Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / kernel / time / tick-broadcast.c
blob5a23829372c7fc2d4b60814b397a1af9e72298ba
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains functions which emulate a local clock-event
4 * device via a broadcast event source.
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
20 #include "tick-internal.h"
23 * Broadcast support for broken x86 hardware, where the local apic
24 * timer stops in C3 state.
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
37 static void tick_broadcast_clear_oneshot(int cpu);
38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
39 # ifdef CONFIG_HOTPLUG_CPU
40 static void tick_broadcast_oneshot_offline(unsigned int cpu);
41 # endif
42 #else
43 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
44 static inline void tick_broadcast_clear_oneshot(int cpu) { }
45 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
46 # ifdef CONFIG_HOTPLUG_CPU
47 static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
48 # endif
49 #endif
52 * Debugging: see timer_list.c
54 struct tick_device *tick_get_broadcast_device(void)
56 return &tick_broadcast_device;
59 struct cpumask *tick_get_broadcast_mask(void)
61 return tick_broadcast_mask;
65 * Start the device in periodic mode
67 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
69 if (bc)
70 tick_setup_periodic(bc, 1);
74 * Check, if the device can be utilized as broadcast device:
76 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
77 struct clock_event_device *newdev)
79 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
80 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
81 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
82 return false;
84 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
85 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
86 return false;
88 return !curdev || newdev->rating > curdev->rating;
92 * Conditionally install/replace broadcast device
94 void tick_install_broadcast_device(struct clock_event_device *dev)
96 struct clock_event_device *cur = tick_broadcast_device.evtdev;
98 if (!tick_check_broadcast_device(cur, dev))
99 return;
101 if (!try_module_get(dev->owner))
102 return;
104 clockevents_exchange_device(cur, dev);
105 if (cur)
106 cur->event_handler = clockevents_handle_noop;
107 tick_broadcast_device.evtdev = dev;
108 if (!cpumask_empty(tick_broadcast_mask))
109 tick_broadcast_start_periodic(dev);
111 * Inform all cpus about this. We might be in a situation
112 * where we did not switch to oneshot mode because the per cpu
113 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
114 * of a oneshot capable broadcast device. Without that
115 * notification the systems stays stuck in periodic mode
116 * forever.
118 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
119 tick_clock_notify();
123 * Check, if the device is the broadcast device
125 int tick_is_broadcast_device(struct clock_event_device *dev)
127 return (dev && tick_broadcast_device.evtdev == dev);
130 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
132 int ret = -ENODEV;
134 if (tick_is_broadcast_device(dev)) {
135 raw_spin_lock(&tick_broadcast_lock);
136 ret = __clockevents_update_freq(dev, freq);
137 raw_spin_unlock(&tick_broadcast_lock);
139 return ret;
143 static void err_broadcast(const struct cpumask *mask)
145 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
148 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
150 if (!dev->broadcast)
151 dev->broadcast = tick_broadcast;
152 if (!dev->broadcast) {
153 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
154 dev->name);
155 dev->broadcast = err_broadcast;
160 * Check, if the device is disfunctional and a place holder, which
161 * needs to be handled by the broadcast device.
163 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
165 struct clock_event_device *bc = tick_broadcast_device.evtdev;
166 unsigned long flags;
167 int ret = 0;
169 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
172 * Devices might be registered with both periodic and oneshot
173 * mode disabled. This signals, that the device needs to be
174 * operated from the broadcast device and is a placeholder for
175 * the cpu local device.
177 if (!tick_device_is_functional(dev)) {
178 dev->event_handler = tick_handle_periodic;
179 tick_device_setup_broadcast_func(dev);
180 cpumask_set_cpu(cpu, tick_broadcast_mask);
181 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
182 tick_broadcast_start_periodic(bc);
183 else
184 tick_broadcast_setup_oneshot(bc);
185 ret = 1;
186 } else {
188 * Clear the broadcast bit for this cpu if the
189 * device is not power state affected.
191 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
192 cpumask_clear_cpu(cpu, tick_broadcast_mask);
193 else
194 tick_device_setup_broadcast_func(dev);
197 * Clear the broadcast bit if the CPU is not in
198 * periodic broadcast on state.
