1 // SPDX-License-Identifier: GPL-2.0
3 * Scheduler topology setup/handling methods
7 DEFINE_MUTEX(sched_domains_mutex
);
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask
;
11 static cpumask_var_t sched_domains_tmpmask2
;
13 #ifdef CONFIG_SCHED_DEBUG
15 static int __init
sched_debug_setup(char *str
)
17 sched_debug_enabled
= true;
21 early_param("sched_debug", sched_debug_setup
);
23 static inline bool sched_debug(void)
25 return sched_debug_enabled
;
28 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29 const struct sd_flag_debug sd_flag_debug
[] = {
30 #include <linux/sched/sd_flags.h>
34 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
35 struct cpumask
*groupmask
)
37 struct sched_group
*group
= sd
->groups
;
38 unsigned long flags
= sd
->flags
;
41 cpumask_clear(groupmask
);
43 printk(KERN_DEBUG
"%*s domain-%d: ", level
, "", level
);
44 printk(KERN_CONT
"span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
47 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
48 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
50 if (group
&& !cpumask_test_cpu(cpu
, sched_group_span(group
))) {
51 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
54 for_each_set_bit(idx
, &flags
, __SD_FLAG_CNT
) {
55 unsigned int flag
= BIT(idx
);
56 unsigned int meta_flags
= sd_flag_debug
[idx
].meta_flags
;
58 if ((meta_flags
& SDF_SHARED_CHILD
) && sd
->child
&&
59 !(sd
->child
->flags
& flag
))
60 printk(KERN_ERR
"ERROR: flag %s set here but not in child\n",
61 sd_flag_debug
[idx
].name
);
63 if ((meta_flags
& SDF_SHARED_PARENT
) && sd
->parent
&&
64 !(sd
->parent
->flags
& flag
))
65 printk(KERN_ERR
"ERROR: flag %s set here but not in parent\n",
66 sd_flag_debug
[idx
].name
);
69 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
73 printk(KERN_ERR
"ERROR: group is NULL\n");
77 if (!cpumask_weight(sched_group_span(group
))) {
78 printk(KERN_CONT
"\n");
79 printk(KERN_ERR
"ERROR: empty group\n");
83 if (!(sd
->flags
& SD_OVERLAP
) &&
84 cpumask_intersects(groupmask
, sched_group_span(group
))) {
85 printk(KERN_CONT
"\n");
86 printk(KERN_ERR
"ERROR: repeated CPUs\n");
90 cpumask_or(groupmask
, groupmask
, sched_group_span(group
));
92 printk(KERN_CONT
" %d:{ span=%*pbl",
94 cpumask_pr_args(sched_group_span(group
)));
96 if ((sd
->flags
& SD_OVERLAP
) &&
97 !cpumask_equal(group_balance_mask(group
), sched_group_span(group
))) {
98 printk(KERN_CONT
" mask=%*pbl",
99 cpumask_pr_args(group_balance_mask(group
)));
102 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
)
103 printk(KERN_CONT
" cap=%lu", group
->sgc
->capacity
);
105 if (group
== sd
->groups
&& sd
->child
&&
106 !cpumask_equal(sched_domain_span(sd
->child
),
107 sched_group_span(group
))) {
108 printk(KERN_ERR
"ERROR: domain->groups does not match domain->child\n");
111 printk(KERN_CONT
" }");
115 if (group
!= sd
->groups
)
116 printk(KERN_CONT
",");
118 } while (group
!= sd
->groups
);
119 printk(KERN_CONT
"\n");
121 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
122 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
125 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
126 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
130 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
134 if (!sched_debug_enabled
)
138 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
142 printk(KERN_DEBUG
"CPU%d attaching sched-domain(s):\n", cpu
);
145 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
153 #else /* !CONFIG_SCHED_DEBUG */
155 # define sched_debug_enabled 0
156 # define sched_domain_debug(sd, cpu) do { } while (0)
157 static inline bool sched_debug(void)
161 #endif /* CONFIG_SCHED_DEBUG */
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK
=
166 #include <linux/sched/sd_flags.h>
170 static int sd_degenerate(struct sched_domain
*sd
)
172 if (cpumask_weight(sched_domain_span(sd
)) == 1)
175 /* Following flags need at least 2 groups */
176 if ((sd
->flags
& SD_DEGENERATE_GROUPS_MASK
) &&
177 (sd
->groups
!= sd
->groups
->next
))
180 /* Following flags don't use groups */
181 if (sd
->flags
& (SD_WAKE_AFFINE
))
188 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
190 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
192 if (sd_degenerate(parent
))
195 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
198 /* Flags needing groups don't count if only 1 group in parent */
199 if (parent
->groups
== parent
->groups
->next
)
200 pflags
&= ~SD_DEGENERATE_GROUPS_MASK
;
202 if (~cflags
& pflags
)
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present
);
210 unsigned int sysctl_sched_energy_aware
= 1;
211 DEFINE_MUTEX(sched_energy_mutex
);
212 bool sched_energy_update
;
214 void rebuild_sched_domains_energy(void)
216 mutex_lock(&sched_energy_mutex
);
217 sched_energy_update
= true;
218 rebuild_sched_domains();
219 sched_energy_update
= false;
220 mutex_unlock(&sched_energy_mutex
);
223 #ifdef CONFIG_PROC_SYSCTL
224 int sched_energy_aware_handler(struct ctl_table
*table
, int write
,
225 void *buffer
, size_t *lenp
, loff_t
*ppos
)
229 if (write
&& !capable(CAP_SYS_ADMIN
))
232 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
234 state
= static_branch_unlikely(&sched_energy_present
);
235 if (state
!= sysctl_sched_energy_aware
)
236 rebuild_sched_domains_energy();
243 static void free_pd(struct perf_domain
*pd
)
245 struct perf_domain
*tmp
;
254 static struct perf_domain
*find_pd(struct perf_domain
*pd
, int cpu
)
257 if (cpumask_test_cpu(cpu
, perf_domain_span(pd
)))
265 static struct perf_domain
*pd_init(int cpu
)
267 struct em_perf_domain
*obj
= em_cpu_get(cpu
);
268 struct perf_domain
*pd
;
272 pr_info("%s: no EM found for CPU%d\n", __func__
, cpu
);
276 pd
= kzalloc(sizeof(*pd
), GFP_KERNEL
);
284 static void perf_domain_debug(const struct cpumask
*cpu_map
,
285 struct perf_domain
*pd
)
287 if (!sched_debug() || !pd
)
290 printk(KERN_DEBUG
"root_domain %*pbl:", cpumask_pr_args(cpu_map
));
293 printk(KERN_CONT
" pd%d:{ cpus=%*pbl nr_pstate=%d }",
294 cpumask_first(perf_domain_span(pd
)),
295 cpumask_pr_args(perf_domain_span(pd
)),
296 em_pd_nr_perf_states(pd
->em_pd
));
300 printk(KERN_CONT
"\n");
303 static void destroy_perf_domain_rcu(struct rcu_head
*rp
)
305 struct perf_domain
*pd
;
307 pd
= container_of(rp
, struct perf_domain
, rcu
);
311 static void sched_energy_set(bool has_eas
)
313 if (!has_eas
&& static_branch_unlikely(&sched_energy_present
)) {
315 pr_info("%s: stopping EAS\n", __func__
);
316 static_branch_disable_cpuslocked(&sched_energy_present
);
317 } else if (has_eas
&& !static_branch_unlikely(&sched_energy_present
)) {
319 pr_info("%s: starting EAS\n", __func__
);
320 static_branch_enable_cpuslocked(&sched_energy_present
);
325 * EAS can be used on a root domain if it meets all the following conditions:
326 * 1. an Energy Model (EM) is available;
327 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
328 * 3. no SMT is detected.
