1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
14 #include "../locking/rtmutex_common.h"
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
22 * Check the RCU kernel configuration parameters and print informative
23 * messages about anything out of the ordinary.
25 static void __init
rcu_bootup_announce_oddness(void)
27 if (IS_ENABLED(CONFIG_RCU_TRACE
))
28 pr_info("\tRCU event tracing is enabled.\n");
29 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
30 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ
))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 if (IS_ENABLED(CONFIG_PROVE_RCU
))
38 pr_info("\tRCU lockdep checking is enabled.\n");
39 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
))
40 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
41 if (RCU_NUM_LVLS
>= 4)
42 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
43 if (RCU_FANOUT_LEAF
!= 16)
44 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
46 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
47 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
49 if (nr_cpu_ids
!= NR_CPUS
)
50 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS
, nr_cpu_ids
);
51 #ifdef CONFIG_RCU_BOOST
52 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
53 kthread_prio
, CONFIG_RCU_BOOST_DELAY
);
55 if (blimit
!= DEFAULT_RCU_BLIMIT
)
56 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit
);
57 if (qhimark
!= DEFAULT_RCU_QHIMARK
)
58 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark
);
59 if (qlowmark
!= DEFAULT_RCU_QLOMARK
)
60 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark
);
61 if (qovld
!= DEFAULT_RCU_QOVLD
)
62 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld
);
63 if (jiffies_till_first_fqs
!= ULONG_MAX
)
64 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs
);
65 if (jiffies_till_next_fqs
!= ULONG_MAX
)
66 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs
);
67 if (jiffies_till_sched_qs
!= ULONG_MAX
)
68 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs
);
69 if (rcu_kick_kthreads
)
70 pr_info("\tKick kthreads if too-long grace period.\n");
71 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD
))
72 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
74 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay
);
76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay
);
78 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay
);
80 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
81 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
))
82 pr_info("\tRCU debug extended QS entry/exit.\n");
83 rcupdate_announce_bootup_oddness();
86 #ifdef CONFIG_PREEMPT_RCU
88 static void rcu_report_exp_rnp(struct rcu_node
*rnp
, bool wake
);
89 static void rcu_read_unlock_special(struct task_struct
*t
);
92 * Tell them what RCU they are running.
94 static void __init
rcu_bootup_announce(void)
96 pr_info("Preemptible hierarchical RCU implementation.\n");
97 rcu_bootup_announce_oddness();
100 /* Flags for rcu_preempt_ctxt_queue() decision table. */
101 #define RCU_GP_TASKS 0x8
102 #define RCU_EXP_TASKS 0x4
103 #define RCU_GP_BLKD 0x2
104 #define RCU_EXP_BLKD 0x1
107 * Queues a task preempted within an RCU-preempt read-side critical
108 * section into the appropriate location within the ->blkd_tasks list,
109 * depending on the states of any ongoing normal and expedited grace
110 * periods. The ->gp_tasks pointer indicates which element the normal
111 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
112 * indicates which element the expedited grace period is waiting on (again,
113 * NULL if none). If a grace period is waiting on a given element in the
114 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
115 * adding a task to the tail of the list blocks any grace period that is
116 * already waiting on one of the elements. In contrast, adding a task
117 * to the head of the list won't block any grace period that is already
118 * waiting on one of the elements.
120 * This queuing is imprecise, and can sometimes make an ongoing grace
121 * period wait for a task that is not strictly speaking blocking it.
122 * Given the choice, we needlessly block a normal grace period rather than
123 * blocking an expedited grace period.
125 * Note that an endless sequence of expedited grace periods still cannot
126 * indefinitely postpone a normal grace period. Eventually, all of the
127 * fixed number of preempted tasks blocking the normal grace period that are
128 * not also blocking the expedited grace period will resume and complete
129 * their RCU read-side critical sections. At that point, the ->gp_tasks
130 * pointer will equal the ->exp_tasks pointer, at which point the end of
131 * the corresponding expedited grace period will also be the end of the
132 * normal grace period.
134 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
135 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
137 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
138 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
139 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
140 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
141 struct task_struct
*t
= current
;
143 raw_lockdep_assert_held_rcu_node(rnp
);
144 WARN_ON_ONCE(rdp
->mynode
!= rnp
);
145 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
146 /* RCU better not be waiting on newly onlined CPUs! */
147 WARN_ON_ONCE(rnp
->qsmaskinitnext
& ~rnp
->qsmaskinit
& rnp
->qsmask
&
151 * Decide where to queue the newly blocked task. In theory,
152 * this could be an if-statement. In practice, when I tried
153 * that, it was quite messy.
155 switch (blkd_state
) {
158 case RCU_EXP_TASKS
+ RCU_GP_BLKD
:
160 case RCU_GP_TASKS
+ RCU_EXP_TASKS
:
163 * Blocking neither GP, or first task blocking the normal
164 * GP but not blocking the already-waiting expedited GP.
165 * Queue at the head of the list to avoid unnecessarily
166 * blocking the already-waiting GPs.
168 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
173 case RCU_GP_BLKD
+ RCU_EXP_BLKD
:
174 case RCU_GP_TASKS
+ RCU_EXP_BLKD
:
175 case RCU_GP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
176 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
179 * First task arriving that blocks either GP, or first task
180 * arriving that blocks the expedited GP (with the normal
181 * GP already waiting), or a task arriving that blocks
182 * both GPs with both GPs already waiting. Queue at the
183 * tail of the list to avoid any GP waiting on any of the
184 * already queued tasks that are not blocking it.
186 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
189 case RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
190 case RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
191 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
194 * Second or subsequent task blocking the expedited GP.
195 * The task either does not block the normal GP, or is the
196 * first task blocking the normal GP. Queue just after
197 * the first task blocking the expedited GP.
199 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
202 case RCU_GP_TASKS
+ RCU_GP_BLKD
:
203 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
:
206 * Second or subsequent task blocking the normal GP.
207 * The task does not block the expedited GP. Queue just
208 * after the first task blocking the normal GP.
210 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
215 /* Yet another exercise in excessive paranoia. */
221 * We have now queued the task. If it was the first one to
222 * block either grace period, update the ->gp_tasks and/or
223 * ->exp_tasks pointers, respectively, to reference the newly
226 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
)) {
227 WRITE_ONCE(rnp
->gp_tasks
, &t
->rcu_node_entry
);
228 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
);
230 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
231 WRITE_ONCE(rnp
->exp_tasks
, &t
->rcu_node_entry
);
232 WARN_ON_ONCE(!(blkd_state
& RCU_GP_BLKD
) !=
233 !(rnp
->qsmask
& rdp
->grpmask
));
234 WARN_ON_ONCE(!(blkd_state
& RCU_EXP_BLKD
) !=
235 !(rnp
->expmask
& rdp
->grpmask
));
236 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
239 * Report the quiescent state for the expedited GP. This expedited
240 * GP should not be able to end until we report, so there should be
241 * no need to check for a subsequent expedited GP. (Though we are
242 * still in a quiescent state in any case.)
244 if (blkd_state
& RCU_EXP_BLKD
&& rdp
->exp_deferred_qs
)
245 rcu_report_exp_rdp(rdp
);
247 WARN_ON_ONCE(rdp
->exp_deferred_qs
);
251 * Record a preemptible-RCU quiescent state for the specified CPU.
252 * Note that this does not necessarily mean that the task currently running
253 * on the CPU is in a quiescent state: Instead, it means that the current
254 * grace period need not wait on any RCU read-side critical section that
255 * starts later on this CPU. It also means that if the current task is
256 * in an RCU read-side critical section, it has already added itself to
257 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
258 * current task, there might be any number of other tasks blocked while
259 * in an RCU read-side critical section.
261 * Callers to this function must disable preemption.
263 static void rcu_qs(void)
265 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
266 if (__this_cpu_read(rcu_data
.cpu_no_qs
.s
)) {
267 trace_rcu_grace_period(TPS("rcu_preempt"),
268 __this_cpu_read(rcu_data
.gp_seq
),
270 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
271 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
272 WRITE_ONCE(current
->rcu_read_unlock_special
.b
.need_qs
, false);
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
287 * Caller must disable interrupts.
289 void rcu_note_context_switch(bool preempt
)
291 struct task_struct
*t
= current
;
292 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
293 struct rcu_node
*rnp
;
295 trace_rcu_utilization(TPS("Start context switch"));
296 lockdep_assert_irqs_disabled();
297 WARN_ON_ONCE(!preempt
&& rcu_preempt_depth() > 0);
298 if (rcu_preempt_depth() > 0 &&
299 !t
->rcu_read_unlock_special
.b
.blocked
) {
301 /* Possibly blocking in an RCU read-side critical section. */
303 raw_spin_lock_rcu_node(rnp
);
304 t
->rcu_read_unlock_special
.b
.blocked
= true;
305 t
->rcu_blocked_node
= rnp
;
308 * Verify the CPU's sanity, trace the preemption, and
309 * then queue the task as required based on the states
310 * of any ongoing and expedited grace periods.
312 WARN_ON_ONCE((rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) == 0);
313 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
314 trace_rcu_preempt_task(rcu_state
.name
,
316 (rnp
->qsmask
& rdp
->grpmask
)
318 : rcu_seq_snap(&rnp
->gp_seq
));
319 rcu_preempt_ctxt_queue(rnp
, rdp
);
321 rcu_preempt_deferred_qs(t
);
325 * Either we were not in an RCU read-side critical section to
326 * begin with, or we have now recorded that critical section
327 * globally. Either way, we can now note a quiescent state
328 * for this CPU. Again, if we were in an RCU read-side critical
329 * section, and if that critical section was blocking the current
330 * grace period, then the fact that the task has been enqueued
331 * means that we continue to block the current grace period.