200 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
201 cpumask_clear_cpu(cpu, tick_broadcast_mask);
203 switch (tick_broadcast_device.mode) {
204 case TICKDEV_MODE_ONESHOT:
206 * If the system is in oneshot mode we can
207 * unconditionally clear the oneshot mask bit,
208 * because the CPU is running and therefore
209 * not in an idle state which causes the power
210 * state affected device to stop. Let the
211 * caller initialize the device.
213 tick_broadcast_clear_oneshot(cpu);
214 ret = 0;
215 break;
217 case TICKDEV_MODE_PERIODIC:
219 * If the system is in periodic mode, check
220 * whether the broadcast device can be
221 * switched off now.
223 if (cpumask_empty(tick_broadcast_mask) && bc)
224 clockevents_shutdown(bc);
226 * If we kept the cpu in the broadcast mask,
227 * tell the caller to leave the per cpu device
228 * in shutdown state. The periodic interrupt
229 * is delivered by the broadcast device, if
230 * the broadcast device exists and is not
231 * hrtimer based.
233 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
234 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
235 break;
236 default:
237 break;
240 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
241 return ret;
244 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
245 int tick_receive_broadcast(void)
247 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
248 struct clock_event_device *evt = td->evtdev;
250 if (!evt)
251 return -ENODEV;
253 if (!evt->event_handler)
254 return -EINVAL;
256 evt->event_handler(evt);
257 return 0;
259 #endif
262 * Broadcast the event to the cpus, which are set in the mask (mangled).
264 static bool tick_do_broadcast(struct cpumask *mask)
266 int cpu = smp_processor_id();
267 struct tick_device *td;
268 bool local = false;
271 * Check, if the current cpu is in the mask
273 if (cpumask_test_cpu(cpu, mask)) {
274 struct clock_event_device *bc = tick_broadcast_device.evtdev;
276 cpumask_clear_cpu(cpu, mask);
278 * We only run the local handler, if the broadcast
279 * device is not hrtimer based. Otherwise we run into
280 * a hrtimer recursion.
282 * local timer_interrupt()
283 * local_handler()
284 * expire_hrtimers()
285 * bc_handler()
286 * local_handler()
287 * expire_hrtimers()
289 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
292 if (!cpumask_empty(mask)) {
294 * It might be necessary to actually check whether the devices
295 * have different broadcast functions. For now, just use the
296 * one of the first device. This works as long as we have this
297 * misfeature only on x86 (lapic)
299 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
300 td->evtdev->broadcast(mask);
302 return local;
306 * Periodic broadcast:
307 * - invoke the broadcast handlers
309 static bool tick_do_periodic_broadcast(void)
311 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
312 return tick_do_broadcast(tmpmask);
316 * Event handler for periodic broadcast ticks
318 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
320 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
321 bool bc_local;
323 raw_spin_lock(&tick_broadcast_lock);
325 /* Handle spurious interrupts gracefully */
326 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
327 raw_spin_unlock(&tick_broadcast_lock);
328 return;
331 bc_local = tick_do_periodic_broadcast();
333 if (clockevent_state_oneshot(dev)) {
334 ktime_t next = ktime_add_ns(dev->next_event, TICK_NSEC);
336 clockevents_program_event(dev, next, true);
338 raw_spin_unlock(&tick_broadcast_lock);
341 * We run the handler of the local cpu after dropping
342 * tick_broadcast_lock because the handler might deadlock when
343 * trying to switch to oneshot mode.
345 if (bc_local)
346 td->evtdev->event_handler(td->evtdev);
350 * tick_broadcast_control - Enable/disable or force broadcast mode
351 * @mode: The selected broadcast mode
353 * Called when the system enters a state where affected tick devices
354 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
356 void tick_broadcast_control(enum tick_broadcast_mode mode)
358 struct clock_event_device *bc, *dev;
359 struct tick_device *td;
360 int cpu, bc_stopped;
361 unsigned long flags;
363 /* Protects also the local clockevent device. */
364 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
365 td = this_cpu_ptr(&tick_cpu_device);
366 dev = td->evtdev;
369 * Is the device not affected by the powerstate ?