329 * 4. the EM complexity is low enough to keep scheduling overheads low;
330 * 5. schedutil is driving the frequency of all CPUs of the rd;
331 * 6. frequency invariance support is present;
333 * The complexity of the Energy Model is defined as:
335 * C = nr_pd * (nr_cpus + nr_ps)
337 * with parameters defined as:
338 * - nr_pd: the number of performance domains
339 * - nr_cpus: the number of CPUs
340 * - nr_ps: the sum of the number of performance states of all performance
341 * domains (for example, on a system with 2 performance domains,
342 * with 10 performance states each, nr_ps = 2 * 10 = 20).
344 * It is generally not a good idea to use such a model in the wake-up path on
345 * very complex platforms because of the associated scheduling overheads. The
346 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
347 * with per-CPU DVFS and less than 8 performance states each, for example.
349 #define EM_MAX_COMPLEXITY 2048
351 extern struct cpufreq_governor schedutil_gov
;
352 static bool build_perf_domains(const struct cpumask
*cpu_map
)
354 int i
, nr_pd
= 0, nr_ps
= 0, nr_cpus
= cpumask_weight(cpu_map
);
355 struct perf_domain
*pd
= NULL
, *tmp
;
356 int cpu
= cpumask_first(cpu_map
);
357 struct root_domain
*rd
= cpu_rq(cpu
)->rd
;
358 struct cpufreq_policy
*policy
;
359 struct cpufreq_governor
*gov
;
361 if (!sysctl_sched_energy_aware
)
364 /* EAS is enabled for asymmetric CPU capacity topologies. */
365 if (!per_cpu(sd_asym_cpucapacity
, cpu
)) {
367 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
368 cpumask_pr_args(cpu_map
));
373 /* EAS definitely does *not* handle SMT */
374 if (sched_smt_active()) {
375 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
376 cpumask_pr_args(cpu_map
));
380 if (!arch_scale_freq_invariant()) {
382 pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
383 cpumask_pr_args(cpu_map
));
388 for_each_cpu(i
, cpu_map
) {
389 /* Skip already covered CPUs. */
393 /* Do not attempt EAS if schedutil is not being used. */
394 policy
= cpufreq_cpu_get(i
);
397 gov
= policy
->governor
;
398 cpufreq_cpu_put(policy
);
399 if (gov
!= &schedutil_gov
) {
401 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
402 cpumask_pr_args(cpu_map
));
406 /* Create the new pd and add it to the local list. */
414 * Count performance domains and performance states for the
418 nr_ps
+= em_pd_nr_perf_states(pd
->em_pd
);
421 /* Bail out if the Energy Model complexity is too high. */
422 if (nr_pd
* (nr_ps
+ nr_cpus
) > EM_MAX_COMPLEXITY
) {
423 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
424 cpumask_pr_args(cpu_map
));
428 perf_domain_debug(cpu_map
, pd
);
430 /* Attach the new list of performance domains to the root domain. */
432 rcu_assign_pointer(rd
->pd
, pd
);
434 call_rcu(&tmp
->rcu
, destroy_perf_domain_rcu
);
441 rcu_assign_pointer(rd
->pd
, NULL
);
443 call_rcu(&tmp
->rcu
, destroy_perf_domain_rcu
);
448 static void free_pd(struct perf_domain
*pd
) { }
449 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
451 static void free_rootdomain(struct rcu_head
*rcu
)
453 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
455 cpupri_cleanup(&rd
->cpupri
);
456 cpudl_cleanup(&rd
->cpudl
);
457 free_cpumask_var(rd
->dlo_mask
);
458 free_cpumask_var(rd
->rto_mask
);
459 free_cpumask_var(rd
->online
);
460 free_cpumask_var(rd
->span
);
465 void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
467 struct root_domain
*old_rd
= NULL
;
470 raw_spin_lock_irqsave(&rq
->lock
, flags
);
475 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
478 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
481 * If we dont want to free the old_rd yet then
482 * set old_rd to NULL to skip the freeing later
485 if (!atomic_dec_and_test(&old_rd
->refcount
))
489 atomic_inc(&rd
->refcount
);
492 cpumask_set_cpu(rq
->cpu
, rd
->span
);
493 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
496 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
499 call_rcu(&old_rd
->rcu
, free_rootdomain
);
502 void sched_get_rd(struct root_domain
*rd
)
504 atomic_inc(&rd
->refcount
);
507 void sched_put_rd(struct root_domain
*rd
)
509 if (!atomic_dec_and_test(&rd
->refcount
))
512 call_rcu(&rd
->rcu
, free_rootdomain
);
515 static int init_rootdomain(struct root_domain
*rd
)
517 if (!zalloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
519 if (!zalloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
521 if (!zalloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
523 if (!zalloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
526 #ifdef HAVE_RT_PUSH_IPI
528 raw_spin_lock_init(&rd
->rto_lock
);
529 init_irq_work(&rd
->rto_push_work
, rto_push_irq_work_func
);
533 init_dl_bw(&rd
->dl_bw
);
534 if (cpudl_init(&rd
->cpudl
) != 0)
537 if (cpupri_init(&rd
->cpupri
) != 0)
542 cpudl_cleanup(&rd
->cpudl
);
544 free_cpumask_var(rd
->rto_mask
);
546 free_cpumask_var(rd
->dlo_mask
);
548 free_cpumask_var(rd
->online
);
550 free_cpumask_var(rd
->span
);
556 * By default the system creates a single root-domain with all CPUs as
557 * members (mimicking the global state we have today).
559 struct root_domain def_root_domain
;
561 void init_defrootdomain(void)
563 init_rootdomain(&def_root_domain
);
565 atomic_set(&def_root_domain
.refcount
, 1);
568 static struct root_domain
*alloc_rootdomain(void)
570 struct root_domain
*rd
;
572 rd
= kzalloc(sizeof(*rd
), GFP_KERNEL
);
576 if (init_rootdomain(rd
) != 0) {
584 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
586 struct sched_group
*tmp
, *first
;
595 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
598 if (atomic_dec_and_test(&sg
->ref
))
601 } while (sg
!= first
);
604 static void destroy_sched_domain(struct sched_domain
*sd
)
607 * A normal sched domain may have multiple group references, an
608 * overlapping domain, having private groups, only one. Iterate,
609 * dropping group/capacity references, freeing where none remain.
611 free_sched_groups(sd
->groups
, 1);
613 if (sd
->shared
&& atomic_dec_and_test(&sd
->shared
->ref
))
618 static void destroy_sched_domains_rcu(struct rcu_head
*rcu
)
620 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
623 struct sched_domain
*parent
= sd
->parent
;
624 destroy_sched_domain(sd
);
629 static void destroy_sched_domains(struct sched_domain
*sd
)
632 call_rcu(&sd
->rcu
, destroy_sched_domains_rcu
);
636 * Keep a special pointer to the highest sched_domain that has
637 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
638 * allows us to avoid some pointer chasing select_idle_sibling().