334 if (rdp
->exp_deferred_qs
)
335 rcu_report_exp_rdp(rdp
);
336 rcu_tasks_qs(current
, preempt
);
337 trace_rcu_utilization(TPS("End context switch"));
339 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
342 * Check for preempted RCU readers blocking the current grace period
343 * for the specified rcu_node structure. If the caller needs a reliable
344 * answer, it must hold the rcu_node's ->lock.
346 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
348 return READ_ONCE(rnp
->gp_tasks
) != NULL
;
351 /* limit value for ->rcu_read_lock_nesting. */
352 #define RCU_NEST_PMAX (INT_MAX / 2)
354 static void rcu_preempt_read_enter(void)
356 current
->rcu_read_lock_nesting
++;
359 static int rcu_preempt_read_exit(void)
361 return --current
->rcu_read_lock_nesting
;
364 static void rcu_preempt_depth_set(int val
)
366 current
->rcu_read_lock_nesting
= val
;
370 * Preemptible RCU implementation for rcu_read_lock().
371 * Just increment ->rcu_read_lock_nesting, shared state will be updated
374 void __rcu_read_lock(void)
376 rcu_preempt_read_enter();
377 if (IS_ENABLED(CONFIG_PROVE_LOCKING
))
378 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX
);
379 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
) && rcu_state
.gp_kthread
)
380 WRITE_ONCE(current
->rcu_read_unlock_special
.b
.need_qs
, true);
381 barrier(); /* critical section after entry code. */
383 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
386 * Preemptible RCU implementation for rcu_read_unlock().
387 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
388 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
389 * invoke rcu_read_unlock_special() to clean up after a context switch
390 * in an RCU read-side critical section and other special cases.
392 void __rcu_read_unlock(void)
394 struct task_struct
*t
= current
;
396 if (rcu_preempt_read_exit() == 0) {
397 barrier(); /* critical section before exit code. */
398 if (unlikely(READ_ONCE(t
->rcu_read_unlock_special
.s
)))
399 rcu_read_unlock_special(t
);
401 if (IS_ENABLED(CONFIG_PROVE_LOCKING
)) {
402 int rrln
= rcu_preempt_depth();
404 WARN_ON_ONCE(rrln
< 0 || rrln
> RCU_NEST_PMAX
);
407 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
410 * Advance a ->blkd_tasks-list pointer to the next entry, instead
411 * returning NULL if at the end of the list.
413 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
414 struct rcu_node
*rnp
)
416 struct list_head
*np
;
418 np
= t
->rcu_node_entry
.next
;
419 if (np
== &rnp
->blkd_tasks
)
425 * Return true if the specified rcu_node structure has tasks that were
426 * preempted within an RCU read-side critical section.
428 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
430 return !list_empty(&rnp
->blkd_tasks
);
434 * Report deferred quiescent states. The deferral time can
435 * be quite short, for example, in the case of the call from
436 * rcu_read_unlock_special().
439 rcu_preempt_deferred_qs_irqrestore(struct task_struct
*t
, unsigned long flags
)
444 struct list_head
*np
;
445 bool drop_boost_mutex
= false;
446 struct rcu_data
*rdp
;
447 struct rcu_node
*rnp
;
448 union rcu_special special
;
451 * If RCU core is waiting for this CPU to exit its critical section,
452 * report the fact that it has exited. Because irqs are disabled,
453 * t->rcu_read_unlock_special cannot change.
455 special
= t
->rcu_read_unlock_special
;
456 rdp
= this_cpu_ptr(&rcu_data
);
457 if (!special
.s
&& !rdp
->exp_deferred_qs
) {
458 local_irq_restore(flags
);
461 t
->rcu_read_unlock_special
.s
= 0;
462 if (special
.b
.need_qs
) {
463 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
)) {
464 rcu_report_qs_rdp(rdp
);
465 udelay(rcu_unlock_delay
);
472 * Respond to a request by an expedited grace period for a
473 * quiescent state from this CPU. Note that requests from
474 * tasks are handled when removing the task from the
475 * blocked-tasks list below.
477 if (rdp
->exp_deferred_qs
)
478 rcu_report_exp_rdp(rdp
);
480 /* Clean up if blocked during RCU read-side critical section. */
481 if (special
.b
.blocked
) {
484 * Remove this task from the list it blocked on. The task
485 * now remains queued on the rcu_node corresponding to the
486 * CPU it first blocked on, so there is no longer any need
487 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
489 rnp
= t
->rcu_blocked_node
;
490 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
491 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
492 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
493 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
494 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
&&
495 (!empty_norm
|| rnp
->qsmask
));
496 empty_exp
= sync_rcu_exp_done(rnp
);
497 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
498 np
= rcu_next_node_entry(t
, rnp
);
499 list_del_init(&t
->rcu_node_entry
);
500 t
->rcu_blocked_node
= NULL
;
501 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
502 rnp
->gp_seq
, t
->pid
);
503 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
504 WRITE_ONCE(rnp
->gp_tasks
, np
);
505 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
506 WRITE_ONCE(rnp
->exp_tasks
, np
);
507 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
508 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
509 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
) == t
;
510 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
511 WRITE_ONCE(rnp
->boost_tasks
, np
);
515 * If this was the last task on the current list, and if
516 * we aren't waiting on any CPUs, report the quiescent state.
517 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
518 * so we must take a snapshot of the expedited state.
520 empty_exp_now
= sync_rcu_exp_done(rnp
);
521 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
522 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
529 rcu_report_unblock_qs_rnp(rnp
, flags
);
531 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
534 /* Unboost if we were boosted. */
535 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
536 rt_mutex_futex_unlock(&rnp
->boost_mtx
);
539 * If this was the last task on the expedited lists,
540 * then we need to report up the rcu_node hierarchy.
542 if (!empty_exp
&& empty_exp_now
)
543 rcu_report_exp_rnp(rnp
, true);
545 local_irq_restore(flags
);
550 * Is a deferred quiescent-state pending, and are we also not in
551 * an RCU read-side critical section? It is the caller's responsibility
552 * to ensure it is otherwise safe to report any deferred quiescent
553 * states. The reason for this is that it is safe to report a
554 * quiescent state during context switch even though preemption
555 * is disabled. This function cannot be expected to understand these
556 * nuances, so the caller must handle them.
558 static bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
560 return (__this_cpu_read(rcu_data
.exp_deferred_qs
) ||
561 READ_ONCE(t
->rcu_read_unlock_special
.s
)) &&
562 rcu_preempt_depth() == 0;
566 * Report a deferred quiescent state if needed and safe to do so.
567 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
568 * not being in an RCU read-side critical section. The caller must
569 * evaluate safety in terms of interrupt, softirq, and preemption
572 static void rcu_preempt_deferred_qs(struct task_struct
*t
)
576 if (!rcu_preempt_need_deferred_qs(t
))
578 local_irq_save(flags
);
579 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
583 * Minimal handler to give the scheduler a chance to re-evaluate.
585 static void rcu_preempt_deferred_qs_handler(struct irq_work
*iwp
)
587 struct rcu_data
*rdp
;
589 rdp
= container_of(iwp
, struct rcu_data
, defer_qs_iw
);
590 rdp
->defer_qs_iw_pending
= false;
594 * Handle special cases during rcu_read_unlock(), such as needing to
595 * notify RCU core processing or task having blocked during the RCU
596 * read-side critical section.
598 static void rcu_read_unlock_special(struct task_struct
*t
)
601 bool preempt_bh_were_disabled
=
602 !!(preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
));
603 bool irqs_were_disabled
;
605 /* NMI handlers cannot block and cannot safely manipulate state. */
609 local_irq_save(flags
);
610 irqs_were_disabled
= irqs_disabled_flags(flags
);
611 if (preempt_bh_were_disabled
|| irqs_were_disabled
) {
613 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
614 struct rcu_node
*rnp
= rdp
->mynode
;
616 exp
= (t
->rcu_blocked_node
&&
617 READ_ONCE(t
->rcu_blocked_node
->exp_tasks
)) ||
618 (rdp
->grpmask
& READ_ONCE(rnp
->expmask
));
619 // Need to defer quiescent state until everything is enabled.
620 if (use_softirq
&& (in_irq() || (exp
&& !irqs_were_disabled
))) {
621 // Using softirq, safe to awaken, and either the
622 // wakeup is free or there is an expedited GP.
623 raise_softirq_irqoff(RCU_SOFTIRQ
);
625 // Enabling BH or preempt does reschedule, so...
626 // Also if no expediting, slow is OK.
627 // Plus nohz_full CPUs eventually get tick enabled.
628 set_tsk_need_resched(current
);
629 set_preempt_need_resched();
630 if (IS_ENABLED(CONFIG_IRQ_WORK
) && irqs_were_disabled
&&
631 !rdp
->defer_qs_iw_pending
&& exp
&& cpu_online(rdp
->cpu
)) {
632 // Get scheduler to re-evaluate and call hooks.
633 // If !IRQ_WORK, FQS scan will eventually IPI.
634 init_irq_work(&rdp
->defer_qs_iw
,
635 rcu_preempt_deferred_qs_handler
);
636 rdp
->defer_qs_iw_pending
= true;
637 irq_work_queue_on(&rdp
->defer_qs_iw
, rdp
->cpu
);
640 local_irq_restore(flags
);
643 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
647 * Check that the list of blocked tasks for the newly completed grace
648 * period is in fact empty. It is a serious bug to complete a grace
649 * period that still has RCU readers blocked! This function must be
650 * invoked -before- updating this rnp's ->gp_seq.
652 * Also, if there are blocked tasks on the list, they automatically
653 * block the newly created grace period, so set up ->gp_tasks accordingly.