371 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
372 goto out;
374 if (!tick_device_is_functional(dev))
375 goto out;
377 cpu = smp_processor_id();
378 bc = tick_broadcast_device.evtdev;
379 bc_stopped = cpumask_empty(tick_broadcast_mask);
381 switch (mode) {
382 case TICK_BROADCAST_FORCE:
383 tick_broadcast_forced = 1;
384 fallthrough;
385 case TICK_BROADCAST_ON:
386 cpumask_set_cpu(cpu, tick_broadcast_on);
387 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
389 * Only shutdown the cpu local device, if:
391 * - the broadcast device exists
392 * - the broadcast device is not a hrtimer based one
393 * - the broadcast device is in periodic mode to
394 * avoid a hickup during switch to oneshot mode
396 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
397 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
398 clockevents_shutdown(dev);
400 break;
402 case TICK_BROADCAST_OFF:
403 if (tick_broadcast_forced)
404 break;
405 cpumask_clear_cpu(cpu, tick_broadcast_on);
406 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
407 if (tick_broadcast_device.mode ==
408 TICKDEV_MODE_PERIODIC)
409 tick_setup_periodic(dev, 0);
411 break;
414 if (bc) {
415 if (cpumask_empty(tick_broadcast_mask)) {
416 if (!bc_stopped)
417 clockevents_shutdown(bc);
418 } else if (bc_stopped) {
419 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
420 tick_broadcast_start_periodic(bc);
421 else
422 tick_broadcast_setup_oneshot(bc);
425 out:
426 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
428 EXPORT_SYMBOL_GPL(tick_broadcast_control);
431 * Set the periodic handler depending on broadcast on/off
433 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
435 if (!broadcast)
436 dev->event_handler = tick_handle_periodic;
437 else
438 dev->event_handler = tick_handle_periodic_broadcast;
441 #ifdef CONFIG_HOTPLUG_CPU
442 static void tick_shutdown_broadcast(void)
444 struct clock_event_device *bc = tick_broadcast_device.evtdev;
446 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
447 if (bc && cpumask_empty(tick_broadcast_mask))
448 clockevents_shutdown(bc);
453 * Remove a CPU from broadcasting
455 void tick_broadcast_offline(unsigned int cpu)
457 raw_spin_lock(&tick_broadcast_lock);
458 cpumask_clear_cpu(cpu, tick_broadcast_mask);
459 cpumask_clear_cpu(cpu, tick_broadcast_on);
460 tick_broadcast_oneshot_offline(cpu);
461 tick_shutdown_broadcast();
462 raw_spin_unlock(&tick_broadcast_lock);
465 #endif
467 void tick_suspend_broadcast(void)
469 struct clock_event_device *bc;
470 unsigned long flags;
472 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
474 bc = tick_broadcast_device.evtdev;
475 if (bc)
476 clockevents_shutdown(bc);
478 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
482 * This is called from tick_resume_local() on a resuming CPU. That's
483 * called from the core resume function, tick_unfreeze() and the magic XEN
484 * resume hackery.
486 * In none of these cases the broadcast device mode can change and the
487 * bit of the resuming CPU in the broadcast mask is safe as well.
489 bool tick_resume_check_broadcast(void)
491 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
492 return false;
493 else
494 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
497 void tick_resume_broadcast(void)
499 struct clock_event_device *bc;
500 unsigned long flags;
502 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
504 bc = tick_broadcast_device.evtdev;
506 if (bc) {
507 clockevents_tick_resume(bc);
509 switch (tick_broadcast_device.mode) {
510 case TICKDEV_MODE_PERIODIC:
511 if (!cpumask_empty(tick_broadcast_mask))
512 tick_broadcast_start_periodic(bc);
513 break;
514 case TICKDEV_MODE_ONESHOT:
515 if (!cpumask_empty(tick_broadcast_mask))
516 tick_resume_broadcast_oneshot(bc);
517 break;
520 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
523 #ifdef CONFIG_TICK_ONESHOT
525 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
526 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
527 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
530 * Exposed for debugging: see timer_list.c
532 struct cpumask *tick_get_broadcast_oneshot_mask(void)
534 return tick_broadcast_oneshot_mask;
538 * Called before going idle with interrupts disabled. Checks whether a
539 * broadcast event from the other core is about to happen. We detected
540 * that in tick_broadcast_oneshot_control(). The callsite can use this
541 * to avoid a deep idle transition as we are about to get the
542 * broadcast IPI right away.