640 * Also keep a unique ID per domain (we use the first CPU number in
641 * the cpumask of the domain), this allows us to quickly tell if
642 * two CPUs are in the same cache domain, see cpus_share_cache().
644 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_llc
);
645 DEFINE_PER_CPU(int, sd_llc_size
);
646 DEFINE_PER_CPU(int, sd_llc_id
);
647 DEFINE_PER_CPU(struct sched_domain_shared __rcu
*, sd_llc_shared
);
648 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_numa
);
649 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_asym_packing
);
650 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_asym_cpucapacity
);
651 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity
);
653 static void update_top_cache_domain(int cpu
)
655 struct sched_domain_shared
*sds
= NULL
;
656 struct sched_domain
*sd
;
660 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
662 id
= cpumask_first(sched_domain_span(sd
));
663 size
= cpumask_weight(sched_domain_span(sd
));
667 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
668 per_cpu(sd_llc_size
, cpu
) = size
;
669 per_cpu(sd_llc_id
, cpu
) = id
;
670 rcu_assign_pointer(per_cpu(sd_llc_shared
, cpu
), sds
);
672 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
673 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
675 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
676 rcu_assign_pointer(per_cpu(sd_asym_packing
, cpu
), sd
);
678 sd
= lowest_flag_domain(cpu
, SD_ASYM_CPUCAPACITY
);
679 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity
, cpu
), sd
);
683 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
684 * hold the hotplug lock.
687 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
689 struct rq
*rq
= cpu_rq(cpu
);
690 struct sched_domain
*tmp
;
691 int numa_distance
= 0;
693 /* Remove the sched domains which do not contribute to scheduling. */
694 for (tmp
= sd
; tmp
; ) {
695 struct sched_domain
*parent
= tmp
->parent
;
699 if (sd_parent_degenerate(tmp
, parent
)) {
700 tmp
->parent
= parent
->parent
;
702 parent
->parent
->child
= tmp
;
704 * Transfer SD_PREFER_SIBLING down in case of a
705 * degenerate parent; the spans match for this
706 * so the property transfers.
708 if (parent
->flags
& SD_PREFER_SIBLING
)
709 tmp
->flags
|= SD_PREFER_SIBLING
;
710 destroy_sched_domain(parent
);
715 if (sd
&& sd_degenerate(sd
)) {
718 destroy_sched_domain(tmp
);
723 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
724 numa_distance
+= !!(tmp
->flags
& SD_NUMA
);
727 * FIXME: Diameter >=3 is misrepresented.
729 * Smallest diameter=3 topology is:
737 * 0 --- 1 --- 2 --- 3
739 * NUMA-3 0-3 N/A N/A 0-3
740 * groups: {0-2},{1-3} {1-3},{0-2}
742 * NUMA-2 0-2 0-3 0-3 1-3
743 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
745 * NUMA-1 0-1 0-2 1-3 2-3
746 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
750 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
751 * group span isn't a subset of the domain span.
753 WARN_ONCE(numa_distance
> 2, "Shortest NUMA path spans too many nodes\n");
755 sched_domain_debug(sd
, cpu
);
757 rq_attach_root(rq
, rd
);
759 rcu_assign_pointer(rq
->sd
, sd
);
760 dirty_sched_domain_sysctl(cpu
);
761 destroy_sched_domains(tmp
);
763 update_top_cache_domain(cpu
);
767 struct sched_domain
* __percpu
*sd
;
768 struct root_domain
*rd
;
779 * Return the canonical balance CPU for this group, this is the first CPU
780 * of this group that's also in the balance mask.
782 * The balance mask are all those CPUs that could actually end up at this
783 * group. See build_balance_mask().
785 * Also see should_we_balance().
787 int group_balance_cpu(struct sched_group
*sg
)
789 return cpumask_first(group_balance_mask(sg
));
794 * NUMA topology (first read the regular topology blurb below)
796 * Given a node-distance table, for example:
804 * which represents a 4 node ring topology like:
812 * We want to construct domains and groups to represent this. The way we go
813 * about doing this is to build the domains on 'hops'. For each NUMA level we
814 * construct the mask of all nodes reachable in @level hops.
816 * For the above NUMA topology that gives 3 levels:
818 * NUMA-2 0-3 0-3 0-3 0-3
819 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
821 * NUMA-1 0-1,3 0-2 1-3 0,2-3
822 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
827 * As can be seen; things don't nicely line up as with the regular topology.
828 * When we iterate a domain in child domain chunks some nodes can be
829 * represented multiple times -- hence the "overlap" naming for this part of
832 * In order to minimize this overlap, we only build enough groups to cover the
833 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
837 * - the first group of each domain is its child domain; this
838 * gets us the first 0-1,3
839 * - the only uncovered node is 2, who's child domain is 1-3.
841 * However, because of the overlap, computing a unique CPU for each group is
842 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
843 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
844 * end up at those groups (they would end up in group: 0-1,3).
846 * To correct this we have to introduce the group balance mask. This mask
847 * will contain those CPUs in the group that can reach this group given the
848 * (child) domain tree.
850 * With this we can once again compute balance_cpu and sched_group_capacity
853 * XXX include words on how balance_cpu is unique and therefore can be
854 * used for sched_group_capacity links.
857 * Another 'interesting' topology is:
865 * Which looks a little like:
873 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
876 * This leads to a few particularly weird cases where the sched_domain's are
877 * not of the same number for each CPU. Consider:
880 * groups: {0-2},{1-3} {1-3},{0-2}
882 * NUMA-1 0-2 0-3 0-3 1-3
890 * Build the balance mask; it contains only those CPUs that can arrive at this
891 * group and should be considered to continue balancing.
893 * We do this during the group creation pass, therefore the group information
894 * isn't complete yet, however since each group represents a (child) domain we
895 * can fully construct this using the sched_domain bits (which are already
899 build_balance_mask(struct sched_domain
*sd
, struct sched_group
*sg
, struct cpumask
*mask
)
901 const struct cpumask
*sg_span
= sched_group_span(sg
);
902 struct sd_data
*sdd
= sd
->private;
903 struct sched_domain
*sibling
;
908 for_each_cpu(i
, sg_span
) {
909 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
912 * Can happen in the asymmetric case, where these siblings are
913 * unused. The mask will not be empty because those CPUs that
914 * do have the top domain _should_ span the domain.
919 /* If we would not end up here, we can't continue from here */
920 if (!cpumask_equal(sg_span
, sched_domain_span(sibling
->child
)))
923 cpumask_set_cpu(i
, mask
);
926 /* We must not have empty masks here */
927 WARN_ON_ONCE(cpumask_empty(mask
));
931 * XXX: This creates per-node group entries; since the load-balancer will
932 * immediately access remote memory to construct this group's load-balance
933 * statistics having the groups node local is of dubious benefit.