655 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
657 struct task_struct
*t
;
659 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
660 raw_lockdep_assert_held_rcu_node(rnp
);
661 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
662 dump_blkd_tasks(rnp
, 10);
663 if (rcu_preempt_has_tasks(rnp
) &&
664 (rnp
->qsmaskinit
|| rnp
->wait_blkd_tasks
)) {
665 WRITE_ONCE(rnp
->gp_tasks
, rnp
->blkd_tasks
.next
);
666 t
= container_of(rnp
->gp_tasks
, struct task_struct
,
668 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
669 rnp
->gp_seq
, t
->pid
);
671 WARN_ON_ONCE(rnp
->qsmask
);
675 * Check for a quiescent state from the current CPU, including voluntary
676 * context switches for Tasks RCU. When a task blocks, the task is
677 * recorded in the corresponding CPU's rcu_node structure, which is checked
678 * elsewhere, hence this function need only check for quiescent states
679 * related to the current CPU, not to those related to tasks.
681 static void rcu_flavor_sched_clock_irq(int user
)
683 struct task_struct
*t
= current
;
685 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
686 rcu_note_voluntary_context_switch(current
);
688 if (rcu_preempt_depth() > 0 ||
689 (preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
))) {
690 /* No QS, force context switch if deferred. */
691 if (rcu_preempt_need_deferred_qs(t
)) {
692 set_tsk_need_resched(t
);
693 set_preempt_need_resched();
695 } else if (rcu_preempt_need_deferred_qs(t
)) {
696 rcu_preempt_deferred_qs(t
); /* Report deferred QS. */
698 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
699 rcu_qs(); /* Report immediate QS. */
703 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
704 if (rcu_preempt_depth() > 0 &&
705 __this_cpu_read(rcu_data
.core_needs_qs
) &&
706 __this_cpu_read(rcu_data
.cpu_no_qs
.b
.norm
) &&
707 !t
->rcu_read_unlock_special
.b
.need_qs
&&
708 time_after(jiffies
, rcu_state
.gp_start
+ HZ
))
709 t
->rcu_read_unlock_special
.b
.need_qs
= true;
713 * Check for a task exiting while in a preemptible-RCU read-side
714 * critical section, clean up if so. No need to issue warnings, as
715 * debug_check_no_locks_held() already does this if lockdep is enabled.
716 * Besides, if this function does anything other than just immediately
717 * return, there was a bug of some sort. Spewing warnings from this
718 * function is like as not to simply obscure important prior warnings.
722 struct task_struct
*t
= current
;
724 if (unlikely(!list_empty(¤t
->rcu_node_entry
))) {
725 rcu_preempt_depth_set(1);
727 WRITE_ONCE(t
->rcu_read_unlock_special
.b
.blocked
, true);
728 } else if (unlikely(rcu_preempt_depth())) {
729 rcu_preempt_depth_set(1);
734 rcu_preempt_deferred_qs(current
);
738 * Dump the blocked-tasks state, but limit the list dump to the
739 * specified number of elements.
742 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
746 struct list_head
*lhp
;
748 struct rcu_data
*rdp
;
749 struct rcu_node
*rnp1
;
751 raw_lockdep_assert_held_rcu_node(rnp
);
752 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
753 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
754 (long)READ_ONCE(rnp
->gp_seq
), (long)rnp
->completedqs
);
755 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
756 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
757 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
);
758 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
759 __func__
, READ_ONCE(rnp
->gp_tasks
), data_race(rnp
->boost_tasks
),
760 READ_ONCE(rnp
->exp_tasks
));
761 pr_info("%s: ->blkd_tasks", __func__
);
763 list_for_each(lhp
, &rnp
->blkd_tasks
) {
769 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++) {
770 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
771 onl
= !!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
));
772 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
774 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_flags
,
775 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_flags
);
779 #else /* #ifdef CONFIG_PREEMPT_RCU */
782 * If strict grace periods are enabled, and if the calling
783 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
784 * report that quiescent state and, if requested, spin for a bit.
786 void rcu_read_unlock_strict(void)
788 struct rcu_data
*rdp
;
790 if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
) ||
791 irqs_disabled() || preempt_count() || !rcu_state
.gp_kthread
)
793 rdp
= this_cpu_ptr(&rcu_data
);
794 rcu_report_qs_rdp(rdp
);
795 udelay(rcu_unlock_delay
);
797 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict
);
800 * Tell them what RCU they are running.
802 static void __init
rcu_bootup_announce(void)
804 pr_info("Hierarchical RCU implementation.\n");
805 rcu_bootup_announce_oddness();
809 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
810 * how many quiescent states passed, just if there was at least one since
811 * the start of the grace period, this just sets a flag. The caller must
812 * have disabled preemption.
814 static void rcu_qs(void)
816 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
817 if (!__this_cpu_read(rcu_data
.cpu_no_qs
.s
))
819 trace_rcu_grace_period(TPS("rcu_sched"),
820 __this_cpu_read(rcu_data
.gp_seq
), TPS("cpuqs"));
821 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
822 if (!__this_cpu_read(rcu_data
.cpu_no_qs
.b
.exp
))
824 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.exp
, false);
825 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data
));
829 * Register an urgently needed quiescent state. If there is an
830 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
831 * dyntick-idle quiescent state visible to other CPUs, which will in
832 * some cases serve for expedited as well as normal grace periods.
833 * Either way, register a lightweight quiescent state.
835 void rcu_all_qs(void)
839 if (!raw_cpu_read(rcu_data
.rcu_urgent_qs
))
842 /* Load rcu_urgent_qs before other flags. */
843 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
))) {
847 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
848 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
))) {
849 local_irq_save(flags
);
850 rcu_momentary_dyntick_idle();
851 local_irq_restore(flags
);
856 EXPORT_SYMBOL_GPL(rcu_all_qs
);
859 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
861 void rcu_note_context_switch(bool preempt
)
863 trace_rcu_utilization(TPS("Start context switch"));
865 /* Load rcu_urgent_qs before other flags. */
866 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
)))
868 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
869 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
)))
870 rcu_momentary_dyntick_idle();
871 rcu_tasks_qs(current
, preempt
);
873 trace_rcu_utilization(TPS("End context switch"));
875 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
878 * Because preemptible RCU does not exist, there are never any preempted
881 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
887 * Because there is no preemptible RCU, there can be no readers blocked.
889 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
895 * Because there is no preemptible RCU, there can be no deferred quiescent
898 static bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
902 static void rcu_preempt_deferred_qs(struct task_struct
*t
) { }
905 * Because there is no preemptible RCU, there can be no readers blocked,
906 * so there is no need to check for blocked tasks. So check only for
907 * bogus qsmask values.
909 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
911 WARN_ON_ONCE(rnp
->qsmask
);
915 * Check to see if this CPU is in a non-context-switch quiescent state,
916 * namely user mode and idle loop.
918 static void rcu_flavor_sched_clock_irq(int user
)
920 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
923 * Get here if this CPU took its interrupt from user
924 * mode or from the idle loop, and if this is not a
925 * nested interrupt. In this case, the CPU is in
926 * a quiescent state, so note it.
928 * No memory barrier is required here because rcu_qs()
929 * references only CPU-local variables that other CPUs
930 * neither access nor modify, at least not while the
931 * corresponding CPU is online.
939 * Because preemptible RCU does not exist, tasks cannot possibly exit
940 * while in preemptible RCU read-side critical sections.
947 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
950 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
952 WARN_ON_ONCE(!list_empty(&rnp
->blkd_tasks
));
955 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
958 * If boosting, set rcuc kthreads to realtime priority.
960 static void rcu_cpu_kthread_setup(unsigned int cpu
)
962 #ifdef CONFIG_RCU_BOOST
963 struct sched_param sp
;
965 sp
.sched_priority
= kthread_prio
;
966 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
967 #endif /* #ifdef CONFIG_RCU_BOOST */
970 #ifdef CONFIG_RCU_BOOST
973 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
974 * or ->boost_tasks, advancing the pointer to the next task in the
977 * Note that irqs must be enabled: boosting the task can block.
978 * Returns 1 if there are more tasks needing to be boosted.
980 static int rcu_boost(struct rcu_node
*rnp
)
983 struct task_struct
*t
;
984 struct list_head
*tb
;
986 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
987 READ_ONCE(rnp
->boost_tasks
) == NULL
)
988 return 0; /* Nothing left to boost. */
990 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
993 * Recheck under the lock: all tasks in need of boosting
994 * might exit their RCU read-side critical sections on their own.
996 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
997 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1002 * Preferentially boost tasks blocking expedited grace periods.
1003 * This cannot starve the normal grace periods because a second
1004 * expedited grace period must boost all blocked tasks, including
1005 * those blocking the pre-existing normal grace period.
1007 if (rnp
->exp_tasks
!= NULL
)
1008 tb
= rnp
->exp_tasks
;
1010 tb
= rnp
->boost_tasks
;
1013 * We boost task t by manufacturing an rt_mutex that appears to
1014 * be held by task t. We leave a pointer to that rt_mutex where
1015 * task t can find it, and task t will release the mutex when it
1016 * exits its outermost RCU read-side critical section. Then
1017 * simply acquiring this artificial rt_mutex will boost task
1018 * t's priority. (Thanks to tglx for suggesting this approach!)
1020 * Note that task t must acquire rnp->lock to remove itself from
1021 * the ->blkd_tasks list, which it will do from exit() if from
1022 * nowhere else. We therefore are guaranteed that task t will
1023 * stay around at least until we drop rnp->lock. Note that
1024 * rnp->lock also resolves races between our priority boosting
1025 * and task t's exiting its outermost RCU read-side critical
1028 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1029 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
, t
);
1030 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1031 /* Lock only for side effect: boosts task t's priority. */
1032 rt_mutex_lock(&rnp
->boost_mtx
);
1033 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
1035 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
1036 READ_ONCE(rnp
->boost_tasks
) != NULL
;
1040 * Priority-boosting kthread, one per leaf rcu_node.