544 int tick_check_broadcast_expired(void)
546 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
550 * Set broadcast interrupt affinity
552 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
553 const struct cpumask *cpumask)
555 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
556 return;
558 if (cpumask_equal(bc->cpumask, cpumask))
559 return;
561 bc->cpumask = cpumask;
562 irq_set_affinity(bc->irq, bc->cpumask);
565 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
566 ktime_t expires)
568 if (!clockevent_state_oneshot(bc))
569 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
571 clockevents_program_event(bc, expires, 1);
572 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
575 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
577 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
581 * Called from irq_enter() when idle was interrupted to reenable the
582 * per cpu device.
584 void tick_check_oneshot_broadcast_this_cpu(void)
586 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
587 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
590 * We might be in the middle of switching over from
591 * periodic to oneshot. If the CPU has not yet
592 * switched over, leave the device alone.
594 if (td->mode == TICKDEV_MODE_ONESHOT) {
595 clockevents_switch_state(td->evtdev,
596 CLOCK_EVT_STATE_ONESHOT);
602 * Handle oneshot mode broadcasting
604 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
606 struct tick_device *td;
607 ktime_t now, next_event;
608 int cpu, next_cpu = 0;
609 bool bc_local;
611 raw_spin_lock(&tick_broadcast_lock);
612 dev->next_event = KTIME_MAX;
613 next_event = KTIME_MAX;
614 cpumask_clear(tmpmask);
615 now = ktime_get();
616 /* Find all expired events */
617 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
619 * Required for !SMP because for_each_cpu() reports
620 * unconditionally CPU0 as set on UP kernels.
622 if (!IS_ENABLED(CONFIG_SMP) &&
623 cpumask_empty(tick_broadcast_oneshot_mask))
624 break;
626 td = &per_cpu(tick_cpu_device, cpu);
627 if (td->evtdev->next_event <= now) {
628 cpumask_set_cpu(cpu, tmpmask);
630 * Mark the remote cpu in the pending mask, so
631 * it can avoid reprogramming the cpu local
632 * timer in tick_broadcast_oneshot_control().
634 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
635 } else if (td->evtdev->next_event < next_event) {
636 next_event = td->evtdev->next_event;
637 next_cpu = cpu;
642 * Remove the current cpu from the pending mask. The event is
643 * delivered immediately in tick_do_broadcast() !
645 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
647 /* Take care of enforced broadcast requests */
648 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
649 cpumask_clear(tick_broadcast_force_mask);
652 * Sanity check. Catch the case where we try to broadcast to
653 * offline cpus.
655 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
656 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
659 * Wakeup the cpus which have an expired event.
661 bc_local = tick_do_broadcast(tmpmask);
664 * Two reasons for reprogram:
666 * - The global event did not expire any CPU local
667 * events. This happens in dyntick mode, as the maximum PIT
668 * delta is quite small.
670 * - There are pending events on sleeping CPUs which were not
671 * in the event mask
673 if (next_event != KTIME_MAX)
674 tick_broadcast_set_event(dev, next_cpu, next_event);
676 raw_spin_unlock(&tick_broadcast_lock);
678 if (bc_local) {
679 td = this_cpu_ptr(&tick_cpu_device);
680 td->evtdev->event_handler(td->evtdev);
684 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
686 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
687 return 0;
688 if (bc->next_event == KTIME_MAX)
689 return 0;
690 return bc->bound_on == cpu ? -EBUSY : 0;
693 static void broadcast_shutdown_local(struct clock_event_device *bc,
694 struct clock_event_device *dev)
697 * For hrtimer based broadcasting we cannot shutdown the cpu
698 * local device if our own event is the first one to expire or
699 * if we own the broadcast timer.