935 static struct sched_group
*
936 build_group_from_child_sched_domain(struct sched_domain
*sd
, int cpu
)
938 struct sched_group
*sg
;
939 struct cpumask
*sg_span
;
941 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
942 GFP_KERNEL
, cpu_to_node(cpu
));
947 sg_span
= sched_group_span(sg
);
949 cpumask_copy(sg_span
, sched_domain_span(sd
->child
));
951 cpumask_copy(sg_span
, sched_domain_span(sd
));
953 atomic_inc(&sg
->ref
);
957 static void init_overlap_sched_group(struct sched_domain
*sd
,
958 struct sched_group
*sg
)
960 struct cpumask
*mask
= sched_domains_tmpmask2
;
961 struct sd_data
*sdd
= sd
->private;
962 struct cpumask
*sg_span
;
965 build_balance_mask(sd
, sg
, mask
);
966 cpu
= cpumask_first_and(sched_group_span(sg
), mask
);
968 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
969 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
970 cpumask_copy(group_balance_mask(sg
), mask
);
972 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg
), mask
));
975 * Initialize sgc->capacity such that even if we mess up the
976 * domains and no possible iteration will get us here, we won't
979 sg_span
= sched_group_span(sg
);
980 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
981 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
982 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
986 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
988 struct sched_group
*first
= NULL
, *last
= NULL
, *sg
;
989 const struct cpumask
*span
= sched_domain_span(sd
);
990 struct cpumask
*covered
= sched_domains_tmpmask
;
991 struct sd_data
*sdd
= sd
->private;
992 struct sched_domain
*sibling
;
995 cpumask_clear(covered
);
997 for_each_cpu_wrap(i
, span
, cpu
) {
998 struct cpumask
*sg_span
;
1000 if (cpumask_test_cpu(i
, covered
))
1003 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
1006 * Asymmetric node setups can result in situations where the
1007 * domain tree is of unequal depth, make sure to skip domains
1008 * that already cover the entire range.
1010 * In that case build_sched_domains() will have terminated the
1011 * iteration early and our sibling sd spans will be empty.
1012 * Domains should always include the CPU they're built on, so
1015 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
1018 sg
= build_group_from_child_sched_domain(sibling
, cpu
);
1022 sg_span
= sched_group_span(sg
);
1023 cpumask_or(covered
, covered
, sg_span
);
1025 init_overlap_sched_group(sd
, sg
);
1039 free_sched_groups(first
, 0);
1046 * Package topology (also see the load-balance blurb in fair.c)
1048 * The scheduler builds a tree structure to represent a number of important
1049 * topology features. By default (default_topology[]) these include:
1051 * - Simultaneous multithreading (SMT)
1052 * - Multi-Core Cache (MC)
1055 * Where the last one more or less denotes everything up to a NUMA node.
1057 * The tree consists of 3 primary data structures:
1059 * sched_domain -> sched_group -> sched_group_capacity
1063 * The sched_domains are per-CPU and have a two way link (parent & child) and
1064 * denote the ever growing mask of CPUs belonging to that level of topology.
1066 * Each sched_domain has a circular (double) linked list of sched_group's, each
1067 * denoting the domains of the level below (or individual CPUs in case of the
1068 * first domain level). The sched_group linked by a sched_domain includes the
1069 * CPU of that sched_domain [*].
1071 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1073 * CPU 0 1 2 3 4 5 6 7
1077 * SMT [ ] [ ] [ ] [ ]
1081 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1082 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1083 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1085 * CPU 0 1 2 3 4 5 6 7
1087 * One way to think about it is: sched_domain moves you up and down among these
1088 * topology levels, while sched_group moves you sideways through it, at child
1089 * domain granularity.
1091 * sched_group_capacity ensures each unique sched_group has shared storage.
1093 * There are two related construction problems, both require a CPU that
1094 * uniquely identify each group (for a given domain):
1096 * - The first is the balance_cpu (see should_we_balance() and the
1097 * load-balance blub in fair.c); for each group we only want 1 CPU to
1098 * continue balancing at a higher domain.
1100 * - The second is the sched_group_capacity; we want all identical groups
1101 * to share a single sched_group_capacity.
1103 * Since these topologies are exclusive by construction. That is, its
1104 * impossible for an SMT thread to belong to multiple cores, and cores to
1105 * be part of multiple caches. There is a very clear and unique location
1106 * for each CPU in the hierarchy.
1108 * Therefore computing a unique CPU for each group is trivial (the iteration
1109 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1110 * group), we can simply pick the first CPU in each group.
1113 * [*] in other words, the first group of each domain is its child domain.
1116 static struct sched_group
*get_group(int cpu
, struct sd_data
*sdd
)
1118 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1119 struct sched_domain
*child
= sd
->child
;
1120 struct sched_group
*sg
;
1121 bool already_visited
;
1124 cpu
= cpumask_first(sched_domain_span(child
));
1126 sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
1127 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
1129 /* Increase refcounts for claim_allocations: */
1130 already_visited
= atomic_inc_return(&sg
->ref
) > 1;
1131 /* sgc visits should follow a similar trend as sg */
1132 WARN_ON(already_visited
!= (atomic_inc_return(&sg
->sgc
->ref
) > 1));
1134 /* If we have already visited that group, it's already initialized. */
1135 if (already_visited
)
1139 cpumask_copy(sched_group_span(sg
), sched_domain_span(child
));
1140 cpumask_copy(group_balance_mask(sg
), sched_group_span(sg
));
1142 cpumask_set_cpu(cpu
, sched_group_span(sg
));
1143 cpumask_set_cpu(cpu
, group_balance_mask(sg
));
1146 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sched_group_span(sg
));
1147 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
1148 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
1154 * build_sched_groups will build a circular linked list of the groups
1155 * covered by the given span, will set each group's ->cpumask correctly,
1156 * and will initialize their ->sgc.
1158 * Assumes the sched_domain tree is fully constructed
1161 build_sched_groups(struct sched_domain
*sd
, int cpu
)
1163 struct sched_group
*first
= NULL
, *last
= NULL
;
1164 struct sd_data
*sdd
= sd
->private;
1165 const struct cpumask
*span
= sched_domain_span(sd
);
1166 struct cpumask
*covered
;
1169 lockdep_assert_held(&sched_domains_mutex
);
1170 covered
= sched_domains_tmpmask
;
1172 cpumask_clear(covered
);
1174 for_each_cpu_wrap(i
, span
, cpu
) {
1175 struct sched_group
*sg
;
1177 if (cpumask_test_cpu(i
, covered
))
1180 sg
= get_group(i
, sdd
);
1182 cpumask_or(covered
, covered
, sched_group_span(sg
));
1197 * Initialize sched groups cpu_capacity.
1199 * cpu_capacity indicates the capacity of sched group, which is used while
1200 * distributing the load between different sched groups in a sched domain.
1201 * Typically cpu_capacity for all the groups in a sched domain will be same
1202 * unless there are asymmetries in the topology. If there are asymmetries,
1203 * group having more cpu_capacity will pickup more load compared to the
1204 * group having less cpu_capacity.