1042 static int rcu_boost_kthread(void *arg
)
1044 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1048 trace_rcu_utilization(TPS("Start boost kthread@init"));
1050 WRITE_ONCE(rnp
->boost_kthread_status
, RCU_KTHREAD_WAITING
);
1051 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1052 rcu_wait(READ_ONCE(rnp
->boost_tasks
) ||
1053 READ_ONCE(rnp
->exp_tasks
));
1054 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1055 WRITE_ONCE(rnp
->boost_kthread_status
, RCU_KTHREAD_RUNNING
);
1056 more2boost
= rcu_boost(rnp
);
1062 WRITE_ONCE(rnp
->boost_kthread_status
, RCU_KTHREAD_YIELDING
);
1063 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1064 schedule_timeout_idle(2);
1065 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1070 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1075 * Check to see if it is time to start boosting RCU readers that are
1076 * blocking the current grace period, and, if so, tell the per-rcu_node
1077 * kthread to start boosting them. If there is an expedited grace
1078 * period in progress, it is always time to boost.
1080 * The caller must hold rnp->lock, which this function releases.
1081 * The ->boost_kthread_task is immortal, so we don't need to worry
1082 * about it going away.
1084 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1085 __releases(rnp
->lock
)
1087 raw_lockdep_assert_held_rcu_node(rnp
);
1088 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1089 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1092 if (rnp
->exp_tasks
!= NULL
||
1093 (rnp
->gp_tasks
!= NULL
&&
1094 rnp
->boost_tasks
== NULL
&&
1096 (!time_after(rnp
->boost_time
, jiffies
) || rcu_state
.cbovld
))) {
1097 if (rnp
->exp_tasks
== NULL
)
1098 WRITE_ONCE(rnp
->boost_tasks
, rnp
->gp_tasks
);
1099 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1100 rcu_wake_cond(rnp
->boost_kthread_task
,
1101 READ_ONCE(rnp
->boost_kthread_status
));
1103 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1108 * Is the current CPU running the RCU-callbacks kthread?
1109 * Caller must have preemption disabled.
1111 static bool rcu_is_callbacks_kthread(void)
1113 return __this_cpu_read(rcu_data
.rcu_cpu_kthread_task
) == current
;
1116 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1119 * Do priority-boost accounting for the start of a new grace period.
1121 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1123 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1127 * Create an RCU-boost kthread for the specified node if one does not
1128 * already exist. We only create this kthread for preemptible RCU.
1129 * Returns zero if all is well, a negated errno otherwise.
1131 static void rcu_spawn_one_boost_kthread(struct rcu_node
*rnp
)
1133 int rnp_index
= rnp
- rcu_get_root();
1134 unsigned long flags
;
1135 struct sched_param sp
;
1136 struct task_struct
*t
;
1138 if (!IS_ENABLED(CONFIG_PREEMPT_RCU
))
1141 if (!rcu_scheduler_fully_active
|| rcu_rnp_online_cpus(rnp
) == 0)
1144 rcu_state
.boost
= 1;
1146 if (rnp
->boost_kthread_task
!= NULL
)
1149 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1150 "rcub/%d", rnp_index
);
1151 if (WARN_ON_ONCE(IS_ERR(t
)))
1154 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1155 rnp
->boost_kthread_task
= t
;
1156 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1157 sp
.sched_priority
= kthread_prio
;
1158 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1159 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1163 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1164 * served by the rcu_node in question. The CPU hotplug lock is still
1165 * held, so the value of rnp->qsmaskinit will be stable.
1167 * We don't include outgoingcpu in the affinity set, use -1 if there is
1168 * no outgoing CPU. If there are no CPUs left in the affinity set,
1169 * this function allows the kthread to execute on any CPU.
1171 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1173 struct task_struct
*t
= rnp
->boost_kthread_task
;
1174 unsigned long mask
= rcu_rnp_online_cpus(rnp
);
1180 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1182 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1183 if ((mask
& leaf_node_cpu_bit(rnp
, cpu
)) &&
1185 cpumask_set_cpu(cpu
, cm
);
1186 if (cpumask_weight(cm
) == 0)
1188 set_cpus_allowed_ptr(t
, cm
);
1189 free_cpumask_var(cm
);
1193 * Spawn boost kthreads -- called as soon as the scheduler is running.
1195 static void __init
rcu_spawn_boost_kthreads(void)
1197 struct rcu_node
*rnp
;
1199 rcu_for_each_leaf_node(rnp
)
1200 rcu_spawn_one_boost_kthread(rnp
);
1203 static void rcu_prepare_kthreads(int cpu
)
1205 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
1206 struct rcu_node
*rnp
= rdp
->mynode
;
1208 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209 if (rcu_scheduler_fully_active
)
1210 rcu_spawn_one_boost_kthread(rnp
);
1213 #else /* #ifdef CONFIG_RCU_BOOST */
1215 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1216 __releases(rnp
->lock
)
1218 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1221 static bool rcu_is_callbacks_kthread(void)
1226 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1230 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1234 static void __init
rcu_spawn_boost_kthreads(void)
1238 static void rcu_prepare_kthreads(int cpu
)
1242 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1244 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1247 * Check to see if any future non-offloaded RCU-related work will need
1248 * to be done by the current CPU, even if none need be done immediately,
1249 * returning 1 if so. This function is part of the RCU implementation;
1250 * it is -not- an exported member of the RCU API.
1252 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1253 * CPU has RCU callbacks queued.
1255 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1257 *nextevt
= KTIME_MAX
;
1258 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data
)->cblist
) &&
1259 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data
)->cblist
);
1263 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1266 static void rcu_cleanup_after_idle(void)
1271 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1274 static void rcu_prepare_for_idle(void)
1278 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1281 * This code is invoked when a CPU goes idle, at which point we want
1282 * to have the CPU do everything required for RCU so that it can enter
1283 * the energy-efficient dyntick-idle mode.
1285 * The following preprocessor symbol controls this:
1287 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1288 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1289 * is sized to be roughly one RCU grace period. Those energy-efficiency
1290 * benchmarkers who might otherwise be tempted to set this to a large
1291 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1292 * system. And if you are -that- concerned about energy efficiency,
1293 * just power the system down and be done with it!
1295 * The value below works well in practice. If future workloads require
1296 * adjustment, they can be converted into kernel config parameters, though
1297 * making the state machine smarter might be a better option.
1299 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1301 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1302 module_param(rcu_idle_gp_delay
, int, 0644);
1305 * Try to advance callbacks on the current CPU, but only if it has been
1306 * awhile since the last time we did so. Afterwards, if there are any
1307 * callbacks ready for immediate invocation, return true.
1309 static bool __maybe_unused
rcu_try_advance_all_cbs(void)
1311 bool cbs_ready
= false;
1312 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1313 struct rcu_node
*rnp
;
1315 /* Exit early if we advanced recently. */
1316 if (jiffies
== rdp
->last_advance_all
)
1318 rdp
->last_advance_all
= jiffies
;
1323 * Don't bother checking unless a grace period has
1324 * completed since we last checked and there are
1325 * callbacks not yet ready to invoke.
1327 if ((rcu_seq_completed_gp(rdp
->gp_seq
,
1328 rcu_seq_current(&rnp
->gp_seq
)) ||
1329 unlikely(READ_ONCE(rdp
->gpwrap
))) &&
1330 rcu_segcblist_pend_cbs(&rdp
->cblist
))
1331 note_gp_changes(rdp
);
1333 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
1339 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1340 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1341 * caller about what to set the timeout.
1343 * The caller must have disabled interrupts.
1345 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1347 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1350 lockdep_assert_irqs_disabled();
1352 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1353 if (rcu_segcblist_empty(&rdp
->cblist
) ||
1354 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data
)->cblist
)) {
1355 *nextevt
= KTIME_MAX
;
1359 /* Attempt to advance callbacks. */
1360 if (rcu_try_advance_all_cbs()) {
1361 /* Some ready to invoke, so initiate later invocation. */
1365 rdp
->last_accelerate
= jiffies
;
1367 /* Request timer and round. */
1368 dj
= round_up(rcu_idle_gp_delay
+ jiffies
, rcu_idle_gp_delay
) - jiffies
;
1370 *nextevt
= basemono
+ dj
* TICK_NSEC
;
1375 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1376 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1377 * major task is to accelerate (that is, assign grace-period numbers to) any
1378 * recently arrived callbacks.
1380 * The caller must have disabled interrupts.
1382 static void rcu_prepare_for_idle(void)
1385 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1386 struct rcu_node
*rnp
;
1389 lockdep_assert_irqs_disabled();
1390 if (rcu_segcblist_is_offloaded(&rdp
->cblist
))
1393 /* Handle nohz enablement switches conservatively. */
1394 tne
= READ_ONCE(tick_nohz_active
);
1395 if (tne
!= rdp
->tick_nohz_enabled_snap
) {
1396 if (!rcu_segcblist_empty(&rdp
->cblist
))
1397 invoke_rcu_core(); /* force nohz to see update. */
1398 rdp
->tick_nohz_enabled_snap
= tne
;
1405 * If we have not yet accelerated this jiffy, accelerate all
1406 * callbacks on this CPU.
1408 if (rdp
->last_accelerate
== jiffies
)
1410 rdp
->last_accelerate
= jiffies
;
1411 if (rcu_segcblist_pend_cbs(&rdp
->cblist
)) {
1413 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1414 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
1415 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1417 rcu_gp_kthread_wake();
1422 * Clean up for exit from idle. Attempt to advance callbacks based on
1423 * any grace periods that elapsed while the CPU was idle, and if any
1424 * callbacks are now ready to invoke, initiate invocation.