701 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
702 if (broadcast_needs_cpu(bc, smp_processor_id()))
703 return;
704 if (dev->next_event < bc->next_event)
705 return;
707 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
710 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
712 struct clock_event_device *bc, *dev;
713 int cpu, ret = 0;
714 ktime_t now;
717 * If there is no broadcast device, tell the caller not to go
718 * into deep idle.
720 if (!tick_broadcast_device.evtdev)
721 return -EBUSY;
723 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
725 raw_spin_lock(&tick_broadcast_lock);
726 bc = tick_broadcast_device.evtdev;
727 cpu = smp_processor_id();
729 if (state == TICK_BROADCAST_ENTER) {
731 * If the current CPU owns the hrtimer broadcast
732 * mechanism, it cannot go deep idle and we do not add
733 * the CPU to the broadcast mask. We don't have to go
734 * through the EXIT path as the local timer is not
735 * shutdown.
737 ret = broadcast_needs_cpu(bc, cpu);
738 if (ret)
739 goto out;
742 * If the broadcast device is in periodic mode, we
743 * return.
745 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
746 /* If it is a hrtimer based broadcast, return busy */
747 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
748 ret = -EBUSY;
749 goto out;
752 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
753 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
755 /* Conditionally shut down the local timer. */
756 broadcast_shutdown_local(bc, dev);
759 * We only reprogram the broadcast timer if we
760 * did not mark ourself in the force mask and
761 * if the cpu local event is earlier than the
762 * broadcast event. If the current CPU is in
763 * the force mask, then we are going to be
764 * woken by the IPI right away; we return
765 * busy, so the CPU does not try to go deep
766 * idle.
768 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
769 ret = -EBUSY;
770 } else if (dev->next_event < bc->next_event) {
771 tick_broadcast_set_event(bc, cpu, dev->next_event);
773 * In case of hrtimer broadcasts the
774 * programming might have moved the
775 * timer to this cpu. If yes, remove
776 * us from the broadcast mask and
777 * return busy.
779 ret = broadcast_needs_cpu(bc, cpu);
780 if (ret) {
781 cpumask_clear_cpu(cpu,
782 tick_broadcast_oneshot_mask);
786 } else {
787 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
788 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
790 * The cpu which was handling the broadcast
791 * timer marked this cpu in the broadcast
792 * pending mask and fired the broadcast
793 * IPI. So we are going to handle the expired
794 * event anyway via the broadcast IPI
795 * handler. No need to reprogram the timer
796 * with an already expired event.
798 if (cpumask_test_and_clear_cpu(cpu,
799 tick_broadcast_pending_mask))
800 goto out;
803 * Bail out if there is no next event.
805 if (dev->next_event == KTIME_MAX)
806 goto out;
808 * If the pending bit is not set, then we are
809 * either the CPU handling the broadcast
810 * interrupt or we got woken by something else.
812 * We are no longer in the broadcast mask, so
813 * if the cpu local expiry time is already
814 * reached, we would reprogram the cpu local
815 * timer with an already expired event.
817 * This can lead to a ping-pong when we return
818 * to idle and therefore rearm the broadcast
819 * timer before the cpu local timer was able
820 * to fire. This happens because the forced
821 * reprogramming makes sure that the event
822 * will happen in the future and depending on
823 * the min_delta setting this might be far
824 * enough out that the ping-pong starts.
826 * If the cpu local next_event has expired
827 * then we know that the broadcast timer
828 * next_event has expired as well and
829 * broadcast is about to be handled. So we
830 * avoid reprogramming and enforce that the
831 * broadcast handler, which did not run yet,
832 * will invoke the cpu local handler.
834 * We cannot call the handler directly from
835 * here, because we might be in a NOHZ phase
836 * and we did not go through the irq_enter()
837 * nohz fixups.
839 now = ktime_get();
840 if (dev->next_event <= now) {
841 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
842 goto out;
845 * We got woken by something else. Reprogram
846 * the cpu local timer device.
848 tick_program_event(dev->next_event, 1);
851 out:
852 raw_spin_unlock(&tick_broadcast_lock);
853 return ret;
857 * Reset the one shot broadcast for a cpu
859 * Called with tick_broadcast_lock held
861 static void tick_broadcast_clear_oneshot(int cpu)
863 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
864 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
867 static void tick_broadcast_init_next_event(struct cpumask *mask,
868 ktime_t expires)
870 struct tick_device *td;
871 int cpu;
873 for_each_cpu(cpu, mask) {
874 td = &per_cpu(tick_cpu_device, cpu);
875 if (td->evtdev)
876 td->evtdev->next_event = expires;
880 static inline ktime_t tick_get_next_period(void)
882 ktime_t next;
885 * Protect against concurrent updates (store /load tearing on
886 * 32bit). It does not matter if the time is already in the
887 * past. The broadcast device which is about to be programmed will
888 * fire in any case.
890 raw_spin_lock(&jiffies_lock);
891 next = tick_next_period;
892 raw_spin_unlock(&jiffies_lock);
893 return next;
897 * tick_broadcast_setup_oneshot - setup the broadcast device
899 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
901 int cpu = smp_processor_id();
903 if (!bc)
904 return;
906 /* Set it up only once ! */
907 if (bc->event_handler != tick_handle_oneshot_broadcast) {
908 int was_periodic = clockevent_state_periodic(bc);
910 bc->event_handler = tick_handle_oneshot_broadcast;
913 * We must be careful here. There might be other CPUs
914 * waiting for periodic broadcast. We need to set the
915 * oneshot_mask bits for those and program the
916 * broadcast device to fire.
918 cpumask_copy(tmpmask, tick_broadcast_mask);
919 cpumask_clear_cpu(cpu, tmpmask);
920 cpumask_or(tick_broadcast_oneshot_mask,
921 tick_broadcast_oneshot_mask, tmpmask);
923 if (was_periodic && !cpumask_empty(tmpmask)) {
924 ktime_t nextevt = tick_get_next_period();
926 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
927 tick_broadcast_init_next_event(tmpmask, nextevt);
928 tick_broadcast_set_event(bc, cpu, nextevt);
929 } else
930 bc->next_event = KTIME_MAX;
931 } else {
933 * The first cpu which switches to oneshot mode sets
934 * the bit for all other cpus which are in the general
935 * (periodic) broadcast mask. So the bit is set and
936 * would prevent the first broadcast enter after this
937 * to program the bc device.
939 tick_broadcast_clear_oneshot(cpu);
944 * Select oneshot operating mode for the broadcast device
946 void tick_broadcast_switch_to_oneshot(void)
948 struct clock_event_device *bc;
949 unsigned long flags;
951 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
953 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
954 bc = tick_broadcast_device.evtdev;
955 if (bc)
956 tick_broadcast_setup_oneshot(bc);
958 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
961 #ifdef CONFIG_HOTPLUG_CPU
962 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
964 struct clock_event_device *bc;
965 unsigned long flags;
967 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
968 bc = tick_broadcast_device.evtdev;
970 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
971 /* This moves the broadcast assignment to this CPU: */
972 clockevents_program_event(bc, bc->next_event, 1);
974 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
978 * Remove a dying CPU from broadcasting
980 static void tick_broadcast_oneshot_offline(unsigned int cpu)
983 * Clear the broadcast masks for the dead cpu, but do not stop
984 * the broadcast device!
986 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
987 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
988 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
990 #endif
993 * Check, whether the broadcast device is in one shot mode
995 int tick_broadcast_oneshot_active(void)
997 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
1001 * Check whether the broadcast device supports oneshot.
1003 bool tick_broadcast_oneshot_available(void)
1005 struct clock_event_device *bc = tick_broadcast_device.evtdev;
1007 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
1010 #else
1011 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
1013 struct clock_event_device *bc = tick_broadcast_device.evtdev;
1015 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1016 return -EBUSY;
1018 return 0;
1020 #endif
1022 void __init tick_broadcast_init(void)
1024 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1025 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1026 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1027 #ifdef CONFIG_TICK_ONESHOT
1028 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1029 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1030 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1031 #endif