1206 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
1208 struct sched_group
*sg
= sd
->groups
;
1213 int cpu
, max_cpu
= -1;
1215 sg
->group_weight
= cpumask_weight(sched_group_span(sg
));
1217 if (!(sd
->flags
& SD_ASYM_PACKING
))
1220 for_each_cpu(cpu
, sched_group_span(sg
)) {
1223 else if (sched_asym_prefer(cpu
, max_cpu
))
1226 sg
->asym_prefer_cpu
= max_cpu
;
1230 } while (sg
!= sd
->groups
);
1232 if (cpu
!= group_balance_cpu(sg
))
1235 update_group_capacity(sd
, cpu
);
1239 * Initializers for schedule domains
1240 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1243 static int default_relax_domain_level
= -1;
1244 int sched_domain_level_max
;
1246 static int __init
setup_relax_domain_level(char *str
)
1248 if (kstrtoint(str
, 0, &default_relax_domain_level
))
1249 pr_warn("Unable to set relax_domain_level\n");
1253 __setup("relax_domain_level=", setup_relax_domain_level
);
1255 static void set_domain_attribute(struct sched_domain
*sd
,
1256 struct sched_domain_attr
*attr
)
1260 if (!attr
|| attr
->relax_domain_level
< 0) {
1261 if (default_relax_domain_level
< 0)
1263 request
= default_relax_domain_level
;
1265 request
= attr
->relax_domain_level
;
1267 if (sd
->level
> request
) {
1268 /* Turn off idle balance on this domain: */
1269 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
1273 static void __sdt_free(const struct cpumask
*cpu_map
);
1274 static int __sdt_alloc(const struct cpumask
*cpu_map
);
1276 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
1277 const struct cpumask
*cpu_map
)
1281 if (!atomic_read(&d
->rd
->refcount
))
1282 free_rootdomain(&d
->rd
->rcu
);
1288 __sdt_free(cpu_map
);
1296 __visit_domain_allocation_hell(struct s_data
*d
, const struct cpumask
*cpu_map
)
1298 memset(d
, 0, sizeof(*d
));
1300 if (__sdt_alloc(cpu_map
))
1301 return sa_sd_storage
;
1302 d
->sd
= alloc_percpu(struct sched_domain
*);
1304 return sa_sd_storage
;
1305 d
->rd
= alloc_rootdomain();
1309 return sa_rootdomain
;
1313 * NULL the sd_data elements we've used to build the sched_domain and
1314 * sched_group structure so that the subsequent __free_domain_allocs()
1315 * will not free the data we're using.
1317 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
1319 struct sd_data
*sdd
= sd
->private;
1321 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
1322 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
1324 if (atomic_read(&(*per_cpu_ptr(sdd
->sds
, cpu
))->ref
))
1325 *per_cpu_ptr(sdd
->sds
, cpu
) = NULL
;
1327 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
1328 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
1330 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
1331 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
1335 enum numa_topology_type sched_numa_topology_type
;
1337 static int sched_domains_numa_levels
;
1338 static int sched_domains_curr_level
;
1340 int sched_max_numa_distance
;
1341 static int *sched_domains_numa_distance
;
1342 static struct cpumask
***sched_domains_numa_masks
;
1343 int __read_mostly node_reclaim_distance
= RECLAIM_DISTANCE
;
1347 * SD_flags allowed in topology descriptions.
1349 * These flags are purely descriptive of the topology and do not prescribe
1350 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1353 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1354 * SD_SHARE_PKG_RESOURCES - describes shared caches
1355 * SD_NUMA - describes NUMA topologies
1357 * Odd one out, which beside describing the topology has a quirk also
1358 * prescribes the desired behaviour that goes along with it:
1360 * SD_ASYM_PACKING - describes SMT quirks
1362 #define TOPOLOGY_SD_FLAGS \
1363 (SD_SHARE_CPUCAPACITY | \
1364 SD_SHARE_PKG_RESOURCES | \
1368 static struct sched_domain
*
1369 sd_init(struct sched_domain_topology_level
*tl
,
1370 const struct cpumask
*cpu_map
,
1371 struct sched_domain
*child
, int dflags
, int cpu
)
1373 struct sd_data
*sdd
= &tl
->data
;
1374 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1375 int sd_id
, sd_weight
, sd_flags
= 0;
1379 * Ugly hack to pass state to sd_numa_mask()...
1381 sched_domains_curr_level
= tl
->numa_level
;
1384 sd_weight
= cpumask_weight(tl
->mask(cpu
));
1387 sd_flags
= (*tl
->sd_flags
)();
1388 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
1389 "wrong sd_flags in topology description\n"))
1390 sd_flags
&= TOPOLOGY_SD_FLAGS
;
1392 /* Apply detected topology flags */
1395 *sd
= (struct sched_domain
){
1396 .min_interval
= sd_weight
,
1397 .max_interval
= 2*sd_weight
,
1399 .imbalance_pct
= 117,
1401 .cache_nice_tries
= 0,
1403 .flags
= 1*SD_BALANCE_NEWIDLE
1408 | 0*SD_SHARE_CPUCAPACITY
1409 | 0*SD_SHARE_PKG_RESOURCES
1411 | 1*SD_PREFER_SIBLING
1416 .last_balance
= jiffies
,
1417 .balance_interval
= sd_weight
,
1418 .max_newidle_lb_cost
= 0,
1419 .next_decay_max_lb_cost
= jiffies
,
1421 #ifdef CONFIG_SCHED_DEBUG
1426 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
1427 sd_id
= cpumask_first(sched_domain_span(sd
));
1430 * Convert topological properties into behaviour.
1433 /* Don't attempt to spread across CPUs of different capacities. */
1434 if ((sd
->flags
& SD_ASYM_CPUCAPACITY
) && sd
->child
)
1435 sd
->child
->flags
&= ~SD_PREFER_SIBLING
;
1437 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
1438 sd
->imbalance_pct
= 110;
1440 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1441 sd
->imbalance_pct
= 117;
1442 sd
->cache_nice_tries
= 1;
1445 } else if (sd
->flags
& SD_NUMA
) {
1446 sd
->cache_nice_tries
= 2;
1448 sd
->flags
&= ~SD_PREFER_SIBLING
;
1449 sd
->flags
|= SD_SERIALIZE
;
1450 if (sched_domains_numa_distance
[tl
->numa_level
] > node_reclaim_distance
) {
1451 sd
->flags
&= ~(SD_BALANCE_EXEC
|
1458 sd
->cache_nice_tries
= 1;
1462 * For all levels sharing cache; connect a sched_domain_shared
1465 if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1466 sd
->shared
= *per_cpu_ptr(sdd
->sds
, sd_id
);
1467 atomic_inc(&sd
->shared
->ref
);
1468 atomic_set(&sd
->shared
->nr_busy_cpus
, sd_weight
);
1477 * Topology list, bottom-up.