1426 static void rcu_cleanup_after_idle(void)
1428 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1430 lockdep_assert_irqs_disabled();
1431 if (rcu_segcblist_is_offloaded(&rdp
->cblist
))
1433 if (rcu_try_advance_all_cbs())
1437 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1439 #ifdef CONFIG_RCU_NOCB_CPU
1442 * Offload callback processing from the boot-time-specified set of CPUs
1443 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1444 * created that pull the callbacks from the corresponding CPU, wait for
1445 * a grace period to elapse, and invoke the callbacks. These kthreads
1446 * are organized into GP kthreads, which manage incoming callbacks, wait for
1447 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1448 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1449 * do a wake_up() on their GP kthread when they insert a callback into any
1450 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1451 * in which case each kthread actively polls its CPU. (Which isn't so great
1452 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1454 * This is intended to be used in conjunction with Frederic Weisbecker's
1455 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1456 * running CPU-bound user-mode computations.
1458 * Offloading of callbacks can also be used as an energy-efficiency
1459 * measure because CPUs with no RCU callbacks queued are more aggressive
1460 * about entering dyntick-idle mode.
1465 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1466 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1467 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1468 * given, a warning is emitted and all CPUs are offloaded.
1470 static int __init
rcu_nocb_setup(char *str
)
1472 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
1473 if (!strcasecmp(str
, "all"))
1474 cpumask_setall(rcu_nocb_mask
);
1476 if (cpulist_parse(str
, rcu_nocb_mask
)) {
1477 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1478 cpumask_setall(rcu_nocb_mask
);
1482 __setup("rcu_nocbs=", rcu_nocb_setup
);
1484 static int __init
parse_rcu_nocb_poll(char *arg
)
1486 rcu_nocb_poll
= true;
1489 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
1492 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1493 * After all, the main point of bypassing is to avoid lock contention
1494 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1496 int nocb_nobypass_lim_per_jiffy
= 16 * 1000 / HZ
;
1497 module_param(nocb_nobypass_lim_per_jiffy
, int, 0);
1500 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1501 * lock isn't immediately available, increment ->nocb_lock_contended to
1502 * flag the contention.
1504 static void rcu_nocb_bypass_lock(struct rcu_data
*rdp
)
1505 __acquires(&rdp
->nocb_bypass_lock
)
1507 lockdep_assert_irqs_disabled();
1508 if (raw_spin_trylock(&rdp
->nocb_bypass_lock
))
1510 atomic_inc(&rdp
->nocb_lock_contended
);
1511 WARN_ON_ONCE(smp_processor_id() != rdp
->cpu
);
1512 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1513 raw_spin_lock(&rdp
->nocb_bypass_lock
);
1514 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1515 atomic_dec(&rdp
->nocb_lock_contended
);
1519 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1520 * not contended. Please note that this is extremely special-purpose,
1521 * relying on the fact that at most two kthreads and one CPU contend for
1522 * this lock, and also that the two kthreads are guaranteed to have frequent
1523 * grace-period-duration time intervals between successive acquisitions
1524 * of the lock. This allows us to use an extremely simple throttling
1525 * mechanism, and further to apply it only to the CPU doing floods of
1526 * call_rcu() invocations. Don't try this at home!
1528 static void rcu_nocb_wait_contended(struct rcu_data
*rdp
)
1530 WARN_ON_ONCE(smp_processor_id() != rdp
->cpu
);
1531 while (WARN_ON_ONCE(atomic_read(&rdp
->nocb_lock_contended
)))
1536 * Conditionally acquire the specified rcu_data structure's
1537 * ->nocb_bypass_lock.
1539 static bool rcu_nocb_bypass_trylock(struct rcu_data
*rdp
)
1541 lockdep_assert_irqs_disabled();
1542 return raw_spin_trylock(&rdp
->nocb_bypass_lock
);
1546 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1548 static void rcu_nocb_bypass_unlock(struct rcu_data
*rdp
)
1549 __releases(&rdp
->nocb_bypass_lock
)
1551 lockdep_assert_irqs_disabled();
1552 raw_spin_unlock(&rdp
->nocb_bypass_lock
);
1556 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1557 * if it corresponds to a no-CBs CPU.
1559 static void rcu_nocb_lock(struct rcu_data
*rdp
)
1561 lockdep_assert_irqs_disabled();
1562 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
))
1564 raw_spin_lock(&rdp
->nocb_lock
);
1568 * Release the specified rcu_data structure's ->nocb_lock, but only
1569 * if it corresponds to a no-CBs CPU.
1571 static void rcu_nocb_unlock(struct rcu_data
*rdp
)
1573 if (rcu_segcblist_is_offloaded(&rdp
->cblist
)) {
1574 lockdep_assert_irqs_disabled();
1575 raw_spin_unlock(&rdp
->nocb_lock
);
1580 * Release the specified rcu_data structure's ->nocb_lock and restore
1581 * interrupts, but only if it corresponds to a no-CBs CPU.
1583 static void rcu_nocb_unlock_irqrestore(struct rcu_data
*rdp
,
1584 unsigned long flags
)
1586 if (rcu_segcblist_is_offloaded(&rdp
->cblist
)) {
1587 lockdep_assert_irqs_disabled();
1588 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1590 local_irq_restore(flags
);
1594 /* Lockdep check that ->cblist may be safely accessed. */
1595 static void rcu_lockdep_assert_cblist_protected(struct rcu_data
*rdp
)
1597 lockdep_assert_irqs_disabled();
1598 if (rcu_segcblist_is_offloaded(&rdp
->cblist
))
1599 lockdep_assert_held(&rdp
->nocb_lock
);
1603 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1606 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
1611 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
1613 return &rnp
->nocb_gp_wq
[rcu_seq_ctr(rnp
->gp_seq
) & 0x1];
1616 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
1618 init_swait_queue_head(&rnp
->nocb_gp_wq
[0]);
1619 init_swait_queue_head(&rnp
->nocb_gp_wq
[1]);
1622 /* Is the specified CPU a no-CBs CPU? */
1623 bool rcu_is_nocb_cpu(int cpu
)
1625 if (cpumask_available(rcu_nocb_mask
))
1626 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
1631 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
1632 * and this function releases it.
1634 static void wake_nocb_gp(struct rcu_data
*rdp
, bool force
,
1635 unsigned long flags
)
1636 __releases(rdp
->nocb_lock
)
1638 bool needwake
= false;
1639 struct rcu_data
*rdp_gp
= rdp
->nocb_gp_rdp
;
1641 lockdep_assert_held(&rdp
->nocb_lock
);
1642 if (!READ_ONCE(rdp_gp
->nocb_gp_kthread
)) {
1643 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1644 TPS("AlreadyAwake"));
1645 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1648 del_timer(&rdp
->nocb_timer
);
1649 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1650 raw_spin_lock_irqsave(&rdp_gp
->nocb_gp_lock
, flags
);
1651 if (force
|| READ_ONCE(rdp_gp
->nocb_gp_sleep
)) {
1652 WRITE_ONCE(rdp_gp
->nocb_gp_sleep
, false);
1654 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("DoWake"));
1656 raw_spin_unlock_irqrestore(&rdp_gp
->nocb_gp_lock
, flags
);
1658 wake_up_process(rdp_gp
->nocb_gp_kthread
);
1662 * Arrange to wake the GP kthread for this NOCB group at some future
1663 * time when it is safe to do so.
1665 static void wake_nocb_gp_defer(struct rcu_data
*rdp
, int waketype
,
1668 if (rdp
->nocb_defer_wakeup
== RCU_NOCB_WAKE_NOT
)
1669 mod_timer(&rdp
->nocb_timer
, jiffies
+ 1);
1670 if (rdp
->nocb_defer_wakeup
< waketype
)
1671 WRITE_ONCE(rdp
->nocb_defer_wakeup
, waketype
);
1672 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, reason
);
1676 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1677 * However, if there is a callback to be enqueued and if ->nocb_bypass
1678 * proves to be initially empty, just return false because the no-CB GP
1679 * kthread may need to be awakened in this case.
1681 * Note that this function always returns true if rhp is NULL.
1683 static bool rcu_nocb_do_flush_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1686 struct rcu_cblist rcl
;
1688 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp
->cblist
));
1689 rcu_lockdep_assert_cblist_protected(rdp
);
1690 lockdep_assert_held(&rdp
->nocb_bypass_lock
);
1691 if (rhp
&& !rcu_cblist_n_cbs(&rdp
->nocb_bypass
)) {
1692 raw_spin_unlock(&rdp
->nocb_bypass_lock
);
1695 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1697 rcu_segcblist_inc_len(&rdp
->cblist
); /* Must precede enqueue. */
1698 rcu_cblist_flush_enqueue(&rcl
, &rdp
->nocb_bypass
, rhp
);
1699 rcu_segcblist_insert_pend_cbs(&rdp
->cblist
, &rcl
);
1700 WRITE_ONCE(rdp
->nocb_bypass_first
, j
);
1701 rcu_nocb_bypass_unlock(rdp
);
1706 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1707 * However, if there is a callback to be enqueued and if ->nocb_bypass
1708 * proves to be initially empty, just return false because the no-CB GP
1709 * kthread may need to be awakened in this case.
1711 * Note that this function always returns true if rhp is NULL.
1713 static bool rcu_nocb_flush_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1716 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
))
1718 rcu_lockdep_assert_cblist_protected(rdp
);
1719 rcu_nocb_bypass_lock(rdp
);
1720 return rcu_nocb_do_flush_bypass(rdp
, rhp
, j
);
1724 * If the ->nocb_bypass_lock is immediately available, flush the
1725 * ->nocb_bypass queue into ->cblist.
1727 static void rcu_nocb_try_flush_bypass(struct rcu_data
*rdp
, unsigned long j
)
1729 rcu_lockdep_assert_cblist_protected(rdp
);
1730 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
) ||
1731 !rcu_nocb_bypass_trylock(rdp
))
1733 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp
, NULL
, j
));
1737 * See whether it is appropriate to use the ->nocb_bypass list in order
1738 * to control contention on ->nocb_lock. A limited number of direct
1739 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1740 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1741 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1742 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1743 * used if ->cblist is empty, because otherwise callbacks can be stranded
1744 * on ->nocb_bypass because we cannot count on the current CPU ever again
1745 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1746 * non-empty, the corresponding no-CBs grace-period kthread must not be
1747 * in an indefinite sleep state.
