under the
3414 * lock (including re-checking that neither has been
3415 * uncloned in the meantime). It doesn't matter which
3416 * order we take the locks because no other cpu could
3417 * be trying to lock both of these tasks.
3419 raw_spin_lock(&ctx
->lock
);
3420 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
3421 if (context_equiv(ctx
, next_ctx
)) {
3423 WRITE_ONCE(ctx
->task
, next
);
3424 WRITE_ONCE(next_ctx
->task
, task
);
3426 perf_pmu_disable(pmu
);
3428 if (cpuctx
->sched_cb_usage
&& pmu
->sched_task
)
3429 pmu
->sched_task(ctx
, false);
3432 * PMU specific parts of task perf context can require
3433 * additional synchronization. As an example of such
3434 * synchronization see implementation details of Intel
3435 * LBR call stack data profiling;
3437 if (pmu
->swap_task_ctx
)
3438 pmu
->swap_task_ctx(ctx
, next_ctx
);
3440 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
3442 perf_pmu_enable(pmu
);
3445 * RCU_INIT_POINTER here is safe because we've not
3446 * modified the ctx and the above modification of
3447 * ctx->task and ctx->task_ctx_data are immaterial
3448 * since those values are always verified under
3449 * ctx->lock which we're now holding.
3451 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
3452 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
3456 perf_event_sync_stat(ctx
, next_ctx
);
3458 raw_spin_unlock(&next_ctx
->lock
);
3459 raw_spin_unlock(&ctx
->lock
);
3465 raw_spin_lock(&ctx
->lock
);
3466 perf_pmu_disable(pmu
);
3468 if (cpuctx
->sched_cb_usage
&& pmu
->sched_task
)
3469 pmu
->sched_task(ctx
, false);
3470 task_ctx_sched_out(cpuctx
, ctx
, EVENT_ALL
);
3472 perf_pmu_enable(pmu
);
3473 raw_spin_unlock(&ctx
->lock
);
3477 void perf_sched_cb_dec(struct pmu
*pmu
)
3479 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3481 --cpuctx
->sched_cb_usage
;
3485 void perf_sched_cb_inc(struct pmu
*pmu
)
3487 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3489 cpuctx
->sched_cb_usage
++;
3493 * This function provides the context switch callback to the lower code
3494 * layer. It is invoked ONLY when the context switch callback is enabled.
3496 * This callback is relevant even to per-cpu events; for example multi event
3497 * PEBS requires this to provide PID/TID information. This requires we flush
3498 * all queued PEBS records before we context switch to a new task.
3500 static void __perf_pmu_sched_task(struct perf_cpu_context
*cpuctx
, bool sched_in
)
3504 pmu
= cpuctx
->ctx
.pmu
; /* software PMUs will not have sched_task */
3506 if (WARN_ON_ONCE(!pmu
->sched_task
))
3509 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3510 perf_pmu_disable(pmu
);
3512 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
3514 perf_pmu_enable(pmu
);
3515 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3518 static void perf_event_switch(struct task_struct
*task
,
3519 struct task_struct
*next_prev
, bool sched_in
);
3521 #define for_each_task_context_nr(ctxn) \
3522 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3525 * Called from scheduler to remove the events of the current task,
3526 * with interrupts disabled.
3528 * We stop each event and update the event value in event->count.
3530 * This does not protect us against NMI, but disable()
3531 * sets the disabled bit in the control field of event _before_
3532 * accessing the event control register. If a NMI hits, then it will
3533 * not restart the event.
3535 void __perf_event_task_sched_out(struct task_struct
*task
,
3536 struct task_struct
*next
)
3540 if (atomic_read(&nr_switch_events
))
3541 perf_event_switch(task
, next
, false);
3543 for_each_task_context_nr(ctxn
)
3544 perf_event_context_sched_out(task
, ctxn
, next
);
3547 * if cgroup events exist on this CPU, then we need
3548 * to check if we have to switch out PMU state.
3549 * cgroup event are system-wide mode only
3551 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3552 perf_cgroup_sched_out(task
, next
);
3556 * Called with IRQs disabled
3558 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
3559 enum event_type_t event_type
)
3561 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
3564 static bool perf_less_group_idx(const void *l
, const void *r
)
3566 const struct perf_event
*le
= *(const struct perf_event
**)l
;
3567 const struct perf_event
*re
= *(const struct perf_event
**)r
;
3569 return le
->group_index
< re
->group_index
;
3572 static void swap_ptr(void *l
, void *r
)
3574 void **lp
= l
, **rp
= r
;
3579 static const struct min_heap_callbacks perf_min_heap
= {
3580 .elem_size
= sizeof(struct perf_event
*),
3581 .less
= perf_less_group_idx
,
3585 static void __heap_add(struct min_heap
*heap
, struct perf_event
*event
)
3587 struct perf_event
**itrs
= heap
->data
;
3590 itrs
[heap
->nr
] = event
;
3595 static noinline
int visit_groups_merge(struct perf_cpu_context
*cpuctx
,
3596 struct perf_event_groups
*groups
, int cpu
,
3597 int (*func
)(struct perf_event
*, void *),
3600 #ifdef CONFIG_CGROUP_PERF
3601 struct cgroup_subsys_state
*css
= NULL
;
3603 /* Space for per CPU and/or any CPU event iterators. */
3604 struct perf_event
*itrs
[2];
3605 struct min_heap event_heap
;
3606 struct perf_event
**evt
;
3610 event_heap
= (struct min_heap
){
3611 .data
= cpuctx
->heap
,
3613 .size
= cpuctx
->heap_size
,
3616 lockdep_assert_held(&cpuctx
->ctx
.lock
);
3618 #ifdef CONFIG_CGROUP_PERF
3620 css
= &cpuctx
->cgrp
->css
;
3623 event_heap
= (struct min_heap
){
3626 .size
= ARRAY_SIZE(itrs
),
3628 /* Events not within a CPU context may be on any CPU. */
3629 __heap_add(&event_heap
, perf_event_groups_first(groups
, -1, NULL
));
3631 evt
= event_heap
.data
;
3633 __heap_add(&event_heap
, perf_event_groups_first(groups
, cpu
, NULL
));
3635 #ifdef CONFIG_CGROUP_PERF
3636 for (; css
; css
= css
->parent
)
3637 __heap_add(&event_heap
, perf_event_groups_first(groups
, cpu
, css
->cgroup
));
3640 min_heapify_all(&event_heap
, &perf_min_heap
);
3642 while (event_heap
.nr
) {
3643 ret
= func(*evt
, data
);
3647 *evt
= perf_event_groups_next(*evt
);
3649 min_heapify(&event_heap
, 0, &perf_min_heap
);
3651 min_heap_pop(&event_heap
, &perf_min_heap
);
3657 static int merge_sched_in(struct perf_event
*event
, void *data
)
3659 struct perf_event_context
*ctx
= event
->ctx
;
3660 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3661 int *can_add_hw
= data
;
3663 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3666 if (!event_filter_match(event
))
3669 if (group_can_go_on(event
, cpuctx
, *can_add_hw
)) {
3670 if (!group_sched_in(event
, cpuctx
, ctx
))
3671 list_add_tail(&event
->active_list
, get_event_list(event
));
3674 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3675 if (event
->attr
.pinned
) {
3676 perf_cgroup_event_disable(event
, ctx
);
3677 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
3681 ctx
->rotate_necessary
= 1;
3682 perf_mux_hrtimer_restart(cpuctx
);
3689 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
3690 struct perf_cpu_context
*cpuctx
)
3694 if (ctx
!= &cpuctx
->ctx
)
3697 visit_groups_merge(cpuctx
, &ctx
->pinned_groups
,
3699 merge_sched_in
, &can_add_hw
);
3703 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
3704 struct perf_cpu_context
*cpuctx
)
3708 if (ctx
!= &cpuctx
->ctx
)
3711 visit_groups_merge(cpuctx
, &ctx
->flexible_groups
,
3713 merge_sched_in
, &can_add_hw
);
3717 ctx_sched_in(struct perf_event_context
*ctx
,
3718 struct perf_cpu_context
*cpuctx
,
3719 enum event_type_t event_type
,
3720 struct task_struct
*task
)
3722 int is_active
= ctx
->is_active
;
3725 lockdep_assert_held(&ctx
->lock
);
3727 if (likely(!ctx
->nr_events
))
3730 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3733 cpuctx
->task_ctx
= ctx
;
3735 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3738 is_active
^= ctx
->is_active
; /* changed bits */
3740 if (is_active
& EVENT_TIME
) {
3741 /* start ctx time */
3743 ctx
->timestamp
= now
;
3744 perf_cgroup_set_timestamp(task
, ctx
);
3748 * First go through the list and put on any pinned groups
3749 * in order to give them the best chance of going on.
3751 if (is_active
& EVENT_PINNED
)
3752 ctx_pinned_sched_in(ctx
, cpuctx
);
3754 /* Then walk through the lower prio flexible groups */
3755 if (is_active
& EVENT_FLEXIBLE
)
3756 ctx_flexible_sched_in(ctx
, cpuctx
);
3759 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3760 enum event_type_t event_type
,
3761 struct task_struct
*task
)
3763 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3765 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3768 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3769 struct task_struct
*task
)
3771 struct perf_cpu_context
*cpuctx
;
3772 struct pmu
*pmu
= ctx
->pmu
;
3774 cpuctx
= __get_cpu_context(ctx
);
3775 if (cpuctx
->task_ctx
== ctx
) {
3776 if (cpuctx
->sched_cb_usage
)
3777 __perf_pmu_sched_task(cpuctx
, true);
3781 perf_ctx_lock(cpuctx
, ctx
);
3783 * We must check ctx->nr_events while holding ctx->lock, such
3784 * that we serialize against perf_install_in_context().
3786 if (!ctx
->nr_events
)
3789 perf_pmu_disable(pmu
);
3791 * We want to keep the following priority order:
3792 * cpu pinned (that don't need to move), task pinned,
3793 * cpu flexible, task flexible.
3795 * However, if task's ctx is not carrying any pinned
3796 * events, no need to flip the cpuctx's events around.
3798 if (!RB_EMPTY_ROOT(&ctx
->pinned_groups
.tree
))
3799 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3800 perf_event_sched_in(cpuctx
, ctx
, task
);
3802 if (cpuctx
->sched_cb_usage
&& pmu
->sched_task
)
3803 pmu
->sched_task(cpuctx
->task_ctx
, true);
3805 perf_pmu_enable(pmu
);
3808 perf_ctx_unlock(cpuctx
, ctx
);
3812 * Called from scheduler to add the events of the current task
3813 * with interrupts disabled.
3815 * We restore the event value and then enable it.
3817 * This does not protect us against NMI, but enable()
3818 * sets the enabled bit in the control field of event _before_
3819 * accessing the event control register. If a NMI hits, then it will
3820 * keep the event running.
3822 void __perf_event_task_sched_in(struct task_struct
*prev
,
3823 struct task_struct
*task
)
3825 struct perf_event_context
*ctx
;
3829 * If cgroup events exist on this CPU, then we need to check if we have
3830 * to switch in PMU state; cgroup event are system-wide mode only.
3832 * Since cgroup events are CPU events, we must schedule these in before
3833 * we schedule in the task events.
3835 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3836 perf_cgroup_sched_in(prev
, task
);
3838 for_each_task_context_nr(ctxn
) {
3839 ctx
= task
->perf_event_ctxp
[ctxn
];
3843 perf_event_context_sched_in(ctx
, task
);
3846 if (atomic_read(&nr_switch_events
))
3847 perf_event_switch(task
, prev
, true);
3850 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3852 u64 frequency
= event
->attr
.sample_freq
;
3853 u64 sec
= NSEC_PER_SEC
;
3854 u64 divisor
, dividend
;
3856 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3858 count_fls
= fls64(count
);
3859 nsec_fls
= fls64(nsec
);
3860 frequency_fls
= fls64(frequency
);
3864 * We got @count in @nsec, with a target of sample_freq HZ
3865 * the target period becomes:
3868 * period = -------------------
3869 * @nsec * sample_freq
3874 * Reduce accuracy by one bit such that @a and @b converge
3875 * to a similar magnitude.
3877 #define REDUCE_FLS(a, b) \
3879 if (a##_fls > b##_fls) { \
3889 * Reduce accuracy until either term fits in a u64, then proceed with
3890 * the other, so that finally we can do a u64/u64 division.
3892 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3893 REDUCE_FLS(nsec
, frequency
);
3894 REDUCE_FLS(sec
, count
);
3897 if (count_fls
+ sec_fls
> 64) {
3898 divisor
= nsec
* frequency
;
3900 while (count_fls
+ sec_fls
> 64) {
3901 REDUCE_FLS(count
, sec
);
3905 dividend
= count
* sec
;
3907 dividend
= count
* sec
;
3909 while (nsec_fls
+ frequency_fls
> 64) {
3910 REDUCE_FLS(nsec
, frequency
);
3914 divisor
= nsec
* frequency
;
3920 return div64_u64(dividend
, divisor
);
3923 static DEFINE_PER_CPU(int, perf_throttled_count
);
3924 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3926 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3928 struct hw_perf_event
*hwc
= &event
->hw
;
3929 s64 period
, sample_period
;
3932 period
= perf_calculate_period(event
, nsec
, count
);
3934 delta
= (s64
)(period
- hwc
->sample_period
);
3935 delta
= (delta
+ 7) / 8; /* low pass filter */
3937 sample_period
= hwc
->sample_period
+ delta
;
3942 hwc
->sample_period
= sample_period
;
3944 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3946 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3948 local64_set(&hwc
->period_left
, 0);
3951 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3956 * combine freq adjustment with unthrottling to avoid two passes over the
3957 * events. At the same time, make sure, having freq events does not change
3958 * the rate of unthrottling as that would introduce bias.
3960 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3963 struct perf_event
*event
;
3964 struct hw_perf_event
*hwc
;
3965 u64 now
, period
= TICK_NSEC
;
3969 * only need to iterate over all events iff:
3970 * - context have events in frequency mode (needs freq adjust)
3971 * - there are events to unthrottle on this cpu
3973 if (!(ctx
->nr_freq
|| needs_unthr
))
3976 raw_spin_lock(&ctx
->lock
);
3977 perf_pmu_disable(ctx
->pmu
);
3979 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3980 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3983 if (!event_filter_match(event
))
3986 perf_pmu_disable(event
->pmu
);
3990 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3991 hwc
->interrupts
= 0;
3992 perf_log_throttle(event
, 1);
3993 event
->pmu
->start(event
, 0);
3996 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
4000 * stop the event and update event->count
4002 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4004 now
= local64_read(&event
->count
);
4005 delta
= now
- hwc
->freq_count_stamp
;
4006 hwc
->freq_count_stamp
= now
;
4010 * reload only if value has changed
4011 * we have stopped the event so tell that
4012 * to perf_adjust_period() to avoid stopping it
4016 perf_adjust_period(event
, period
, delta
, false);
4018 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
4020 perf_pmu_enable(event
->pmu
);
4023 perf_pmu_enable(ctx
->pmu
);
4024 raw_spin_unlock(&ctx
->lock
);
4028 * Move @event to the tail of the @ctx's elegible events.
4030 static void rotate_ctx(struct perf_event_context
*ctx
, struct perf_event
*event
)
4033 * Rotate the first entry last of non-pinned groups. Rotation might be
4034 * disabled by the inheritance code.
4036 if (ctx
->rotate_disable
)
4039 perf_event_groups_delete(&ctx
->flexible_groups
, event
);
4040 perf_event_groups_insert(&ctx
->flexible_groups
, event
);
4043 /* pick an event from the flexible_groups to rotate */
4044 static inline struct perf_event
*
4045 ctx_event_to_rotate(struct perf_event_context
*ctx
)
4047 struct perf_event
*event
;
4049 /* pick the first active flexible event */
4050 event
= list_first_entry_or_null(&ctx
->flexible_active
,
4051 struct perf_event
, active_list
);
4053 /* if no active flexible event, pick the first event */
4055 event
= rb_entry_safe(rb_first(&ctx
->flexible_groups
.tree
),
4056 typeof(*event
), group_node
);
4060 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4061 * finds there are unschedulable events, it will set it again.
4063 ctx
->rotate_necessary
= 0;
4068 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
)
4070 struct perf_event
*cpu_event
= NULL
, *task_event
= NULL
;
4071 struct perf_event_context
*task_ctx
= NULL
;
4072 int cpu_rotate
, task_rotate
;
4075 * Since we run this from IRQ context, nobody can install new
4076 * events, thus the event count values are stable.
4079 cpu_rotate
= cpuctx
->ctx
.rotate_necessary
;
4080 task_ctx
= cpuctx
->task_ctx
;
4081 task_rotate
= task_ctx
? task_ctx
->rotate_necessary
: 0;
4083 if (!(cpu_rotate
|| task_rotate
))
4086 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
4087 perf_pmu_disable(cpuctx
->ctx
.pmu
);
4090 task_event
= ctx_event_to_rotate(task_ctx
);
4092 cpu_event
= ctx_event_to_rotate(&cpuctx
->ctx
);
4095 * As per the order given at ctx_resched() first 'pop' task flexible
4096 * and then, if needed CPU flexible.
4098 if (task_event
|| (task_ctx
&& cpu_event
))
4099 ctx_sched_out(task_ctx
, cpuctx
, EVENT_FLEXIBLE
);
4101 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
4104 rotate_ctx(task_ctx
, task_event
);
4106 rotate_ctx(&cpuctx
->ctx
, cpu_event
);
4108 perf_event_sched_in(cpuctx
, task_ctx
, current
);
4110 perf_pmu_enable(cpuctx
->ctx
.pmu
);
4111 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
4116 void perf_event_task_tick(void)
4118 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
4119 struct perf_event_context
*ctx
, *tmp
;
4122 lockdep_assert_irqs_disabled();
4124 __this_cpu_inc(perf_throttled_seq
);
4125 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
4126 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
4128 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
4129 perf_adjust_freq_unthr_context(ctx
, throttled
);
4132 static int event_enable_on_exec(struct perf_event
*event
,
4133 struct perf_event_context
*ctx
)
4135 if (!event
->attr
.enable_on_exec
)
4138 event
->attr
.enable_on_exec
= 0;
4139 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4142 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
4148 * Enable all of a task's events that have been marked enable-on-exec.
4149 * This expects task == current.
4151 static void perf_event_enable_on_exec(int ctxn
)
4153 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
4154 enum event_type_t event_type
= 0;
4155 struct perf_cpu_context
*cpuctx
;
4156 struct perf_event
*event
;
4157 unsigned long flags
;
4160 local_irq_save(flags
);
4161 ctx
= current
->perf_event_ctxp
[ctxn
];
4162 if (!ctx
|| !ctx
->nr_events
)
4165 cpuctx
= __get_cpu_context(ctx
);
4166 perf_ctx_lock(cpuctx
, ctx
);
4167 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
4168 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
4169 enabled
|= event_enable_on_exec(event
, ctx
);
4170 event_type
|= get_event_type(event
);
4174 * Unclone and reschedule this context if we enabled any event.
4177 clone_ctx
= unclone_ctx(ctx
);
4178 ctx_resched(cpuctx
, ctx
, event_type
);
4180 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
4182 perf_ctx_unlock(cpuctx
, ctx
);
4185 local_irq_restore(flags
);
4191 struct perf_read_data
{
4192 struct perf_event
*event
;
4197 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
4199 u16 local_pkg
, event_pkg
;
4201 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
4202 int local_cpu
= smp_processor_id();
4204 event_pkg
= topology_physical_package_id(event_cpu
);
4205 local_pkg
= topology_physical_package_id(local_cpu
);
4207 if (event_pkg
== local_pkg
)
4215 * Cross CPU call to read the hardware event
4217 static void __perf_event_read(void *info
)
4219 struct perf_read_data
*data
= info
;
4220 struct perf_event
*sub
, *event
= data
->event
;
4221 struct perf_event_context
*ctx
= event
->ctx
;
4222 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
4223 struct pmu
*pmu
= event
->pmu
;
4226 * If this is a task context, we need to check whether it is
4227 * the current task context of this cpu. If not it has been
4228 * scheduled out before the smp call arrived. In that case
4229 * event->count would have been updated to a recent sample
4230 * when the event was scheduled out.
4232 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
4235 raw_spin_lock(&ctx
->lock
);
4236 if (ctx
->is_active
& EVENT_TIME
) {
4237 update_context_time(ctx
);
4238 update_cgrp_time_from_event(event
);
4241 perf_event_update_time(event
);
4243 perf_event_update_sibling_time(event
);
4245 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4254 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
4258 for_each_sibling_event(sub
, event
) {
4259 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
4261 * Use sibling's PMU rather than @event's since
4262 * sibling could be on different (eg: software) PMU.
4264 sub
->pmu
->read(sub
);
4268 data
->ret
= pmu
->commit_txn(pmu
);
4271 raw_spin_unlock(&ctx
->lock
);
4274 static inline u64
perf_event_count(struct perf_event
*event
)
4276 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
4280 * NMI-safe method to read a local event, that is an event that
4282 * - either for the current task, or for this CPU
4283 * - does not have inherit set, for inherited task events
4284 * will not be local and we cannot read them atomically
4285 * - must not have a pmu::count method
4287 int perf_event_read_local(struct perf_event
*event
, u64
*value
,
4288 u64
*enabled
, u64
*running
)
4290 unsigned long flags
;
4294 * Disabling interrupts avoids all counter scheduling (context
4295 * switches, timer based rotation and IPIs).
4297 local_irq_save(flags
);
4300 * It must not be an event with inherit set, we cannot read
4301 * all child counters from atomic context.
4303 if (event
->attr
.inherit
) {
4308 /* If this is a per-task event, it must be for current */
4309 if ((event
->attach_state
& PERF_ATTACH_TASK
) &&
4310 event
->hw
.target
!= current
) {
4315 /* If this is a per-CPU event, it must be for this CPU */
4316 if (!(event
->attach_state
& PERF_ATTACH_TASK
) &&
4317 event
->cpu
!= smp_processor_id()) {
4322 /* If this is a pinned event it must be running on this CPU */
4323 if (event
->attr
.pinned
&& event
->oncpu
!= smp_processor_id()) {
4329 * If the event is currently on this CPU, its either a per-task event,
4330 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4333 if (event
->oncpu
== smp_processor_id())
4334 event
->pmu
->read(event
);
4336 *value
= local64_read(&event
->count
);
4337 if (enabled
|| running
) {
4338 u64 now
= event
->shadow_ctx_time
+ perf_clock();
4339 u64 __enabled
, __running
;
4341 __perf_update_times(event
, now
, &__enabled
, &__running
);
4343 *enabled
= __enabled
;
4345 *running
= __running
;
4348 local_irq_restore(flags
);
4353 static int perf_event_read(struct perf_event
*event
, bool group
)
4355 enum perf_event_state state
= READ_ONCE(event
->state
);
4356 int event_cpu
, ret
= 0;
4359 * If event is enabled and currently active on a CPU, update the
4360 * value in the event structure:
4363 if (state
== PERF_EVENT_STATE_ACTIVE
) {
4364 struct perf_read_data data
;
4367 * Orders the ->state and ->oncpu loads such that if we see
4368 * ACTIVE we must also see the right ->oncpu.
4370 * Matches the smp_wmb() from event_sched_in().
4374 event_cpu
= READ_ONCE(event
->oncpu
);
4375 if ((unsigned)event_cpu
>= nr_cpu_ids
)
4378 data
= (struct perf_read_data
){
4385 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
4388 * Purposely ignore the smp_call_function_single() return
4391 * If event_cpu isn't a valid CPU it means the event got
4392 * scheduled out and that will have updated the event count.
4394 * Therefore, either way, we'll have an up-to-date event count
4397 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
4401 } else if (state
== PERF_EVENT_STATE_INACTIVE
) {
4402 struct perf_event_context
*ctx
= event
->ctx
;
4403 unsigned long flags
;
4405 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4406 state
= event
->state
;
4407 if (state
!= PERF_EVENT_STATE_INACTIVE
) {
4408 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4413 * May read while context is not active (e.g., thread is
4414 * blocked), in that case we cannot update context time
4416 if (ctx
->is_active
& EVENT_TIME
) {
4417 update_context_time(ctx
);
4418 update_cgrp_time_from_event(event
);
4421 perf_event_update_time(event
);
4423 perf_event_update_sibling_time(event
);
4424 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4431 * Initialize the perf_event context in a task_struct:
4433 static void __perf_event_init_context(struct perf_event_context
*ctx
)
4435 raw_spin_lock_init(&ctx
->lock
);
4436 mutex_init(&ctx
->mutex
);
4437 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
4438 perf_event_groups_init(&ctx
->pinned_groups
);
4439 perf_event_groups_init(&ctx
->flexible_groups
);
4440 INIT_LIST_HEAD(&ctx
->event_list
);
4441 INIT_LIST_HEAD(&ctx
->pinned_active
);
4442 INIT_LIST_HEAD(&ctx
->flexible_active
);
4443 refcount_set(&ctx
->refcount
, 1);
4446 static struct perf_event_context
*
4447 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
4449 struct perf_event_context
*ctx
;
4451 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4455 __perf_event_init_context(ctx
);
4457 ctx
->task
= get_task_struct(task
);
4463 static struct task_struct
*
4464 find_lively_task_by_vpid(pid_t vpid
)
4466 struct task_struct
*task
;
4472 task
= find_task_by_vpid(vpid
);
4474 get_task_struct(task
);
4478 return ERR_PTR(-ESRCH
);
4484 * Returns a matching context with refcount and pincount.
4486 static struct perf_event_context
*
4487 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
4488 struct perf_event
*event
)
4490 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
4491 struct perf_cpu_context
*cpuctx
;
4492 void *task_ctx_data
= NULL
;
4493 unsigned long flags
;
4495 int cpu
= event
->cpu
;
4498 /* Must be root to operate on a CPU event: */
4499 err
= perf_allow_cpu(&event
->attr
);
4501 return ERR_PTR(err
);
4503 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
4512 ctxn
= pmu
->task_ctx_nr
;
4516 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
4517 task_ctx_data
= alloc_task_ctx_data(pmu
);
4518 if (!task_ctx_data
) {
4525 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
4527 clone_ctx
= unclone_ctx(ctx
);
4530 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
4531 ctx
->task_ctx_data
= task_ctx_data
;
4532 task_ctx_data
= NULL
;
4534 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4539 ctx
= alloc_perf_context(pmu
, task
);
4544 if (task_ctx_data
) {
4545 ctx
->task_ctx_data
= task_ctx_data
;
4546 task_ctx_data
= NULL
;
4550 mutex_lock(&task
->perf_event_mutex
);
4552 * If it has already passed perf_event_exit_task().
4553 * we must see PF_EXITING, it takes this mutex too.
4555 if (task
->flags
& PF_EXITING
)
4557 else if (task
->perf_event_ctxp
[ctxn
])
4562 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
4564 mutex_unlock(&task
->perf_event_mutex
);
4566 if (unlikely(err
)) {
4575 free_task_ctx_data(pmu
, task_ctx_data
);
4579 free_task_ctx_data(pmu
, task_ctx_data
);
4580 return ERR_PTR(err
);
4583 static void perf_event_free_filter(struct perf_event
*event
);
4584 static void perf_event_free_bpf_prog(struct perf_event
*event
);
4586 static void free_event_rcu(struct rcu_head
*head
)
4588 struct perf_event
*event
;
4590 event
= container_of(head
, struct perf_event
, rcu_head
);
4592 put_pid_ns(event
->ns
);
4593 perf_event_free_filter(event
);
4597 static void ring_buffer_attach(struct perf_event
*event
,
4598 struct perf_buffer
*rb
);
4600 static void detach_sb_event(struct perf_event
*event
)
4602 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
4604 raw_spin_lock(&pel
->lock
);
4605 list_del_rcu(&event
->sb_list
);
4606 raw_spin_unlock(&pel
->lock
);
4609 static bool is_sb_event(struct perf_event
*event
)
4611 struct perf_event_attr
*attr
= &event
->attr
;
4616 if (event
->attach_state
& PERF_ATTACH_TASK
)
4619 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
4620 attr
->comm
|| attr
->comm_exec
||
4621 attr
->task
|| attr
->ksymbol
||
4622 attr
->context_switch
|| attr
->text_poke
||
4628 static void unaccount_pmu_sb_event(struct perf_event
*event
)
4630 if (is_sb_event(event
))
4631 detach_sb_event(event
);
4634 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
4639 if (is_cgroup_event(event
))
4640 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
4643 #ifdef CONFIG_NO_HZ_FULL
4644 static DEFINE_SPINLOCK(nr_freq_lock
);
4647 static void unaccount_freq_event_nohz(void)
4649 #ifdef CONFIG_NO_HZ_FULL
4650 spin_lock(&nr_freq_lock
);
4651 if (atomic_dec_and_test(&nr_freq_events
))
4652 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
4653 spin_unlock(&nr_freq_lock
);
4657 static void unaccount_freq_event(void)
4659 if (tick_nohz_full_enabled())
4660 unaccount_freq_event_nohz();
4662 atomic_dec(&nr_freq_events
);
4665 static void unaccount_event(struct perf_event
*event
)
4672 if (event
->attach_state
& PERF_ATTACH_TASK
)
4674 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
4675 atomic_dec(&nr_mmap_events
);
4676 if (event
->attr
.comm
)
4677 atomic_dec(&nr_comm_events
);
4678 if (event
->attr
.namespaces
)
4679 atomic_dec(&nr_namespaces_events
);
4680 if (event
->attr
.cgroup
)
4681 atomic_dec(&nr_cgroup_events
);
4682 if (event
->attr
.task
)
4683 atomic_dec(&nr_task_events
);
4684 if (event
->attr
.freq
)
4685 unaccount_freq_event();
4686 if (event
->attr
.context_switch
) {
4688 atomic_dec(&nr_switch_events
);
4690 if (is_cgroup_event(event
))
4692 if (has_branch_stack(event
))
4694 if (event
->attr
.ksymbol
)
4695 atomic_dec(&nr_ksymbol_events
);
4696 if (event
->attr
.bpf_event
)
4697 atomic_dec(&nr_bpf_events
);
4698 if (event
->attr
.text_poke
)
4699 atomic_dec(&nr_text_poke_events
);
4702 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
4703 schedule_delayed_work(&perf_sched_work
, HZ
);
4706 unaccount_event_cpu(event
, event
->cpu
);
4708 unaccount_pmu_sb_event(event
);
4711 static void perf_sched_delayed(struct work_struct
*work
)
4713 mutex_lock(&perf_sched_mutex
);
4714 if (atomic_dec_and_test(&perf_sched_count
))
4715 static_branch_disable(&perf_sched_events
);
4716 mutex_unlock(&perf_sched_mutex
);
4720 * The following implement mutual exclusion of events on "exclusive" pmus
4721 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4722 * at a time, so we disallow creating events that might conflict, namely:
4724 * 1) cpu-wide events in the presence of per-task events,
4725 * 2) per-task events in the presence of cpu-wide events,
4726 * 3) two matching events on the same context.
4728 * The former two cases are handled in the allocation path (perf_event_alloc(),
4729 * _free_event()), the latter -- before the first perf_install_in_context().
4731 static int exclusive_event_init(struct perf_event
*event
)
4733 struct pmu
*pmu
= event
->pmu
;
4735 if (!is_exclusive_pmu(pmu
))
4739 * Prevent co-existence of per-task and cpu-wide events on the
4740 * same exclusive pmu.
4742 * Negative pmu::exclusive_cnt means there are cpu-wide
4743 * events on this "exclusive" pmu, positive means there are
4746 * Since this is called in perf_event_alloc() path, event::ctx
4747 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4748 * to mean "per-task event", because unlike other attach states it
4749 * never gets cleared.
4751 if (event
->attach_state
& PERF_ATTACH_TASK
) {
4752 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
4755 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
4762 static void exclusive_event_destroy(struct perf_event
*event
)
4764 struct pmu
*pmu
= event
->pmu
;
4766 if (!is_exclusive_pmu(pmu
))
4769 /* see comment in exclusive_event_init() */
4770 if (event
->attach_state
& PERF_ATTACH_TASK
)
4771 atomic_dec(&pmu
->exclusive_cnt
);
4773 atomic_inc(&pmu
->exclusive_cnt
);
4776 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
4778 if ((e1
->pmu
== e2
->pmu
) &&
4779 (e1
->cpu
== e2
->cpu
||
4786 static bool exclusive_event_installable(struct perf_event
*event
,
4787 struct perf_event_context
*ctx
)
4789 struct perf_event
*iter_event
;
4790 struct pmu
*pmu
= event
->pmu
;
4792 lockdep_assert_held(&ctx
->mutex
);
4794 if (!is_exclusive_pmu(pmu
))
4797 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
4798 if (exclusive_event_match(iter_event
, event
))
4805 static void perf_addr_filters_splice(struct perf_event
*event
,
4806 struct list_head
*head
);
4808 static void _free_event(struct perf_event
*event
)
4810 irq_work_sync(&event
->pending
);
4812 unaccount_event(event
);
4814 security_perf_event_free(event
);
4818 * Can happen when we close an event with re-directed output.
4820 * Since we have a 0 refcount, perf_mmap_close() will skip
4821 * over us; possibly making our ring_buffer_put() the last.
4823 mutex_lock(&event
->mmap_mutex
);
4824 ring_buffer_attach(event
, NULL
);
4825 mutex_unlock(&event
->mmap_mutex
);
4828 if (is_cgroup_event(event
))
4829 perf_detach_cgroup(event
);
4831 if (!event
->parent
) {
4832 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4833 put_callchain_buffers();
4836 perf_event_free_bpf_prog(event
);
4837 perf_addr_filters_splice(event
, NULL
);
4838 kfree(event
->addr_filter_ranges
);
4841 event
->destroy(event
);
4844 * Must be after ->destroy(), due to uprobe_perf_close() using
4847 if (event
->hw
.target
)
4848 put_task_struct(event
->hw
.target
);
4851 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4852 * all task references must be cleaned up.
4855 put_ctx(event
->ctx
);
4857 exclusive_event_destroy(event
);
4858 module_put(event
->pmu
->module
);
4860 call_rcu(&event
->rcu_head
, free_event_rcu
);
4864 * Used to free events which have a known refcount of 1, such as in error paths
4865 * where the event isn't exposed yet and inherited events.
4867 static void free_event(struct perf_event
*event
)
4869 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4870 "unexpected event refcount: %ld; ptr=%p\n",
4871 atomic_long_read(&event
->refcount
), event
)) {
4872 /* leak to avoid use-after-free */
4880 * Remove user event from the owner task.
4882 static void perf_remove_from_owner(struct perf_event
*event
)
4884 struct task_struct
*owner
;
4888 * Matches the smp_store_release() in perf_event_exit_task(). If we
4889 * observe !owner it means the list deletion is complete and we can
4890 * indeed free this event, otherwise we need to serialize on
4891 * owner->perf_event_mutex.
4893 owner
= READ_ONCE(event
->owner
);
4896 * Since delayed_put_task_struct() also drops the last
4897 * task reference we can safely take a new reference
4898 * while holding the rcu_read_lock().
4900 get_task_struct(owner
);
4906 * If we're here through perf_event_exit_task() we're already
4907 * holding ctx->mutex which would be an inversion wrt. the
4908 * normal lock order.
4910 * However we can safely take this lock because its the child
4913 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4916 * We have to re-check the event->owner field, if it is cleared
4917 * we raced with perf_event_exit_task(), acquiring the mutex
4918 * ensured they're done, and we can proceed with freeing the
4922 list_del_init(&event
->owner_entry
);
4923 smp_store_release(&event
->owner
, NULL
);
4925 mutex_unlock(&owner
->perf_event_mutex
);
4926 put_task_struct(owner
);
4930 static void put_event(struct perf_event
*event
)
4932 if (!atomic_long_dec_and_test(&event
->refcount
))
4939 * Kill an event dead; while event:refcount will preserve the event
4940 * object, it will not preserve its functionality. Once the last 'user'
4941 * gives up the object, we'll destroy the thing.
4943 int perf_event_release_kernel(struct perf_event
*event
)
4945 struct perf_event_context
*ctx
= event
->ctx
;
4946 struct perf_event
*child
, *tmp
;
4947 LIST_HEAD(free_list
);
4950 * If we got here through err_file: fput(event_file); we will not have
4951 * attached to a context yet.
4954 WARN_ON_ONCE(event
->attach_state
&
4955 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4959 if (!is_kernel_event(event
))
4960 perf_remove_from_owner(event
);
4962 ctx
= perf_event_ctx_lock(event
);
4963 WARN_ON_ONCE(ctx
->parent_ctx
);
4964 perf_remove_from_context(event
, DETACH_GROUP
);
4966 raw_spin_lock_irq(&ctx
->lock
);
4968 * Mark this event as STATE_DEAD, there is no external reference to it
4971 * Anybody acquiring event->child_mutex after the below loop _must_
4972 * also see this, most importantly inherit_event() which will avoid
4973 * placing more children on the list.
4975 * Thus this guarantees that we will in fact observe and kill _ALL_
4978 event
->state
= PERF_EVENT_STATE_DEAD
;
4979 raw_spin_unlock_irq(&ctx
->lock
);
4981 perf_event_ctx_unlock(event
, ctx
);
4984 mutex_lock(&event
->child_mutex
);
4985 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4988 * Cannot change, child events are not migrated, see the
4989 * comment with perf_event_ctx_lock_nested().
4991 ctx
= READ_ONCE(child
->ctx
);
4993 * Since child_mutex nests inside ctx::mutex, we must jump
4994 * through hoops. We start by grabbing a reference on the ctx.
4996 * Since the event cannot get freed while we hold the
4997 * child_mutex, the context must also exist and have a !0
5003 * Now that we have a ctx ref, we can drop child_mutex, and
5004 * acquire ctx::mutex without fear of it going away. Then we
5005 * can re-acquire child_mutex.
5007 mutex_unlock(&event
->child_mutex
);
5008 mutex_lock(&ctx
->mutex
);
5009 mutex_lock(&event
->child_mutex
);
5012 * Now that we hold ctx::mutex and child_mutex, revalidate our
5013 * state, if child is still the first entry, it didn't get freed
5014 * and we can continue doing so.
5016 tmp
= list_first_entry_or_null(&event
->child_list
,
5017 struct perf_event
, child_list
);
5019 perf_remove_from_context(child
, DETACH_GROUP
);
5020 list_move(&child
->child_list
, &free_list
);
5022 * This matches the refcount bump in inherit_event();
5023 * this can't be the last reference.
5028 mutex_unlock(&event
->child_mutex
);
5029 mutex_unlock(&ctx
->mutex
);
5033 mutex_unlock(&event
->child_mutex
);
5035 list_for_each_entry_safe(child
, tmp
, &free_list
, child_list
) {
5036 void *var
= &child
->ctx
->refcount
;
5038 list_del(&child
->child_list
);
5042 * Wake any perf_event_free_task() waiting for this event to be
5045 smp_mb(); /* pairs with wait_var_event() */
5050 put_event(event
); /* Must be the 'last' reference */
5053 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
5056 * Called when the last reference to the file is gone.
5058 static int perf_release(struct inode
*inode
, struct file
*file
)
5060 perf_event_release_kernel(file
->private_data
);
5064 static u64
__perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
5066 struct perf_event
*child
;
5072 mutex_lock(&event
->child_mutex
);
5074 (void)perf_event_read(event
, false);
5075 total
+= perf_event_count(event
);
5077 *enabled
+= event
->total_time_enabled
+
5078 atomic64_read(&event
->child_total_time_enabled
);
5079 *running
+= event
->total_time_running
+
5080 atomic64_read(&event
->child_total_time_running
);
5082 list_for_each_entry(child
, &event
->child_list
, child_list
) {
5083 (void)perf_event_read(child
, false);
5084 total
+= perf_event_count(child
);
5085 *enabled
+= child
->total_time_enabled
;
5086 *running
+= child
->total_time_running
;
5088 mutex_unlock(&event
->child_mutex
);
5093 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
5095 struct perf_event_context
*ctx
;
5098 ctx
= perf_event_ctx_lock(event
);
5099 count
= __perf_event_read_value(event
, enabled
, running
);
5100 perf_event_ctx_unlock(event
, ctx
);
5104 EXPORT_SYMBOL_GPL(perf_event_read_value
);
5106 static int __perf_read_group_add(struct perf_event
*leader
,
5107 u64 read_format
, u64
*values
)
5109 struct perf_event_context
*ctx
= leader
->ctx
;
5110 struct perf_event
*sub
;
5111 unsigned long flags
;
5112 int n
= 1; /* skip @nr */
5115 ret
= perf_event_read(leader
, true);
5119 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
5122 * Since we co-schedule groups, {enabled,running} times of siblings
5123 * will be identical to those of the leader, so we only publish one
5126 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5127 values
[n
++] += leader
->total_time_enabled
+
5128 atomic64_read(&leader
->child_total_time_enabled
);
5131 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5132 values
[n
++] += leader
->total_time_running
+
5133 atomic64_read(&leader
->child_total_time_running
);
5137 * Write {count,id} tuples for every sibling.
5139 values
[n
++] += perf_event_count(leader
);
5140 if (read_format
& PERF_FORMAT_ID
)
5141 values
[n
++] = primary_event_id(leader
);
5143 for_each_sibling_event(sub
, leader
) {
5144 values
[n
++] += perf_event_count(sub
);
5145 if (read_format
& PERF_FORMAT_ID
)
5146 values
[n
++] = primary_event_id(sub
);
5149 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
5153 static int perf_read_group(struct perf_event
*event
,
5154 u64 read_format
, char __user
*buf
)
5156 struct perf_event
*leader
= event
->group_leader
, *child
;
5157 struct perf_event_context
*ctx
= leader
->ctx
;
5161 lockdep_assert_held(&ctx
->mutex
);
5163 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
5167 values
[0] = 1 + leader
->nr_siblings
;
5170 * By locking the child_mutex of the leader we effectively
5171 * lock the child list of all siblings.. XXX explain how.
5173 mutex_lock(&leader
->child_mutex
);
5175 ret
= __perf_read_group_add(leader
, read_format
, values
);
5179 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
5180 ret
= __perf_read_group_add(child
, read_format
, values
);
5185 mutex_unlock(&leader
->child_mutex
);
5187 ret
= event
->read_size
;
5188 if (copy_to_user(buf
, values
, event
->read_size
))
5193 mutex_unlock(&leader
->child_mutex
);
5199 static int perf_read_one(struct perf_event
*event
,
5200 u64 read_format
, char __user
*buf
)
5202 u64 enabled
, running
;
5206 values
[n
++] = __perf_event_read_value(event
, &enabled
, &running
);
5207 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5208 values
[n
++] = enabled
;
5209 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5210 values
[n
++] = running
;
5211 if (read_format
& PERF_FORMAT_ID
)
5212 values
[n
++] = primary_event_id(event
);
5214 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
5217 return n
* sizeof(u64
);
5220 static bool is_event_hup(struct perf_event
*event
)
5224 if (event
->state
> PERF_EVENT_STATE_EXIT
)
5227 mutex_lock(&event
->child_mutex
);
5228 no_children
= list_empty(&event
->child_list
);
5229 mutex_unlock(&event
->child_mutex
);
5234 * Read the performance event - simple non blocking version for now
5237 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
5239 u64 read_format
= event
->attr
.read_format
;
5243 * Return end-of-file for a read on an event that is in
5244 * error state (i.e. because it was pinned but it couldn't be
5245 * scheduled on to the CPU at some point).
5247 if (event
->state
== PERF_EVENT_STATE_ERROR
)
5250 if (count
< event
->read_size
)
5253 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5254 if (read_format
& PERF_FORMAT_GROUP
)
5255 ret
= perf_read_group(event
, read_format
, buf
);
5257 ret
= perf_read_one(event
, read_format
, buf
);
5263 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
5265 struct perf_event
*event
= file
->private_data
;
5266 struct perf_event_context
*ctx
;
5269 ret
= security_perf_event_read(event
);
5273 ctx
= perf_event_ctx_lock(event
);
5274 ret
= __perf_read(event
, buf
, count
);
5275 perf_event_ctx_unlock(event
, ctx
);
5280 static __poll_t
perf_poll(struct file
*file
, poll_table
*wait
)
5282 struct perf_event
*event
= file
->private_data
;
5283 struct perf_buffer
*rb
;
5284 __poll_t events
= EPOLLHUP
;
5286 poll_wait(file
, &event
->waitq
, wait
);
5288 if (is_event_hup(event
))
5292 * Pin the event->rb by taking event->mmap_mutex; otherwise
5293 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5295 mutex_lock(&event
->mmap_mutex
);
5298 events
= atomic_xchg(&rb
->poll
, 0);
5299 mutex_unlock(&event
->mmap_mutex
);
5303 static void _perf_event_reset(struct perf_event
*event
)
5305 (void)perf_event_read(event
, false);
5306 local64_set(&event
->count
, 0);
5307 perf_event_update_userpage(event
);
5310 /* Assume it's not an event with inherit set. */
5311 u64
perf_event_pause(struct perf_event
*event
, bool reset
)
5313 struct perf_event_context
*ctx
;
5316 ctx
= perf_event_ctx_lock(event
);
5317 WARN_ON_ONCE(event
->attr
.inherit
);
5318 _perf_event_disable(event
);
5319 count
= local64_read(&event
->count
);
5321 local64_set(&event
->count
, 0);
5322 perf_event_ctx_unlock(event
, ctx
);
5326 EXPORT_SYMBOL_GPL(perf_event_pause
);
5329 * Holding the top-level event's child_mutex means that any
5330 * descendant process that has inherited this event will block
5331 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5332 * task existence requirements of perf_event_enable/disable.
5334 static void perf_event_for_each_child(struct perf_event
*event
,
5335 void (*func
)(struct perf_event
*))
5337 struct perf_event
*child
;
5339 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5341 mutex_lock(&event
->child_mutex
);
5343 list_for_each_entry(child
, &event
->child_list
, child_list
)
5345 mutex_unlock(&event
->child_mutex
);
5348 static void perf_event_for_each(struct perf_event
*event
,
5349 void (*func
)(struct perf_event
*))
5351 struct perf_event_context
*ctx
= event
->ctx
;
5352 struct perf_event
*sibling
;
5354 lockdep_assert_held(&ctx
->mutex
);
5356 event
= event
->group_leader
;
5358 perf_event_for_each_child(event
, func
);
5359 for_each_sibling_event(sibling
, event
)
5360 perf_event_for_each_child(sibling
, func
);
5363 static void __perf_event_period(struct perf_event
*event
,
5364 struct perf_cpu_context
*cpuctx
,
5365 struct perf_event_context
*ctx
,
5368 u64 value
= *((u64
*)info
);
5371 if (event
->attr
.freq
) {
5372 event
->attr
.sample_freq
= value
;
5374 event
->attr
.sample_period
= value
;
5375 event
->hw
.sample_period
= value
;
5378 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
5380 perf_pmu_disable(ctx
->pmu
);
5382 * We could be throttled; unthrottle now to avoid the tick
5383 * trying to unthrottle while we already re-started the event.
5385 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
5386 event
->hw
.interrupts
= 0;
5387 perf_log_throttle(event
, 1);
5389 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
5392 local64_set(&event
->hw
.period_left
, 0);
5395 event
->pmu
->start(event
, PERF_EF_RELOAD
);
5396 perf_pmu_enable(ctx
->pmu
);
5400 static int perf_event_check_period(struct perf_event
*event
, u64 value
)
5402 return event
->pmu
->check_period(event
, value
);
5405 static int _perf_event_period(struct perf_event
*event
, u64 value
)
5407 if (!is_sampling_event(event
))
5413 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
5416 if (perf_event_check_period(event
, value
))
5419 if (!event
->attr
.freq
&& (value
& (1ULL << 63)))
5422 event_function_call(event
, __perf_event_period
, &value
);
5427 int perf_event_period(struct perf_event
*event
, u64 value
)
5429 struct perf_event_context
*ctx
;
5432 ctx
= perf_event_ctx_lock(event
);
5433 ret
= _perf_event_period(event
, value
);
5434 perf_event_ctx_unlock(event
, ctx
);
5438 EXPORT_SYMBOL_GPL(perf_event_period
);
5440 static const struct file_operations perf_fops
;
5442 static inline int perf_fget_light(int fd
, struct fd
*p
)
5444 struct fd f
= fdget(fd
);
5448 if (f
.file
->f_op
!= &perf_fops
) {
5456 static int perf_event_set_output(struct perf_event
*event
,
5457 struct perf_event
*output_event
);
5458 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
5459 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
5460 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5461 struct perf_event_attr
*attr
);
5463 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
5465 void (*func
)(struct perf_event
*);
5469 case PERF_EVENT_IOC_ENABLE
:
5470 func
= _perf_event_enable
;
5472 case PERF_EVENT_IOC_DISABLE
:
5473 func
= _perf_event_disable
;
5475 case PERF_EVENT_IOC_RESET
:
5476 func
= _perf_event_reset
;
5479 case PERF_EVENT_IOC_REFRESH
:
5480 return _perf_event_refresh(event
, arg
);
5482 case PERF_EVENT_IOC_PERIOD
:
5486 if (copy_from_user(&value
, (u64 __user
*)arg
, sizeof(value
)))
5489 return _perf_event_period(event
, value
);
5491 case PERF_EVENT_IOC_ID
:
5493 u64 id
= primary_event_id(event
);
5495 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
5500 case PERF_EVENT_IOC_SET_OUTPUT
:
5504 struct perf_event
*output_event
;
5506 ret
= perf_fget_light(arg
, &output
);
5509 output_event
= output
.file
->private_data
;
5510 ret
= perf_event_set_output(event
, output_event
);
5513 ret
= perf_event_set_output(event
, NULL
);
5518 case PERF_EVENT_IOC_SET_FILTER
:
5519 return perf_event_set_filter(event
, (void __user
*)arg
);
5521 case PERF_EVENT_IOC_SET_BPF
:
5522 return perf_event_set_bpf_prog(event
, arg
);
5524 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
5525 struct perf_buffer
*rb
;
5528 rb
= rcu_dereference(event
->rb
);
5529 if (!rb
|| !rb
->nr_pages
) {
5533 rb_toggle_paused(rb
, !!arg
);
5538 case PERF_EVENT_IOC_QUERY_BPF
:
5539 return perf_event_query_prog_array(event
, (void __user
*)arg
);
5541 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES
: {
5542 struct perf_event_attr new_attr
;
5543 int err
= perf_copy_attr((struct perf_event_attr __user
*)arg
,
5549 return perf_event_modify_attr(event
, &new_attr
);
5555 if (flags
& PERF_IOC_FLAG_GROUP
)
5556 perf_event_for_each(event
, func
);
5558 perf_event_for_each_child(event
, func
);
5563 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5565 struct perf_event
*event
= file
->private_data
;
5566 struct perf_event_context
*ctx
;
5569 /* Treat ioctl like writes as it is likely a mutating operation. */
5570 ret
= security_perf_event_write(event
);
5574 ctx
= perf_event_ctx_lock(event
);
5575 ret
= _perf_ioctl(event
, cmd
, arg
);
5576 perf_event_ctx_unlock(event
, ctx
);
5581 #ifdef CONFIG_COMPAT
5582 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
5585 switch (_IOC_NR(cmd
)) {
5586 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
5587 case _IOC_NR(PERF_EVENT_IOC_ID
):
5588 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF
):
5589 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES
):
5590 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5591 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
5592 cmd
&= ~IOCSIZE_MASK
;
5593 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
5597 return perf_ioctl(file
, cmd
, arg
);
5600 # define perf_compat_ioctl NULL
5603 int perf_event_task_enable(void)
5605 struct perf_event_context
*ctx
;
5606 struct perf_event
*event
;
5608 mutex_lock(¤t
->perf_event_mutex
);
5609 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5610 ctx
= perf_event_ctx_lock(event
);
5611 perf_event_for_each_child(event
, _perf_event_enable
);
5612 perf_event_ctx_unlock(event
, ctx
);
5614 mutex_unlock(¤t
->perf_event_mutex
);
5619 int perf_event_task_disable(void)
5621 struct perf_event_context
*ctx
;
5622 struct perf_event
*event
;
5624 mutex_lock(¤t
->perf_event_mutex
);
5625 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5626 ctx
= perf_event_ctx_lock(event
);
5627 perf_event_for_each_child(event
, _perf_event_disable
);
5628 perf_event_ctx_unlock(event
, ctx
);
5630 mutex_unlock(¤t
->perf_event_mutex
);
5635 static int perf_event_index(struct perf_event
*event
)
5637 if (event
->hw
.state
& PERF_HES_STOPPED
)
5640 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5643 return event
->pmu
->event_idx(event
);
5646 static void calc_timer_values(struct perf_event
*event
,
5653 *now
= perf_clock();
5654 ctx_time
= event
->shadow_ctx_time
+ *now
;
5655 __perf_update_times(event
, ctx_time
, enabled
, running
);
5658 static void perf_event_init_userpage(struct perf_event
*event
)
5660 struct perf_event_mmap_page
*userpg
;
5661 struct perf_buffer
*rb
;
5664 rb
= rcu_dereference(event
->rb
);
5668 userpg
= rb
->user_page
;
5670 /* Allow new userspace to detect that bit 0 is deprecated */
5671 userpg
->cap_bit0_is_deprecated
= 1;
5672 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
5673 userpg
->data_offset
= PAGE_SIZE
;
5674 userpg
->data_size
= perf_data_size(rb
);
5680 void __weak
arch_perf_update_userpage(
5681 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
5686 * Callers need to ensure there can be no nesting of this function, otherwise
5687 * the seqlock logic goes bad. We can not serialize this because the arch
5688 * code calls this from NMI context.
5690 void perf_event_update_userpage(struct perf_event
*event
)
5692 struct perf_event_mmap_page
*userpg
;
5693 struct perf_buffer
*rb
;
5694 u64 enabled
, running
, now
;
5697 rb
= rcu_dereference(event
->rb
);
5702 * compute total_time_enabled, total_time_running
5703 * based on snapshot values taken when the event
5704 * was last scheduled in.
5706 * we cannot simply called update_context_time()
5707 * because of locking issue as we can be called in
5710 calc_timer_values(event
, &now
, &enabled
, &running
);
5712 userpg
= rb
->user_page
;
5714 * Disable preemption to guarantee consistent time stamps are stored to
5720 userpg
->index
= perf_event_index(event
);
5721 userpg
->offset
= perf_event_count(event
);
5723 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
5725 userpg
->time_enabled
= enabled
+
5726 atomic64_read(&event
->child_total_time_enabled
);
5728 userpg
->time_running
= running
+
5729 atomic64_read(&event
->child_total_time_running
);
5731 arch_perf_update_userpage(event
, userpg
, now
);
5739 EXPORT_SYMBOL_GPL(perf_event_update_userpage
);
5741 static vm_fault_t
perf_mmap_fault(struct vm_fault
*vmf
)
5743 struct perf_event
*event
= vmf
->vma
->vm_file
->private_data
;
5744 struct perf_buffer
*rb
;
5745 vm_fault_t ret
= VM_FAULT_SIGBUS
;
5747 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
5748 if (vmf
->pgoff
== 0)
5754 rb
= rcu_dereference(event
->rb
);
5758 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
5761 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
5765 get_page(vmf
->page
);
5766 vmf
->page
->mapping
= vmf
->vma
->vm_file
->f_mapping
;
5767 vmf
->page
->index
= vmf
->pgoff
;
5776 static void ring_buffer_attach(struct perf_event
*event
,
5777 struct perf_buffer
*rb
)
5779 struct perf_buffer
*old_rb
= NULL
;
5780 unsigned long flags
;
5784 * Should be impossible, we set this when removing
5785 * event->rb_entry and wait/clear when adding event->rb_entry.
5787 WARN_ON_ONCE(event
->rcu_pending
);
5790 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
5791 list_del_rcu(&event
->rb_entry
);
5792 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
5794 event
->rcu_batches
= get_state_synchronize_rcu();
5795 event
->rcu_pending
= 1;
5799 if (event
->rcu_pending
) {
5800 cond_synchronize_rcu(event
->rcu_batches
);
5801 event
->rcu_pending
= 0;
5804 spin_lock_irqsave(&rb
->event_lock
, flags
);
5805 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
5806 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
5810 * Avoid racing with perf_mmap_close(AUX): stop the event
5811 * before swizzling the event::rb pointer; if it's getting
5812 * unmapped, its aux_mmap_count will be 0 and it won't
5813 * restart. See the comment in __perf_pmu_output_stop().
5815 * Data will inevitably be lost when set_output is done in
5816 * mid-air, but then again, whoever does it like this is
5817 * not in for the data anyway.
5820 perf_event_stop(event
, 0);
5822 rcu_assign_pointer(event
->rb
, rb
);
5825 ring_buffer_put(old_rb
);
5827 * Since we detached before setting the new rb, so that we
5828 * could attach the new rb, we could have missed a wakeup.
5831 wake_up_all(&event
->waitq
);
5835 static void ring_buffer_wakeup(struct perf_event
*event
)
5837 struct perf_buffer
*rb
;
5840 rb
= rcu_dereference(event
->rb
);
5842 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
5843 wake_up_all(&event
->waitq
);
5848 struct perf_buffer
*ring_buffer_get(struct perf_event
*event
)
5850 struct perf_buffer
*rb
;
5853 rb
= rcu_dereference(event
->rb
);
5855 if (!refcount_inc_not_zero(&rb
->refcount
))
5863 void ring_buffer_put(struct perf_buffer
*rb
)
5865 if (!refcount_dec_and_test(&rb
->refcount
))
5868 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
5870 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
5873 static void perf_mmap_open(struct vm_area_struct
*vma
)
5875 struct perf_event
*event
= vma
->vm_file
->private_data
;
5877 atomic_inc(&event
->mmap_count
);
5878 atomic_inc(&event
->rb
->mmap_count
);
5881 atomic_inc(&event
->rb
->aux_mmap_count
);
5883 if (event
->pmu
->event_mapped
)
5884 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
5887 static void perf_pmu_output_stop(struct perf_event
*event
);
5890 * A buffer can be mmap()ed multiple times; either directly through the same
5891 * event, or through other events by use of perf_event_set_output().
5893 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5894 * the buffer here, where we still have a VM context. This means we need
5895 * to detach all events redirecting to us.
5897 static void perf_mmap_close(struct vm_area_struct
*vma
)
5899 struct perf_event
*event
= vma
->vm_file
->private_data
;
5900 struct perf_buffer
*rb
= ring_buffer_get(event
);
5901 struct user_struct
*mmap_user
= rb
->mmap_user
;
5902 int mmap_locked
= rb
->mmap_locked
;
5903 unsigned long size
= perf_data_size(rb
);
5904 bool detach_rest
= false;
5906 if (event
->pmu
->event_unmapped
)
5907 event
->pmu
->event_unmapped(event
, vma
->vm_mm
);
5910 * rb->aux_mmap_count will always drop before rb->mmap_count and
5911 * event->mmap_count, so it is ok to use event->mmap_mutex to
5912 * serialize with perf_mmap here.
5914 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
5915 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
5917 * Stop all AUX events that are writing to this buffer,
5918 * so that we can free its AUX pages and corresponding PMU
5919 * data. Note that after rb::aux_mmap_count dropped to zero,
5920 * they won't start any more (see perf_aux_output_begin()).
5922 perf_pmu_output_stop(event
);
5924 /* now it's safe to free the pages */
5925 atomic_long_sub(rb
->aux_nr_pages
- rb
->aux_mmap_locked
, &mmap_user
->locked_vm
);
5926 atomic64_sub(rb
->aux_mmap_locked
, &vma
->vm_mm
->pinned_vm
);
5928 /* this has to be the last one */
5930 WARN_ON_ONCE(refcount_read(&rb
->aux_refcount
));
5932 mutex_unlock(&event
->mmap_mutex
);
5935 if (atomic_dec_and_test(&rb
->mmap_count
))
5938 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5941 ring_buffer_attach(event
, NULL
);
5942 mutex_unlock(&event
->mmap_mutex
);
5944 /* If there's still other mmap()s of this buffer, we're done. */
5949 * No other mmap()s, detach from all other events that might redirect
5950 * into the now unreachable buffer. Somewhat complicated by the
5951 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5955 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5956 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5958 * This event is en-route to free_event() which will
5959 * detach it and remove it from the list.
5965 mutex_lock(&event
->mmap_mutex
);
5967 * Check we didn't race with perf_event_set_output() which can
5968 * swizzle the rb from under us while we were waiting to
5969 * acquire mmap_mutex.
5971 * If we find a different rb; ignore this event, a next
5972 * iteration will no longer find it on the list. We have to
5973 * still restart the iteration to make sure we're not now
5974 * iterating the wrong list.
5976 if (event
->rb
== rb
)
5977 ring_buffer_attach(event
, NULL
);
5979 mutex_unlock(&event
->mmap_mutex
);
5983 * Restart the iteration; either we're on the wrong list or
5984 * destroyed its integrity by doing a deletion.
5991 * It could be there's still a few 0-ref events on the list; they'll
5992 * get cleaned up by free_event() -- they'll also still have their
5993 * ref on the rb and will free it whenever they are done with it.
5995 * Aside from that, this buffer is 'fully' detached and unmapped,
5996 * undo the VM accounting.
5999 atomic_long_sub((size
>> PAGE_SHIFT
) + 1 - mmap_locked
,
6000 &mmap_user
->locked_vm
);
6001 atomic64_sub(mmap_locked
, &vma
->vm_mm
->pinned_vm
);
6002 free_uid(mmap_user
);
6005 ring_buffer_put(rb
); /* could be last */
6008 static const struct vm_operations_struct perf_mmap_vmops
= {
6009 .open
= perf_mmap_open
,
6010 .close
= perf_mmap_close
, /* non mergeable */
6011 .fault
= perf_mmap_fault
,
6012 .page_mkwrite
= perf_mmap_fault
,
6015 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
6017 struct perf_event
*event
= file
->private_data
;
6018 unsigned long user_locked
, user_lock_limit
;
6019 struct user_struct
*user
= current_user();
6020 struct perf_buffer
*rb
= NULL
;
6021 unsigned long locked
, lock_limit
;
6022 unsigned long vma_size
;
6023 unsigned long nr_pages
;
6024 long user_extra
= 0, extra
= 0;
6025 int ret
= 0, flags
= 0;
6028 * Don't allow mmap() of inherited per-task counters. This would
6029 * create a performance issue due to all children writing to the
6032 if (event
->cpu
== -1 && event
->attr
.inherit
)
6035 if (!(vma
->vm_flags
& VM_SHARED
))
6038 ret
= security_perf_event_read(event
);
6042 vma_size
= vma
->vm_end
- vma
->vm_start
;
6044 if (vma
->vm_pgoff
== 0) {
6045 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
6048 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6049 * mapped, all subsequent mappings should have the same size
6050 * and offset. Must be above the normal perf buffer.
6052 u64 aux_offset
, aux_size
;
6057 nr_pages
= vma_size
/ PAGE_SIZE
;
6059 mutex_lock(&event
->mmap_mutex
);
6066 aux_offset
= READ_ONCE(rb
->user_page
->aux_offset
);
6067 aux_size
= READ_ONCE(rb
->user_page
->aux_size
);
6069 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
6072 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
6075 /* already mapped with a different offset */
6076 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
6079 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
6082 /* already mapped with a different size */
6083 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
6086 if (!is_power_of_2(nr_pages
))
6089 if (!atomic_inc_not_zero(&rb
->mmap_count
))
6092 if (rb_has_aux(rb
)) {
6093 atomic_inc(&rb
->aux_mmap_count
);
6098 atomic_set(&rb
->aux_mmap_count
, 1);
6099 user_extra
= nr_pages
;
6105 * If we have rb pages ensure they're a power-of-two number, so we
6106 * can do bitmasks instead of modulo.
6108 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
6111 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
6114 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
6116 mutex_lock(&event
->mmap_mutex
);
6118 if (event
->rb
->nr_pages
!= nr_pages
) {
6123 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
6125 * Raced against perf_mmap_close() through
6126 * perf_event_set_output(). Try again, hope for better
6129 mutex_unlock(&event
->mmap_mutex
);
6136 user_extra
= nr_pages
+ 1;
6139 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
6142 * Increase the limit linearly with more CPUs:
6144 user_lock_limit
*= num_online_cpus();
6146 user_locked
= atomic_long_read(&user
->locked_vm
);
6149 * sysctl_perf_event_mlock may have changed, so that
6150 * user->locked_vm > user_lock_limit
6152 if (user_locked
> user_lock_limit
)
6153 user_locked
= user_lock_limit
;
6154 user_locked
+= user_extra
;
6156 if (user_locked
> user_lock_limit
) {
6158 * charge locked_vm until it hits user_lock_limit;
6159 * charge the rest from pinned_vm
6161 extra
= user_locked
- user_lock_limit
;
6162 user_extra
-= extra
;
6165 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
6166 lock_limit
>>= PAGE_SHIFT
;
6167 locked
= atomic64_read(&vma
->vm_mm
->pinned_vm
) + extra
;
6169 if ((locked
> lock_limit
) && perf_is_paranoid() &&
6170 !capable(CAP_IPC_LOCK
)) {
6175 WARN_ON(!rb
&& event
->rb
);
6177 if (vma
->vm_flags
& VM_WRITE
)
6178 flags
|= RING_BUFFER_WRITABLE
;
6181 rb
= rb_alloc(nr_pages
,
6182 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
6190 atomic_set(&rb
->mmap_count
, 1);
6191 rb
->mmap_user
= get_current_user();
6192 rb
->mmap_locked
= extra
;
6194 ring_buffer_attach(event
, rb
);
6196 perf_event_init_userpage(event
);
6197 perf_event_update_userpage(event
);
6199 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
6200 event
->attr
.aux_watermark
, flags
);
6202 rb
->aux_mmap_locked
= extra
;
6207 atomic_long_add(user_extra
, &user
->locked_vm
);
6208 atomic64_add(extra
, &vma
->vm_mm
->pinned_vm
);
6210 atomic_inc(&event
->mmap_count
);
6212 atomic_dec(&rb
->mmap_count
);
6215 mutex_unlock(&event
->mmap_mutex
);
6218 * Since pinned accounting is per vm we cannot allow fork() to copy our
6221 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
6222 vma
->vm_ops
= &perf_mmap_vmops
;
6224 if (event
->pmu
->event_mapped
)
6225 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
6230 static int perf_fasync(int fd
, struct file
*filp
, int on
)
6232 struct inode
*inode
= file_inode(filp
);
6233 struct perf_event
*event
= filp
->private_data
;
6237 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
6238 inode_unlock(inode
);
6246 static const struct file_operations perf_fops
= {
6247 .llseek
= no_llseek
,
6248 .release
= perf_release
,
6251 .unlocked_ioctl
= perf_ioctl
,
6252 .compat_ioctl
= perf_compat_ioctl
,
6254 .fasync
= perf_fasync
,
6260 * If there's data, ensure we set the poll() state and publish everything
6261 * to user-space before waking everybody up.
6264 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
6266 /* only the parent has fasync state */
6268 event
= event
->parent
;
6269 return &event
->fasync
;
6272 void perf_event_wakeup(struct perf_event
*event
)
6274 ring_buffer_wakeup(event
);
6276 if (event
->pending_kill
) {
6277 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
6278 event
->pending_kill
= 0;
6282 static void perf_pending_event_disable(struct perf_event
*event
)
6284 int cpu
= READ_ONCE(event
->pending_disable
);
6289 if (cpu
== smp_processor_id()) {
6290 WRITE_ONCE(event
->pending_disable
, -1);
6291 perf_event_disable_local(event
);
6298 * perf_event_disable_inatomic()
6299 * @pending_disable = CPU-A;
6303 * @pending_disable = -1;
6306 * perf_event_disable_inatomic()
6307 * @pending_disable = CPU-B;
6308 * irq_work_queue(); // FAILS
6311 * perf_pending_event()
6313 * But the event runs on CPU-B and wants disabling there.
6315 irq_work_queue_on(&event
->pending
, cpu
);
6318 static void perf_pending_event(struct irq_work
*entry
)
6320 struct perf_event
*event
= container_of(entry
, struct perf_event
, pending
);
6323 rctx
= perf_swevent_get_recursion_context();
6325 * If we 'fail' here, that's OK, it means recursion is already disabled
6326 * and we won't recurse 'further'.
6329 perf_pending_event_disable(event
);
6331 if (event
->pending_wakeup
) {
6332 event
->pending_wakeup
= 0;
6333 perf_event_wakeup(event
);
6337 perf_swevent_put_recursion_context(rctx
);
6341 * We assume there is only KVM supporting the callbacks.
6342 * Later on, we might change it to a list if there is
6343 * another virtualization implementation supporting the callbacks.
6345 struct perf_guest_info_callbacks
*perf_guest_cbs
;
6347 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
6349 perf_guest_cbs
= cbs
;
6352 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
6354 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
6356 perf_guest_cbs
= NULL
;
6359 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
6362 perf_output_sample_regs(struct perf_output_handle
*handle
,
6363 struct pt_regs
*regs
, u64 mask
)
6366 DECLARE_BITMAP(_mask
, 64);
6368 bitmap_from_u64(_mask
, mask
);
6369 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
6372 val
= perf_reg_value(regs
, bit
);
6373 perf_output_put(handle
, val
);
6377 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
6378 struct pt_regs
*regs
)
6380 if (user_mode(regs
)) {
6381 regs_user
->abi
= perf_reg_abi(current
);
6382 regs_user
->regs
= regs
;
6383 } else if (!(current
->flags
& PF_KTHREAD
)) {
6384 perf_get_regs_user(regs_user
, regs
);
6386 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
6387 regs_user
->regs
= NULL
;
6391 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
6392 struct pt_regs
*regs
)
6394 regs_intr
->regs
= regs
;
6395 regs_intr
->abi
= perf_reg_abi(current
);
6400 * Get remaining task size from user stack pointer.
6402 * It'd be better to take stack vma map and limit this more
6403 * precisely, but there's no way to get it safely under interrupt,
6404 * so using TASK_SIZE as limit.
6406 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
6408 unsigned long addr
= perf_user_stack_pointer(regs
);
6410 if (!addr
|| addr
>= TASK_SIZE
)
6413 return TASK_SIZE
- addr
;
6417 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
6418 struct pt_regs
*regs
)
6422 /* No regs, no stack pointer, no dump. */
6427 * Check if we fit in with the requested stack size into the:
6429 * If we don't, we limit the size to the TASK_SIZE.
6431 * - remaining sample size
6432 * If we don't, we customize the stack size to
6433 * fit in to the remaining sample size.
6436 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
6437 stack_size
= min(stack_size
, (u16
) task_size
);
6439 /* Current header size plus static size and dynamic size. */
6440 header_size
+= 2 * sizeof(u64
);
6442 /* Do we fit in with the current stack dump size? */
6443 if ((u16
) (header_size
+ stack_size
) < header_size
) {
6445 * If we overflow the maximum size for the sample,
6446 * we customize the stack dump size to fit in.
6448 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
6449 stack_size
= round_up(stack_size
, sizeof(u64
));
6456 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
6457 struct pt_regs
*regs
)
6459 /* Case of a kernel thread, nothing to dump */
6462 perf_output_put(handle
, size
);
6472 * - the size requested by user or the best one we can fit
6473 * in to the sample max size
6475 * - user stack dump data
6477 * - the actual dumped size
6481 perf_output_put(handle
, dump_size
);
6484 sp
= perf_user_stack_pointer(regs
);
6485 fs
= force_uaccess_begin();
6486 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
6487 force_uaccess_end(fs
);
6488 dyn_size
= dump_size
- rem
;
6490 perf_output_skip(handle
, rem
);
6493 perf_output_put(handle
, dyn_size
);
6497 static unsigned long perf_prepare_sample_aux(struct perf_event
*event
,
6498 struct perf_sample_data
*data
,
6501 struct perf_event
*sampler
= event
->aux_event
;
6502 struct perf_buffer
*rb
;
6509 if (WARN_ON_ONCE(READ_ONCE(sampler
->state
) != PERF_EVENT_STATE_ACTIVE
))
6512 if (WARN_ON_ONCE(READ_ONCE(sampler
->oncpu
) != smp_processor_id()))
6515 rb
= ring_buffer_get(sampler
->parent
? sampler
->parent
: sampler
);
6520 * If this is an NMI hit inside sampling code, don't take
6521 * the sample. See also perf_aux_sample_output().
6523 if (READ_ONCE(rb
->aux_in_sampling
)) {
6526 size
= min_t(size_t, size
, perf_aux_size(rb
));
6527 data
->aux_size
= ALIGN(size
, sizeof(u64
));
6529 ring_buffer_put(rb
);
6532 return data
->aux_size
;
6535 long perf_pmu_snapshot_aux(struct perf_buffer
*rb
,
6536 struct perf_event
*event
,
6537 struct perf_output_handle
*handle
,
6540 unsigned long flags
;
6544 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6545 * paths. If we start calling them in NMI context, they may race with
6546 * the IRQ ones, that is, for example, re-starting an event that's just
6547 * been stopped, which is why we're using a separate callback that
6548 * doesn't change the event state.
6550 * IRQs need to be disabled to prevent IPIs from racing with us.
6552 local_irq_save(flags
);
6554 * Guard against NMI hits inside the critical section;
6555 * see also perf_prepare_sample_aux().
6557 WRITE_ONCE(rb
->aux_in_sampling
, 1);
6560 ret
= event
->pmu
->snapshot_aux(event
, handle
, size
);
6563 WRITE_ONCE(rb
->aux_in_sampling
, 0);
6564 local_irq_restore(flags
);
6569 static void perf_aux_sample_output(struct perf_event
*event
,
6570 struct perf_output_handle
*handle
,
6571 struct perf_sample_data
*data
)
6573 struct perf_event
*sampler
= event
->aux_event
;
6574 struct perf_buffer
*rb
;
6578 if (WARN_ON_ONCE(!sampler
|| !data
->aux_size
))
6581 rb
= ring_buffer_get(sampler
->parent
? sampler
->parent
: sampler
);
6585 size
= perf_pmu_snapshot_aux(rb
, sampler
, handle
, data
->aux_size
);
6588 * An error here means that perf_output_copy() failed (returned a
6589 * non-zero surplus that it didn't copy), which in its current
6590 * enlightened implementation is not possible. If that changes, we'd
6593 if (WARN_ON_ONCE(size
< 0))
6597 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6598 * perf_prepare_sample_aux(), so should not be more than that.
6600 pad
= data
->aux_size
- size
;
6601 if (WARN_ON_ONCE(pad
>= sizeof(u64
)))
6606 perf_output_copy(handle
, &zero
, pad
);
6610 ring_buffer_put(rb
);
6613 static void __perf_event_header__init_id(struct perf_event_header
*header
,
6614 struct perf_sample_data
*data
,
6615 struct perf_event
*event
)
6617 u64 sample_type
= event
->attr
.sample_type
;
6619 data
->type
= sample_type
;
6620 header
->size
+= event
->id_header_size
;
6622 if (sample_type
& PERF_SAMPLE_TID
) {
6623 /* namespace issues */
6624 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
6625 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
6628 if (sample_type
& PERF_SAMPLE_TIME
)
6629 data
->time
= perf_event_clock(event
);
6631 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
6632 data
->id
= primary_event_id(event
);
6634 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6635 data
->stream_id
= event
->id
;
6637 if (sample_type
& PERF_SAMPLE_CPU
) {
6638 data
->cpu_entry
.cpu
= raw_smp_processor_id();
6639 data
->cpu_entry
.reserved
= 0;
6643 void perf_event_header__init_id(struct perf_event_header
*header
,
6644 struct perf_sample_data
*data
,
6645 struct perf_event
*event
)
6647 if (event
->attr
.sample_id_all
)
6648 __perf_event_header__init_id(header
, data
, event
);
6651 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
6652 struct perf_sample_data
*data
)
6654 u64 sample_type
= data
->type
;
6656 if (sample_type
& PERF_SAMPLE_TID
)
6657 perf_output_put(handle
, data
->tid_entry
);
6659 if (sample_type
& PERF_SAMPLE_TIME
)
6660 perf_output_put(handle
, data
->time
);
6662 if (sample_type
& PERF_SAMPLE_ID
)
6663 perf_output_put(handle
, data
->id
);
6665 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6666 perf_output_put(handle
, data
->stream_id
);
6668 if (sample_type
& PERF_SAMPLE_CPU
)
6669 perf_output_put(handle
, data
->cpu_entry
);
6671 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6672 perf_output_put(handle
, data
->id
);
6675 void perf_event__output_id_sample(struct perf_event
*event
,
6676 struct perf_output_handle
*handle
,
6677 struct perf_sample_data
*sample
)
6679 if (event
->attr
.sample_id_all
)
6680 __perf_event__output_id_sample(handle
, sample
);
6683 static void perf_output_read_one(struct perf_output_handle
*handle
,
6684 struct perf_event
*event
,
6685 u64 enabled
, u64 running
)
6687 u64 read_format
= event
->attr
.read_format
;
6691 values
[n
++] = perf_event_count(event
);
6692 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
6693 values
[n
++] = enabled
+
6694 atomic64_read(&event
->child_total_time_enabled
);
6696 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
6697 values
[n
++] = running
+
6698 atomic64_read(&event
->child_total_time_running
);
6700 if (read_format
& PERF_FORMAT_ID
)
6701 values
[n
++] = primary_event_id(event
);
6703 __output_copy(handle
, values
, n
* sizeof(u64
));
6706 static void perf_output_read_group(struct perf_output_handle
*handle
,
6707 struct perf_event
*event
,
6708 u64 enabled
, u64 running
)
6710 struct perf_event
*leader
= event
->group_leader
, *sub
;
6711 u64 read_format
= event
->attr
.read_format
;
6715 values
[n
++] = 1 + leader
->nr_siblings
;
6717 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
6718 values
[n
++] = enabled
;
6720 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
6721 values
[n
++] = running
;
6723 if ((leader
!= event
) &&
6724 (leader
->state
== PERF_EVENT_STATE_ACTIVE
))
6725 leader
->pmu
->read(leader
);
6727 values
[n
++] = perf_event_count(leader
);
6728 if (read_format
& PERF_FORMAT_ID
)
6729 values
[n
++] = primary_event_id(leader
);
6731 __output_copy(handle
, values
, n
* sizeof(u64
));
6733 for_each_sibling_event(sub
, leader
) {
6736 if ((sub
!= event
) &&
6737 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
6738 sub
->pmu
->read(sub
);
6740 values
[n
++] = perf_event_count(sub
);
6741 if (read_format
& PERF_FORMAT_ID
)
6742 values
[n
++] = primary_event_id(sub
);
6744 __output_copy(handle
, values
, n
* sizeof(u64
));
6748 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6749 PERF_FORMAT_TOTAL_TIME_RUNNING)
6752 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6754 * The problem is that its both hard and excessively expensive to iterate the
6755 * child list, not to mention that its impossible to IPI the children running
6756 * on another CPU, from interrupt/NMI context.
6758 static void perf_output_read(struct perf_output_handle
*handle
,
6759 struct perf_event
*event
)
6761 u64 enabled
= 0, running
= 0, now
;
6762 u64 read_format
= event
->attr
.read_format
;
6765 * compute total_time_enabled, total_time_running
6766 * based on snapshot values taken when the event
6767 * was last scheduled in.
6769 * we cannot simply called update_context_time()
6770 * because of locking issue as we are called in
6773 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
6774 calc_timer_values(event
, &now
, &enabled
, &running
);
6776 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
6777 perf_output_read_group(handle
, event
, enabled
, running
);
6779 perf_output_read_one(handle
, event
, enabled
, running
);
6782 static inline bool perf_sample_save_hw_index(struct perf_event
*event
)
6784 return event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_HW_INDEX
;
6787 void perf_output_sample(struct perf_output_handle
*handle
,
6788 struct perf_event_header
*header
,
6789 struct perf_sample_data
*data
,
6790 struct perf_event
*event
)
6792 u64 sample_type
= data
->type
;
6794 perf_output_put(handle
, *header
);
6796 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6797 perf_output_put(handle
, data
->id
);
6799 if (sample_type
& PERF_SAMPLE_IP
)
6800 perf_output_put(handle
, data
->ip
);
6802 if (sample_type
& PERF_SAMPLE_TID
)
6803 perf_output_put(handle
, data
->tid_entry
);
6805 if (sample_type
& PERF_SAMPLE_TIME
)
6806 perf_output_put(handle
, data
->time
);
6808 if (sample_type
& PERF_SAMPLE_ADDR
)
6809 perf_output_put(handle
, data
->addr
);
6811 if (sample_type
& PERF_SAMPLE_ID
)
6812 perf_output_put(handle
, data
->id
);
6814 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6815 perf_output_put(handle
, data
->stream_id
);
6817 if (sample_type
& PERF_SAMPLE_CPU
)
6818 perf_output_put(handle
, data
->cpu_entry
);
6820 if (sample_type
& PERF_SAMPLE_PERIOD
)
6821 perf_output_put(handle
, data
->period
);
6823 if (sample_type
& PERF_SAMPLE_READ
)
6824 perf_output_read(handle
, event
);
6826 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6829 size
+= data
->callchain
->nr
;
6830 size
*= sizeof(u64
);
6831 __output_copy(handle
, data
->callchain
, size
);
6834 if (sample_type
& PERF_SAMPLE_RAW
) {
6835 struct perf_raw_record
*raw
= data
->raw
;
6838 struct perf_raw_frag
*frag
= &raw
->frag
;
6840 perf_output_put(handle
, raw
->size
);
6843 __output_custom(handle
, frag
->copy
,
6844 frag
->data
, frag
->size
);
6846 __output_copy(handle
, frag
->data
,
6849 if (perf_raw_frag_last(frag
))
6854 __output_skip(handle
, NULL
, frag
->pad
);
6860 .size
= sizeof(u32
),
6863 perf_output_put(handle
, raw
);
6867 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6868 if (data
->br_stack
) {
6871 size
= data
->br_stack
->nr
6872 * sizeof(struct perf_branch_entry
);
6874 perf_output_put(handle
, data
->br_stack
->nr
);
6875 if (perf_sample_save_hw_index(event
))
6876 perf_output_put(handle
, data
->br_stack
->hw_idx
);
6877 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
6880 * we always store at least the value of nr
6883 perf_output_put(handle
, nr
);
6887 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6888 u64 abi
= data
->regs_user
.abi
;
6891 * If there are no regs to dump, notice it through
6892 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6894 perf_output_put(handle
, abi
);
6897 u64 mask
= event
->attr
.sample_regs_user
;
6898 perf_output_sample_regs(handle
,
6899 data
->regs_user
.regs
,
6904 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6905 perf_output_sample_ustack(handle
,
6906 data
->stack_user_size
,
6907 data
->regs_user
.regs
);
6910 if (sample_type
& PERF_SAMPLE_WEIGHT
)
6911 perf_output_put(handle
, data
->weight
);
6913 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
6914 perf_output_put(handle
, data
->data_src
.val
);
6916 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
6917 perf_output_put(handle
, data
->txn
);
6919 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6920 u64 abi
= data
->regs_intr
.abi
;
6922 * If there are no regs to dump, notice it through
6923 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6925 perf_output_put(handle
, abi
);
6928 u64 mask
= event
->attr
.sample_regs_intr
;
6930 perf_output_sample_regs(handle
,
6931 data
->regs_intr
.regs
,
6936 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
6937 perf_output_put(handle
, data
->phys_addr
);
6939 if (sample_type
& PERF_SAMPLE_CGROUP
)
6940 perf_output_put(handle
, data
->cgroup
);
6942 if (sample_type
& PERF_SAMPLE_DATA_PAGE_SIZE
)
6943 perf_output_put(handle
, data
->data_page_size
);
6945 if (sample_type
& PERF_SAMPLE_CODE_PAGE_SIZE
)
6946 perf_output_put(handle
, data
->code_page_size
);
6948 if (sample_type
& PERF_SAMPLE_AUX
) {
6949 perf_output_put(handle
, data
->aux_size
);
6952 perf_aux_sample_output(event
, handle
, data
);
6955 if (!event
->attr
.watermark
) {
6956 int wakeup_events
= event
->attr
.wakeup_events
;
6958 if (wakeup_events
) {
6959 struct perf_buffer
*rb
= handle
->rb
;
6960 int events
= local_inc_return(&rb
->events
);
6962 if (events
>= wakeup_events
) {
6963 local_sub(wakeup_events
, &rb
->events
);
6964 local_inc(&rb
->wakeup
);
6970 static u64
perf_virt_to_phys(u64 virt
)
6973 struct page
*p
= NULL
;
6978 if (virt
>= TASK_SIZE
) {
6979 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6980 if (virt_addr_valid((void *)(uintptr_t)virt
) &&
6981 !(virt
>= VMALLOC_START
&& virt
< VMALLOC_END
))
6982 phys_addr
= (u64
)virt_to_phys((void *)(uintptr_t)virt
);
6985 * Walking the pages tables for user address.
6986 * Interrupts are disabled, so it prevents any tear down
6987 * of the page tables.
6988 * Try IRQ-safe get_user_page_fast_only first.
6989 * If failed, leave phys_addr as 0.
6991 if (current
->mm
!= NULL
) {
6992 pagefault_disable();
6993 if (get_user_page_fast_only(virt
, 0, &p
))
6994 phys_addr
= page_to_phys(p
) + virt
% PAGE_SIZE
;
7006 * Return the pagetable size of a given virtual address.
7008 static u64
perf_get_pgtable_size(struct mm_struct
*mm
, unsigned long addr
)
7012 #ifdef CONFIG_HAVE_FAST_GUP
7019 pgdp
= pgd_offset(mm
, addr
);
7020 pgd
= READ_ONCE(*pgdp
);
7025 return pgd_leaf_size(pgd
);
7027 p4dp
= p4d_offset_lockless(pgdp
, pgd
, addr
);
7028 p4d
= READ_ONCE(*p4dp
);
7029 if (!p4d_present(p4d
))
7033 return p4d_leaf_size(p4d
);
7035 pudp
= pud_offset_lockless(p4dp
, p4d
, addr
);
7036 pud
= READ_ONCE(*pudp
);
7037 if (!pud_present(pud
))
7041 return pud_leaf_size(pud
);
7043 pmdp
= pmd_offset_lockless(pudp
, pud
, addr
);
7044 pmd
= READ_ONCE(*pmdp
);
7045 if (!pmd_present(pmd
))
7049 return pmd_leaf_size(pmd
);
7051 ptep
= pte_offset_map(&pmd
, addr
);
7052 pte
= ptep_get_lockless(ptep
);
7053 if (pte_present(pte
))
7054 size
= pte_leaf_size(pte
);
7056 #endif /* CONFIG_HAVE_FAST_GUP */
7061 static u64
perf_get_page_size(unsigned long addr
)
7063 struct mm_struct
*mm
;
7064 unsigned long flags
;
7071 * Software page-table walkers must disable IRQs,
7072 * which prevents any tear down of the page tables.
7074 local_irq_save(flags
);
7079 * For kernel threads and the like, use init_mm so that
7080 * we can find kernel memory.
7085 size
= perf_get_pgtable_size(mm
, addr
);
7087 local_irq_restore(flags
);
7092 static struct perf_callchain_entry __empty_callchain
= { .nr
= 0, };
7094 struct perf_callchain_entry
*
7095 perf_callchain(struct perf_event
*event
, struct pt_regs
*regs
)
7097 bool kernel
= !event
->attr
.exclude_callchain_kernel
;
7098 bool user
= !event
->attr
.exclude_callchain_user
;
7099 /* Disallow cross-task user callchains. */
7100 bool crosstask
= event
->ctx
->task
&& event
->ctx
->task
!= current
;
7101 const u32 max_stack
= event
->attr
.sample_max_stack
;
7102 struct perf_callchain_entry
*callchain
;
7104 if (!kernel
&& !user
)
7105 return &__empty_callchain
;
7107 callchain
= get_perf_callchain(regs
, 0, kernel
, user
,
7108 max_stack
, crosstask
, true);
7109 return callchain
?: &__empty_callchain
;
7112 void perf_prepare_sample(struct perf_event_header
*header
,
7113 struct perf_sample_data
*data
,
7114 struct perf_event
*event
,
7115 struct pt_regs
*regs
)
7117 u64 sample_type
= event
->attr
.sample_type
;
7119 header
->type
= PERF_RECORD_SAMPLE
;
7120 header
->size
= sizeof(*header
) + event
->header_size
;
7123 header
->misc
|= perf_misc_flags(regs
);
7125 __perf_event_header__init_id(header
, data
, event
);
7127 if (sample_type
& (PERF_SAMPLE_IP
| PERF_SAMPLE_CODE_PAGE_SIZE
))
7128 data
->ip
= perf_instruction_pointer(regs
);
7130 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
7133 if (!(sample_type
& __PERF_SAMPLE_CALLCHAIN_EARLY
))
7134 data
->callchain
= perf_callchain(event
, regs
);
7136 size
+= data
->callchain
->nr
;
7138 header
->size
+= size
* sizeof(u64
);
7141 if (sample_type
& PERF_SAMPLE_RAW
) {
7142 struct perf_raw_record
*raw
= data
->raw
;
7146 struct perf_raw_frag
*frag
= &raw
->frag
;
7151 if (perf_raw_frag_last(frag
))
7156 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
7157 raw
->size
= size
- sizeof(u32
);
7158 frag
->pad
= raw
->size
- sum
;
7163 header
->size
+= size
;
7166 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
7167 int size
= sizeof(u64
); /* nr */
7168 if (data
->br_stack
) {
7169 if (perf_sample_save_hw_index(event
))
7170 size
+= sizeof(u64
);
7172 size
+= data
->br_stack
->nr
7173 * sizeof(struct perf_branch_entry
);
7175 header
->size
+= size
;
7178 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
7179 perf_sample_regs_user(&data
->regs_user
, regs
);
7181 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
7182 /* regs dump ABI info */
7183 int size
= sizeof(u64
);
7185 if (data
->regs_user
.regs
) {
7186 u64 mask
= event
->attr
.sample_regs_user
;
7187 size
+= hweight64(mask
) * sizeof(u64
);
7190 header
->size
+= size
;
7193 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
7195 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7196 * processed as the last one or have additional check added
7197 * in case new sample type is added, because we could eat
7198 * up the rest of the sample size.
7200 u16 stack_size
= event
->attr
.sample_stack_user
;
7201 u16 size
= sizeof(u64
);
7203 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
7204 data
->regs_user
.regs
);
7207 * If there is something to dump, add space for the dump
7208 * itself and for the field that tells the dynamic size,
7209 * which is how many have been actually dumped.
7212 size
+= sizeof(u64
) + stack_size
;
7214 data
->stack_user_size
= stack_size
;
7215 header
->size
+= size
;
7218 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
7219 /* regs dump ABI info */
7220 int size
= sizeof(u64
);
7222 perf_sample_regs_intr(&data
->regs_intr
, regs
);
7224 if (data
->regs_intr
.regs
) {
7225 u64 mask
= event
->attr
.sample_regs_intr
;
7227 size
+= hweight64(mask
) * sizeof(u64
);
7230 header
->size
+= size
;
7233 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
7234 data
->phys_addr
= perf_virt_to_phys(data
->addr
);
7236 #ifdef CONFIG_CGROUP_PERF
7237 if (sample_type
& PERF_SAMPLE_CGROUP
) {
7238 struct cgroup
*cgrp
;
7240 /* protected by RCU */
7241 cgrp
= task_css_check(current
, perf_event_cgrp_id
, 1)->cgroup
;
7242 data
->cgroup
= cgroup_id(cgrp
);
7247 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7248 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7249 * but the value will not dump to the userspace.
7251 if (sample_type
& PERF_SAMPLE_DATA_PAGE_SIZE
)
7252 data
->data_page_size
= perf_get_page_size(data
->addr
);
7254 if (sample_type
& PERF_SAMPLE_CODE_PAGE_SIZE
)
7255 data
->code_page_size
= perf_get_page_size(data
->ip
);
7257 if (sample_type
& PERF_SAMPLE_AUX
) {
7260 header
->size
+= sizeof(u64
); /* size */
7263 * Given the 16bit nature of header::size, an AUX sample can
7264 * easily overflow it, what with all the preceding sample bits.
7265 * Make sure this doesn't happen by using up to U16_MAX bytes
7266 * per sample in total (rounded down to 8 byte boundary).
7268 size
= min_t(size_t, U16_MAX
- header
->size
,
7269 event
->attr
.aux_sample_size
);
7270 size
= rounddown(size
, 8);
7271 size
= perf_prepare_sample_aux(event
, data
, size
);
7273 WARN_ON_ONCE(size
+ header
->size
> U16_MAX
);
7274 header
->size
+= size
;
7277 * If you're adding more sample types here, you likely need to do
7278 * something about the overflowing header::size, like repurpose the
7279 * lowest 3 bits of size, which should be always zero at the moment.
7280 * This raises a more important question, do we really need 512k sized
7281 * samples and why, so good argumentation is in order for whatever you
7284 WARN_ON_ONCE(header
->size
& 7);
7287 static __always_inline
int
7288 __perf_event_output(struct perf_event
*event
,
7289 struct perf_sample_data
*data
,
7290 struct pt_regs
*regs
,
7291 int (*output_begin
)(struct perf_output_handle
*,
7292 struct perf_sample_data
*,
7293 struct perf_event
*,
7296 struct perf_output_handle handle
;
7297 struct perf_event_header header
;
7300 /* protect the callchain buffers */
7303 perf_prepare_sample(&header
, data
, event
, regs
);
7305 err
= output_begin(&handle
, data
, event
, header
.size
);
7309 perf_output_sample(&handle
, &header
, data
, event
);
7311 perf_output_end(&handle
);
7319 perf_event_output_forward(struct perf_event
*event
,
7320 struct perf_sample_data
*data
,
7321 struct pt_regs
*regs
)
7323 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
7327 perf_event_output_backward(struct perf_event
*event
,
7328 struct perf_sample_data
*data
,
7329 struct pt_regs
*regs
)
7331 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
7335 perf_event_output(struct perf_event
*event
,
7336 struct perf_sample_data
*data
,
7337 struct pt_regs
*regs
)
7339 return __perf_event_output(event
, data
, regs
, perf_output_begin
);
7346 struct perf_read_event
{
7347 struct perf_event_header header
;
7354 perf_event_read_event(struct perf_event
*event
,
7355 struct task_struct
*task
)
7357 struct perf_output_handle handle
;
7358 struct perf_sample_data sample
;
7359 struct perf_read_event read_event
= {
7361 .type
= PERF_RECORD_READ
,
7363 .size
= sizeof(read_event
) + event
->read_size
,
7365 .pid
= perf_event_pid(event
, task
),
7366 .tid
= perf_event_tid(event
, task
),
7370 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
7371 ret
= perf_output_begin(&handle
, &sample
, event
, read_event
.header
.size
);
7375 perf_output_put(&handle
, read_event
);
7376 perf_output_read(&handle
, event
);
7377 perf_event__output_id_sample(event
, &handle
, &sample
);
7379 perf_output_end(&handle
);
7382 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
7385 perf_iterate_ctx(struct perf_event_context
*ctx
,
7386 perf_iterate_f output
,
7387 void *data
, bool all
)
7389 struct perf_event
*event
;
7391 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7393 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
7395 if (!event_filter_match(event
))
7399 output(event
, data
);
7403 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
7405 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
7406 struct perf_event
*event
;
7408 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
7410 * Skip events that are not fully formed yet; ensure that
7411 * if we observe event->ctx, both event and ctx will be
7412 * complete enough. See perf_install_in_context().
7414 if (!smp_load_acquire(&event
->ctx
))
7417 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
7419 if (!event_filter_match(event
))
7421 output(event
, data
);
7426 * Iterate all events that need to receive side-band events.
7428 * For new callers; ensure that account_pmu_sb_event() includes
7429 * your event, otherwise it might not get delivered.
7432 perf_iterate_sb(perf_iterate_f output
, void *data
,
7433 struct perf_event_context
*task_ctx
)
7435 struct perf_event_context
*ctx
;
7442 * If we have task_ctx != NULL we only notify the task context itself.
7443 * The task_ctx is set only for EXIT events before releasing task
7447 perf_iterate_ctx(task_ctx
, output
, data
, false);
7451 perf_iterate_sb_cpu(output
, data
);
7453 for_each_task_context_nr(ctxn
) {
7454 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
7456 perf_iterate_ctx(ctx
, output
, data
, false);
7464 * Clear all file-based filters at exec, they'll have to be
7465 * re-instated when/if these objects are mmapped again.
7467 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
7469 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
7470 struct perf_addr_filter
*filter
;
7471 unsigned int restart
= 0, count
= 0;
7472 unsigned long flags
;
7474 if (!has_addr_filter(event
))
7477 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
7478 list_for_each_entry(filter
, &ifh
->list
, entry
) {
7479 if (filter
->path
.dentry
) {
7480 event
->addr_filter_ranges
[count
].start
= 0;
7481 event
->addr_filter_ranges
[count
].size
= 0;
7489 event
->addr_filters_gen
++;
7490 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
7493 perf_event_stop(event
, 1);
7496 void perf_event_exec(void)
7498 struct perf_event_context
*ctx
;
7502 for_each_task_context_nr(ctxn
) {
7503 ctx
= current
->perf_event_ctxp
[ctxn
];
7507 perf_event_enable_on_exec(ctxn
);
7509 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
7515 struct remote_output
{
7516 struct perf_buffer
*rb
;
7520 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
7522 struct perf_event
*parent
= event
->parent
;
7523 struct remote_output
*ro
= data
;
7524 struct perf_buffer
*rb
= ro
->rb
;
7525 struct stop_event_data sd
= {
7529 if (!has_aux(event
))
7536 * In case of inheritance, it will be the parent that links to the
7537 * ring-buffer, but it will be the child that's actually using it.
7539 * We are using event::rb to determine if the event should be stopped,
7540 * however this may race with ring_buffer_attach() (through set_output),
7541 * which will make us skip the event that actually needs to be stopped.
7542 * So ring_buffer_attach() has to stop an aux event before re-assigning
7545 if (rcu_dereference(parent
->rb
) == rb
)
7546 ro
->err
= __perf_event_stop(&sd
);
7549 static int __perf_pmu_output_stop(void *info
)
7551 struct perf_event
*event
= info
;
7552 struct pmu
*pmu
= event
->ctx
->pmu
;
7553 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
7554 struct remote_output ro
= {
7559 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
7560 if (cpuctx
->task_ctx
)
7561 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
7568 static void perf_pmu_output_stop(struct perf_event
*event
)
7570 struct perf_event
*iter
;
7575 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
7577 * For per-CPU events, we need to make sure that neither they
7578 * nor their children are running; for cpu==-1 events it's
7579 * sufficient to stop the event itself if it's active, since
7580 * it can't have children.
7584 cpu
= READ_ONCE(iter
->oncpu
);
7589 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
7590 if (err
== -EAGAIN
) {
7599 * task tracking -- fork/exit
7601 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7604 struct perf_task_event
{
7605 struct task_struct
*task
;
7606 struct perf_event_context
*task_ctx
;
7609 struct perf_event_header header
;
7619 static int perf_event_task_match(struct perf_event
*event
)
7621 return event
->attr
.comm
|| event
->attr
.mmap
||
7622 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
7626 static void perf_event_task_output(struct perf_event
*event
,
7629 struct perf_task_event
*task_event
= data
;
7630 struct perf_output_handle handle
;
7631 struct perf_sample_data sample
;
7632 struct task_struct
*task
= task_event
->task
;
7633 int ret
, size
= task_event
->event_id
.header
.size
;
7635 if (!perf_event_task_match(event
))
7638 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
7640 ret
= perf_output_begin(&handle
, &sample
, event
,
7641 task_event
->event_id
.header
.size
);
7645 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
7646 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
7648 if (task_event
->event_id
.header
.type
== PERF_RECORD_EXIT
) {
7649 task_event
->event_id
.ppid
= perf_event_pid(event
,
7651 task_event
->event_id
.ptid
= perf_event_pid(event
,
7653 } else { /* PERF_RECORD_FORK */
7654 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
7655 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
7658 task_event
->event_id
.time
= perf_event_clock(event
);
7660 perf_output_put(&handle
, task_event
->event_id
);
7662 perf_event__output_id_sample(event
, &handle
, &sample
);
7664 perf_output_end(&handle
);
7666 task_event
->event_id
.header
.size
= size
;
7669 static void perf_event_task(struct task_struct
*task
,
7670 struct perf_event_context
*task_ctx
,
7673 struct perf_task_event task_event
;
7675 if (!atomic_read(&nr_comm_events
) &&
7676 !atomic_read(&nr_mmap_events
) &&
7677 !atomic_read(&nr_task_events
))
7680 task_event
= (struct perf_task_event
){
7682 .task_ctx
= task_ctx
,
7685 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
7687 .size
= sizeof(task_event
.event_id
),
7697 perf_iterate_sb(perf_event_task_output
,
7702 void perf_event_fork(struct task_struct
*task
)
7704 perf_event_task(task
, NULL
, 1);
7705 perf_event_namespaces(task
);
7712 struct perf_comm_event
{
7713 struct task_struct
*task
;
7718 struct perf_event_header header
;
7725 static int perf_event_comm_match(struct perf_event
*event
)
7727 return event
->attr
.comm
;
7730 static void perf_event_comm_output(struct perf_event
*event
,
7733 struct perf_comm_event
*comm_event
= data
;
7734 struct perf_output_handle handle
;
7735 struct perf_sample_data sample
;
7736 int size
= comm_event
->event_id
.header
.size
;
7739 if (!perf_event_comm_match(event
))
7742 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
7743 ret
= perf_output_begin(&handle
, &sample
, event
,
7744 comm_event
->event_id
.header
.size
);
7749 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
7750 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
7752 perf_output_put(&handle
, comm_event
->event_id
);
7753 __output_copy(&handle
, comm_event
->comm
,
7754 comm_event
->comm_size
);
7756 perf_event__output_id_sample(event
, &handle
, &sample
);
7758 perf_output_end(&handle
);
7760 comm_event
->event_id
.header
.size
= size
;
7763 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
7765 char comm
[TASK_COMM_LEN
];
7768 memset(comm
, 0, sizeof(comm
));
7769 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
7770 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
7772 comm_event
->comm
= comm
;
7773 comm_event
->comm_size
= size
;
7775 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
7777 perf_iterate_sb(perf_event_comm_output
,
7782 void perf_event_comm(struct task_struct
*task
, bool exec
)
7784 struct perf_comm_event comm_event
;
7786 if (!atomic_read(&nr_comm_events
))
7789 comm_event
= (struct perf_comm_event
){
7795 .type
= PERF_RECORD_COMM
,
7796 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
7804 perf_event_comm_event(&comm_event
);
7808 * namespaces tracking
7811 struct perf_namespaces_event
{
7812 struct task_struct
*task
;
7815 struct perf_event_header header
;
7820 struct perf_ns_link_info link_info
[NR_NAMESPACES
];
7824 static int perf_event_namespaces_match(struct perf_event
*event
)
7826 return event
->attr
.namespaces
;
7829 static void perf_event_namespaces_output(struct perf_event
*event
,
7832 struct perf_namespaces_event
*namespaces_event
= data
;
7833 struct perf_output_handle handle
;
7834 struct perf_sample_data sample
;
7835 u16 header_size
= namespaces_event
->event_id
.header
.size
;
7838 if (!perf_event_namespaces_match(event
))
7841 perf_event_header__init_id(&namespaces_event
->event_id
.header
,
7843 ret
= perf_output_begin(&handle
, &sample
, event
,
7844 namespaces_event
->event_id
.header
.size
);
7848 namespaces_event
->event_id
.pid
= perf_event_pid(event
,
7849 namespaces_event
->task
);
7850 namespaces_event
->event_id
.tid
= perf_event_tid(event
,
7851 namespaces_event
->task
);
7853 perf_output_put(&handle
, namespaces_event
->event_id
);
7855 perf_event__output_id_sample(event
, &handle
, &sample
);
7857 perf_output_end(&handle
);
7859 namespaces_event
->event_id
.header
.size
= header_size
;
7862 static void perf_fill_ns_link_info(struct perf_ns_link_info
*ns_link_info
,
7863 struct task_struct
*task
,
7864 const struct proc_ns_operations
*ns_ops
)
7866 struct path ns_path
;
7867 struct inode
*ns_inode
;
7870 error
= ns_get_path(&ns_path
, task
, ns_ops
);
7872 ns_inode
= ns_path
.dentry
->d_inode
;
7873 ns_link_info
->dev
= new_encode_dev(ns_inode
->i_sb
->s_dev
);
7874 ns_link_info
->ino
= ns_inode
->i_ino
;
7879 void perf_event_namespaces(struct task_struct
*task
)
7881 struct perf_namespaces_event namespaces_event
;
7882 struct perf_ns_link_info
*ns_link_info
;
7884 if (!atomic_read(&nr_namespaces_events
))
7887 namespaces_event
= (struct perf_namespaces_event
){
7891 .type
= PERF_RECORD_NAMESPACES
,
7893 .size
= sizeof(namespaces_event
.event_id
),
7897 .nr_namespaces
= NR_NAMESPACES
,
7898 /* .link_info[NR_NAMESPACES] */
7902 ns_link_info
= namespaces_event
.event_id
.link_info
;
7904 perf_fill_ns_link_info(&ns_link_info
[MNT_NS_INDEX
],
7905 task
, &mntns_operations
);
7907 #ifdef CONFIG_USER_NS
7908 perf_fill_ns_link_info(&ns_link_info
[USER_NS_INDEX
],
7909 task
, &userns_operations
);
7911 #ifdef CONFIG_NET_NS
7912 perf_fill_ns_link_info(&ns_link_info
[NET_NS_INDEX
],
7913 task
, &netns_operations
);
7915 #ifdef CONFIG_UTS_NS
7916 perf_fill_ns_link_info(&ns_link_info
[UTS_NS_INDEX
],
7917 task
, &utsns_operations
);
7919 #ifdef CONFIG_IPC_NS
7920 perf_fill_ns_link_info(&ns_link_info
[IPC_NS_INDEX
],
7921 task
, &ipcns_operations
);
7923 #ifdef CONFIG_PID_NS
7924 perf_fill_ns_link_info(&ns_link_info
[PID_NS_INDEX
],
7925 task
, &pidns_operations
);
7927 #ifdef CONFIG_CGROUPS
7928 perf_fill_ns_link_info(&ns_link_info
[CGROUP_NS_INDEX
],
7929 task
, &cgroupns_operations
);
7932 perf_iterate_sb(perf_event_namespaces_output
,
7940 #ifdef CONFIG_CGROUP_PERF
7942 struct perf_cgroup_event
{
7946 struct perf_event_header header
;
7952 static int perf_event_cgroup_match(struct perf_event
*event
)
7954 return event
->attr
.cgroup
;
7957 static void perf_event_cgroup_output(struct perf_event
*event
, void *data
)
7959 struct perf_cgroup_event
*cgroup_event
= data
;
7960 struct perf_output_handle handle
;
7961 struct perf_sample_data sample
;
7962 u16 header_size
= cgroup_event
->event_id
.header
.size
;
7965 if (!perf_event_cgroup_match(event
))
7968 perf_event_header__init_id(&cgroup_event
->event_id
.header
,
7970 ret
= perf_output_begin(&handle
, &sample
, event
,
7971 cgroup_event
->event_id
.header
.size
);
7975 perf_output_put(&handle
, cgroup_event
->event_id
);
7976 __output_copy(&handle
, cgroup_event
->path
, cgroup_event
->path_size
);
7978 perf_event__output_id_sample(event
, &handle
, &sample
);
7980 perf_output_end(&handle
);
7982 cgroup_event
->event_id
.header
.size
= header_size
;
7985 static void perf_event_cgroup(struct cgroup
*cgrp
)
7987 struct perf_cgroup_event cgroup_event
;
7988 char path_enomem
[16] = "//enomem";
7992 if (!atomic_read(&nr_cgroup_events
))
7995 cgroup_event
= (struct perf_cgroup_event
){
7998 .type
= PERF_RECORD_CGROUP
,
8000 .size
= sizeof(cgroup_event
.event_id
),
8002 .id
= cgroup_id(cgrp
),
8006 pathname
= kmalloc(PATH_MAX
, GFP_KERNEL
);
8007 if (pathname
== NULL
) {
8008 cgroup_event
.path
= path_enomem
;
8010 /* just to be sure to have enough space for alignment */
8011 cgroup_path(cgrp
, pathname
, PATH_MAX
- sizeof(u64
));
8012 cgroup_event
.path
= pathname
;
8016 * Since our buffer works in 8 byte units we need to align our string
8017 * size to a multiple of 8. However, we must guarantee the tail end is
8018 * zero'd out to avoid leaking random bits to userspace.
8020 size
= strlen(cgroup_event
.path
) + 1;
8021 while (!IS_ALIGNED(size
, sizeof(u64
)))
8022 cgroup_event
.path
[size
++] = '\0';
8024 cgroup_event
.event_id
.header
.size
+= size
;
8025 cgroup_event
.path_size
= size
;
8027 perf_iterate_sb(perf_event_cgroup_output
,
8040 struct perf_mmap_event
{
8041 struct vm_area_struct
*vma
;
8043 const char *file_name
;
8051 struct perf_event_header header
;
8061 static int perf_event_mmap_match(struct perf_event
*event
,
8064 struct perf_mmap_event
*mmap_event
= data
;
8065 struct vm_area_struct
*vma
= mmap_event
->vma
;
8066 int executable
= vma
->vm_flags
& VM_EXEC
;
8068 return (!executable
&& event
->attr
.mmap_data
) ||
8069 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
8072 static void perf_event_mmap_output(struct perf_event
*event
,
8075 struct perf_mmap_event
*mmap_event
= data
;
8076 struct perf_output_handle handle
;
8077 struct perf_sample_data sample
;
8078 int size
= mmap_event
->event_id
.header
.size
;
8079 u32 type
= mmap_event
->event_id
.header
.type
;
8082 if (!perf_event_mmap_match(event
, data
))
8085 if (event
->attr
.mmap2
) {
8086 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
8087 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
8088 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
8089 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
8090 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
8091 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
8092 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
8095 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
8096 ret
= perf_output_begin(&handle
, &sample
, event
,
8097 mmap_event
->event_id
.header
.size
);
8101 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
8102 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
8104 perf_output_put(&handle
, mmap_event
->event_id
);
8106 if (event
->attr
.mmap2
) {
8107 perf_output_put(&handle
, mmap_event
->maj
);
8108 perf_output_put(&handle
, mmap_event
->min
);
8109 perf_output_put(&handle
, mmap_event
->ino
);
8110 perf_output_put(&handle
, mmap_event
->ino_generation
);
8111 perf_output_put(&handle
, mmap_event
->prot
);
8112 perf_output_put(&handle
, mmap_event
->flags
);
8115 __output_copy(&handle
, mmap_event
->file_name
,
8116 mmap_event
->file_size
);
8118 perf_event__output_id_sample(event
, &handle
, &sample
);
8120 perf_output_end(&handle
);
8122 mmap_event
->event_id
.header
.size
= size
;
8123 mmap_event
->event_id
.header
.type
= type
;
8126 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
8128 struct vm_area_struct
*vma
= mmap_event
->vma
;
8129 struct file
*file
= vma
->vm_file
;
8130 int maj
= 0, min
= 0;
8131 u64 ino
= 0, gen
= 0;
8132 u32 prot
= 0, flags
= 0;
8138 if (vma
->vm_flags
& VM_READ
)
8140 if (vma
->vm_flags
& VM_WRITE
)
8142 if (vma
->vm_flags
& VM_EXEC
)
8145 if (vma
->vm_flags
& VM_MAYSHARE
)
8148 flags
= MAP_PRIVATE
;
8150 if (vma
->vm_flags
& VM_DENYWRITE
)
8151 flags
|= MAP_DENYWRITE
;
8152 if (vma
->vm_flags
& VM_MAYEXEC
)
8153 flags
|= MAP_EXECUTABLE
;
8154 if (vma
->vm_flags
& VM_LOCKED
)
8155 flags
|= MAP_LOCKED
;
8156 if (is_vm_hugetlb_page(vma
))
8157 flags
|= MAP_HUGETLB
;
8160 struct inode
*inode
;
8163 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
8169 * d_path() works from the end of the rb backwards, so we
8170 * need to add enough zero bytes after the string to handle
8171 * the 64bit alignment we do later.
8173 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
8178 inode
= file_inode(vma
->vm_file
);
8179 dev
= inode
->i_sb
->s_dev
;
8181 gen
= inode
->i_generation
;
8187 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
8188 name
= (char *) vma
->vm_ops
->name(vma
);
8193 name
= (char *)arch_vma_name(vma
);
8197 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
8198 vma
->vm_end
>= vma
->vm_mm
->brk
) {
8202 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
8203 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
8213 strlcpy(tmp
, name
, sizeof(tmp
));
8217 * Since our buffer works in 8 byte units we need to align our string
8218 * size to a multiple of 8. However, we must guarantee the tail end is
8219 * zero'd out to avoid leaking random bits to userspace.
8221 size
= strlen(name
)+1;
8222 while (!IS_ALIGNED(size
, sizeof(u64
)))
8223 name
[size
++] = '\0';
8225 mmap_event
->file_name
= name
;
8226 mmap_event
->file_size
= size
;
8227 mmap_event
->maj
= maj
;
8228 mmap_event
->min
= min
;
8229 mmap_event
->ino
= ino
;
8230 mmap_event
->ino_generation
= gen
;
8231 mmap_event
->prot
= prot
;
8232 mmap_event
->flags
= flags
;
8234 if (!(vma
->vm_flags
& VM_EXEC
))
8235 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
8237 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
8239 perf_iterate_sb(perf_event_mmap_output
,
8247 * Check whether inode and address range match filter criteria.
8249 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
8250 struct file
*file
, unsigned long offset
,
8253 /* d_inode(NULL) won't be equal to any mapped user-space file */
8254 if (!filter
->path
.dentry
)
8257 if (d_inode(filter
->path
.dentry
) != file_inode(file
))
8260 if (filter
->offset
> offset
+ size
)
8263 if (filter
->offset
+ filter
->size
< offset
)
8269 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter
*filter
,
8270 struct vm_area_struct
*vma
,
8271 struct perf_addr_filter_range
*fr
)
8273 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
8274 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
8275 struct file
*file
= vma
->vm_file
;
8277 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
8280 if (filter
->offset
< off
) {
8281 fr
->start
= vma
->vm_start
;
8282 fr
->size
= min(vma_size
, filter
->size
- (off
- filter
->offset
));
8284 fr
->start
= vma
->vm_start
+ filter
->offset
- off
;
8285 fr
->size
= min(vma
->vm_end
- fr
->start
, filter
->size
);
8291 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
8293 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
8294 struct vm_area_struct
*vma
= data
;
8295 struct perf_addr_filter
*filter
;
8296 unsigned int restart
= 0, count
= 0;
8297 unsigned long flags
;
8299 if (!has_addr_filter(event
))
8305 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
8306 list_for_each_entry(filter
, &ifh
->list
, entry
) {
8307 if (perf_addr_filter_vma_adjust(filter
, vma
,
8308 &event
->addr_filter_ranges
[count
]))
8315 event
->addr_filters_gen
++;
8316 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
8319 perf_event_stop(event
, 1);
8323 * Adjust all task's events' filters to the new vma
8325 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
8327 struct perf_event_context
*ctx
;
8331 * Data tracing isn't supported yet and as such there is no need
8332 * to keep track of anything that isn't related to executable code:
8334 if (!(vma
->vm_flags
& VM_EXEC
))
8338 for_each_task_context_nr(ctxn
) {
8339 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
8343 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
8348 void perf_event_mmap(struct vm_area_struct
*vma
)
8350 struct perf_mmap_event mmap_event
;
8352 if (!atomic_read(&nr_mmap_events
))
8355 mmap_event
= (struct perf_mmap_event
){
8361 .type
= PERF_RECORD_MMAP
,
8362 .misc
= PERF_RECORD_MISC_USER
,
8367 .start
= vma
->vm_start
,
8368 .len
= vma
->vm_end
- vma
->vm_start
,
8369 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
8371 /* .maj (attr_mmap2 only) */
8372 /* .min (attr_mmap2 only) */
8373 /* .ino (attr_mmap2 only) */
8374 /* .ino_generation (attr_mmap2 only) */
8375 /* .prot (attr_mmap2 only) */
8376 /* .flags (attr_mmap2 only) */
8379 perf_addr_filters_adjust(vma
);
8380 perf_event_mmap_event(&mmap_event
);
8383 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
8384 unsigned long size
, u64 flags
)
8386 struct perf_output_handle handle
;
8387 struct perf_sample_data sample
;
8388 struct perf_aux_event
{
8389 struct perf_event_header header
;
8395 .type
= PERF_RECORD_AUX
,
8397 .size
= sizeof(rec
),
8405 perf_event_header__init_id(&rec
.header
, &sample
, event
);
8406 ret
= perf_output_begin(&handle
, &sample
, event
, rec
.header
.size
);
8411 perf_output_put(&handle
, rec
);
8412 perf_event__output_id_sample(event
, &handle
, &sample
);
8414 perf_output_end(&handle
);
8418 * Lost/dropped samples logging
8420 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
8422 struct perf_output_handle handle
;
8423 struct perf_sample_data sample
;
8427 struct perf_event_header header
;
8429 } lost_samples_event
= {
8431 .type
= PERF_RECORD_LOST_SAMPLES
,
8433 .size
= sizeof(lost_samples_event
),
8438 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
8440 ret
= perf_output_begin(&handle
, &sample
, event
,
8441 lost_samples_event
.header
.size
);
8445 perf_output_put(&handle
, lost_samples_event
);
8446 perf_event__output_id_sample(event
, &handle
, &sample
);
8447 perf_output_end(&handle
);
8451 * context_switch tracking
8454 struct perf_switch_event
{
8455 struct task_struct
*task
;
8456 struct task_struct
*next_prev
;
8459 struct perf_event_header header
;
8465 static int perf_event_switch_match(struct perf_event
*event
)
8467 return event
->attr
.context_switch
;
8470 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
8472 struct perf_switch_event
*se
= data
;
8473 struct perf_output_handle handle
;
8474 struct perf_sample_data sample
;
8477 if (!perf_event_switch_match(event
))
8480 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8481 if (event
->ctx
->task
) {
8482 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
8483 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
8485 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
8486 se
->event_id
.header
.size
= sizeof(se
->event_id
);
8487 se
->event_id
.next_prev_pid
=
8488 perf_event_pid(event
, se
->next_prev
);
8489 se
->event_id
.next_prev_tid
=
8490 perf_event_tid(event
, se
->next_prev
);
8493 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
8495 ret
= perf_output_begin(&handle
, &sample
, event
, se
->event_id
.header
.size
);
8499 if (event
->ctx
->task
)
8500 perf_output_put(&handle
, se
->event_id
.header
);
8502 perf_output_put(&handle
, se
->event_id
);
8504 perf_event__output_id_sample(event
, &handle
, &sample
);
8506 perf_output_end(&handle
);
8509 static void perf_event_switch(struct task_struct
*task
,
8510 struct task_struct
*next_prev
, bool sched_in
)
8512 struct perf_switch_event switch_event
;
8514 /* N.B. caller checks nr_switch_events != 0 */
8516 switch_event
= (struct perf_switch_event
){
8518 .next_prev
= next_prev
,
8522 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
8525 /* .next_prev_pid */
8526 /* .next_prev_tid */
8530 if (!sched_in
&& task
->state
== TASK_RUNNING
)
8531 switch_event
.event_id
.header
.misc
|=
8532 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT
;
8534 perf_iterate_sb(perf_event_switch_output
,
8540 * IRQ throttle logging
8543 static void perf_log_throttle(struct perf_event
*event
, int enable
)
8545 struct perf_output_handle handle
;
8546 struct perf_sample_data sample
;
8550 struct perf_event_header header
;
8554 } throttle_event
= {
8556 .type
= PERF_RECORD_THROTTLE
,
8558 .size
= sizeof(throttle_event
),
8560 .time
= perf_event_clock(event
),
8561 .id
= primary_event_id(event
),
8562 .stream_id
= event
->id
,
8566 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
8568 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
8570 ret
= perf_output_begin(&handle
, &sample
, event
,
8571 throttle_event
.header
.size
);
8575 perf_output_put(&handle
, throttle_event
);
8576 perf_event__output_id_sample(event
, &handle
, &sample
);
8577 perf_output_end(&handle
);
8581 * ksymbol register/unregister tracking
8584 struct perf_ksymbol_event
{
8588 struct perf_event_header header
;
8596 static int perf_event_ksymbol_match(struct perf_event
*event
)
8598 return event
->attr
.ksymbol
;
8601 static void perf_event_ksymbol_output(struct perf_event
*event
, void *data
)
8603 struct perf_ksymbol_event
*ksymbol_event
= data
;
8604 struct perf_output_handle handle
;
8605 struct perf_sample_data sample
;
8608 if (!perf_event_ksymbol_match(event
))
8611 perf_event_header__init_id(&ksymbol_event
->event_id
.header
,
8613 ret
= perf_output_begin(&handle
, &sample
, event
,
8614 ksymbol_event
->event_id
.header
.size
);
8618 perf_output_put(&handle
, ksymbol_event
->event_id
);
8619 __output_copy(&handle
, ksymbol_event
->name
, ksymbol_event
->name_len
);
8620 perf_event__output_id_sample(event
, &handle
, &sample
);
8622 perf_output_end(&handle
);
8625 void perf_event_ksymbol(u16 ksym_type
, u64 addr
, u32 len
, bool unregister
,
8628 struct perf_ksymbol_event ksymbol_event
;
8629 char name
[KSYM_NAME_LEN
];
8633 if (!atomic_read(&nr_ksymbol_events
))
8636 if (ksym_type
>= PERF_RECORD_KSYMBOL_TYPE_MAX
||
8637 ksym_type
== PERF_RECORD_KSYMBOL_TYPE_UNKNOWN
)
8640 strlcpy(name
, sym
, KSYM_NAME_LEN
);
8641 name_len
= strlen(name
) + 1;
8642 while (!IS_ALIGNED(name_len
, sizeof(u64
)))
8643 name
[name_len
++] = '\0';
8644 BUILD_BUG_ON(KSYM_NAME_LEN
% sizeof(u64
));
8647 flags
|= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER
;
8649 ksymbol_event
= (struct perf_ksymbol_event
){
8651 .name_len
= name_len
,
8654 .type
= PERF_RECORD_KSYMBOL
,
8655 .size
= sizeof(ksymbol_event
.event_id
) +
8660 .ksym_type
= ksym_type
,
8665 perf_iterate_sb(perf_event_ksymbol_output
, &ksymbol_event
, NULL
);
8668 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__
, ksym_type
);
8672 * bpf program load/unload tracking
8675 struct perf_bpf_event
{
8676 struct bpf_prog
*prog
;
8678 struct perf_event_header header
;
8682 u8 tag
[BPF_TAG_SIZE
];
8686 static int perf_event_bpf_match(struct perf_event
*event
)
8688 return event
->attr
.bpf_event
;
8691 static void perf_event_bpf_output(struct perf_event
*event
, void *data
)
8693 struct perf_bpf_event
*bpf_event
= data
;
8694 struct perf_output_handle handle
;
8695 struct perf_sample_data sample
;
8698 if (!perf_event_bpf_match(event
))
8701 perf_event_header__init_id(&bpf_event
->event_id
.header
,
8703 ret
= perf_output_begin(&handle
, data
, event
,
8704 bpf_event
->event_id
.header
.size
);
8708 perf_output_put(&handle
, bpf_event
->event_id
);
8709 perf_event__output_id_sample(event
, &handle
, &sample
);
8711 perf_output_end(&handle
);
8714 static void perf_event_bpf_emit_ksymbols(struct bpf_prog
*prog
,
8715 enum perf_bpf_event_type type
)
8717 bool unregister
= type
== PERF_BPF_EVENT_PROG_UNLOAD
;
8720 if (prog
->aux
->func_cnt
== 0) {
8721 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF
,
8722 (u64
)(unsigned long)prog
->bpf_func
,
8723 prog
->jited_len
, unregister
,
8724 prog
->aux
->ksym
.name
);
8726 for (i
= 0; i
< prog
->aux
->func_cnt
; i
++) {
8727 struct bpf_prog
*subprog
= prog
->aux
->func
[i
];
8730 PERF_RECORD_KSYMBOL_TYPE_BPF
,
8731 (u64
)(unsigned long)subprog
->bpf_func
,
8732 subprog
->jited_len
, unregister
,
8733 prog
->aux
->ksym
.name
);
8738 void perf_event_bpf_event(struct bpf_prog
*prog
,
8739 enum perf_bpf_event_type type
,
8742 struct perf_bpf_event bpf_event
;
8744 if (type
<= PERF_BPF_EVENT_UNKNOWN
||
8745 type
>= PERF_BPF_EVENT_MAX
)
8749 case PERF_BPF_EVENT_PROG_LOAD
:
8750 case PERF_BPF_EVENT_PROG_UNLOAD
:
8751 if (atomic_read(&nr_ksymbol_events
))
8752 perf_event_bpf_emit_ksymbols(prog
, type
);
8758 if (!atomic_read(&nr_bpf_events
))
8761 bpf_event
= (struct perf_bpf_event
){
8765 .type
= PERF_RECORD_BPF_EVENT
,
8766 .size
= sizeof(bpf_event
.event_id
),
8770 .id
= prog
->aux
->id
,
8774 BUILD_BUG_ON(BPF_TAG_SIZE
% sizeof(u64
));
8776 memcpy(bpf_event
.event_id
.tag
, prog
->tag
, BPF_TAG_SIZE
);
8777 perf_iterate_sb(perf_event_bpf_output
, &bpf_event
, NULL
);
8780 struct perf_text_poke_event
{
8781 const void *old_bytes
;
8782 const void *new_bytes
;
8788 struct perf_event_header header
;
8794 static int perf_event_text_poke_match(struct perf_event
*event
)
8796 return event
->attr
.text_poke
;
8799 static void perf_event_text_poke_output(struct perf_event
*event
, void *data
)
8801 struct perf_text_poke_event
*text_poke_event
= data
;
8802 struct perf_output_handle handle
;
8803 struct perf_sample_data sample
;
8807 if (!perf_event_text_poke_match(event
))
8810 perf_event_header__init_id(&text_poke_event
->event_id
.header
, &sample
, event
);
8812 ret
= perf_output_begin(&handle
, &sample
, event
,
8813 text_poke_event
->event_id
.header
.size
);
8817 perf_output_put(&handle
, text_poke_event
->event_id
);
8818 perf_output_put(&handle
, text_poke_event
->old_len
);
8819 perf_output_put(&handle
, text_poke_event
->new_len
);
8821 __output_copy(&handle
, text_poke_event
->old_bytes
, text_poke_event
->old_len
);
8822 __output_copy(&handle
, text_poke_event
->new_bytes
, text_poke_event
->new_len
);
8824 if (text_poke_event
->pad
)
8825 __output_copy(&handle
, &padding
, text_poke_event
->pad
);
8827 perf_event__output_id_sample(event
, &handle
, &sample
);
8829 perf_output_end(&handle
);
8832 void perf_event_text_poke(const void *addr
, const void *old_bytes
,
8833 size_t old_len
, const void *new_bytes
, size_t new_len
)
8835 struct perf_text_poke_event text_poke_event
;
8838 if (!atomic_read(&nr_text_poke_events
))
8841 tot
= sizeof(text_poke_event
.old_len
) + old_len
;
8842 tot
+= sizeof(text_poke_event
.new_len
) + new_len
;
8843 pad
= ALIGN(tot
, sizeof(u64
)) - tot
;
8845 text_poke_event
= (struct perf_text_poke_event
){
8846 .old_bytes
= old_bytes
,
8847 .new_bytes
= new_bytes
,
8853 .type
= PERF_RECORD_TEXT_POKE
,
8854 .misc
= PERF_RECORD_MISC_KERNEL
,
8855 .size
= sizeof(text_poke_event
.event_id
) + tot
+ pad
,
8857 .addr
= (unsigned long)addr
,
8861 perf_iterate_sb(perf_event_text_poke_output
, &text_poke_event
, NULL
);
8864 void perf_event_itrace_started(struct perf_event
*event
)
8866 event
->attach_state
|= PERF_ATTACH_ITRACE
;
8869 static void perf_log_itrace_start(struct perf_event
*event
)
8871 struct perf_output_handle handle
;
8872 struct perf_sample_data sample
;
8873 struct perf_aux_event
{
8874 struct perf_event_header header
;
8881 event
= event
->parent
;
8883 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
8884 event
->attach_state
& PERF_ATTACH_ITRACE
)
8887 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
8888 rec
.header
.misc
= 0;
8889 rec
.header
.size
= sizeof(rec
);
8890 rec
.pid
= perf_event_pid(event
, current
);
8891 rec
.tid
= perf_event_tid(event
, current
);
8893 perf_event_header__init_id(&rec
.header
, &sample
, event
);
8894 ret
= perf_output_begin(&handle
, &sample
, event
, rec
.header
.size
);
8899 perf_output_put(&handle
, rec
);
8900 perf_event__output_id_sample(event
, &handle
, &sample
);
8902 perf_output_end(&handle
);
8906 __perf_event_account_interrupt(struct perf_event
*event
, int throttle
)
8908 struct hw_perf_event
*hwc
= &event
->hw
;
8912 seq
= __this_cpu_read(perf_throttled_seq
);
8913 if (seq
!= hwc
->interrupts_seq
) {
8914 hwc
->interrupts_seq
= seq
;
8915 hwc
->interrupts
= 1;
8918 if (unlikely(throttle
8919 && hwc
->interrupts
>= max_samples_per_tick
)) {
8920 __this_cpu_inc(perf_throttled_count
);
8921 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
8922 hwc
->interrupts
= MAX_INTERRUPTS
;
8923 perf_log_throttle(event
, 0);
8928 if (event
->attr
.freq
) {
8929 u64 now
= perf_clock();
8930 s64 delta
= now
- hwc
->freq_time_stamp
;
8932 hwc
->freq_time_stamp
= now
;
8934 if (delta
> 0 && delta
< 2*TICK_NSEC
)
8935 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
8941 int perf_event_account_interrupt(struct perf_event
*event
)
8943 return __perf_event_account_interrupt(event
, 1);
8947 * Generic event overflow handling, sampling.
8950 static int __perf_event_overflow(struct perf_event
*event
,
8951 int throttle
, struct perf_sample_data
*data
,
8952 struct pt_regs
*regs
)
8954 int events
= atomic_read(&event
->event_limit
);
8958 * Non-sampling counters might still use the PMI to fold short
8959 * hardware counters, ignore those.
8961 if (unlikely(!is_sampling_event(event
)))
8964 ret
= __perf_event_account_interrupt(event
, throttle
);
8967 * XXX event_limit might not quite work as expected on inherited
8971 event
->pending_kill
= POLL_IN
;
8972 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
8974 event
->pending_kill
= POLL_HUP
;
8976 perf_event_disable_inatomic(event
);
8979 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
8981 if (*perf_event_fasync(event
) && event
->pending_kill
) {
8982 event
->pending_wakeup
= 1;
8983 irq_work_queue(&event
->pending
);
8989 int perf_event_overflow(struct perf_event
*event
,
8990 struct perf_sample_data
*data
,
8991 struct pt_regs
*regs
)
8993 return __perf_event_overflow(event
, 1, data
, regs
);
8997 * Generic software event infrastructure
9000 struct swevent_htable
{
9001 struct swevent_hlist
*swevent_hlist
;
9002 struct mutex hlist_mutex
;
9005 /* Recursion avoidance in each contexts */
9006 int recursion
[PERF_NR_CONTEXTS
];
9009 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
9012 * We directly increment event->count and keep a second value in
9013 * event->hw.period_left to count intervals. This period event
9014 * is kept in the range [-sample_period, 0] so that we can use the
9018 u64
perf_swevent_set_period(struct perf_event
*event
)
9020 struct hw_perf_event
*hwc
= &event
->hw
;
9021 u64 period
= hwc
->last_period
;
9025 hwc
->last_period
= hwc
->sample_period
;
9028 old
= val
= local64_read(&hwc
->period_left
);
9032 nr
= div64_u64(period
+ val
, period
);
9033 offset
= nr
* period
;
9035 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
9041 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
9042 struct perf_sample_data
*data
,
9043 struct pt_regs
*regs
)
9045 struct hw_perf_event
*hwc
= &event
->hw
;
9049 overflow
= perf_swevent_set_period(event
);
9051 if (hwc
->interrupts
== MAX_INTERRUPTS
)
9054 for (; overflow
; overflow
--) {
9055 if (__perf_event_overflow(event
, throttle
,
9058 * We inhibit the overflow from happening when
9059 * hwc->interrupts == MAX_INTERRUPTS.
9067 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
9068 struct perf_sample_data
*data
,
9069 struct pt_regs
*regs
)
9071 struct hw_perf_event
*hwc
= &event
->hw
;
9073 local64_add(nr
, &event
->count
);
9078 if (!is_sampling_event(event
))
9081 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
9083 return perf_swevent_overflow(event
, 1, data
, regs
);
9085 data
->period
= event
->hw
.last_period
;
9087 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
9088 return perf_swevent_overflow(event
, 1, data
, regs
);
9090 if (local64_add_negative(nr
, &hwc
->period_left
))
9093 perf_swevent_overflow(event
, 0, data
, regs
);
9096 static int perf_exclude_event(struct perf_event
*event
,
9097 struct pt_regs
*regs
)
9099 if (event
->hw
.state
& PERF_HES_STOPPED
)
9103 if (event
->attr
.exclude_user
&& user_mode(regs
))
9106 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
9113 static int perf_swevent_match(struct perf_event
*event
,
9114 enum perf_type_id type
,
9116 struct perf_sample_data
*data
,
9117 struct pt_regs
*regs
)
9119 if (event
->attr
.type
!= type
)
9122 if (event
->attr
.config
!= event_id
)
9125 if (perf_exclude_event(event
, regs
))
9131 static inline u64
swevent_hash(u64 type
, u32 event_id
)
9133 u64 val
= event_id
| (type
<< 32);
9135 return hash_64(val
, SWEVENT_HLIST_BITS
);
9138 static inline struct hlist_head
*
9139 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
9141 u64 hash
= swevent_hash(type
, event_id
);
9143 return &hlist
->heads
[hash
];
9146 /* For the read side: events when they trigger */
9147 static inline struct hlist_head
*
9148 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
9150 struct swevent_hlist
*hlist
;
9152 hlist
= rcu_dereference(swhash
->swevent_hlist
);
9156 return __find_swevent_head(hlist
, type
, event_id
);
9159 /* For the event head insertion and removal in the hlist */
9160 static inline struct hlist_head
*
9161 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
9163 struct swevent_hlist
*hlist
;
9164 u32 event_id
= event
->attr
.config
;
9165 u64 type
= event
->attr
.type
;
9168 * Event scheduling is always serialized against hlist allocation
9169 * and release. Which makes the protected version suitable here.
9170 * The context lock guarantees that.
9172 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
9173 lockdep_is_held(&event
->ctx
->lock
));
9177 return __find_swevent_head(hlist
, type
, event_id
);
9180 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
9182 struct perf_sample_data
*data
,
9183 struct pt_regs
*regs
)
9185 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
9186 struct perf_event
*event
;
9187 struct hlist_head
*head
;
9190 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
9194 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
9195 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
9196 perf_swevent_event(event
, nr
, data
, regs
);
9202 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
9204 int perf_swevent_get_recursion_context(void)
9206 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
9208 return get_recursion_context(swhash
->recursion
);
9210 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
9212 void perf_swevent_put_recursion_context(int rctx
)
9214 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
9216 put_recursion_context(swhash
->recursion
, rctx
);
9219 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
9221 struct perf_sample_data data
;
9223 if (WARN_ON_ONCE(!regs
))
9226 perf_sample_data_init(&data
, addr
, 0);
9227 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
9230 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
9234 preempt_disable_notrace();
9235 rctx
= perf_swevent_get_recursion_context();
9236 if (unlikely(rctx
< 0))
9239 ___perf_sw_event(event_id
, nr
, regs
, addr
);
9241 perf_swevent_put_recursion_context(rctx
);
9243 preempt_enable_notrace();
9246 static void perf_swevent_read(struct perf_event
*event
)
9250 static int perf_swevent_add(struct perf_event
*event
, int flags
)
9252 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
9253 struct hw_perf_event
*hwc
= &event
->hw
;
9254 struct hlist_head
*head
;
9256 if (is_sampling_event(event
)) {
9257 hwc
->last_period
= hwc
->sample_period
;
9258 perf_swevent_set_period(event
);
9261 hwc
->state
= !(flags
& PERF_EF_START
);
9263 head
= find_swevent_head(swhash
, event
);
9264 if (WARN_ON_ONCE(!head
))
9267 hlist_add_head_rcu(&event
->hlist_entry
, head
);
9268 perf_event_update_userpage(event
);
9273 static void perf_swevent_del(struct perf_event
*event
, int flags
)
9275 hlist_del_rcu(&event
->hlist_entry
);
9278 static void perf_swevent_start(struct perf_event
*event
, int flags
)
9280 event
->hw
.state
= 0;
9283 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
9285 event
->hw
.state
= PERF_HES_STOPPED
;
9288 /* Deref the hlist from the update side */
9289 static inline struct swevent_hlist
*
9290 swevent_hlist_deref(struct swevent_htable
*swhash
)
9292 return rcu_dereference_protected(swhash
->swevent_hlist
,
9293 lockdep_is_held(&swhash
->hlist_mutex
));
9296 static void swevent_hlist_release(struct swevent_htable
*swhash
)
9298 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
9303 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
9304 kfree_rcu(hlist
, rcu_head
);
9307 static void swevent_hlist_put_cpu(int cpu
)
9309 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
9311 mutex_lock(&swhash
->hlist_mutex
);
9313 if (!--swhash
->hlist_refcount
)
9314 swevent_hlist_release(swhash
);
9316 mutex_unlock(&swhash
->hlist_mutex
);
9319 static void swevent_hlist_put(void)
9323 for_each_possible_cpu(cpu
)
9324 swevent_hlist_put_cpu(cpu
);
9327 static int swevent_hlist_get_cpu(int cpu
)
9329 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
9332 mutex_lock(&swhash
->hlist_mutex
);
9333 if (!swevent_hlist_deref(swhash
) &&
9334 cpumask_test_cpu(cpu
, perf_online_mask
)) {
9335 struct swevent_hlist
*hlist
;
9337 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
9342 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
9344 swhash
->hlist_refcount
++;
9346 mutex_unlock(&swhash
->hlist_mutex
);
9351 static int swevent_hlist_get(void)
9353 int err
, cpu
, failed_cpu
;
9355 mutex_lock(&pmus_lock
);
9356 for_each_possible_cpu(cpu
) {
9357 err
= swevent_hlist_get_cpu(cpu
);
9363 mutex_unlock(&pmus_lock
);
9366 for_each_possible_cpu(cpu
) {
9367 if (cpu
== failed_cpu
)
9369 swevent_hlist_put_cpu(cpu
);
9371 mutex_unlock(&pmus_lock
);
9375 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
9377 static void sw_perf_event_destroy(struct perf_event
*event
)
9379 u64 event_id
= event
->attr
.config
;
9381 WARN_ON(event
->parent
);
9383 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
9384 swevent_hlist_put();
9387 static int perf_swevent_init(struct perf_event
*event
)
9389 u64 event_id
= event
->attr
.config
;
9391 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
9395 * no branch sampling for software events
9397 if (has_branch_stack(event
))
9401 case PERF_COUNT_SW_CPU_CLOCK
:
9402 case PERF_COUNT_SW_TASK_CLOCK
:
9409 if (event_id
>= PERF_COUNT_SW_MAX
)
9412 if (!event
->parent
) {
9415 err
= swevent_hlist_get();
9419 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
9420 event
->destroy
= sw_perf_event_destroy
;
9426 static struct pmu perf_swevent
= {
9427 .task_ctx_nr
= perf_sw_context
,
9429 .capabilities
= PERF_PMU_CAP_NO_NMI
,
9431 .event_init
= perf_swevent_init
,
9432 .add
= perf_swevent_add
,
9433 .del
= perf_swevent_del
,
9434 .start
= perf_swevent_start
,
9435 .stop
= perf_swevent_stop
,
9436 .read
= perf_swevent_read
,
9439 #ifdef CONFIG_EVENT_TRACING
9441 static int perf_tp_filter_match(struct perf_event
*event
,
9442 struct perf_sample_data
*data
)
9444 void *record
= data
->raw
->frag
.data
;
9446 /* only top level events have filters set */
9448 event
= event
->parent
;
9450 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
9455 static int perf_tp_event_match(struct perf_event
*event
,
9456 struct perf_sample_data
*data
,
9457 struct pt_regs
*regs
)
9459 if (event
->hw
.state
& PERF_HES_STOPPED
)
9462 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9464 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
9467 if (!perf_tp_filter_match(event
, data
))
9473 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
9474 struct trace_event_call
*call
, u64 count
,
9475 struct pt_regs
*regs
, struct hlist_head
*head
,
9476 struct task_struct
*task
)
9478 if (bpf_prog_array_valid(call
)) {
9479 *(struct pt_regs
**)raw_data
= regs
;
9480 if (!trace_call_bpf(call
, raw_data
) || hlist_empty(head
)) {
9481 perf_swevent_put_recursion_context(rctx
);
9485 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
9488 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
9490 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
9491 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
9492 struct task_struct
*task
)
9494 struct perf_sample_data data
;
9495 struct perf_event
*event
;
9497 struct perf_raw_record raw
= {
9504 perf_sample_data_init(&data
, 0, 0);
9507 perf_trace_buf_update(record
, event_type
);
9509 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
9510 if (perf_tp_event_match(event
, &data
, regs
))
9511 perf_swevent_event(event
, count
, &data
, regs
);
9515 * If we got specified a target task, also iterate its context and
9516 * deliver this event there too.
9518 if (task
&& task
!= current
) {
9519 struct perf_event_context
*ctx
;
9520 struct trace_entry
*entry
= record
;
9523 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
9527 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
9528 if (event
->cpu
!= smp_processor_id())
9530 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
9532 if (event
->attr
.config
!= entry
->type
)
9534 if (perf_tp_event_match(event
, &data
, regs
))
9535 perf_swevent_event(event
, count
, &data
, regs
);
9541 perf_swevent_put_recursion_context(rctx
);
9543 EXPORT_SYMBOL_GPL(perf_tp_event
);
9545 static void tp_perf_event_destroy(struct perf_event
*event
)
9547 perf_trace_destroy(event
);
9550 static int perf_tp_event_init(struct perf_event
*event
)
9554 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
9558 * no branch sampling for tracepoint events
9560 if (has_branch_stack(event
))
9563 err
= perf_trace_init(event
);
9567 event
->destroy
= tp_perf_event_destroy
;
9572 static struct pmu perf_tracepoint
= {
9573 .task_ctx_nr
= perf_sw_context
,
9575 .event_init
= perf_tp_event_init
,
9576 .add
= perf_trace_add
,
9577 .del
= perf_trace_del
,
9578 .start
= perf_swevent_start
,
9579 .stop
= perf_swevent_stop
,
9580 .read
= perf_swevent_read
,
9583 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9585 * Flags in config, used by dynamic PMU kprobe and uprobe
9586 * The flags should match following PMU_FORMAT_ATTR().
9588 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9589 * if not set, create kprobe/uprobe
9591 * The following values specify a reference counter (or semaphore in the
9592 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9593 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9595 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9596 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9598 enum perf_probe_config
{
9599 PERF_PROBE_CONFIG_IS_RETPROBE
= 1U << 0, /* [k,u]retprobe */
9600 PERF_UPROBE_REF_CTR_OFFSET_BITS
= 32,
9601 PERF_UPROBE_REF_CTR_OFFSET_SHIFT
= 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS
,
9604 PMU_FORMAT_ATTR(retprobe
, "config:0");
9607 #ifdef CONFIG_KPROBE_EVENTS
9608 static struct attribute
*kprobe_attrs
[] = {
9609 &format_attr_retprobe
.attr
,
9613 static struct attribute_group kprobe_format_group
= {
9615 .attrs
= kprobe_attrs
,
9618 static const struct attribute_group
*kprobe_attr_groups
[] = {
9619 &kprobe_format_group
,
9623 static int perf_kprobe_event_init(struct perf_event
*event
);
9624 static struct pmu perf_kprobe
= {
9625 .task_ctx_nr
= perf_sw_context
,
9626 .event_init
= perf_kprobe_event_init
,
9627 .add
= perf_trace_add
,
9628 .del
= perf_trace_del
,
9629 .start
= perf_swevent_start
,
9630 .stop
= perf_swevent_stop
,
9631 .read
= perf_swevent_read
,
9632 .attr_groups
= kprobe_attr_groups
,
9635 static int perf_kprobe_event_init(struct perf_event
*event
)
9640 if (event
->attr
.type
!= perf_kprobe
.type
)
9643 if (!perfmon_capable())
9647 * no branch sampling for probe events
9649 if (has_branch_stack(event
))
9652 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
9653 err
= perf_kprobe_init(event
, is_retprobe
);
9657 event
->destroy
= perf_kprobe_destroy
;
9661 #endif /* CONFIG_KPROBE_EVENTS */
9663 #ifdef CONFIG_UPROBE_EVENTS
9664 PMU_FORMAT_ATTR(ref_ctr_offset
, "config:32-63");
9666 static struct attribute
*uprobe_attrs
[] = {
9667 &format_attr_retprobe
.attr
,
9668 &format_attr_ref_ctr_offset
.attr
,
9672 static struct attribute_group uprobe_format_group
= {
9674 .attrs
= uprobe_attrs
,
9677 static const struct attribute_group
*uprobe_attr_groups
[] = {
9678 &uprobe_format_group
,
9682 static int perf_uprobe_event_init(struct perf_event
*event
);
9683 static struct pmu perf_uprobe
= {
9684 .task_ctx_nr
= perf_sw_context
,
9685 .event_init
= perf_uprobe_event_init
,
9686 .add
= perf_trace_add
,
9687 .del
= perf_trace_del
,
9688 .start
= perf_swevent_start
,
9689 .stop
= perf_swevent_stop
,
9690 .read
= perf_swevent_read
,
9691 .attr_groups
= uprobe_attr_groups
,
9694 static int perf_uprobe_event_init(struct perf_event
*event
)
9697 unsigned long ref_ctr_offset
;
9700 if (event
->attr
.type
!= perf_uprobe
.type
)
9703 if (!perfmon_capable())
9707 * no branch sampling for probe events
9709 if (has_branch_stack(event
))
9712 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
9713 ref_ctr_offset
= event
->attr
.config
>> PERF_UPROBE_REF_CTR_OFFSET_SHIFT
;
9714 err
= perf_uprobe_init(event
, ref_ctr_offset
, is_retprobe
);
9718 event
->destroy
= perf_uprobe_destroy
;
9722 #endif /* CONFIG_UPROBE_EVENTS */
9724 static inline void perf_tp_register(void)
9726 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
9727 #ifdef CONFIG_KPROBE_EVENTS
9728 perf_pmu_register(&perf_kprobe
, "kprobe", -1);
9730 #ifdef CONFIG_UPROBE_EVENTS
9731 perf_pmu_register(&perf_uprobe
, "uprobe", -1);
9735 static void perf_event_free_filter(struct perf_event
*event
)
9737 ftrace_profile_free_filter(event
);
9740 #ifdef CONFIG_BPF_SYSCALL
9741 static void bpf_overflow_handler(struct perf_event
*event
,
9742 struct perf_sample_data
*data
,
9743 struct pt_regs
*regs
)
9745 struct bpf_perf_event_data_kern ctx
= {
9751 ctx
.regs
= perf_arch_bpf_user_pt_regs(regs
);
9752 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
9755 ret
= BPF_PROG_RUN(event
->prog
, &ctx
);
9758 __this_cpu_dec(bpf_prog_active
);
9762 event
->orig_overflow_handler(event
, data
, regs
);
9765 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
9767 struct bpf_prog
*prog
;
9769 if (event
->overflow_handler_context
)
9770 /* hw breakpoint or kernel counter */
9776 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
9778 return PTR_ERR(prog
);
9780 if (event
->attr
.precise_ip
&&
9781 prog
->call_get_stack
&&
9782 (!(event
->attr
.sample_type
& __PERF_SAMPLE_CALLCHAIN_EARLY
) ||
9783 event
->attr
.exclude_callchain_kernel
||
9784 event
->attr
.exclude_callchain_user
)) {
9786 * On perf_event with precise_ip, calling bpf_get_stack()
9787 * may trigger unwinder warnings and occasional crashes.
9788 * bpf_get_[stack|stackid] works around this issue by using
9789 * callchain attached to perf_sample_data. If the
9790 * perf_event does not full (kernel and user) callchain
9791 * attached to perf_sample_data, do not allow attaching BPF
9792 * program that calls bpf_get_[stack|stackid].
9799 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
9800 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
9804 static void perf_event_free_bpf_handler(struct perf_event
*event
)
9806 struct bpf_prog
*prog
= event
->prog
;
9811 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
9816 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
9820 static void perf_event_free_bpf_handler(struct perf_event
*event
)
9826 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9827 * with perf_event_open()
9829 static inline bool perf_event_is_tracing(struct perf_event
*event
)
9831 if (event
->pmu
== &perf_tracepoint
)
9833 #ifdef CONFIG_KPROBE_EVENTS
9834 if (event
->pmu
== &perf_kprobe
)
9837 #ifdef CONFIG_UPROBE_EVENTS
9838 if (event
->pmu
== &perf_uprobe
)
9844 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
9846 bool is_kprobe
, is_tracepoint
, is_syscall_tp
;
9847 struct bpf_prog
*prog
;
9850 if (!perf_event_is_tracing(event
))
9851 return perf_event_set_bpf_handler(event
, prog_fd
);
9853 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
9854 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
9855 is_syscall_tp
= is_syscall_trace_event(event
->tp_event
);
9856 if (!is_kprobe
&& !is_tracepoint
&& !is_syscall_tp
)
9857 /* bpf programs can only be attached to u/kprobe or tracepoint */
9860 prog
= bpf_prog_get(prog_fd
);
9862 return PTR_ERR(prog
);
9864 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
9865 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
) ||
9866 (is_syscall_tp
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
9867 /* valid fd, but invalid bpf program type */
9872 /* Kprobe override only works for kprobes, not uprobes. */
9873 if (prog
->kprobe_override
&&
9874 !(event
->tp_event
->flags
& TRACE_EVENT_FL_KPROBE
)) {
9879 if (is_tracepoint
|| is_syscall_tp
) {
9880 int off
= trace_event_get_offsets(event
->tp_event
);
9882 if (prog
->aux
->max_ctx_offset
> off
) {
9888 ret
= perf_event_attach_bpf_prog(event
, prog
);
9894 static void perf_event_free_bpf_prog(struct perf_event
*event
)
9896 if (!perf_event_is_tracing(event
)) {
9897 perf_event_free_bpf_handler(event
);
9900 perf_event_detach_bpf_prog(event
);
9905 static inline void perf_tp_register(void)
9909 static void perf_event_free_filter(struct perf_event
*event
)
9913 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
9918 static void perf_event_free_bpf_prog(struct perf_event
*event
)
9921 #endif /* CONFIG_EVENT_TRACING */
9923 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9924 void perf_bp_event(struct perf_event
*bp
, void *data
)
9926 struct perf_sample_data sample
;
9927 struct pt_regs
*regs
= data
;
9929 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
9931 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
9932 perf_swevent_event(bp
, 1, &sample
, regs
);
9937 * Allocate a new address filter
9939 static struct perf_addr_filter
*
9940 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
9942 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
9943 struct perf_addr_filter
*filter
;
9945 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
9949 INIT_LIST_HEAD(&filter
->entry
);
9950 list_add_tail(&filter
->entry
, filters
);
9955 static void free_filters_list(struct list_head
*filters
)
9957 struct perf_addr_filter
*filter
, *iter
;
9959 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
9960 path_put(&filter
->path
);
9961 list_del(&filter
->entry
);
9967 * Free existing address filters and optionally install new ones
9969 static void perf_addr_filters_splice(struct perf_event
*event
,
9970 struct list_head
*head
)
9972 unsigned long flags
;
9975 if (!has_addr_filter(event
))
9978 /* don't bother with children, they don't have their own filters */
9982 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
9984 list_splice_init(&event
->addr_filters
.list
, &list
);
9986 list_splice(head
, &event
->addr_filters
.list
);
9988 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
9990 free_filters_list(&list
);
9994 * Scan through mm's vmas and see if one of them matches the
9995 * @filter; if so, adjust filter's address range.
9996 * Called with mm::mmap_lock down for reading.
9998 static void perf_addr_filter_apply(struct perf_addr_filter
*filter
,
9999 struct mm_struct
*mm
,
10000 struct perf_addr_filter_range
*fr
)
10002 struct vm_area_struct
*vma
;
10004 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
10008 if (perf_addr_filter_vma_adjust(filter
, vma
, fr
))
10014 * Update event's address range filters based on the
10015 * task's existing mappings, if any.
10017 static void perf_event_addr_filters_apply(struct perf_event
*event
)
10019 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
10020 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
10021 struct perf_addr_filter
*filter
;
10022 struct mm_struct
*mm
= NULL
;
10023 unsigned int count
= 0;
10024 unsigned long flags
;
10027 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10028 * will stop on the parent's child_mutex that our caller is also holding
10030 if (task
== TASK_TOMBSTONE
)
10033 if (ifh
->nr_file_filters
) {
10034 mm
= get_task_mm(event
->ctx
->task
);
10038 mmap_read_lock(mm
);
10041 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
10042 list_for_each_entry(filter
, &ifh
->list
, entry
) {
10043 if (filter
->path
.dentry
) {
10045 * Adjust base offset if the filter is associated to a
10046 * binary that needs to be mapped:
10048 event
->addr_filter_ranges
[count
].start
= 0;
10049 event
->addr_filter_ranges
[count
].size
= 0;
10051 perf_addr_filter_apply(filter
, mm
, &event
->addr_filter_ranges
[count
]);
10053 event
->addr_filter_ranges
[count
].start
= filter
->offset
;
10054 event
->addr_filter_ranges
[count
].size
= filter
->size
;
10060 event
->addr_filters_gen
++;
10061 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
10063 if (ifh
->nr_file_filters
) {
10064 mmap_read_unlock(mm
);
10070 perf_event_stop(event
, 1);
10074 * Address range filtering: limiting the data to certain
10075 * instruction address ranges. Filters are ioctl()ed to us from
10076 * userspace as ascii strings.
10078 * Filter string format:
10080 * ACTION RANGE_SPEC
10081 * where ACTION is one of the
10082 * * "filter": limit the trace to this region
10083 * * "start": start tracing from this address
10084 * * "stop": stop tracing at this address/region;
10086 * * for kernel addresses: <start address>[/<size>]
10087 * * for object files: <start address>[/<size>]@</path/to/object/file>
10089 * if <size> is not specified or is zero, the range is treated as a single
10090 * address; not valid for ACTION=="filter".
10104 IF_STATE_ACTION
= 0,
10109 static const match_table_t if_tokens
= {
10110 { IF_ACT_FILTER
, "filter" },
10111 { IF_ACT_START
, "start" },
10112 { IF_ACT_STOP
, "stop" },
10113 { IF_SRC_FILE
, "%u/%u@%s" },
10114 { IF_SRC_KERNEL
, "%u/%u" },
10115 { IF_SRC_FILEADDR
, "%u@%s" },
10116 { IF_SRC_KERNELADDR
, "%u" },
10117 { IF_ACT_NONE
, NULL
},
10121 * Address filter string parser
10124 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
10125 struct list_head
*filters
)
10127 struct perf_addr_filter
*filter
= NULL
;
10128 char *start
, *orig
, *filename
= NULL
;
10129 substring_t args
[MAX_OPT_ARGS
];
10130 int state
= IF_STATE_ACTION
, token
;
10131 unsigned int kernel
= 0;
10134 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
10138 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
10139 static const enum perf_addr_filter_action_t actions
[] = {
10140 [IF_ACT_FILTER
] = PERF_ADDR_FILTER_ACTION_FILTER
,
10141 [IF_ACT_START
] = PERF_ADDR_FILTER_ACTION_START
,
10142 [IF_ACT_STOP
] = PERF_ADDR_FILTER_ACTION_STOP
,
10149 /* filter definition begins */
10150 if (state
== IF_STATE_ACTION
) {
10151 filter
= perf_addr_filter_new(event
, filters
);
10156 token
= match_token(start
, if_tokens
, args
);
10158 case IF_ACT_FILTER
:
10161 if (state
!= IF_STATE_ACTION
)
10164 filter
->action
= actions
[token
];
10165 state
= IF_STATE_SOURCE
;
10168 case IF_SRC_KERNELADDR
:
10169 case IF_SRC_KERNEL
:
10173 case IF_SRC_FILEADDR
:
10175 if (state
!= IF_STATE_SOURCE
)
10179 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
10183 if (token
== IF_SRC_KERNEL
|| token
== IF_SRC_FILE
) {
10185 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
10190 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
10191 int fpos
= token
== IF_SRC_FILE
? 2 : 1;
10194 filename
= match_strdup(&args
[fpos
]);
10201 state
= IF_STATE_END
;
10209 * Filter definition is fully parsed, validate and install it.
10210 * Make sure that it doesn't contradict itself or the event's
10213 if (state
== IF_STATE_END
) {
10215 if (kernel
&& event
->attr
.exclude_kernel
)
10219 * ACTION "filter" must have a non-zero length region
10222 if (filter
->action
== PERF_ADDR_FILTER_ACTION_FILTER
&&
10231 * For now, we only support file-based filters
10232 * in per-task events; doing so for CPU-wide
10233 * events requires additional context switching
10234 * trickery, since same object code will be
10235 * mapped at different virtual addresses in
10236 * different processes.
10239 if (!event
->ctx
->task
)
10242 /* look up the path and grab its inode */
10243 ret
= kern_path(filename
, LOOKUP_FOLLOW
,
10249 if (!filter
->path
.dentry
||
10250 !S_ISREG(d_inode(filter
->path
.dentry
)
10254 event
->addr_filters
.nr_file_filters
++;
10257 /* ready to consume more filters */
10258 state
= IF_STATE_ACTION
;
10263 if (state
!= IF_STATE_ACTION
)
10273 free_filters_list(filters
);
10280 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
10282 LIST_HEAD(filters
);
10286 * Since this is called in perf_ioctl() path, we're already holding
10289 lockdep_assert_held(&event
->ctx
->mutex
);
10291 if (WARN_ON_ONCE(event
->parent
))
10294 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
10296 goto fail_clear_files
;
10298 ret
= event
->pmu
->addr_filters_validate(&filters
);
10300 goto fail_free_filters
;
10302 /* remove existing filters, if any */
10303 perf_addr_filters_splice(event
, &filters
);
10305 /* install new filters */
10306 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
10311 free_filters_list(&filters
);
10314 event
->addr_filters
.nr_file_filters
= 0;
10319 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
10324 filter_str
= strndup_user(arg
, PAGE_SIZE
);
10325 if (IS_ERR(filter_str
))
10326 return PTR_ERR(filter_str
);
10328 #ifdef CONFIG_EVENT_TRACING
10329 if (perf_event_is_tracing(event
)) {
10330 struct perf_event_context
*ctx
= event
->ctx
;
10333 * Beware, here be dragons!!
10335 * the tracepoint muck will deadlock against ctx->mutex, but
10336 * the tracepoint stuff does not actually need it. So
10337 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10338 * already have a reference on ctx.
10340 * This can result in event getting moved to a different ctx,
10341 * but that does not affect the tracepoint state.
10343 mutex_unlock(&ctx
->mutex
);
10344 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
10345 mutex_lock(&ctx
->mutex
);
10348 if (has_addr_filter(event
))
10349 ret
= perf_event_set_addr_filter(event
, filter_str
);
10356 * hrtimer based swevent callback
10359 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
10361 enum hrtimer_restart ret
= HRTIMER_RESTART
;
10362 struct perf_sample_data data
;
10363 struct pt_regs
*regs
;
10364 struct perf_event
*event
;
10367 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
10369 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
10370 return HRTIMER_NORESTART
;
10372 event
->pmu
->read(event
);
10374 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
10375 regs
= get_irq_regs();
10377 if (regs
&& !perf_exclude_event(event
, regs
)) {
10378 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
10379 if (__perf_event_overflow(event
, 1, &data
, regs
))
10380 ret
= HRTIMER_NORESTART
;
10383 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
10384 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
10389 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
10391 struct hw_perf_event
*hwc
= &event
->hw
;
10394 if (!is_sampling_event(event
))
10397 period
= local64_read(&hwc
->period_left
);
10402 local64_set(&hwc
->period_left
, 0);
10404 period
= max_t(u64
, 10000, hwc
->sample_period
);
10406 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
10407 HRTIMER_MODE_REL_PINNED_HARD
);
10410 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
10412 struct hw_perf_event
*hwc
= &event
->hw
;
10414 if (is_sampling_event(event
)) {
10415 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
10416 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
10418 hrtimer_cancel(&hwc
->hrtimer
);
10422 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
10424 struct hw_perf_event
*hwc
= &event
->hw
;
10426 if (!is_sampling_event(event
))
10429 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
10430 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
10433 * Since hrtimers have a fixed rate, we can do a static freq->period
10434 * mapping and avoid the whole period adjust feedback stuff.
10436 if (event
->attr
.freq
) {
10437 long freq
= event
->attr
.sample_freq
;
10439 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
10440 hwc
->sample_period
= event
->attr
.sample_period
;
10441 local64_set(&hwc
->period_left
, hwc
->sample_period
);
10442 hwc
->last_period
= hwc
->sample_period
;
10443 event
->attr
.freq
= 0;
10448 * Software event: cpu wall time clock
10451 static void cpu_clock_event_update(struct perf_event
*event
)
10456 now
= local_clock();
10457 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
10458 local64_add(now
- prev
, &event
->count
);
10461 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
10463 local64_set(&event
->hw
.prev_count
, local_clock());
10464 perf_swevent_start_hrtimer(event
);
10467 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
10469 perf_swevent_cancel_hrtimer(event
);
10470 cpu_clock_event_update(event
);
10473 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
10475 if (flags
& PERF_EF_START
)
10476 cpu_clock_event_start(event
, flags
);
10477 perf_event_update_userpage(event
);
10482 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
10484 cpu_clock_event_stop(event
, flags
);
10487 static void cpu_clock_event_read(struct perf_event
*event
)
10489 cpu_clock_event_update(event
);
10492 static int cpu_clock_event_init(struct perf_event
*event
)
10494 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
10497 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
10501 * no branch sampling for software events
10503 if (has_branch_stack(event
))
10504 return -EOPNOTSUPP
;
10506 perf_swevent_init_hrtimer(event
);
10511 static struct pmu perf_cpu_clock
= {
10512 .task_ctx_nr
= perf_sw_context
,
10514 .capabilities
= PERF_PMU_CAP_NO_NMI
,
10516 .event_init
= cpu_clock_event_init
,
10517 .add
= cpu_clock_event_add
,
10518 .del
= cpu_clock_event_del
,
10519 .start
= cpu_clock_event_start
,
10520 .stop
= cpu_clock_event_stop
,
10521 .read
= cpu_clock_event_read
,
10525 * Software event: task time clock
10528 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
10533 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
10534 delta
= now
- prev
;
10535 local64_add(delta
, &event
->count
);
10538 static void task_clock_event_start(struct perf_event
*event
, int flags
)
10540 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
10541 perf_swevent_start_hrtimer(event
);
10544 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
10546 perf_swevent_cancel_hrtimer(event
);
10547 task_clock_event_update(event
, event
->ctx
->time
);
10550 static int task_clock_event_add(struct perf_event
*event
, int flags
)
10552 if (flags
& PERF_EF_START
)
10553 task_clock_event_start(event
, flags
);
10554 perf_event_update_userpage(event
);
10559 static void task_clock_event_del(struct perf_event
*event
, int flags
)
10561 task_clock_event_stop(event
, PERF_EF_UPDATE
);
10564 static void task_clock_event_read(struct perf_event
*event
)
10566 u64 now
= perf_clock();
10567 u64 delta
= now
- event
->ctx
->timestamp
;
10568 u64 time
= event
->ctx
->time
+ delta
;
10570 task_clock_event_update(event
, time
);
10573 static int task_clock_event_init(struct perf_event
*event
)
10575 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
10578 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
10582 * no branch sampling for software events
10584 if (has_branch_stack(event
))
10585 return -EOPNOTSUPP
;
10587 perf_swevent_init_hrtimer(event
);
10592 static struct pmu perf_task_clock
= {
10593 .task_ctx_nr
= perf_sw_context
,
10595 .capabilities
= PERF_PMU_CAP_NO_NMI
,
10597 .event_init
= task_clock_event_init
,
10598 .add
= task_clock_event_add
,
10599 .del
= task_clock_event_del
,
10600 .start
= task_clock_event_start
,
10601 .stop
= task_clock_event_stop
,
10602 .read
= task_clock_event_read
,
10605 static void perf_pmu_nop_void(struct pmu
*pmu
)
10609 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
10613 static int perf_pmu_nop_int(struct pmu
*pmu
)
10618 static int perf_event_nop_int(struct perf_event
*event
, u64 value
)
10623 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
10625 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
10627 __this_cpu_write(nop_txn_flags
, flags
);
10629 if (flags
& ~PERF_PMU_TXN_ADD
)
10632 perf_pmu_disable(pmu
);
10635 static int perf_pmu_commit_txn(struct pmu
*pmu
)
10637 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
10639 __this_cpu_write(nop_txn_flags
, 0);
10641 if (flags
& ~PERF_PMU_TXN_ADD
)
10644 perf_pmu_enable(pmu
);
10648 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
10650 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
10652 __this_cpu_write(nop_txn_flags
, 0);
10654 if (flags
& ~PERF_PMU_TXN_ADD
)
10657 perf_pmu_enable(pmu
);
10660 static int perf_event_idx_default(struct perf_event
*event
)
10666 * Ensures all contexts with the same task_ctx_nr have the same
10667 * pmu_cpu_context too.
10669 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
10676 list_for_each_entry(pmu
, &pmus
, entry
) {
10677 if (pmu
->task_ctx_nr
== ctxn
)
10678 return pmu
->pmu_cpu_context
;
10684 static void free_pmu_context(struct pmu
*pmu
)
10687 * Static contexts such as perf_sw_context have a global lifetime
10688 * and may be shared between different PMUs. Avoid freeing them
10689 * when a single PMU is going away.
10691 if (pmu
->task_ctx_nr
> perf_invalid_context
)
10694 free_percpu(pmu
->pmu_cpu_context
);
10698 * Let userspace know that this PMU supports address range filtering:
10700 static ssize_t
nr_addr_filters_show(struct device
*dev
,
10701 struct device_attribute
*attr
,
10704 struct pmu
*pmu
= dev_get_drvdata(dev
);
10706 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
10708 DEVICE_ATTR_RO(nr_addr_filters
);
10710 static struct idr pmu_idr
;
10713 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
10715 struct pmu
*pmu
= dev_get_drvdata(dev
);
10717 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
10719 static DEVICE_ATTR_RO(type
);
10722 perf_event_mux_interval_ms_show(struct device
*dev
,
10723 struct device_attribute
*attr
,
10726 struct pmu
*pmu
= dev_get_drvdata(dev
);
10728 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
10731 static DEFINE_MUTEX(mux_interval_mutex
);
10734 perf_event_mux_interval_ms_store(struct device
*dev
,
10735 struct device_attribute
*attr
,
10736 const char *buf
, size_t count
)
10738 struct pmu
*pmu
= dev_get_drvdata(dev
);
10739 int timer
, cpu
, ret
;
10741 ret
= kstrtoint(buf
, 0, &timer
);
10748 /* same value, noting to do */
10749 if (timer
== pmu
->hrtimer_interval_ms
)
10752 mutex_lock(&mux_interval_mutex
);
10753 pmu
->hrtimer_interval_ms
= timer
;
10755 /* update all cpuctx for this PMU */
10757 for_each_online_cpu(cpu
) {
10758 struct perf_cpu_context
*cpuctx
;
10759 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
10760 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
10762 cpu_function_call(cpu
,
10763 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
10765 cpus_read_unlock();
10766 mutex_unlock(&mux_interval_mutex
);
10770 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
10772 static struct attribute
*pmu_dev_attrs
[] = {
10773 &dev_attr_type
.attr
,
10774 &dev_attr_perf_event_mux_interval_ms
.attr
,
10777 ATTRIBUTE_GROUPS(pmu_dev
);
10779 static int pmu_bus_running
;
10780 static struct bus_type pmu_bus
= {
10781 .name
= "event_source",
10782 .dev_groups
= pmu_dev_groups
,
10785 static void pmu_dev_release(struct device
*dev
)
10790 static int pmu_dev_alloc(struct pmu
*pmu
)
10794 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
10798 pmu
->dev
->groups
= pmu
->attr_groups
;
10799 device_initialize(pmu
->dev
);
10800 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
10804 dev_set_drvdata(pmu
->dev
, pmu
);
10805 pmu
->dev
->bus
= &pmu_bus
;
10806 pmu
->dev
->release
= pmu_dev_release
;
10807 ret
= device_add(pmu
->dev
);
10811 /* For PMUs with address filters, throw in an extra attribute: */
10812 if (pmu
->nr_addr_filters
)
10813 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
10818 if (pmu
->attr_update
)
10819 ret
= sysfs_update_groups(&pmu
->dev
->kobj
, pmu
->attr_update
);
10828 device_del(pmu
->dev
);
10831 put_device(pmu
->dev
);
10835 static struct lock_class_key cpuctx_mutex
;
10836 static struct lock_class_key cpuctx_lock
;
10838 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
10840 int cpu
, ret
, max
= PERF_TYPE_MAX
;
10842 mutex_lock(&pmus_lock
);
10844 pmu
->pmu_disable_count
= alloc_percpu(int);
10845 if (!pmu
->pmu_disable_count
)
10853 if (type
!= PERF_TYPE_SOFTWARE
) {
10857 ret
= idr_alloc(&pmu_idr
, pmu
, max
, 0, GFP_KERNEL
);
10861 WARN_ON(type
>= 0 && ret
!= type
);
10867 if (pmu_bus_running
) {
10868 ret
= pmu_dev_alloc(pmu
);
10874 if (pmu
->task_ctx_nr
== perf_hw_context
) {
10875 static int hw_context_taken
= 0;
10878 * Other than systems with heterogeneous CPUs, it never makes
10879 * sense for two PMUs to share perf_hw_context. PMUs which are
10880 * uncore must use perf_invalid_context.
10882 if (WARN_ON_ONCE(hw_context_taken
&&
10883 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
10884 pmu
->task_ctx_nr
= perf_invalid_context
;
10886 hw_context_taken
= 1;
10889 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
10890 if (pmu
->pmu_cpu_context
)
10891 goto got_cpu_context
;
10894 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
10895 if (!pmu
->pmu_cpu_context
)
10898 for_each_possible_cpu(cpu
) {
10899 struct perf_cpu_context
*cpuctx
;
10901 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
10902 __perf_event_init_context(&cpuctx
->ctx
);
10903 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
10904 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
10905 cpuctx
->ctx
.pmu
= pmu
;
10906 cpuctx
->online
= cpumask_test_cpu(cpu
, perf_online_mask
);
10908 __perf_mux_hrtimer_init(cpuctx
, cpu
);
10910 cpuctx
->heap_size
= ARRAY_SIZE(cpuctx
->heap_default
);
10911 cpuctx
->heap
= cpuctx
->heap_default
;
10915 if (!pmu
->start_txn
) {
10916 if (pmu
->pmu_enable
) {
10918 * If we have pmu_enable/pmu_disable calls, install
10919 * transaction stubs that use that to try and batch
10920 * hardware accesses.
10922 pmu
->start_txn
= perf_pmu_start_txn
;
10923 pmu
->commit_txn
= perf_pmu_commit_txn
;
10924 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
10926 pmu
->start_txn
= perf_pmu_nop_txn
;
10927 pmu
->commit_txn
= perf_pmu_nop_int
;
10928 pmu
->cancel_txn
= perf_pmu_nop_void
;
10932 if (!pmu
->pmu_enable
) {
10933 pmu
->pmu_enable
= perf_pmu_nop_void
;
10934 pmu
->pmu_disable
= perf_pmu_nop_void
;
10937 if (!pmu
->check_period
)
10938 pmu
->check_period
= perf_event_nop_int
;
10940 if (!pmu
->event_idx
)
10941 pmu
->event_idx
= perf_event_idx_default
;
10944 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10945 * since these cannot be in the IDR. This way the linear search
10946 * is fast, provided a valid software event is provided.
10948 if (type
== PERF_TYPE_SOFTWARE
|| !name
)
10949 list_add_rcu(&pmu
->entry
, &pmus
);
10951 list_add_tail_rcu(&pmu
->entry
, &pmus
);
10953 atomic_set(&pmu
->exclusive_cnt
, 0);
10956 mutex_unlock(&pmus_lock
);
10961 device_del(pmu
->dev
);
10962 put_device(pmu
->dev
);
10965 if (pmu
->type
!= PERF_TYPE_SOFTWARE
)
10966 idr_remove(&pmu_idr
, pmu
->type
);
10969 free_percpu(pmu
->pmu_disable_count
);
10972 EXPORT_SYMBOL_GPL(perf_pmu_register
);
10974 void perf_pmu_unregister(struct pmu
*pmu
)
10976 mutex_lock(&pmus_lock
);
10977 list_del_rcu(&pmu
->entry
);
10980 * We dereference the pmu list under both SRCU and regular RCU, so
10981 * synchronize against both of those.
10983 synchronize_srcu(&pmus_srcu
);
10986 free_percpu(pmu
->pmu_disable_count
);
10987 if (pmu
->type
!= PERF_TYPE_SOFTWARE
)
10988 idr_remove(&pmu_idr
, pmu
->type
);
10989 if (pmu_bus_running
) {
10990 if (pmu
->nr_addr_filters
)
10991 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
10992 device_del(pmu
->dev
);
10993 put_device(pmu
->dev
);
10995 free_pmu_context(pmu
);
10996 mutex_unlock(&pmus_lock
);
10998 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
11000 static inline bool has_extended_regs(struct perf_event
*event
)
11002 return (event
->attr
.sample_regs_user
& PERF_REG_EXTENDED_MASK
) ||
11003 (event
->attr
.sample_regs_intr
& PERF_REG_EXTENDED_MASK
);
11006 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
11008 struct perf_event_context
*ctx
= NULL
;
11011 if (!try_module_get(pmu
->module
))
11015 * A number of pmu->event_init() methods iterate the sibling_list to,
11016 * for example, validate if the group fits on the PMU. Therefore,
11017 * if this is a sibling event, acquire the ctx->mutex to protect
11018 * the sibling_list.
11020 if (event
->group_leader
!= event
&& pmu
->task_ctx_nr
!= perf_sw_context
) {
11022 * This ctx->mutex can nest when we're called through
11023 * inheritance. See the perf_event_ctx_lock_nested() comment.
11025 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
11026 SINGLE_DEPTH_NESTING
);
11031 ret
= pmu
->event_init(event
);
11034 perf_event_ctx_unlock(event
->group_leader
, ctx
);
11037 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXTENDED_REGS
) &&
11038 has_extended_regs(event
))
11041 if (pmu
->capabilities
& PERF_PMU_CAP_NO_EXCLUDE
&&
11042 event_has_any_exclude_flag(event
))
11045 if (ret
&& event
->destroy
)
11046 event
->destroy(event
);
11050 module_put(pmu
->module
);
11055 static struct pmu
*perf_init_event(struct perf_event
*event
)
11057 int idx
, type
, ret
;
11060 idx
= srcu_read_lock(&pmus_srcu
);
11062 /* Try parent's PMU first: */
11063 if (event
->parent
&& event
->parent
->pmu
) {
11064 pmu
= event
->parent
->pmu
;
11065 ret
= perf_try_init_event(pmu
, event
);
11071 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11072 * are often aliases for PERF_TYPE_RAW.
11074 type
= event
->attr
.type
;
11075 if (type
== PERF_TYPE_HARDWARE
|| type
== PERF_TYPE_HW_CACHE
)
11076 type
= PERF_TYPE_RAW
;
11080 pmu
= idr_find(&pmu_idr
, type
);
11083 ret
= perf_try_init_event(pmu
, event
);
11084 if (ret
== -ENOENT
&& event
->attr
.type
!= type
) {
11085 type
= event
->attr
.type
;
11090 pmu
= ERR_PTR(ret
);
11095 list_for_each_entry_rcu(pmu
, &pmus
, entry
, lockdep_is_held(&pmus_srcu
)) {
11096 ret
= perf_try_init_event(pmu
, event
);
11100 if (ret
!= -ENOENT
) {
11101 pmu
= ERR_PTR(ret
);
11105 pmu
= ERR_PTR(-ENOENT
);
11107 srcu_read_unlock(&pmus_srcu
, idx
);
11112 static void attach_sb_event(struct perf_event
*event
)
11114 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
11116 raw_spin_lock(&pel
->lock
);
11117 list_add_rcu(&event
->sb_list
, &pel
->list
);
11118 raw_spin_unlock(&pel
->lock
);
11122 * We keep a list of all !task (and therefore per-cpu) events
11123 * that need to receive side-band records.
11125 * This avoids having to scan all the various PMU per-cpu contexts
11126 * looking for them.
11128 static void account_pmu_sb_event(struct perf_event
*event
)
11130 if (is_sb_event(event
))
11131 attach_sb_event(event
);
11134 static void account_event_cpu(struct perf_event
*event
, int cpu
)
11139 if (is_cgroup_event(event
))
11140 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
11143 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11144 static void account_freq_event_nohz(void)
11146 #ifdef CONFIG_NO_HZ_FULL
11147 /* Lock so we don't race with concurrent unaccount */
11148 spin_lock(&nr_freq_lock
);
11149 if (atomic_inc_return(&nr_freq_events
) == 1)
11150 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
11151 spin_unlock(&nr_freq_lock
);
11155 static void account_freq_event(void)
11157 if (tick_nohz_full_enabled())
11158 account_freq_event_nohz();
11160 atomic_inc(&nr_freq_events
);
11164 static void account_event(struct perf_event
*event
)
11171 if (event
->attach_state
& PERF_ATTACH_TASK
)
11173 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
11174 atomic_inc(&nr_mmap_events
);
11175 if (event
->attr
.comm
)
11176 atomic_inc(&nr_comm_events
);
11177 if (event
->attr
.namespaces
)
11178 atomic_inc(&nr_namespaces_events
);
11179 if (event
->attr
.cgroup
)
11180 atomic_inc(&nr_cgroup_events
);
11181 if (event
->attr
.task
)
11182 atomic_inc(&nr_task_events
);
11183 if (event
->attr
.freq
)
11184 account_freq_event();
11185 if (event
->attr
.context_switch
) {
11186 atomic_inc(&nr_switch_events
);
11189 if (has_branch_stack(event
))
11191 if (is_cgroup_event(event
))
11193 if (event
->attr
.ksymbol
)
11194 atomic_inc(&nr_ksymbol_events
);
11195 if (event
->attr
.bpf_event
)
11196 atomic_inc(&nr_bpf_events
);
11197 if (event
->attr
.text_poke
)
11198 atomic_inc(&nr_text_poke_events
);
11202 * We need the mutex here because static_branch_enable()
11203 * must complete *before* the perf_sched_count increment
11206 if (atomic_inc_not_zero(&perf_sched_count
))
11209 mutex_lock(&perf_sched_mutex
);
11210 if (!atomic_read(&perf_sched_count
)) {
11211 static_branch_enable(&perf_sched_events
);
11213 * Guarantee that all CPUs observe they key change and
11214 * call the perf scheduling hooks before proceeding to
11215 * install events that need them.
11220 * Now that we have waited for the sync_sched(), allow further
11221 * increments to by-pass the mutex.
11223 atomic_inc(&perf_sched_count
);
11224 mutex_unlock(&perf_sched_mutex
);
11228 account_event_cpu(event
, event
->cpu
);
11230 account_pmu_sb_event(event
);
11234 * Allocate and initialize an event structure
11236 static struct perf_event
*
11237 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
11238 struct task_struct
*task
,
11239 struct perf_event
*group_leader
,
11240 struct perf_event
*parent_event
,
11241 perf_overflow_handler_t overflow_handler
,
11242 void *context
, int cgroup_fd
)
11245 struct perf_event
*event
;
11246 struct hw_perf_event
*hwc
;
11247 long err
= -EINVAL
;
11249 if ((unsigned)cpu
>= nr_cpu_ids
) {
11250 if (!task
|| cpu
!= -1)
11251 return ERR_PTR(-EINVAL
);
11254 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
11256 return ERR_PTR(-ENOMEM
);
11259 * Single events are their own group leaders, with an
11260 * empty sibling list:
11263 group_leader
= event
;
11265 mutex_init(&event
->child_mutex
);
11266 INIT_LIST_HEAD(&event
->child_list
);
11268 INIT_LIST_HEAD(&event
->event_entry
);
11269 INIT_LIST_HEAD(&event
->sibling_list
);
11270 INIT_LIST_HEAD(&event
->active_list
);
11271 init_event_group(event
);
11272 INIT_LIST_HEAD(&event
->rb_entry
);
11273 INIT_LIST_HEAD(&event
->active_entry
);
11274 INIT_LIST_HEAD(&event
->addr_filters
.list
);
11275 INIT_HLIST_NODE(&event
->hlist_entry
);
11278 init_waitqueue_head(&event
->waitq
);
11279 event
->pending_disable
= -1;
11280 init_irq_work(&event
->pending
, perf_pending_event
);
11282 mutex_init(&event
->mmap_mutex
);
11283 raw_spin_lock_init(&event
->addr_filters
.lock
);
11285 atomic_long_set(&event
->refcount
, 1);
11287 event
->attr
= *attr
;
11288 event
->group_leader
= group_leader
;
11292 event
->parent
= parent_event
;
11294 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
11295 event
->id
= atomic64_inc_return(&perf_event_id
);
11297 event
->state
= PERF_EVENT_STATE_INACTIVE
;
11300 event
->attach_state
= PERF_ATTACH_TASK
;
11302 * XXX pmu::event_init needs to know what task to account to
11303 * and we cannot use the ctx information because we need the
11304 * pmu before we get a ctx.
11306 event
->hw
.target
= get_task_struct(task
);
11309 event
->clock
= &local_clock
;
11311 event
->clock
= parent_event
->clock
;
11313 if (!overflow_handler
&& parent_event
) {
11314 overflow_handler
= parent_event
->overflow_handler
;
11315 context
= parent_event
->overflow_handler_context
;
11316 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11317 if (overflow_handler
== bpf_overflow_handler
) {
11318 struct bpf_prog
*prog
= parent_event
->prog
;
11320 bpf_prog_inc(prog
);
11321 event
->prog
= prog
;
11322 event
->orig_overflow_handler
=
11323 parent_event
->orig_overflow_handler
;
11328 if (overflow_handler
) {
11329 event
->overflow_handler
= overflow_handler
;
11330 event
->overflow_handler_context
= context
;
11331 } else if (is_write_backward(event
)){
11332 event
->overflow_handler
= perf_event_output_backward
;
11333 event
->overflow_handler_context
= NULL
;
11335 event
->overflow_handler
= perf_event_output_forward
;
11336 event
->overflow_handler_context
= NULL
;
11339 perf_event__state_init(event
);
11344 hwc
->sample_period
= attr
->sample_period
;
11345 if (attr
->freq
&& attr
->sample_freq
)
11346 hwc
->sample_period
= 1;
11347 hwc
->last_period
= hwc
->sample_period
;
11349 local64_set(&hwc
->period_left
, hwc
->sample_period
);
11352 * We currently do not support PERF_SAMPLE_READ on inherited events.
11353 * See perf_output_read().
11355 if (attr
->inherit
&& (attr
->sample_type
& PERF_SAMPLE_READ
))
11358 if (!has_branch_stack(event
))
11359 event
->attr
.branch_sample_type
= 0;
11361 pmu
= perf_init_event(event
);
11363 err
= PTR_ERR(pmu
);
11368 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11369 * be different on other CPUs in the uncore mask.
11371 if (pmu
->task_ctx_nr
== perf_invalid_context
&& cgroup_fd
!= -1) {
11376 if (event
->attr
.aux_output
&&
11377 !(pmu
->capabilities
& PERF_PMU_CAP_AUX_OUTPUT
)) {
11382 if (cgroup_fd
!= -1) {
11383 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
11388 err
= exclusive_event_init(event
);
11392 if (has_addr_filter(event
)) {
11393 event
->addr_filter_ranges
= kcalloc(pmu
->nr_addr_filters
,
11394 sizeof(struct perf_addr_filter_range
),
11396 if (!event
->addr_filter_ranges
) {
11402 * Clone the parent's vma offsets: they are valid until exec()
11403 * even if the mm is not shared with the parent.
11405 if (event
->parent
) {
11406 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
11408 raw_spin_lock_irq(&ifh
->lock
);
11409 memcpy(event
->addr_filter_ranges
,
11410 event
->parent
->addr_filter_ranges
,
11411 pmu
->nr_addr_filters
* sizeof(struct perf_addr_filter_range
));
11412 raw_spin_unlock_irq(&ifh
->lock
);
11415 /* force hw sync on the address filters */
11416 event
->addr_filters_gen
= 1;
11419 if (!event
->parent
) {
11420 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
11421 err
= get_callchain_buffers(attr
->sample_max_stack
);
11423 goto err_addr_filters
;
11427 err
= security_perf_event_alloc(event
);
11429 goto err_callchain_buffer
;
11431 /* symmetric to unaccount_event() in _free_event() */
11432 account_event(event
);
11436 err_callchain_buffer
:
11437 if (!event
->parent
) {
11438 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
11439 put_callchain_buffers();
11442 kfree(event
->addr_filter_ranges
);
11445 exclusive_event_destroy(event
);
11448 if (is_cgroup_event(event
))
11449 perf_detach_cgroup(event
);
11450 if (event
->destroy
)
11451 event
->destroy(event
);
11452 module_put(pmu
->module
);
11455 put_pid_ns(event
->ns
);
11456 if (event
->hw
.target
)
11457 put_task_struct(event
->hw
.target
);
11460 return ERR_PTR(err
);
11463 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
11464 struct perf_event_attr
*attr
)
11469 /* Zero the full structure, so that a short copy will be nice. */
11470 memset(attr
, 0, sizeof(*attr
));
11472 ret
= get_user(size
, &uattr
->size
);
11476 /* ABI compatibility quirk: */
11478 size
= PERF_ATTR_SIZE_VER0
;
11479 if (size
< PERF_ATTR_SIZE_VER0
|| size
> PAGE_SIZE
)
11482 ret
= copy_struct_from_user(attr
, sizeof(*attr
), uattr
, size
);
11491 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
11494 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
11497 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
11500 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
11501 u64 mask
= attr
->branch_sample_type
;
11503 /* only using defined bits */
11504 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
11507 /* at least one branch bit must be set */
11508 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
11511 /* propagate priv level, when not set for branch */
11512 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
11514 /* exclude_kernel checked on syscall entry */
11515 if (!attr
->exclude_kernel
)
11516 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
11518 if (!attr
->exclude_user
)
11519 mask
|= PERF_SAMPLE_BRANCH_USER
;
11521 if (!attr
->exclude_hv
)
11522 mask
|= PERF_SAMPLE_BRANCH_HV
;
11524 * adjust user setting (for HW filter setup)
11526 attr
->branch_sample_type
= mask
;
11528 /* privileged levels capture (kernel, hv): check permissions */
11529 if (mask
& PERF_SAMPLE_BRANCH_PERM_PLM
) {
11530 ret
= perf_allow_kernel(attr
);
11536 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
11537 ret
= perf_reg_validate(attr
->sample_regs_user
);
11542 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
11543 if (!arch_perf_have_user_stack_dump())
11547 * We have __u32 type for the size, but so far
11548 * we can only use __u16 as maximum due to the
11549 * __u16 sample size limit.
11551 if (attr
->sample_stack_user
>= USHRT_MAX
)
11553 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
11557 if (!attr
->sample_max_stack
)
11558 attr
->sample_max_stack
= sysctl_perf_event_max_stack
;
11560 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
11561 ret
= perf_reg_validate(attr
->sample_regs_intr
);
11563 #ifndef CONFIG_CGROUP_PERF
11564 if (attr
->sample_type
& PERF_SAMPLE_CGROUP
)
11572 put_user(sizeof(*attr
), &uattr
->size
);
11578 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
11580 struct perf_buffer
*rb
= NULL
;
11586 /* don't allow circular references */
11587 if (event
== output_event
)
11591 * Don't allow cross-cpu buffers
11593 if (output_event
->cpu
!= event
->cpu
)
11597 * If its not a per-cpu rb, it must be the same task.
11599 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
11603 * Mixing clocks in the same buffer is trouble you don't need.
11605 if (output_event
->clock
!= event
->clock
)
11609 * Either writing ring buffer from beginning or from end.
11610 * Mixing is not allowed.
11612 if (is_write_backward(output_event
) != is_write_backward(event
))
11616 * If both events generate aux data, they must be on the same PMU
11618 if (has_aux(event
) && has_aux(output_event
) &&
11619 event
->pmu
!= output_event
->pmu
)
11623 mutex_lock(&event
->mmap_mutex
);
11624 /* Can't redirect output if we've got an active mmap() */
11625 if (atomic_read(&event
->mmap_count
))
11628 if (output_event
) {
11629 /* get the rb we want to redirect to */
11630 rb
= ring_buffer_get(output_event
);
11635 ring_buffer_attach(event
, rb
);
11639 mutex_unlock(&event
->mmap_mutex
);
11645 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
11651 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
11654 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
11656 bool nmi_safe
= false;
11659 case CLOCK_MONOTONIC
:
11660 event
->clock
= &ktime_get_mono_fast_ns
;
11664 case CLOCK_MONOTONIC_RAW
:
11665 event
->clock
= &ktime_get_raw_fast_ns
;
11669 case CLOCK_REALTIME
:
11670 event
->clock
= &ktime_get_real_ns
;
11673 case CLOCK_BOOTTIME
:
11674 event
->clock
= &ktime_get_boottime_ns
;
11678 event
->clock
= &ktime_get_clocktai_ns
;
11685 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
11692 * Variation on perf_event_ctx_lock_nested(), except we take two context
11695 static struct perf_event_context
*
11696 __perf_event_ctx_lock_double(struct perf_event
*group_leader
,
11697 struct perf_event_context
*ctx
)
11699 struct perf_event_context
*gctx
;
11703 gctx
= READ_ONCE(group_leader
->ctx
);
11704 if (!refcount_inc_not_zero(&gctx
->refcount
)) {
11710 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
11712 if (group_leader
->ctx
!= gctx
) {
11713 mutex_unlock(&ctx
->mutex
);
11714 mutex_unlock(&gctx
->mutex
);
11723 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11725 * @attr_uptr: event_id type attributes for monitoring/sampling
11728 * @group_fd: group leader event fd
11730 SYSCALL_DEFINE5(perf_event_open
,
11731 struct perf_event_attr __user
*, attr_uptr
,
11732 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
11734 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
11735 struct perf_event
*event
, *sibling
;
11736 struct perf_event_attr attr
;
11737 struct perf_event_context
*ctx
, *gctx
;
11738 struct file
*event_file
= NULL
;
11739 struct fd group
= {NULL
, 0};
11740 struct task_struct
*task
= NULL
;
11743 int move_group
= 0;
11745 int f_flags
= O_RDWR
;
11746 int cgroup_fd
= -1;
11748 /* for future expandability... */
11749 if (flags
& ~PERF_FLAG_ALL
)
11752 /* Do we allow access to perf_event_open(2) ? */
11753 err
= security_perf_event_open(&attr
, PERF_SECURITY_OPEN
);
11757 err
= perf_copy_attr(attr_uptr
, &attr
);
11761 if (!attr
.exclude_kernel
) {
11762 err
= perf_allow_kernel(&attr
);
11767 if (attr
.namespaces
) {
11768 if (!perfmon_capable())
11773 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
11776 if (attr
.sample_period
& (1ULL << 63))
11780 /* Only privileged users can get physical addresses */
11781 if ((attr
.sample_type
& PERF_SAMPLE_PHYS_ADDR
)) {
11782 err
= perf_allow_kernel(&attr
);
11787 err
= security_locked_down(LOCKDOWN_PERF
);
11788 if (err
&& (attr
.sample_type
& PERF_SAMPLE_REGS_INTR
))
11789 /* REGS_INTR can leak data, lockdown must prevent this */
11795 * In cgroup mode, the pid argument is used to pass the fd
11796 * opened to the cgroup directory in cgroupfs. The cpu argument
11797 * designates the cpu on which to monitor threads from that
11800 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
11803 if (flags
& PERF_FLAG_FD_CLOEXEC
)
11804 f_flags
|= O_CLOEXEC
;
11806 event_fd
= get_unused_fd_flags(f_flags
);
11810 if (group_fd
!= -1) {
11811 err
= perf_fget_light(group_fd
, &group
);
11814 group_leader
= group
.file
->private_data
;
11815 if (flags
& PERF_FLAG_FD_OUTPUT
)
11816 output_event
= group_leader
;
11817 if (flags
& PERF_FLAG_FD_NO_GROUP
)
11818 group_leader
= NULL
;
11821 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
11822 task
= find_lively_task_by_vpid(pid
);
11823 if (IS_ERR(task
)) {
11824 err
= PTR_ERR(task
);
11829 if (task
&& group_leader
&&
11830 group_leader
->attr
.inherit
!= attr
.inherit
) {
11835 if (flags
& PERF_FLAG_PID_CGROUP
)
11838 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
11839 NULL
, NULL
, cgroup_fd
);
11840 if (IS_ERR(event
)) {
11841 err
= PTR_ERR(event
);
11845 if (is_sampling_event(event
)) {
11846 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
11853 * Special case software events and allow them to be part of
11854 * any hardware group.
11858 if (attr
.use_clockid
) {
11859 err
= perf_event_set_clock(event
, attr
.clockid
);
11864 if (pmu
->task_ctx_nr
== perf_sw_context
)
11865 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
11867 if (group_leader
) {
11868 if (is_software_event(event
) &&
11869 !in_software_context(group_leader
)) {
11871 * If the event is a sw event, but the group_leader
11872 * is on hw context.
11874 * Allow the addition of software events to hw
11875 * groups, this is safe because software events
11876 * never fail to schedule.
11878 pmu
= group_leader
->ctx
->pmu
;
11879 } else if (!is_software_event(event
) &&
11880 is_software_event(group_leader
) &&
11881 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
11883 * In case the group is a pure software group, and we
11884 * try to add a hardware event, move the whole group to
11885 * the hardware context.
11892 * Get the target context (task or percpu):
11894 ctx
= find_get_context(pmu
, task
, event
);
11896 err
= PTR_ERR(ctx
);
11901 * Look up the group leader (we will attach this event to it):
11903 if (group_leader
) {
11907 * Do not allow a recursive hierarchy (this new sibling
11908 * becoming part of another group-sibling):
11910 if (group_leader
->group_leader
!= group_leader
)
11913 /* All events in a group should have the same clock */
11914 if (group_leader
->clock
!= event
->clock
)
11918 * Make sure we're both events for the same CPU;
11919 * grouping events for different CPUs is broken; since
11920 * you can never concurrently schedule them anyhow.
11922 if (group_leader
->cpu
!= event
->cpu
)
11926 * Make sure we're both on the same task, or both
11929 if (group_leader
->ctx
->task
!= ctx
->task
)
11933 * Do not allow to attach to a group in a different task
11934 * or CPU context. If we're moving SW events, we'll fix
11935 * this up later, so allow that.
11937 if (!move_group
&& group_leader
->ctx
!= ctx
)
11941 * Only a group leader can be exclusive or pinned
11943 if (attr
.exclusive
|| attr
.pinned
)
11947 if (output_event
) {
11948 err
= perf_event_set_output(event
, output_event
);
11953 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
11955 if (IS_ERR(event_file
)) {
11956 err
= PTR_ERR(event_file
);
11962 err
= down_read_interruptible(&task
->signal
->exec_update_lock
);
11967 * Preserve ptrace permission check for backwards compatibility.
11969 * We must hold exec_update_lock across this and any potential
11970 * perf_install_in_context() call for this new event to
11971 * serialize against exec() altering our credentials (and the
11972 * perf_event_exit_task() that could imply).
11975 if (!perfmon_capable() && !ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
11980 gctx
= __perf_event_ctx_lock_double(group_leader
, ctx
);
11982 if (gctx
->task
== TASK_TOMBSTONE
) {
11988 * Check if we raced against another sys_perf_event_open() call
11989 * moving the software group underneath us.
11991 if (!(group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
11993 * If someone moved the group out from under us, check
11994 * if this new event wound up on the same ctx, if so
11995 * its the regular !move_group case, otherwise fail.
12001 perf_event_ctx_unlock(group_leader
, gctx
);
12007 * Failure to create exclusive events returns -EBUSY.
12010 if (!exclusive_event_installable(group_leader
, ctx
))
12013 for_each_sibling_event(sibling
, group_leader
) {
12014 if (!exclusive_event_installable(sibling
, ctx
))
12018 mutex_lock(&ctx
->mutex
);
12021 if (ctx
->task
== TASK_TOMBSTONE
) {
12026 if (!perf_event_validate_size(event
)) {
12033 * Check if the @cpu we're creating an event for is online.
12035 * We use the perf_cpu_context::ctx::mutex to serialize against
12036 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12038 struct perf_cpu_context
*cpuctx
=
12039 container_of(ctx
, struct perf_cpu_context
, ctx
);
12041 if (!cpuctx
->online
) {
12047 if (perf_need_aux_event(event
) && !perf_get_aux_event(event
, group_leader
)) {
12053 * Must be under the same ctx::mutex as perf_install_in_context(),
12054 * because we need to serialize with concurrent event creation.
12056 if (!exclusive_event_installable(event
, ctx
)) {
12061 WARN_ON_ONCE(ctx
->parent_ctx
);
12064 * This is the point on no return; we cannot fail hereafter. This is
12065 * where we start modifying current state.
12070 * See perf_event_ctx_lock() for comments on the details
12071 * of swizzling perf_event::ctx.
12073 perf_remove_from_context(group_leader
, 0);
12076 for_each_sibling_event(sibling
, group_leader
) {
12077 perf_remove_from_context(sibling
, 0);
12082 * Wait for everybody to stop referencing the events through
12083 * the old lists, before installing it on new lists.
12088 * Install the group siblings before the group leader.
12090 * Because a group leader will try and install the entire group
12091 * (through the sibling list, which is still in-tact), we can
12092 * end up with siblings installed in the wrong context.
12094 * By installing siblings first we NO-OP because they're not
12095 * reachable through the group lists.
12097 for_each_sibling_event(sibling
, group_leader
) {
12098 perf_event__state_init(sibling
);
12099 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
12104 * Removing from the context ends up with disabled
12105 * event. What we want here is event in the initial
12106 * startup state, ready to be add into new context.
12108 perf_event__state_init(group_leader
);
12109 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
12114 * Precalculate sample_data sizes; do while holding ctx::mutex such
12115 * that we're serialized against further additions and before
12116 * perf_install_in_context() which is the point the event is active and
12117 * can use these values.
12119 perf_event__header_size(event
);
12120 perf_event__id_header_size(event
);
12122 event
->owner
= current
;
12124 perf_install_in_context(ctx
, event
, event
->cpu
);
12125 perf_unpin_context(ctx
);
12128 perf_event_ctx_unlock(group_leader
, gctx
);
12129 mutex_unlock(&ctx
->mutex
);
12132 up_read(&task
->signal
->exec_update_lock
);
12133 put_task_struct(task
);
12136 mutex_lock(¤t
->perf_event_mutex
);
12137 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
12138 mutex_unlock(¤t
->perf_event_mutex
);
12141 * Drop the reference on the group_event after placing the
12142 * new event on the sibling_list. This ensures destruction
12143 * of the group leader will find the pointer to itself in
12144 * perf_group_detach().
12147 fd_install(event_fd
, event_file
);
12152 perf_event_ctx_unlock(group_leader
, gctx
);
12153 mutex_unlock(&ctx
->mutex
);
12156 up_read(&task
->signal
->exec_update_lock
);
12160 perf_unpin_context(ctx
);
12164 * If event_file is set, the fput() above will have called ->release()
12165 * and that will take care of freeing the event.
12171 put_task_struct(task
);
12175 put_unused_fd(event_fd
);
12180 * perf_event_create_kernel_counter
12182 * @attr: attributes of the counter to create
12183 * @cpu: cpu in which the counter is bound
12184 * @task: task to profile (NULL for percpu)
12186 struct perf_event
*
12187 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
12188 struct task_struct
*task
,
12189 perf_overflow_handler_t overflow_handler
,
12192 struct perf_event_context
*ctx
;
12193 struct perf_event
*event
;
12197 * Grouping is not supported for kernel events, neither is 'AUX',
12198 * make sure the caller's intentions are adjusted.
12200 if (attr
->aux_output
)
12201 return ERR_PTR(-EINVAL
);
12203 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
12204 overflow_handler
, context
, -1);
12205 if (IS_ERR(event
)) {
12206 err
= PTR_ERR(event
);
12210 /* Mark owner so we could distinguish it from user events. */
12211 event
->owner
= TASK_TOMBSTONE
;
12214 * Get the target context (task or percpu):
12216 ctx
= find_get_context(event
->pmu
, task
, event
);
12218 err
= PTR_ERR(ctx
);
12222 WARN_ON_ONCE(ctx
->parent_ctx
);
12223 mutex_lock(&ctx
->mutex
);
12224 if (ctx
->task
== TASK_TOMBSTONE
) {
12231 * Check if the @cpu we're creating an event for is online.
12233 * We use the perf_cpu_context::ctx::mutex to serialize against
12234 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12236 struct perf_cpu_context
*cpuctx
=
12237 container_of(ctx
, struct perf_cpu_context
, ctx
);
12238 if (!cpuctx
->online
) {
12244 if (!exclusive_event_installable(event
, ctx
)) {
12249 perf_install_in_context(ctx
, event
, event
->cpu
);
12250 perf_unpin_context(ctx
);
12251 mutex_unlock(&ctx
->mutex
);
12256 mutex_unlock(&ctx
->mutex
);
12257 perf_unpin_context(ctx
);
12262 return ERR_PTR(err
);
12264 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
12266 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
12268 struct perf_event_context
*src_ctx
;
12269 struct perf_event_context
*dst_ctx
;
12270 struct perf_event
*event
, *tmp
;
12273 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
12274 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
12277 * See perf_event_ctx_lock() for comments on the details
12278 * of swizzling perf_event::ctx.
12280 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
12281 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
12283 perf_remove_from_context(event
, 0);
12284 unaccount_event_cpu(event
, src_cpu
);
12286 list_add(&event
->migrate_entry
, &events
);
12290 * Wait for the events to quiesce before re-instating them.
12295 * Re-instate events in 2 passes.
12297 * Skip over group leaders and only install siblings on this first
12298 * pass, siblings will not get enabled without a leader, however a
12299 * leader will enable its siblings, even if those are still on the old
12302 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
12303 if (event
->group_leader
== event
)
12306 list_del(&event
->migrate_entry
);
12307 if (event
->state
>= PERF_EVENT_STATE_OFF
)
12308 event
->state
= PERF_EVENT_STATE_INACTIVE
;
12309 account_event_cpu(event
, dst_cpu
);
12310 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
12315 * Once all the siblings are setup properly, install the group leaders
12318 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
12319 list_del(&event
->migrate_entry
);
12320 if (event
->state
>= PERF_EVENT_STATE_OFF
)
12321 event
->state
= PERF_EVENT_STATE_INACTIVE
;
12322 account_event_cpu(event
, dst_cpu
);
12323 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
12326 mutex_unlock(&dst_ctx
->mutex
);
12327 mutex_unlock(&src_ctx
->mutex
);
12329 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
12331 static void sync_child_event(struct perf_event
*child_event
,
12332 struct task_struct
*child
)
12334 struct perf_event
*parent_event
= child_event
->parent
;
12337 if (child_event
->attr
.inherit_stat
)
12338 perf_event_read_event(child_event
, child
);
12340 child_val
= perf_event_count(child_event
);
12343 * Add back the child's count to the parent's count:
12345 atomic64_add(child_val
, &parent_event
->child_count
);
12346 atomic64_add(child_event
->total_time_enabled
,
12347 &parent_event
->child_total_time_enabled
);
12348 atomic64_add(child_event
->total_time_running
,
12349 &parent_event
->child_total_time_running
);
12353 perf_event_exit_event(struct perf_event
*child_event
,
12354 struct perf_event_context
*child_ctx
,
12355 struct task_struct
*child
)
12357 struct perf_event
*parent_event
= child_event
->parent
;
12360 * Do not destroy the 'original' grouping; because of the context
12361 * switch optimization the original events could've ended up in a
12362 * random child task.
12364 * If we were to destroy the original group, all group related
12365 * operations would cease to function properly after this random
12368 * Do destroy all inherited groups, we don't care about those
12369 * and being thorough is better.
12371 raw_spin_lock_irq(&child_ctx
->lock
);
12372 WARN_ON_ONCE(child_ctx
->is_active
);
12375 perf_group_detach(child_event
);
12376 list_del_event(child_event
, child_ctx
);
12377 perf_event_set_state(child_event
, PERF_EVENT_STATE_EXIT
); /* is_event_hup() */
12378 raw_spin_unlock_irq(&child_ctx
->lock
);
12381 * Parent events are governed by their filedesc, retain them.
12383 if (!parent_event
) {
12384 perf_event_wakeup(child_event
);
12388 * Child events can be cleaned up.
12391 sync_child_event(child_event
, child
);
12394 * Remove this event from the parent's list
12396 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
12397 mutex_lock(&parent_event
->child_mutex
);
12398 list_del_init(&child_event
->child_list
);
12399 mutex_unlock(&parent_event
->child_mutex
);
12402 * Kick perf_poll() for is_event_hup().
12404 perf_event_wakeup(parent_event
);
12405 free_event(child_event
);
12406 put_event(parent_event
);
12409 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
12411 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
12412 struct perf_event
*child_event
, *next
;
12414 WARN_ON_ONCE(child
!= current
);
12416 child_ctx
= perf_pin_task_context(child
, ctxn
);
12421 * In order to reduce the amount of tricky in ctx tear-down, we hold
12422 * ctx::mutex over the entire thing. This serializes against almost
12423 * everything that wants to access the ctx.
12425 * The exception is sys_perf_event_open() /
12426 * perf_event_create_kernel_count() which does find_get_context()
12427 * without ctx::mutex (it cannot because of the move_group double mutex
12428 * lock thing). See the comments in perf_install_in_context().
12430 mutex_lock(&child_ctx
->mutex
);
12433 * In a single ctx::lock section, de-schedule the events and detach the
12434 * context from the task such that we cannot ever get it scheduled back
12437 raw_spin_lock_irq(&child_ctx
->lock
);
12438 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
, EVENT_ALL
);
12441 * Now that the context is inactive, destroy the task <-> ctx relation
12442 * and mark the context dead.
12444 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
12445 put_ctx(child_ctx
); /* cannot be last */
12446 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
12447 put_task_struct(current
); /* cannot be last */
12449 clone_ctx
= unclone_ctx(child_ctx
);
12450 raw_spin_unlock_irq(&child_ctx
->lock
);
12453 put_ctx(clone_ctx
);
12456 * Report the task dead after unscheduling the events so that we
12457 * won't get any samples after PERF_RECORD_EXIT. We can however still
12458 * get a few PERF_RECORD_READ events.
12460 perf_event_task(child
, child_ctx
, 0);
12462 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
12463 perf_event_exit_event(child_event
, child_ctx
, child
);
12465 mutex_unlock(&child_ctx
->mutex
);
12467 put_ctx(child_ctx
);
12471 * When a child task exits, feed back event values to parent events.
12473 * Can be called with exec_update_lock held when called from
12474 * setup_new_exec().
12476 void perf_event_exit_task(struct task_struct
*child
)
12478 struct perf_event
*event
, *tmp
;
12481 mutex_lock(&child
->perf_event_mutex
);
12482 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
12484 list_del_init(&event
->owner_entry
);
12487 * Ensure the list deletion is visible before we clear
12488 * the owner, closes a race against perf_release() where
12489 * we need to serialize on the owner->perf_event_mutex.
12491 smp_store_release(&event
->owner
, NULL
);
12493 mutex_unlock(&child
->perf_event_mutex
);
12495 for_each_task_context_nr(ctxn
)
12496 perf_event_exit_task_context(child
, ctxn
);
12499 * The perf_event_exit_task_context calls perf_event_task
12500 * with child's task_ctx, which generates EXIT events for
12501 * child contexts and sets child->perf_event_ctxp[] to NULL.
12502 * At this point we need to send EXIT events to cpu contexts.
12504 perf_event_task(child
, NULL
, 0);
12507 static void perf_free_event(struct perf_event
*event
,
12508 struct perf_event_context
*ctx
)
12510 struct perf_event
*parent
= event
->parent
;
12512 if (WARN_ON_ONCE(!parent
))
12515 mutex_lock(&parent
->child_mutex
);
12516 list_del_init(&event
->child_list
);
12517 mutex_unlock(&parent
->child_mutex
);
12521 raw_spin_lock_irq(&ctx
->lock
);
12522 perf_group_detach(event
);
12523 list_del_event(event
, ctx
);
12524 raw_spin_unlock_irq(&ctx
->lock
);
12529 * Free a context as created by inheritance by perf_event_init_task() below,
12530 * used by fork() in case of fail.
12532 * Even though the task has never lived, the context and events have been
12533 * exposed through the child_list, so we must take care tearing it all down.
12535 void perf_event_free_task(struct task_struct
*task
)
12537 struct perf_event_context
*ctx
;
12538 struct perf_event
*event
, *tmp
;
12541 for_each_task_context_nr(ctxn
) {
12542 ctx
= task
->perf_event_ctxp
[ctxn
];
12546 mutex_lock(&ctx
->mutex
);
12547 raw_spin_lock_irq(&ctx
->lock
);
12549 * Destroy the task <-> ctx relation and mark the context dead.
12551 * This is important because even though the task hasn't been
12552 * exposed yet the context has been (through child_list).
12554 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], NULL
);
12555 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
12556 put_task_struct(task
); /* cannot be last */
12557 raw_spin_unlock_irq(&ctx
->lock
);
12559 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
)
12560 perf_free_event(event
, ctx
);
12562 mutex_unlock(&ctx
->mutex
);
12565 * perf_event_release_kernel() could've stolen some of our
12566 * child events and still have them on its free_list. In that
12567 * case we must wait for these events to have been freed (in
12568 * particular all their references to this task must've been
12571 * Without this copy_process() will unconditionally free this
12572 * task (irrespective of its reference count) and
12573 * _free_event()'s put_task_struct(event->hw.target) will be a
12576 * Wait for all events to drop their context reference.
12578 wait_var_event(&ctx
->refcount
, refcount_read(&ctx
->refcount
) == 1);
12579 put_ctx(ctx
); /* must be last */
12583 void perf_event_delayed_put(struct task_struct
*task
)
12587 for_each_task_context_nr(ctxn
)
12588 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
12591 struct file
*perf_event_get(unsigned int fd
)
12593 struct file
*file
= fget(fd
);
12595 return ERR_PTR(-EBADF
);
12597 if (file
->f_op
!= &perf_fops
) {
12599 return ERR_PTR(-EBADF
);
12605 const struct perf_event
*perf_get_event(struct file
*file
)
12607 if (file
->f_op
!= &perf_fops
)
12608 return ERR_PTR(-EINVAL
);
12610 return file
->private_data
;
12613 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
12616 return ERR_PTR(-EINVAL
);
12618 return &event
->attr
;
12622 * Inherit an event from parent task to child task.
12625 * - valid pointer on success
12626 * - NULL for orphaned events
12627 * - IS_ERR() on error
12629 static struct perf_event
*
12630 inherit_event(struct perf_event
*parent_event
,
12631 struct task_struct
*parent
,
12632 struct perf_event_context
*parent_ctx
,
12633 struct task_struct
*child
,
12634 struct perf_event
*group_leader
,
12635 struct perf_event_context
*child_ctx
)
12637 enum perf_event_state parent_state
= parent_event
->state
;
12638 struct perf_event
*child_event
;
12639 unsigned long flags
;
12642 * Instead of creating recursive hierarchies of events,
12643 * we link inherited events back to the original parent,
12644 * which has a filp for sure, which we use as the reference
12647 if (parent_event
->parent
)
12648 parent_event
= parent_event
->parent
;
12650 child_event
= perf_event_alloc(&parent_event
->attr
,
12653 group_leader
, parent_event
,
12655 if (IS_ERR(child_event
))
12656 return child_event
;
12659 if ((child_event
->attach_state
& PERF_ATTACH_TASK_DATA
) &&
12660 !child_ctx
->task_ctx_data
) {
12661 struct pmu
*pmu
= child_event
->pmu
;
12663 child_ctx
->task_ctx_data
= alloc_task_ctx_data(pmu
);
12664 if (!child_ctx
->task_ctx_data
) {
12665 free_event(child_event
);
12666 return ERR_PTR(-ENOMEM
);
12671 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12672 * must be under the same lock in order to serialize against
12673 * perf_event_release_kernel(), such that either we must observe
12674 * is_orphaned_event() or they will observe us on the child_list.
12676 mutex_lock(&parent_event
->child_mutex
);
12677 if (is_orphaned_event(parent_event
) ||
12678 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
12679 mutex_unlock(&parent_event
->child_mutex
);
12680 /* task_ctx_data is freed with child_ctx */
12681 free_event(child_event
);
12685 get_ctx(child_ctx
);
12688 * Make the child state follow the state of the parent event,
12689 * not its attr.disabled bit. We hold the parent's mutex,
12690 * so we won't race with perf_event_{en, dis}able_family.
12692 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
12693 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
12695 child_event
->state
= PERF_EVENT_STATE_OFF
;
12697 if (parent_event
->attr
.freq
) {
12698 u64 sample_period
= parent_event
->hw
.sample_period
;
12699 struct hw_perf_event
*hwc
= &child_event
->hw
;
12701 hwc
->sample_period
= sample_period
;
12702 hwc
->last_period
= sample_period
;
12704 local64_set(&hwc
->period_left
, sample_period
);
12707 child_event
->ctx
= child_ctx
;
12708 child_event
->overflow_handler
= parent_event
->overflow_handler
;
12709 child_event
->overflow_handler_context
12710 = parent_event
->overflow_handler_context
;
12713 * Precalculate sample_data sizes
12715 perf_event__header_size(child_event
);
12716 perf_event__id_header_size(child_event
);
12719 * Link it up in the child's context:
12721 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
12722 add_event_to_ctx(child_event
, child_ctx
);
12723 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
12726 * Link this into the parent event's child list
12728 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
12729 mutex_unlock(&parent_event
->child_mutex
);
12731 return child_event
;
12735 * Inherits an event group.
12737 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12738 * This matches with perf_event_release_kernel() removing all child events.
12744 static int inherit_group(struct perf_event
*parent_event
,
12745 struct task_struct
*parent
,
12746 struct perf_event_context
*parent_ctx
,
12747 struct task_struct
*child
,
12748 struct perf_event_context
*child_ctx
)
12750 struct perf_event
*leader
;
12751 struct perf_event
*sub
;
12752 struct perf_event
*child_ctr
;
12754 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
12755 child
, NULL
, child_ctx
);
12756 if (IS_ERR(leader
))
12757 return PTR_ERR(leader
);
12759 * @leader can be NULL here because of is_orphaned_event(). In this
12760 * case inherit_event() will create individual events, similar to what
12761 * perf_group_detach() would do anyway.
12763 for_each_sibling_event(sub
, parent_event
) {
12764 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
12765 child
, leader
, child_ctx
);
12766 if (IS_ERR(child_ctr
))
12767 return PTR_ERR(child_ctr
);
12769 if (sub
->aux_event
== parent_event
&& child_ctr
&&
12770 !perf_get_aux_event(child_ctr
, leader
))
12777 * Creates the child task context and tries to inherit the event-group.
12779 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12780 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12781 * consistent with perf_event_release_kernel() removing all child events.
12788 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
12789 struct perf_event_context
*parent_ctx
,
12790 struct task_struct
*child
, int ctxn
,
12791 int *inherited_all
)
12794 struct perf_event_context
*child_ctx
;
12796 if (!event
->attr
.inherit
) {
12797 *inherited_all
= 0;
12801 child_ctx
= child
->perf_event_ctxp
[ctxn
];
12804 * This is executed from the parent task context, so
12805 * inherit events that have been marked for cloning.
12806 * First allocate and initialize a context for the
12809 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
12813 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
12816 ret
= inherit_group(event
, parent
, parent_ctx
,
12820 *inherited_all
= 0;
12826 * Initialize the perf_event context in task_struct
12828 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
12830 struct perf_event_context
*child_ctx
, *parent_ctx
;
12831 struct perf_event_context
*cloned_ctx
;
12832 struct perf_event
*event
;
12833 struct task_struct
*parent
= current
;
12834 int inherited_all
= 1;
12835 unsigned long flags
;
12838 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
12842 * If the parent's context is a clone, pin it so it won't get
12843 * swapped under us.
12845 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
12850 * No need to check if parent_ctx != NULL here; since we saw
12851 * it non-NULL earlier, the only reason for it to become NULL
12852 * is if we exit, and since we're currently in the middle of
12853 * a fork we can't be exiting at the same time.
12857 * Lock the parent list. No need to lock the child - not PID
12858 * hashed yet and not running, so nobody can access it.
12860 mutex_lock(&parent_ctx
->mutex
);
12863 * We dont have to disable NMIs - we are only looking at
12864 * the list, not manipulating it:
12866 perf_event_groups_for_each(event
, &parent_ctx
->pinned_groups
) {
12867 ret
= inherit_task_group(event
, parent
, parent_ctx
,
12868 child
, ctxn
, &inherited_all
);
12874 * We can't hold ctx->lock when iterating the ->flexible_group list due
12875 * to allocations, but we need to prevent rotation because
12876 * rotate_ctx() will change the list from interrupt context.
12878 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
12879 parent_ctx
->rotate_disable
= 1;
12880 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
12882 perf_event_groups_for_each(event
, &parent_ctx
->flexible_groups
) {
12883 ret
= inherit_task_group(event
, parent
, parent_ctx
,
12884 child
, ctxn
, &inherited_all
);
12889 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
12890 parent_ctx
->rotate_disable
= 0;
12892 child_ctx
= child
->perf_event_ctxp
[ctxn
];
12894 if (child_ctx
&& inherited_all
) {
12896 * Mark the child context as a clone of the parent
12897 * context, or of whatever the parent is a clone of.
12899 * Note that if the parent is a clone, the holding of
12900 * parent_ctx->lock avoids it from being uncloned.
12902 cloned_ctx
= parent_ctx
->parent_ctx
;
12904 child_ctx
->parent_ctx
= cloned_ctx
;
12905 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
12907 child_ctx
->parent_ctx
= parent_ctx
;
12908 child_ctx
->parent_gen
= parent_ctx
->generation
;
12910 get_ctx(child_ctx
->parent_ctx
);
12913 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
12915 mutex_unlock(&parent_ctx
->mutex
);
12917 perf_unpin_context(parent_ctx
);
12918 put_ctx(parent_ctx
);
12924 * Initialize the perf_event context in task_struct
12926 int perf_event_init_task(struct task_struct
*child
)
12930 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
12931 mutex_init(&child
->perf_event_mutex
);
12932 INIT_LIST_HEAD(&child
->perf_event_list
);
12934 for_each_task_context_nr(ctxn
) {
12935 ret
= perf_event_init_context(child
, ctxn
);
12937 perf_event_free_task(child
);
12945 static void __init
perf_event_init_all_cpus(void)
12947 struct swevent_htable
*swhash
;
12950 zalloc_cpumask_var(&perf_online_mask
, GFP_KERNEL
);
12952 for_each_possible_cpu(cpu
) {
12953 swhash
= &per_cpu(swevent_htable
, cpu
);
12954 mutex_init(&swhash
->hlist_mutex
);
12955 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
12957 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
12958 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
12960 #ifdef CONFIG_CGROUP_PERF
12961 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list
, cpu
));
12966 static void perf_swevent_init_cpu(unsigned int cpu
)
12968 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
12970 mutex_lock(&swhash
->hlist_mutex
);
12971 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
12972 struct swevent_hlist
*hlist
;
12974 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
12976 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
12978 mutex_unlock(&swhash
->hlist_mutex
);
12981 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12982 static void __perf_event_exit_context(void *__info
)
12984 struct perf_event_context
*ctx
= __info
;
12985 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
12986 struct perf_event
*event
;
12988 raw_spin_lock(&ctx
->lock
);
12989 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
12990 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
12991 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
12992 raw_spin_unlock(&ctx
->lock
);
12995 static void perf_event_exit_cpu_context(int cpu
)
12997 struct perf_cpu_context
*cpuctx
;
12998 struct perf_event_context
*ctx
;
13001 mutex_lock(&pmus_lock
);
13002 list_for_each_entry(pmu
, &pmus
, entry
) {
13003 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
13004 ctx
= &cpuctx
->ctx
;
13006 mutex_lock(&ctx
->mutex
);
13007 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
13008 cpuctx
->online
= 0;
13009 mutex_unlock(&ctx
->mutex
);
13011 cpumask_clear_cpu(cpu
, perf_online_mask
);
13012 mutex_unlock(&pmus_lock
);
13016 static void perf_event_exit_cpu_context(int cpu
) { }
13020 int perf_event_init_cpu(unsigned int cpu
)
13022 struct perf_cpu_context
*cpuctx
;
13023 struct perf_event_context
*ctx
;
13026 perf_swevent_init_cpu(cpu
);
13028 mutex_lock(&pmus_lock
);
13029 cpumask_set_cpu(cpu
, perf_online_mask
);
13030 list_for_each_entry(pmu
, &pmus
, entry
) {
13031 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
13032 ctx
= &cpuctx
->ctx
;
13034 mutex_lock(&ctx
->mutex
);
13035 cpuctx
->online
= 1;
13036 mutex_unlock(&ctx
->mutex
);
13038 mutex_unlock(&pmus_lock
);
13043 int perf_event_exit_cpu(unsigned int cpu
)
13045 perf_event_exit_cpu_context(cpu
);
13050 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
13054 for_each_online_cpu(cpu
)
13055 perf_event_exit_cpu(cpu
);
13061 * Run the perf reboot notifier at the very last possible moment so that
13062 * the generic watchdog code runs as long as possible.
13064 static struct notifier_block perf_reboot_notifier
= {
13065 .notifier_call
= perf_reboot
,
13066 .priority
= INT_MIN
,
13069 void __init
perf_event_init(void)
13073 idr_init(&pmu_idr
);
13075 perf_event_init_all_cpus();
13076 init_srcu_struct(&pmus_srcu
);
13077 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
13078 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
13079 perf_pmu_register(&perf_task_clock
, NULL
, -1);
13080 perf_tp_register();
13081 perf_event_init_cpu(smp_processor_id());
13082 register_reboot_notifier(&perf_reboot_notifier
);
13084 ret
= init_hw_breakpoint();
13085 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
13088 * Build time assertion that we keep the data_head at the intended
13089 * location. IOW, validation we got the __reserved[] size right.
13091 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
13095 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
13098 struct perf_pmu_events_attr
*pmu_attr
=
13099 container_of(attr
, struct perf_pmu_events_attr
, attr
);
13101 if (pmu_attr
->event_str
)
13102 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
13106 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
13108 static int __init
perf_event_sysfs_init(void)
13113 mutex_lock(&pmus_lock
);
13115 ret
= bus_register(&pmu_bus
);
13119 list_for_each_entry(pmu
, &pmus
, entry
) {
13120 if (!pmu
->name
|| pmu
->type
< 0)
13123 ret
= pmu_dev_alloc(pmu
);
13124 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
13126 pmu_bus_running
= 1;
13130 mutex_unlock(&pmus_lock
);
13134 device_initcall(perf_event_sysfs_init
);
13136 #ifdef CONFIG_CGROUP_PERF
13137 static struct cgroup_subsys_state
*
13138 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
13140 struct perf_cgroup
*jc
;
13142 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
13144 return ERR_PTR(-ENOMEM
);
13146 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
13149 return ERR_PTR(-ENOMEM
);
13155 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
13157 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
13159 free_percpu(jc
->info
);
13163 static int perf_cgroup_css_online(struct cgroup_subsys_state
*css
)
13165 perf_event_cgroup(css
->cgroup
);
13169 static int __perf_cgroup_move(void *info
)
13171 struct task_struct
*task
= info
;
13173 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
13178 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
13180 struct task_struct
*task
;
13181 struct cgroup_subsys_state
*css
;
13183 cgroup_taskset_for_each(task
, css
, tset
)
13184 task_function_call(task
, __perf_cgroup_move
, task
);
13187 struct cgroup_subsys perf_event_cgrp_subsys
= {
13188 .css_alloc
= perf_cgroup_css_alloc
,
13189 .css_free
= perf_cgroup_css_free
,
13190 .css_online
= perf_cgroup_css_online
,
13191 .attach
= perf_cgroup_attach
,
13193 * Implicitly enable on dfl hierarchy so that perf events can
13194 * always be filtered by cgroup2 path as long as perf_event
13195 * controller is not mounted on a legacy hierarchy.
13197 .implicit_on_dfl
= true,
13200 #endif /* CONFIG_CGROUP_PERF */