1479 static struct sched_domain_topology_level default_topology
[] = {
1480 #ifdef CONFIG_SCHED_SMT
1481 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
1483 #ifdef CONFIG_SCHED_MC
1484 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
1486 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
1490 static struct sched_domain_topology_level
*sched_domain_topology
=
1493 #define for_each_sd_topology(tl) \
1494 for (tl = sched_domain_topology; tl->mask; tl++)
1496 void set_sched_topology(struct sched_domain_topology_level
*tl
)
1498 if (WARN_ON_ONCE(sched_smp_initialized
))
1501 sched_domain_topology
= tl
;
1506 static const struct cpumask
*sd_numa_mask(int cpu
)
1508 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
1511 static void sched_numa_warn(const char *str
)
1513 static int done
= false;
1521 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
1523 for (i
= 0; i
< nr_node_ids
; i
++) {
1524 printk(KERN_WARNING
" ");
1525 for (j
= 0; j
< nr_node_ids
; j
++)
1526 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
1527 printk(KERN_CONT
"\n");
1529 printk(KERN_WARNING
"\n");
1532 bool find_numa_distance(int distance
)
1536 if (distance
== node_distance(0, 0))
1539 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1540 if (sched_domains_numa_distance
[i
] == distance
)
1548 * A system can have three types of NUMA topology:
1549 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1550 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1551 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1553 * The difference between a glueless mesh topology and a backplane
1554 * topology lies in whether communication between not directly
1555 * connected nodes goes through intermediary nodes (where programs
1556 * could run), or through backplane controllers. This affects
1557 * placement of programs.
1559 * The type of topology can be discerned with the following tests:
1560 * - If the maximum distance between any nodes is 1 hop, the system
1561 * is directly connected.
1562 * - If for two nodes A and B, located N > 1 hops away from each other,
1563 * there is an intermediary node C, which is < N hops away from both
1564 * nodes A and B, the system is a glueless mesh.
1566 static void init_numa_topology_type(void)
1570 n
= sched_max_numa_distance
;
1572 if (sched_domains_numa_levels
<= 2) {
1573 sched_numa_topology_type
= NUMA_DIRECT
;
1577 for_each_online_node(a
) {
1578 for_each_online_node(b
) {
1579 /* Find two nodes furthest removed from each other. */
1580 if (node_distance(a
, b
) < n
)
1583 /* Is there an intermediary node between a and b? */
1584 for_each_online_node(c
) {
1585 if (node_distance(a
, c
) < n
&&
1586 node_distance(b
, c
) < n
) {
1587 sched_numa_topology_type
=
1593 sched_numa_topology_type
= NUMA_BACKPLANE
;
1599 void sched_init_numa(void)
1601 int next_distance
, curr_distance
= node_distance(0, 0);
1602 struct sched_domain_topology_level
*tl
;
1606 sched_domains_numa_distance
= kzalloc(sizeof(int) * (nr_node_ids
+ 1), GFP_KERNEL
);
1607 if (!sched_domains_numa_distance
)
1610 /* Includes NUMA identity node at level 0. */
1611 sched_domains_numa_distance
[level
++] = curr_distance
;
1612 sched_domains_numa_levels
= level
;
1615 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1616 * unique distances in the node_distance() table.
1618 * Assumes node_distance(0,j) includes all distances in
1619 * node_distance(i,j) in order to avoid cubic time.
1621 next_distance
= curr_distance
;
1622 for (i
= 0; i
< nr_node_ids
; i
++) {
1623 for (j
= 0; j
< nr_node_ids
; j
++) {
1624 for (k
= 0; k
< nr_node_ids
; k
++) {
1625 int distance
= node_distance(i
, k
);
1627 if (distance
> curr_distance
&&
1628 (distance
< next_distance
||
1629 next_distance
== curr_distance
))
1630 next_distance
= distance
;
1633 * While not a strong assumption it would be nice to know
1634 * about cases where if node A is connected to B, B is not
1635 * equally connected to A.
1637 if (sched_debug() && node_distance(k
, i
) != distance
)
1638 sched_numa_warn("Node-distance not symmetric");
1640 if (sched_debug() && i
&& !find_numa_distance(distance
))
1641 sched_numa_warn("Node-0 not representative");
1643 if (next_distance
!= curr_distance
) {
1644 sched_domains_numa_distance
[level
++] = next_distance
;
1645 sched_domains_numa_levels
= level
;
1646 curr_distance
= next_distance
;
1651 * In case of sched_debug() we verify the above assumption.
1658 * 'level' contains the number of unique distances
1660 * The sched_domains_numa_distance[] array includes the actual distance
1665 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1666 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1667 * the array will contain less then 'level' members. This could be
1668 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1669 * in other functions.
1671 * We reset it to 'level' at the end of this function.
1673 sched_domains_numa_levels
= 0;
1675 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
1676 if (!sched_domains_numa_masks
)
1680 * Now for each level, construct a mask per node which contains all
1681 * CPUs of nodes that are that many hops away from us.
1683 for (i
= 0; i
< level
; i
++) {
1684 sched_domains_numa_masks
[i
] =
1685 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
1686 if (!sched_domains_numa_masks
[i
])
1689 for (j
= 0; j
< nr_node_ids
; j
++) {
1690 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
1694 sched_domains_numa_masks
[i
][j
] = mask
;
1697 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
1700 cpumask_or(mask
, mask
, cpumask_of_node(k
));
1705 /* Compute default topology size */
1706 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
1708 tl
= kzalloc((i
+ level
+ 1) *
1709 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
1714 * Copy the default topology bits..
1716 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
1717 tl
[i
] = sched_domain_topology
[i
];
1720 * Add the NUMA identity distance, aka single NODE.
1722 tl
[i
++] = (struct sched_domain_topology_level
){
1723 .mask
= sd_numa_mask
,
1729 * .. and append 'j' levels of NUMA goodness.
1731 for (j
= 1; j
< level
; i
++, j
++) {
1732 tl
[i
] = (struct sched_domain_topology_level
){
1733 .mask
= sd_numa_mask
,
1734 .sd_flags
= cpu_numa_flags
,
1735 .flags
= SDTL_OVERLAP
,
1741 sched_domain_topology
= tl
;
1743 sched_domains_numa_levels
= level
;
1744 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
1746 init_numa_topology_type();
1749 void sched_domains_numa_masks_set(unsigned int cpu
)
1751 int node
= cpu_to_node(cpu
);
1754 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1755 for (j
= 0; j
< nr_node_ids
; j
++) {
1756 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
1757 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1762 void sched_domains_numa_masks_clear(unsigned int cpu
)
1766 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1767 for (j
= 0; j
< nr_node_ids
; j
++)
1768 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1773 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1774 * closest to @cpu from @cpumask.
1775 * cpumask: cpumask to find a cpu from
1776 * cpu: cpu to be close to
1778 * returns: cpu, or nr_cpu_ids when nothing found.