1749 * Finally, it is not permitted to use the bypass during early boot,
1750 * as doing so would confuse the auto-initialization code. Besides
1751 * which, there is no point in worrying about lock contention while
1752 * there is only one CPU in operation.
1754 static bool rcu_nocb_try_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1755 bool *was_alldone
, unsigned long flags
)
1758 unsigned long cur_gp_seq
;
1759 unsigned long j
= jiffies
;
1760 long ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1762 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
)) {
1763 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1764 return false; /* Not offloaded, no bypassing. */
1766 lockdep_assert_irqs_disabled();
1768 // Don't use ->nocb_bypass during early boot.
1769 if (rcu_scheduler_active
!= RCU_SCHEDULER_RUNNING
) {
1771 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp
->nocb_bypass
));
1772 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1776 // If we have advanced to a new jiffy, reset counts to allow
1777 // moving back from ->nocb_bypass to ->cblist.
1778 if (j
== rdp
->nocb_nobypass_last
) {
1779 c
= rdp
->nocb_nobypass_count
+ 1;
1781 WRITE_ONCE(rdp
->nocb_nobypass_last
, j
);
1782 c
= rdp
->nocb_nobypass_count
- nocb_nobypass_lim_per_jiffy
;
1783 if (ULONG_CMP_LT(rdp
->nocb_nobypass_count
,
1784 nocb_nobypass_lim_per_jiffy
))
1786 else if (c
> nocb_nobypass_lim_per_jiffy
)
1787 c
= nocb_nobypass_lim_per_jiffy
;
1789 WRITE_ONCE(rdp
->nocb_nobypass_count
, c
);
1791 // If there hasn't yet been all that many ->cblist enqueues
1792 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1793 // ->nocb_bypass first.
1794 if (rdp
->nocb_nobypass_count
< nocb_nobypass_lim_per_jiffy
) {
1796 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1798 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1800 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp
, NULL
, j
));
1801 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp
->nocb_bypass
));
1802 return false; // Caller must enqueue the callback.
1805 // If ->nocb_bypass has been used too long or is too full,
1806 // flush ->nocb_bypass to ->cblist.
1807 if ((ncbs
&& j
!= READ_ONCE(rdp
->nocb_bypass_first
)) ||
1810 if (!rcu_nocb_flush_bypass(rdp
, rhp
, j
)) {
1811 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1813 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1815 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp
->nocb_bypass
));
1816 return false; // Caller must enqueue the callback.
1818 if (j
!= rdp
->nocb_gp_adv_time
&&
1819 rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
1820 rcu_seq_done(&rdp
->mynode
->gp_seq
, cur_gp_seq
)) {
1821 rcu_advance_cbs_nowake(rdp
->mynode
, rdp
);
1822 rdp
->nocb_gp_adv_time
= j
;
1824 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1825 return true; // Callback already enqueued.
1828 // We need to use the bypass.
1829 rcu_nocb_wait_contended(rdp
);
1830 rcu_nocb_bypass_lock(rdp
);
1831 ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1832 rcu_segcblist_inc_len(&rdp
->cblist
); /* Must precede enqueue. */
1833 rcu_cblist_enqueue(&rdp
->nocb_bypass
, rhp
);
1835 WRITE_ONCE(rdp
->nocb_bypass_first
, j
);
1836 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("FirstBQ"));
1838 rcu_nocb_bypass_unlock(rdp
);
1839 smp_mb(); /* Order enqueue before wake. */
1841 local_irq_restore(flags
);
1843 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1844 rcu_nocb_lock(rdp
); // Rare during call_rcu() flood.
1845 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
)) {
1846 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1847 TPS("FirstBQwake"));
1848 __call_rcu_nocb_wake(rdp
, true, flags
);
1850 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1851 TPS("FirstBQnoWake"));
1852 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1855 return true; // Callback already enqueued.
1859 * Awaken the no-CBs grace-period kthead if needed, either due to it
1860 * legitimately being asleep or due to overload conditions.
1862 * If warranted, also wake up the kthread servicing this CPUs queues.
1864 static void __call_rcu_nocb_wake(struct rcu_data
*rdp
, bool was_alldone
,
1865 unsigned long flags
)
1866 __releases(rdp
->nocb_lock
)
1868 unsigned long cur_gp_seq
;
1871 struct task_struct
*t
;
1873 // If we are being polled or there is no kthread, just leave.
1874 t
= READ_ONCE(rdp
->nocb_gp_kthread
);
1875 if (rcu_nocb_poll
|| !t
) {
1876 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1877 TPS("WakeNotPoll"));
1878 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1881 // Need to actually to a wakeup.
1882 len
= rcu_segcblist_n_cbs(&rdp
->cblist
);
1884 rdp
->qlen_last_fqs_check
= len
;
1885 if (!irqs_disabled_flags(flags
)) {
1886 /* ... if queue was empty ... */
1887 wake_nocb_gp(rdp
, false, flags
);
1888 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1891 wake_nocb_gp_defer(rdp
, RCU_NOCB_WAKE
,
1892 TPS("WakeEmptyIsDeferred"));
1893 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1895 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
1896 /* ... or if many callbacks queued. */
1897 rdp
->qlen_last_fqs_check
= len
;
1899 if (j
!= rdp
->nocb_gp_adv_time
&&
1900 rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
1901 rcu_seq_done(&rdp
->mynode
->gp_seq
, cur_gp_seq
)) {
1902 rcu_advance_cbs_nowake(rdp
->mynode
, rdp
);
1903 rdp
->nocb_gp_adv_time
= j
;
1905 smp_mb(); /* Enqueue before timer_pending(). */
1906 if ((rdp
->nocb_cb_sleep
||
1907 !rcu_segcblist_ready_cbs(&rdp
->cblist
)) &&
1908 !timer_pending(&rdp
->nocb_bypass_timer
))
1909 wake_nocb_gp_defer(rdp
, RCU_NOCB_WAKE_FORCE
,
1910 TPS("WakeOvfIsDeferred"));
1911 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1913 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("WakeNot"));
1914 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1919 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1920 static void do_nocb_bypass_wakeup_timer(struct timer_list
*t
)
1922 unsigned long flags
;
1923 struct rcu_data
*rdp
= from_timer(rdp
, t
, nocb_bypass_timer
);
1925 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("Timer"));
1926 rcu_nocb_lock_irqsave(rdp
, flags
);
1927 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1928 __call_rcu_nocb_wake(rdp
, true, flags
);
1932 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1933 * or for grace periods to end.
1935 static void nocb_gp_wait(struct rcu_data
*my_rdp
)
1937 bool bypass
= false;
1939 int __maybe_unused cpu
= my_rdp
->cpu
;
1940 unsigned long cur_gp_seq
;
1941 unsigned long flags
;
1942 bool gotcbs
= false;
1943 unsigned long j
= jiffies
;
1944 bool needwait_gp
= false; // This prevents actual uninitialized use.
1947 struct rcu_data
*rdp
;
1948 struct rcu_node
*rnp
;
1949 unsigned long wait_gp_seq
= 0; // Suppress "use uninitialized" warning.
1950 bool wasempty
= false;
1953 * Each pass through the following loop checks for CBs and for the
1954 * nearest grace period (if any) to wait for next. The CB kthreads
1955 * and the global grace-period kthread are awakened if needed.
1957 WARN_ON_ONCE(my_rdp
->nocb_gp_rdp
!= my_rdp
);
1958 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_cb_rdp
) {
1959 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("Check"));
1960 rcu_nocb_lock_irqsave(rdp
, flags
);
1961 bypass_ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1963 (time_after(j
, READ_ONCE(rdp
->nocb_bypass_first
) + 1) ||
1964 bypass_ncbs
> 2 * qhimark
)) {
1965 // Bypass full or old, so flush it.
1966 (void)rcu_nocb_try_flush_bypass(rdp
, j
);
1967 bypass_ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1968 } else if (!bypass_ncbs
&& rcu_segcblist_empty(&rdp
->cblist
)) {
1969 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1970 continue; /* No callbacks here, try next. */
1973 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1978 if (bypass
) { // Avoid race with first bypass CB.
1979 WRITE_ONCE(my_rdp
->nocb_defer_wakeup
,
1981 del_timer(&my_rdp
->nocb_timer
);
1983 // Advance callbacks if helpful and low contention.
1984 needwake_gp
= false;
1985 if (!rcu_segcblist_restempty(&rdp
->cblist
,
1986 RCU_NEXT_READY_TAIL
) ||
1987 (rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
1988 rcu_seq_done(&rnp
->gp_seq
, cur_gp_seq
))) {
1989 raw_spin_lock_rcu_node(rnp
); /* irqs disabled. */
1990 needwake_gp
= rcu_advance_cbs(rnp
, rdp
);
1991 wasempty
= rcu_segcblist_restempty(&rdp
->cblist
,
1992 RCU_NEXT_READY_TAIL
);
1993 raw_spin_unlock_rcu_node(rnp
); /* irqs disabled. */
1995 // Need to wait on some grace period?
1996 WARN_ON_ONCE(wasempty
&&
1997 !rcu_segcblist_restempty(&rdp
->cblist
,
1998 RCU_NEXT_READY_TAIL
));
1999 if (rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
)) {
2001 ULONG_CMP_LT(cur_gp_seq
, wait_gp_seq
))
2002 wait_gp_seq
= cur_gp_seq
;
2004 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
2007 if (rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2008 needwake
= rdp
->nocb_cb_sleep
;
2009 WRITE_ONCE(rdp
->nocb_cb_sleep
, false);
2010 smp_mb(); /* CB invocation -after- GP end. */
2014 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2016 swake_up_one(&rdp
->nocb_cb_wq
);
2020 rcu_gp_kthread_wake();
2023 my_rdp
->nocb_gp_bypass
= bypass
;
2024 my_rdp
->nocb_gp_gp
= needwait_gp
;
2025 my_rdp
->nocb_gp_seq
= needwait_gp
? wait_gp_seq
: 0;
2026 if (bypass
&& !rcu_nocb_poll
) {
2027 // At least one child with non-empty ->nocb_bypass, so set
2028 // timer in order to avoid stranding its callbacks.