1780 int sched_numa_find_closest(const struct cpumask
*cpus
, int cpu
)
1782 int i
, j
= cpu_to_node(cpu
);
1784 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1785 cpu
= cpumask_any_and(cpus
, sched_domains_numa_masks
[i
][j
]);
1786 if (cpu
< nr_cpu_ids
)
1792 #endif /* CONFIG_NUMA */
1794 static int __sdt_alloc(const struct cpumask
*cpu_map
)
1796 struct sched_domain_topology_level
*tl
;
1799 for_each_sd_topology(tl
) {
1800 struct sd_data
*sdd
= &tl
->data
;
1802 sdd
->sd
= alloc_percpu(struct sched_domain
*);
1806 sdd
->sds
= alloc_percpu(struct sched_domain_shared
*);
1810 sdd
->sg
= alloc_percpu(struct sched_group
*);
1814 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
1818 for_each_cpu(j
, cpu_map
) {
1819 struct sched_domain
*sd
;
1820 struct sched_domain_shared
*sds
;
1821 struct sched_group
*sg
;
1822 struct sched_group_capacity
*sgc
;
1824 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
1825 GFP_KERNEL
, cpu_to_node(j
));
1829 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
1831 sds
= kzalloc_node(sizeof(struct sched_domain_shared
),
1832 GFP_KERNEL
, cpu_to_node(j
));
1836 *per_cpu_ptr(sdd
->sds
, j
) = sds
;
1838 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
1839 GFP_KERNEL
, cpu_to_node(j
));
1845 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
1847 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
1848 GFP_KERNEL
, cpu_to_node(j
));
1852 #ifdef CONFIG_SCHED_DEBUG
1856 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
1863 static void __sdt_free(const struct cpumask
*cpu_map
)
1865 struct sched_domain_topology_level
*tl
;
1868 for_each_sd_topology(tl
) {
1869 struct sd_data
*sdd
= &tl
->data
;
1871 for_each_cpu(j
, cpu_map
) {
1872 struct sched_domain
*sd
;
1875 sd
= *per_cpu_ptr(sdd
->sd
, j
);
1876 if (sd
&& (sd
->flags
& SD_OVERLAP
))
1877 free_sched_groups(sd
->groups
, 0);
1878 kfree(*per_cpu_ptr(sdd
->sd
, j
));
1882 kfree(*per_cpu_ptr(sdd
->sds
, j
));
1884 kfree(*per_cpu_ptr(sdd
->sg
, j
));
1886 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
1888 free_percpu(sdd
->sd
);
1890 free_percpu(sdd
->sds
);
1892 free_percpu(sdd
->sg
);
1894 free_percpu(sdd
->sgc
);
1899 static struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
1900 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
1901 struct sched_domain
*child
, int dflags
, int cpu
)
1903 struct sched_domain
*sd
= sd_init(tl
, cpu_map
, child
, dflags
, cpu
);
1906 sd
->level
= child
->level
+ 1;
1907 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
1910 if (!cpumask_subset(sched_domain_span(child
),
1911 sched_domain_span(sd
))) {
1912 pr_err("BUG: arch topology borken\n");
1913 #ifdef CONFIG_SCHED_DEBUG
1914 pr_err(" the %s domain not a subset of the %s domain\n",
1915 child
->name
, sd
->name
);
1917 /* Fixup, ensure @sd has at least @child CPUs. */
1918 cpumask_or(sched_domain_span(sd
),
1919 sched_domain_span(sd
),
1920 sched_domain_span(child
));
1924 set_domain_attribute(sd
, attr
);
1930 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1931 * any two given CPUs at this (non-NUMA) topology level.
1933 static bool topology_span_sane(struct sched_domain_topology_level
*tl
,
1934 const struct cpumask
*cpu_map
, int cpu
)
1938 /* NUMA levels are allowed to overlap */
1939 if (tl
->flags
& SDTL_OVERLAP
)
1943 * Non-NUMA levels cannot partially overlap - they must be either
1944 * completely equal or completely disjoint. Otherwise we can end up
1945 * breaking the sched_group lists - i.e. a later get_group() pass
1946 * breaks the linking done for an earlier span.
1948 for_each_cpu(i
, cpu_map
) {
1952 * We should 'and' all those masks with 'cpu_map' to exactly
1953 * match the topology we're about to build, but that can only
1954 * remove CPUs, which only lessens our ability to detect
1957 if (!cpumask_equal(tl
->mask(cpu
), tl
->mask(i
)) &&
1958 cpumask_intersects(tl
->mask(cpu
), tl
->mask(i
)))
1966 * Find the sched_domain_topology_level where all CPU capacities are visible
1969 static struct sched_domain_topology_level
1970 *asym_cpu_capacity_level(const struct cpumask
*cpu_map
)
1972 int i
, j
, asym_level
= 0;
1974 struct sched_domain_topology_level
*tl
, *asym_tl
= NULL
;
1977 /* Is there any asymmetry? */
1978 cap
= arch_scale_cpu_capacity(cpumask_first(cpu_map
));
1980 for_each_cpu(i
, cpu_map
) {
1981 if (arch_scale_cpu_capacity(i
) != cap
) {
1991 * Examine topology from all CPU's point of views to detect the lowest
1992 * sched_domain_topology_level where a highest capacity CPU is visible
1995 for_each_cpu(i
, cpu_map
) {
1996 unsigned long max_capacity
= arch_scale_cpu_capacity(i
);
1999 for_each_sd_topology(tl
) {
2000 if (tl_id
< asym_level
)
2003 for_each_cpu_and(j
, tl
->mask(i
), cpu_map
) {
2004 unsigned long capacity
;
2006 capacity
= arch_scale_cpu_capacity(j
);
2008 if (capacity
<= max_capacity
)
2011 max_capacity
= capacity
;
2025 * Build sched domains for a given set of CPUs and attach the sched domains
2026 * to the individual CPUs
2029 build_sched_domains(const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
)
2031 enum s_alloc alloc_state
= sa_none
;
2032 struct sched_domain
*sd
;
2034 struct rq
*rq
= NULL
;
2035 int i
, ret
= -ENOMEM
;
2036 struct sched_domain_topology_level
*tl_asym
;
2037 bool has_asym
= false;
2039 if (WARN_ON(cpumask_empty(cpu_map
)))
2042 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
2043 if (alloc_state
!= sa_rootdomain
)
2046 tl_asym
= asym_cpu_capacity_level(cpu_map
);
2048 /* Set up domains for CPUs specified by the cpu_map: */
2049 for_each_cpu(i
, cpu_map
) {
2050 struct sched_domain_topology_level
*tl
;
2054 for_each_sd_topology(tl
) {
2055 if (tl
== tl_asym
) {
2056 dflags
|= SD_ASYM_CPUCAPACITY
;
2060 if (WARN_ON(!topology_span_sane(tl
, cpu_map
, i
)))
2063 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, dflags
, i
);
2065 if (tl
== sched_domain_topology
)
2066 *per_cpu_ptr(d
.sd
, i
) = sd
;
2067 if (tl
->flags
& SDTL_OVERLAP
)
2068 sd
->flags
|= SD_OVERLAP
;
2069 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
2074 /* Build the groups for the domains */
2075 for_each_cpu(i
, cpu_map
) {
2076 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
2077 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
2078 if (sd
->flags
& SD_OVERLAP
) {
2079 if (build_overlap_sched_groups(sd
, i
))
2082 if (build_sched_groups(sd
, i
))
2088 /* Calculate CPU capacity for physical packages and nodes */
2089 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
2090 if (!cpumask_test_cpu(i
, cpu_map
))
2093 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
2094 claim_allocations(i
, sd
);
2095 init_sched_groups_capacity(i
, sd
);
2099 /* Attach the domains */
2101 for_each_cpu(i
, cpu_map
) {
2103 sd
= *per_cpu_ptr(d
.sd
, i
);
2105 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2106 if (rq
->cpu_capacity_orig
> READ_ONCE(d
.rd
->max_cpu_capacity
))
2107 WRITE_ONCE(d
.rd
->max_cpu_capacity
, rq
->cpu_capacity_orig
);
2109 cpu_attach_domain(sd
, d
.rd
, i
);
2114 static_branch_inc_cpuslocked(&sched_asym_cpucapacity
);
2116 if (rq
&& sched_debug_enabled
) {
2117 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2118 cpumask_pr_args(cpu_map
), rq
->rd
->max_cpu_capacity
);
2123 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
2128 /* Current sched domains: */
2129 static cpumask_var_t
*doms_cur
;
2131 /* Number of sched domains in 'doms_cur': */
2132 static int ndoms_cur
;
2134 /* Attribues of custom domains in 'doms_cur' */
2135 static struct sched_domain_attr
*dattr_cur
;
2138 * Special case: If a kmalloc() of a doms_cur partition (array of
2139 * cpumask) fails, then fallback to a single sched domain,
2140 * as determined by the single cpumask fallback_doms.
2142 static cpumask_var_t fallback_doms
;
2145 * arch_update_cpu_topology lets virtualized architectures update the
2146 * CPU core maps. It is supposed to return 1 if the topology changed
2147 * or 0 if it stayed the same.
2149 int __weak
arch_update_cpu_topology(void)
2154 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
2157 cpumask_var_t
*doms
;
2159 doms
= kmalloc_array(ndoms
, sizeof(*doms
), GFP_KERNEL
);
2162 for (i
= 0; i
< ndoms
; i
++) {
2163 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
2164 free_sched_domains(doms
, i
);
2171 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
2174 for (i
= 0; i
< ndoms
; i
++)
2175 free_cpumask_var(doms
[i
]);
2180 * Set up scheduler domains and groups. For now this just excludes isolated
2181 * CPUs, but could be used to exclude other special cases in the future.
2183 int sched_init_domains(const struct cpumask
*cpu_map
)
2187 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_KERNEL
);
2188 zalloc_cpumask_var(&sched_domains_tmpmask2
, GFP_KERNEL
);
2189 zalloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
2191 arch_update_cpu_topology();
2193 doms_cur
= alloc_sched_domains(ndoms_cur
);
2195 doms_cur
= &fallback_doms
;
2196 cpumask_and(doms_cur
[0], cpu_map
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
2197 err
= build_sched_domains(doms_cur
[0], NULL
);
2198 register_sched_domain_sysctl();
2204 * Detach sched domains from a group of CPUs specified in cpu_map
2205 * These CPUs will now be attached to the NULL domain
2207 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
2209 unsigned int cpu
= cpumask_any(cpu_map
);
2212 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity
, cpu
)))
2213 static_branch_dec_cpuslocked(&sched_asym_cpucapacity
);
2216 for_each_cpu(i
, cpu_map
)
2217 cpu_attach_domain(NULL
, &def_root_domain
, i
);
2221 /* handle null as "default" */
2222 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
2223 struct sched_domain_attr
*new, int idx_new
)
2225 struct sched_domain_attr tmp
;
2233 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
2234 new ? (new + idx_new
) : &tmp
,
2235 sizeof(struct sched_domain_attr
));
2239 * Partition sched domains as specified by the 'ndoms_new'
2240 * cpumasks in the array doms_new[] of cpumasks. This compares
2241 * doms_new[] to the current sched domain partitioning, doms_cur[].
2242 * It destroys each deleted domain and builds each new domain.
2244 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2245 * The masks don't intersect (don't overlap.) We should setup one
2246 * sched domain for each mask. CPUs not in any of the cpumasks will
2247 * not be load balanced. If the same cpumask appears both in the
2248 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2251 * The passed in 'doms_new' should be allocated using
2252 * alloc_sched_domains. This routine takes ownership of it and will
2253 * free_sched_domains it when done with it. If the caller failed the
2254 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2255 * and partition_sched_domains() will fallback to the single partition
2256 * 'fallback_doms', it also forces the domains to be rebuilt.
2258 * If doms_new == NULL it will be replaced with cpu_online_mask.
2259 * ndoms_new == 0 is a special case for destroying existing domains,
2260 * and it will not create the default domain.
2262 * Call with hotplug lock and sched_domains_mutex held
2264 void partition_sched_domains_locked(int ndoms_new
, cpumask_var_t doms_new
[],
2265 struct sched_domain_attr
*dattr_new
)
2267 bool __maybe_unused has_eas
= false;
2271 lockdep_assert_held(&sched_domains_mutex
);
2273 /* Always unregister in case we don't destroy any domains: */
2274 unregister_sched_domain_sysctl();
2276 /* Let the architecture update CPU core mappings: */
2277 new_topology
= arch_update_cpu_topology();
2280 WARN_ON_ONCE(dattr_new
);
2282 doms_new
= alloc_sched_domains(1);
2285 cpumask_and(doms_new
[0], cpu_active_mask
,
2286 housekeeping_cpumask(HK_FLAG_DOMAIN
));
2292 /* Destroy deleted domains: */
2293 for (i
= 0; i
< ndoms_cur
; i
++) {
2294 for (j
= 0; j
< n
&& !new_topology
; j
++) {
2295 if (cpumask_equal(doms_cur
[i
], doms_new
[j
]) &&
2296 dattrs_equal(dattr_cur
, i
, dattr_new
, j
)) {
2297 struct root_domain
*rd
;
2300 * This domain won't be destroyed and as such
2301 * its dl_bw->total_bw needs to be cleared. It
2302 * will be recomputed in function
2303 * update_tasks_root_domain().
2305 rd
= cpu_rq(cpumask_any(doms_cur
[i
]))->rd
;
2306 dl_clear_root_domain(rd
);
2310 /* No match - a current sched domain not in new doms_new[] */
2311 detach_destroy_domains(doms_cur
[i
]);
2319 doms_new
= &fallback_doms
;
2320 cpumask_and(doms_new
[0], cpu_active_mask
,
2321 housekeeping_cpumask(HK_FLAG_DOMAIN
));
2324 /* Build new domains: */
2325 for (i
= 0; i
< ndoms_new
; i
++) {
2326 for (j
= 0; j
< n
&& !new_topology
; j
++) {
2327 if (cpumask_equal(doms_new
[i
], doms_cur
[j
]) &&
2328 dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
2331 /* No match - add a new doms_new */
2332 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
2337 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2338 /* Build perf. domains: */
2339 for (i
= 0; i
< ndoms_new
; i
++) {
2340 for (j
= 0; j
< n
&& !sched_energy_update
; j
++) {
2341 if (cpumask_equal(doms_new
[i
], doms_cur
[j
]) &&
2342 cpu_rq(cpumask_first(doms_cur
[j
]))->rd
->pd
) {
2347 /* No match - add perf. domains for a new rd */
2348 has_eas
|= build_perf_domains(doms_new
[i
]);
2352 sched_energy_set(has_eas
);
2355 /* Remember the new sched domains: */
2356 if (doms_cur
!= &fallback_doms
)
2357 free_sched_domains(doms_cur
, ndoms_cur
);
2360 doms_cur
= doms_new
;
2361 dattr_cur
= dattr_new
;
2362 ndoms_cur
= ndoms_new
;
2364 register_sched_domain_sysctl();
2368 * Call with hotplug lock held
2370 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
2371 struct sched_domain_attr
*dattr_new
)
2373 mutex_lock(&sched_domains_mutex
);
2374 partition_sched_domains_locked(ndoms_new
, doms_new
, dattr_new
);
2375 mutex_unlock(&sched_domains_mutex
);