2029 raw_spin_lock_irqsave(&my_rdp
->nocb_gp_lock
, flags
);
2030 mod_timer(&my_rdp
->nocb_bypass_timer
, j
+ 2);
2031 raw_spin_unlock_irqrestore(&my_rdp
->nocb_gp_lock
, flags
);
2033 if (rcu_nocb_poll
) {
2034 /* Polling, so trace if first poll in the series. */
2036 trace_rcu_nocb_wake(rcu_state
.name
, cpu
, TPS("Poll"));
2037 schedule_timeout_idle(1);
2038 } else if (!needwait_gp
) {
2039 /* Wait for callbacks to appear. */
2040 trace_rcu_nocb_wake(rcu_state
.name
, cpu
, TPS("Sleep"));
2041 swait_event_interruptible_exclusive(my_rdp
->nocb_gp_wq
,
2042 !READ_ONCE(my_rdp
->nocb_gp_sleep
));
2043 trace_rcu_nocb_wake(rcu_state
.name
, cpu
, TPS("EndSleep"));
2045 rnp
= my_rdp
->mynode
;
2046 trace_rcu_this_gp(rnp
, my_rdp
, wait_gp_seq
, TPS("StartWait"));
2047 swait_event_interruptible_exclusive(
2048 rnp
->nocb_gp_wq
[rcu_seq_ctr(wait_gp_seq
) & 0x1],
2049 rcu_seq_done(&rnp
->gp_seq
, wait_gp_seq
) ||
2050 !READ_ONCE(my_rdp
->nocb_gp_sleep
));
2051 trace_rcu_this_gp(rnp
, my_rdp
, wait_gp_seq
, TPS("EndWait"));
2053 if (!rcu_nocb_poll
) {
2054 raw_spin_lock_irqsave(&my_rdp
->nocb_gp_lock
, flags
);
2056 del_timer(&my_rdp
->nocb_bypass_timer
);
2057 WRITE_ONCE(my_rdp
->nocb_gp_sleep
, true);
2058 raw_spin_unlock_irqrestore(&my_rdp
->nocb_gp_lock
, flags
);
2060 my_rdp
->nocb_gp_seq
= -1;
2061 WARN_ON(signal_pending(current
));
2065 * No-CBs grace-period-wait kthread. There is one of these per group
2066 * of CPUs, but only once at least one CPU in that group has come online
2067 * at least once since boot. This kthread checks for newly posted
2068 * callbacks from any of the CPUs it is responsible for, waits for a
2069 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2070 * that then have callback-invocation work to do.
2072 static int rcu_nocb_gp_kthread(void *arg
)
2074 struct rcu_data
*rdp
= arg
;
2077 WRITE_ONCE(rdp
->nocb_gp_loops
, rdp
->nocb_gp_loops
+ 1);
2079 cond_resched_tasks_rcu_qs();
2085 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2086 * then, if there are no more, wait for more to appear.
2088 static void nocb_cb_wait(struct rcu_data
*rdp
)
2090 unsigned long cur_gp_seq
;
2091 unsigned long flags
;
2092 bool needwake_gp
= false;
2093 struct rcu_node
*rnp
= rdp
->mynode
;
2095 local_irq_save(flags
);
2096 rcu_momentary_dyntick_idle();
2097 local_irq_restore(flags
);
2101 lockdep_assert_irqs_enabled();
2102 rcu_nocb_lock_irqsave(rdp
, flags
);
2103 if (rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
2104 rcu_seq_done(&rnp
->gp_seq
, cur_gp_seq
) &&
2105 raw_spin_trylock_rcu_node(rnp
)) { /* irqs already disabled. */
2106 needwake_gp
= rcu_advance_cbs(rdp
->mynode
, rdp
);
2107 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2109 if (rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2110 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2112 rcu_gp_kthread_wake();
2116 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("CBSleep"));
2117 WRITE_ONCE(rdp
->nocb_cb_sleep
, true);
2118 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2120 rcu_gp_kthread_wake();
2121 swait_event_interruptible_exclusive(rdp
->nocb_cb_wq
,
2122 !READ_ONCE(rdp
->nocb_cb_sleep
));
2123 if (!smp_load_acquire(&rdp
->nocb_cb_sleep
)) { /* VVV */
2124 /* ^^^ Ensure CB invocation follows _sleep test. */
2127 WARN_ON(signal_pending(current
));
2128 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("WokeEmpty"));
2132 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2133 * nocb_cb_wait() to do the dirty work.
2135 static int rcu_nocb_cb_kthread(void *arg
)
2137 struct rcu_data
*rdp
= arg
;
2139 // Each pass through this loop does one callback batch, and,
2140 // if there are no more ready callbacks, waits for them.
2143 cond_resched_tasks_rcu_qs();
2148 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2149 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2151 return READ_ONCE(rdp
->nocb_defer_wakeup
);
2154 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2155 static void do_nocb_deferred_wakeup_common(struct rcu_data
*rdp
)
2157 unsigned long flags
;
2160 rcu_nocb_lock_irqsave(rdp
, flags
);
2161 if (!rcu_nocb_need_deferred_wakeup(rdp
)) {
2162 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2165 ndw
= READ_ONCE(rdp
->nocb_defer_wakeup
);
2166 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2167 wake_nocb_gp(rdp
, ndw
== RCU_NOCB_WAKE_FORCE
, flags
);
2168 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("DeferredWake"));
2171 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2172 static void do_nocb_deferred_wakeup_timer(struct timer_list
*t
)
2174 struct rcu_data
*rdp
= from_timer(rdp
, t
, nocb_timer
);
2176 do_nocb_deferred_wakeup_common(rdp
);
2180 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2181 * This means we do an inexact common-case check. Note that if
2182 * we miss, ->nocb_timer will eventually clean things up.
2184 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2186 if (rcu_nocb_need_deferred_wakeup(rdp
))
2187 do_nocb_deferred_wakeup_common(rdp
);
2190 void __init
rcu_init_nohz(void)
2193 bool need_rcu_nocb_mask
= false;
2194 struct rcu_data
*rdp
;
2196 #if defined(CONFIG_NO_HZ_FULL)
2197 if (tick_nohz_full_running
&& cpumask_weight(tick_nohz_full_mask
))
2198 need_rcu_nocb_mask
= true;
2199 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2201 if (!cpumask_available(rcu_nocb_mask
) && need_rcu_nocb_mask
) {
2202 if (!zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
)) {
2203 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2207 if (!cpumask_available(rcu_nocb_mask
))
2210 #if defined(CONFIG_NO_HZ_FULL)
2211 if (tick_nohz_full_running
)
2212 cpumask_or(rcu_nocb_mask
, rcu_nocb_mask
, tick_nohz_full_mask
);
2213 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2215 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
2216 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2217 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
2220 if (cpumask_empty(rcu_nocb_mask
))
2221 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2223 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2224 cpumask_pr_args(rcu_nocb_mask
));
2226 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2228 for_each_cpu(cpu
, rcu_nocb_mask
) {
2229 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2230 if (rcu_segcblist_empty(&rdp
->cblist
))
2231 rcu_segcblist_init(&rdp
->cblist
);
2232 rcu_segcblist_offload(&rdp
->cblist
);
2234 rcu_organize_nocb_kthreads();
2237 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2238 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2240 init_swait_queue_head(&rdp
->nocb_cb_wq
);
2241 init_swait_queue_head(&rdp
->nocb_gp_wq
);
2242 raw_spin_lock_init(&rdp
->nocb_lock
);
2243 raw_spin_lock_init(&rdp
->nocb_bypass_lock
);
2244 raw_spin_lock_init(&rdp
->nocb_gp_lock
);
2245 timer_setup(&rdp
->nocb_timer
, do_nocb_deferred_wakeup_timer
, 0);
2246 timer_setup(&rdp
->nocb_bypass_timer
, do_nocb_bypass_wakeup_timer
, 0);
2247 rcu_cblist_init(&rdp
->nocb_bypass
);
2251 * If the specified CPU is a no-CBs CPU that does not already have its
2252 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2253 * for this CPU's group has not yet been created, spawn it as well.
2255 static void rcu_spawn_one_nocb_kthread(int cpu
)
2257 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2258 struct rcu_data
*rdp_gp
;
2259 struct task_struct
*t
;
2262 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2263 * then nothing to do.
2265 if (!rcu_is_nocb_cpu(cpu
) || rdp
->nocb_cb_kthread
)
2268 /* If we didn't spawn the GP kthread first, reorganize! */
2269 rdp_gp
= rdp
->nocb_gp_rdp
;
2270 if (!rdp_gp
->nocb_gp_kthread
) {
2271 t
= kthread_run(rcu_nocb_gp_kthread
, rdp_gp
,
2272 "rcuog/%d", rdp_gp
->cpu
);
2273 if (WARN_ONCE(IS_ERR(t
), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__
))
2275 WRITE_ONCE(rdp_gp
->nocb_gp_kthread
, t
);
2278 /* Spawn the kthread for this CPU. */
2279 t
= kthread_run(rcu_nocb_cb_kthread
, rdp
,
2280 "rcuo%c/%d", rcu_state
.abbr
, cpu
);
2281 if (WARN_ONCE(IS_ERR(t
), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__
))
2283 WRITE_ONCE(rdp
->nocb_cb_kthread
, t
);
2284 WRITE_ONCE(rdp
->nocb_gp_kthread
, rdp_gp
->nocb_gp_kthread
);
2288 * If the specified CPU is a no-CBs CPU that does not already have its
2289 * rcuo kthread, spawn it.
2291 static void rcu_spawn_cpu_nocb_kthread(int cpu
)
2293 if (rcu_scheduler_fully_active
)
2294 rcu_spawn_one_nocb_kthread(cpu
);
2298 * Once the scheduler is running, spawn rcuo kthreads for all online
2299 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2300 * non-boot CPUs come online -- if this changes, we will need to add
2301 * some mutual exclusion.
2303 static void __init
rcu_spawn_nocb_kthreads(void)
2307 for_each_online_cpu(cpu
)
2308 rcu_spawn_cpu_nocb_kthread(cpu
);
2311 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2312 static int rcu_nocb_gp_stride
= -1;
2313 module_param(rcu_nocb_gp_stride
, int, 0444);
2316 * Initialize GP-CB relationships for all no-CBs CPU.
2318 static void __init
rcu_organize_nocb_kthreads(void)
2321 bool firsttime
= true;
2322 bool gotnocbs
= false;
2323 bool gotnocbscbs
= true;
2324 int ls
= rcu_nocb_gp_stride
;
2325 int nl
= 0; /* Next GP kthread. */
2326 struct rcu_data
*rdp
;
2327 struct rcu_data
*rdp_gp
= NULL
; /* Suppress misguided gcc warn. */
2328 struct rcu_data
*rdp_prev
= NULL
;
2330 if (!cpumask_available(rcu_nocb_mask
))
2333 ls
= nr_cpu_ids
/ int_sqrt(nr_cpu_ids
);
2334 rcu_nocb_gp_stride
= ls
;
2338 * Each pass through this loop sets up one rcu_data structure.
2339 * Should the corresponding CPU come online in the future, then
2340 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2342 for_each_cpu(cpu
, rcu_nocb_mask
) {
2343 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2344 if (rdp
->cpu
>= nl
) {
2345 /* New GP kthread, set up for CBs & next GP. */
2347 nl
= DIV_ROUND_UP(rdp
->cpu
+ 1, ls
) * ls
;
2348 rdp
->nocb_gp_rdp
= rdp
;
2352 pr_cont("%s\n", gotnocbscbs
2353 ? "" : " (self only)");
2354 gotnocbscbs
= false;
2356 pr_alert("%s: No-CB GP kthread CPU %d:",
2360 /* Another CB kthread, link to previous GP kthread. */
2362 rdp
->nocb_gp_rdp
= rdp_gp
;
2363 rdp_prev
->nocb_next_cb_rdp
= rdp
;
2365 pr_cont(" %d", cpu
);
2369 if (gotnocbs
&& dump_tree
)
2370 pr_cont("%s\n", gotnocbscbs
? "" : " (self only)");
2374 * Bind the current task to the offloaded CPUs. If there are no offloaded
2375 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2377 void rcu_bind_current_to_nocb(void)
2379 if (cpumask_available(rcu_nocb_mask
) && cpumask_weight(rcu_nocb_mask
))
2380 WARN_ON(sched_setaffinity(current
->pid
, rcu_nocb_mask
));
2382 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb
);
2385 * Dump out nocb grace-period kthread state for the specified rcu_data
2388 static void show_rcu_nocb_gp_state(struct rcu_data
*rdp
)
2390 struct rcu_node
*rnp
= rdp
->mynode
;
2392 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2394 "kK"[!!rdp
->nocb_gp_kthread
],
2395 "lL"[raw_spin_is_locked(&rdp
->nocb_gp_lock
)],
2396 "dD"[!!rdp
->nocb_defer_wakeup
],
2397 "tT"[timer_pending(&rdp
->nocb_timer
)],
2398 "bB"[timer_pending(&rdp
->nocb_bypass_timer
)],
2399 "sS"[!!rdp
->nocb_gp_sleep
],
2400 ".W"[swait_active(&rdp
->nocb_gp_wq
)],
2401 ".W"[swait_active(&rnp
->nocb_gp_wq
[0])],
2402 ".W"[swait_active(&rnp
->nocb_gp_wq
[1])],
2403 ".B"[!!rdp
->nocb_gp_bypass
],
2404 ".G"[!!rdp
->nocb_gp_gp
],
2405 (long)rdp
->nocb_gp_seq
,
2406 rnp
->grplo
, rnp
->grphi
, READ_ONCE(rdp
->nocb_gp_loops
));
2409 /* Dump out nocb kthread state for the specified rcu_data structure. */
2410 static void show_rcu_nocb_state(struct rcu_data
*rdp
)
2412 struct rcu_segcblist
*rsclp
= &rdp
->cblist
;
2417 if (rdp
->nocb_gp_rdp
== rdp
)
2418 show_rcu_nocb_gp_state(rdp
);
2420 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2421 rdp
->cpu
, rdp
->nocb_gp_rdp
->cpu
,
2422 "kK"[!!rdp
->nocb_cb_kthread
],
2423 "bB"[raw_spin_is_locked(&rdp
->nocb_bypass_lock
)],
2424 "cC"[!!atomic_read(&rdp
->nocb_lock_contended
)],
2425 "lL"[raw_spin_is_locked(&rdp
->nocb_lock
)],
2426 "sS"[!!rdp
->nocb_cb_sleep
],
2427 ".W"[swait_active(&rdp
->nocb_cb_wq
)],
2428 jiffies
- rdp
->nocb_bypass_first
,
2429 jiffies
- rdp
->nocb_nobypass_last
,
2430 rdp
->nocb_nobypass_count
,
2431 ".D"[rcu_segcblist_ready_cbs(rsclp
)],
2432 ".W"[!rcu_segcblist_restempty(rsclp
, RCU_DONE_TAIL
)],
2433 ".R"[!rcu_segcblist_restempty(rsclp
, RCU_WAIT_TAIL
)],
2434 ".N"[!rcu_segcblist_restempty(rsclp
, RCU_NEXT_READY_TAIL
)],
2435 ".B"[!!rcu_cblist_n_cbs(&rdp
->nocb_bypass
)],
2436 rcu_segcblist_n_cbs(&rdp
->cblist
));
2438 /* It is OK for GP kthreads to have GP state. */
2439 if (rdp
->nocb_gp_rdp
== rdp
)
2442 waslocked
= raw_spin_is_locked(&rdp
->nocb_gp_lock
);
2443 wastimer
= timer_pending(&rdp
->nocb_bypass_timer
);
2444 wassleep
= swait_active(&rdp
->nocb_gp_wq
);
2445 if (!rdp
->nocb_gp_sleep
&& !waslocked
&& !wastimer
&& !wassleep
)
2446 return; /* Nothing untowards. */
2448 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n",
2450 "dD"[!!rdp
->nocb_defer_wakeup
],
2452 "sS"[!!rdp
->nocb_gp_sleep
],
2456 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2458 /* No ->nocb_lock to acquire. */
2459 static void rcu_nocb_lock(struct rcu_data
*rdp
)
2463 /* No ->nocb_lock to release. */
2464 static void rcu_nocb_unlock(struct rcu_data
*rdp
)
2468 /* No ->nocb_lock to release. */
2469 static void rcu_nocb_unlock_irqrestore(struct rcu_data
*rdp
,
2470 unsigned long flags
)
2472 local_irq_restore(flags
);
2475 /* Lockdep check that ->cblist may be safely accessed. */
2476 static void rcu_lockdep_assert_cblist_protected(struct rcu_data
*rdp
)
2478 lockdep_assert_irqs_disabled();
2481 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
2485 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
2490 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2494 static bool rcu_nocb_flush_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2500 static bool rcu_nocb_try_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2501 bool *was_alldone
, unsigned long flags
)
2506 static void __call_rcu_nocb_wake(struct rcu_data
*rdp
, bool was_empty
,
2507 unsigned long flags
)
2509 WARN_ON_ONCE(1); /* Should be dead code! */
2512 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2516 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2521 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2525 static void rcu_spawn_cpu_nocb_kthread(int cpu
)
2529 static void __init
rcu_spawn_nocb_kthreads(void)
2533 static void show_rcu_nocb_state(struct rcu_data
*rdp
)
2537 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2540 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2541 * grace-period kthread will do force_quiescent_state() processing?
2542 * The idea is to avoid waking up RCU core processing on such a
2543 * CPU unless the grace period has extended for too long.
2545 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2546 * CONFIG_RCU_NOCB_CPU CPUs.
2548 static bool rcu_nohz_full_cpu(void)
2550 #ifdef CONFIG_NO_HZ_FULL
2551 if (tick_nohz_full_cpu(smp_processor_id()) &&
2552 (!rcu_gp_in_progress() ||
2553 time_before(jiffies
, READ_ONCE(rcu_state
.gp_start
) + HZ
)))
2555 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2560 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2562 static void rcu_bind_gp_kthread(void)
2564 if (!tick_nohz_full_enabled())
2566 housekeeping_affine(current
, HK_FLAG_RCU
);
2569 /* Record the current task on dyntick-idle entry. */
2570 static void noinstr
rcu_dynticks_task_enter(void)
2572 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2573 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, smp_processor_id());
2574 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2577 /* Record no current task on dyntick-idle exit. */
2578 static void noinstr
rcu_dynticks_task_exit(void)
2580 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2581 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, -1);
2582 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2585 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2586 static void rcu_dynticks_task_trace_enter(void)
2588 #ifdef CONFIG_TASKS_RCU_TRACE
2589 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB
))
2590 current
->trc_reader_special
.b
.need_mb
= true;
2591 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2594 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2595 static void rcu_dynticks_task_trace_exit(void)
2597 #ifdef CONFIG_TASKS_RCU_TRACE
2598 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB
))
2599 current
->trc_reader_special
.b
.need_mb
= false;
2600 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */