1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
20 #include <asm/sections.h>
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
33 * DOC: memblock overview
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
74 * Once memblock is setup the memory can be allocated using one of the
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data
;
97 EXPORT_SYMBOL(contig_page_data
);
100 unsigned long max_low_pfn
;
101 unsigned long min_low_pfn
;
102 unsigned long max_pfn
;
103 unsigned long long max_possible_pfn
;
105 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
106 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_RESERVED_REGIONS
] __initdata_memblock
;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
];
111 struct memblock memblock __initdata_memblock
= {
112 .memory
.regions
= memblock_memory_init_regions
,
113 .memory
.cnt
= 1, /* empty dummy entry */
114 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
115 .memory
.name
= "memory",
117 .reserved
.regions
= memblock_reserved_init_regions
,
118 .reserved
.cnt
= 1, /* empty dummy entry */
119 .reserved
.max
= INIT_MEMBLOCK_RESERVED_REGIONS
,
120 .reserved
.name
= "reserved",
123 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem
= {
128 .regions
= memblock_physmem_init_regions
,
129 .cnt
= 1, /* empty dummy entry */
130 .max
= INIT_PHYSMEM_REGIONS
,
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
141 static __refdata
struct memblock_type
*memblock_memory
= &memblock
.memory
;
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
148 #define memblock_dbg(fmt, ...) \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
154 static int memblock_debug __initdata_memblock
;
155 static bool system_has_some_mirror __initdata_memblock
= false;
156 static int memblock_can_resize __initdata_memblock
;
157 static int memblock_memory_in_slab __initdata_memblock
= 0;
158 static int memblock_reserved_in_slab __initdata_memblock
= 0;
160 static enum memblock_flags __init_memblock
choose_memblock_flags(void)
162 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
168 return *size
= min(*size
, PHYS_ADDR_MAX
- base
);
172 * Address comparison utilities
174 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
175 phys_addr_t base2
, phys_addr_t size2
)
177 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
180 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
181 phys_addr_t base
, phys_addr_t size
)
185 for (i
= 0; i
< type
->cnt
; i
++)
186 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
187 type
->regions
[i
].size
))
189 return i
< type
->cnt
;
193 * __memblock_find_range_bottom_up - find free area utility in bottom-up
194 * @start: start of candidate range
195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
196 * %MEMBLOCK_ALLOC_ACCESSIBLE
197 * @size: size of free area to find
198 * @align: alignment of free area to find
199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
200 * @flags: pick from blocks based on memory attributes
202 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 * Found address on success, 0 on failure.
207 static phys_addr_t __init_memblock
208 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
209 phys_addr_t size
, phys_addr_t align
, int nid
,
210 enum memblock_flags flags
)
212 phys_addr_t this_start
, this_end
, cand
;
215 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
216 this_start
= clamp(this_start
, start
, end
);
217 this_end
= clamp(this_end
, start
, end
);
219 cand
= round_up(this_start
, align
);
220 if (cand
< this_end
&& this_end
- cand
>= size
)
228 * __memblock_find_range_top_down - find free area utility, in top-down
229 * @start: start of candidate range
230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
231 * %MEMBLOCK_ALLOC_ACCESSIBLE
232 * @size: size of free area to find
233 * @align: alignment of free area to find
234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
235 * @flags: pick from blocks based on memory attributes
237 * Utility called from memblock_find_in_range_node(), find free area top-down.
240 * Found address on success, 0 on failure.
242 static phys_addr_t __init_memblock
243 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
244 phys_addr_t size
, phys_addr_t align
, int nid
,
245 enum memblock_flags flags
)
247 phys_addr_t this_start
, this_end
, cand
;
250 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
252 this_start
= clamp(this_start
, start
, end
);
253 this_end
= clamp(this_end
, start
, end
);
258 cand
= round_down(this_end
- size
, align
);
259 if (cand
>= this_start
)
267 * memblock_find_in_range_node - find free area in given range and node
268 * @size: size of free area to find
269 * @align: alignment of free area to find
270 * @start: start of candidate range
271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
272 * %MEMBLOCK_ALLOC_ACCESSIBLE
273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
274 * @flags: pick from blocks based on memory attributes
276 * Find @size free area aligned to @align in the specified range and node.
278 * When allocation direction is bottom-up, the @start should be greater
279 * than the end of the kernel image. Otherwise, it will be trimmed. The
280 * reason is that we want the bottom-up allocation just near the kernel
281 * image so it is highly likely that the allocated memory and the kernel
282 * will reside in the same node.
284 * If bottom-up allocation failed, will try to allocate memory top-down.
287 * Found address on success, 0 on failure.
289 static phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
290 phys_addr_t align
, phys_addr_t start
,
291 phys_addr_t end
, int nid
,
292 enum memblock_flags flags
)
294 phys_addr_t kernel_end
, ret
;
297 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
||
298 end
== MEMBLOCK_ALLOC_KASAN
)
299 end
= memblock
.current_limit
;
301 /* avoid allocating the first page */
302 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
303 end
= max(start
, end
);
304 kernel_end
= __pa_symbol(_end
);
307 * try bottom-up allocation only when bottom-up mode
308 * is set and @end is above the kernel image.
310 if (memblock_bottom_up() && end
> kernel_end
) {
311 phys_addr_t bottom_up_start
;
313 /* make sure we will allocate above the kernel */
314 bottom_up_start
= max(start
, kernel_end
);
316 /* ok, try bottom-up allocation first */
317 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
318 size
, align
, nid
, flags
);
323 * we always limit bottom-up allocation above the kernel,
324 * but top-down allocation doesn't have the limit, so
325 * retrying top-down allocation may succeed when bottom-up
328 * bottom-up allocation is expected to be fail very rarely,
329 * so we use WARN_ONCE() here to see the stack trace if
332 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
),
333 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
336 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
341 * memblock_find_in_range - find free area in given range
342 * @start: start of candidate range
343 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
344 * %MEMBLOCK_ALLOC_ACCESSIBLE
345 * @size: size of free area to find
346 * @align: alignment of free area to find
348 * Find @size free area aligned to @align in the specified range.
351 * Found address on success, 0 on failure.
353 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
354 phys_addr_t end
, phys_addr_t size
,
358 enum memblock_flags flags
= choose_memblock_flags();
361 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
362 NUMA_NO_NODE
, flags
);
364 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
365 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
367 flags
&= ~MEMBLOCK_MIRROR
;
374 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
376 type
->total_size
-= type
->regions
[r
].size
;
377 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
378 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
381 /* Special case for empty arrays */
382 if (type
->cnt
== 0) {
383 WARN_ON(type
->total_size
!= 0);
385 type
->regions
[0].base
= 0;
386 type
->regions
[0].size
= 0;
387 type
->regions
[0].flags
= 0;
388 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
392 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
394 * memblock_discard - discard memory and reserved arrays if they were allocated
396 void __init
memblock_discard(void)
398 phys_addr_t addr
, size
;
400 if (memblock
.reserved
.regions
!= memblock_reserved_init_regions
) {
401 addr
= __pa(memblock
.reserved
.regions
);
402 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
403 memblock
.reserved
.max
);
404 __memblock_free_late(addr
, size
);
407 if (memblock
.memory
.regions
!= memblock_memory_init_regions
) {
408 addr
= __pa(memblock
.memory
.regions
);
409 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
410 memblock
.memory
.max
);
411 __memblock_free_late(addr
, size
);
414 memblock_memory
= NULL
;
419 * memblock_double_array - double the size of the memblock regions array
420 * @type: memblock type of the regions array being doubled
421 * @new_area_start: starting address of memory range to avoid overlap with
422 * @new_area_size: size of memory range to avoid overlap with
424 * Double the size of the @type regions array. If memblock is being used to
425 * allocate memory for a new reserved regions array and there is a previously
426 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
427 * waiting to be reserved, ensure the memory used by the new array does
431 * 0 on success, -1 on failure.
433 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
434 phys_addr_t new_area_start
,
435 phys_addr_t new_area_size
)
437 struct memblock_region
*new_array
, *old_array
;
438 phys_addr_t old_alloc_size
, new_alloc_size
;
439 phys_addr_t old_size
, new_size
, addr
, new_end
;
440 int use_slab
= slab_is_available();
443 /* We don't allow resizing until we know about the reserved regions
444 * of memory that aren't suitable for allocation
446 if (!memblock_can_resize
)
449 /* Calculate new doubled size */
450 old_size
= type
->max
* sizeof(struct memblock_region
);
451 new_size
= old_size
<< 1;
453 * We need to allocated new one align to PAGE_SIZE,
454 * so we can free them completely later.
456 old_alloc_size
= PAGE_ALIGN(old_size
);
457 new_alloc_size
= PAGE_ALIGN(new_size
);
459 /* Retrieve the slab flag */
460 if (type
== &memblock
.memory
)
461 in_slab
= &memblock_memory_in_slab
;
463 in_slab
= &memblock_reserved_in_slab
;
465 /* Try to find some space for it */
467 new_array
= kmalloc(new_size
, GFP_KERNEL
);
468 addr
= new_array
? __pa(new_array
) : 0;
470 /* only exclude range when trying to double reserved.regions */
471 if (type
!= &memblock
.reserved
)
472 new_area_start
= new_area_size
= 0;
474 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
475 memblock
.current_limit
,
476 new_alloc_size
, PAGE_SIZE
);
477 if (!addr
&& new_area_size
)
478 addr
= memblock_find_in_range(0,
479 min(new_area_start
, memblock
.current_limit
),
480 new_alloc_size
, PAGE_SIZE
);
482 new_array
= addr
? __va(addr
) : NULL
;
485 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
486 type
->name
, type
->max
, type
->max
* 2);
490 new_end
= addr
+ new_size
- 1;
491 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
492 type
->name
, type
->max
* 2, &addr
, &new_end
);
495 * Found space, we now need to move the array over before we add the
496 * reserved region since it may be our reserved array itself that is
499 memcpy(new_array
, type
->regions
, old_size
);
500 memset(new_array
+ type
->max
, 0, old_size
);
501 old_array
= type
->regions
;
502 type
->regions
= new_array
;
505 /* Free old array. We needn't free it if the array is the static one */
508 else if (old_array
!= memblock_memory_init_regions
&&
509 old_array
!= memblock_reserved_init_regions
)
510 memblock_free(__pa(old_array
), old_alloc_size
);
513 * Reserve the new array if that comes from the memblock. Otherwise, we
517 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
519 /* Update slab flag */
526 * memblock_merge_regions - merge neighboring compatible regions
527 * @type: memblock type to scan
529 * Scan @type and merge neighboring compatible regions.
531 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
535 /* cnt never goes below 1 */
536 while (i
< type
->cnt
- 1) {
537 struct memblock_region
*this = &type
->regions
[i
];
538 struct memblock_region
*next
= &type
->regions
[i
+ 1];
540 if (this->base
+ this->size
!= next
->base
||
541 memblock_get_region_node(this) !=
542 memblock_get_region_node(next
) ||
543 this->flags
!= next
->flags
) {
544 BUG_ON(this->base
+ this->size
> next
->base
);
549 this->size
+= next
->size
;
550 /* move forward from next + 1, index of which is i + 2 */
551 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
557 * memblock_insert_region - insert new memblock region
558 * @type: memblock type to insert into
559 * @idx: index for the insertion point
560 * @base: base address of the new region
561 * @size: size of the new region
562 * @nid: node id of the new region
563 * @flags: flags of the new region
565 * Insert new memblock region [@base, @base + @size) into @type at @idx.
566 * @type must already have extra room to accommodate the new region.
568 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
569 int idx
, phys_addr_t base
,
572 enum memblock_flags flags
)
574 struct memblock_region
*rgn
= &type
->regions
[idx
];
576 BUG_ON(type
->cnt
>= type
->max
);
577 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
581 memblock_set_region_node(rgn
, nid
);
583 type
->total_size
+= size
;
587 * memblock_add_range - add new memblock region
588 * @type: memblock type to add new region into
589 * @base: base address of the new region
590 * @size: size of the new region
591 * @nid: nid of the new region
592 * @flags: flags of the new region
594 * Add new memblock region [@base, @base + @size) into @type. The new region
595 * is allowed to overlap with existing ones - overlaps don't affect already
596 * existing regions. @type is guaranteed to be minimal (all neighbouring
597 * compatible regions are merged) after the addition.
600 * 0 on success, -errno on failure.
602 static int __init_memblock
memblock_add_range(struct memblock_type
*type
,
603 phys_addr_t base
, phys_addr_t size
,
604 int nid
, enum memblock_flags flags
)
607 phys_addr_t obase
= base
;
608 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
610 struct memblock_region
*rgn
;
615 /* special case for empty array */
616 if (type
->regions
[0].size
== 0) {
617 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
618 type
->regions
[0].base
= base
;
619 type
->regions
[0].size
= size
;
620 type
->regions
[0].flags
= flags
;
621 memblock_set_region_node(&type
->regions
[0], nid
);
622 type
->total_size
= size
;
627 * The following is executed twice. Once with %false @insert and
628 * then with %true. The first counts the number of regions needed
629 * to accommodate the new area. The second actually inserts them.
634 for_each_memblock_type(idx
, type
, rgn
) {
635 phys_addr_t rbase
= rgn
->base
;
636 phys_addr_t rend
= rbase
+ rgn
->size
;
643 * @rgn overlaps. If it separates the lower part of new
644 * area, insert that portion.
647 #ifdef CONFIG_NEED_MULTIPLE_NODES
648 WARN_ON(nid
!= memblock_get_region_node(rgn
));
650 WARN_ON(flags
!= rgn
->flags
);
653 memblock_insert_region(type
, idx
++, base
,
657 /* area below @rend is dealt with, forget about it */
658 base
= min(rend
, end
);
661 /* insert the remaining portion */
665 memblock_insert_region(type
, idx
, base
, end
- base
,
673 * If this was the first round, resize array and repeat for actual
674 * insertions; otherwise, merge and return.
677 while (type
->cnt
+ nr_new
> type
->max
)
678 if (memblock_double_array(type
, obase
, size
) < 0)
683 memblock_merge_regions(type
);
689 * memblock_add_node - add new memblock region within a NUMA node
690 * @base: base address of the new region
691 * @size: size of the new region
692 * @nid: nid of the new region
694 * Add new memblock region [@base, @base + @size) to the "memory"
695 * type. See memblock_add_range() description for mode details
698 * 0 on success, -errno on failure.
700 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
703 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
707 * memblock_add - add new memblock region
708 * @base: base address of the new region
709 * @size: size of the new region
711 * Add new memblock region [@base, @base + @size) to the "memory"
712 * type. See memblock_add_range() description for mode details
715 * 0 on success, -errno on failure.
717 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
719 phys_addr_t end
= base
+ size
- 1;
721 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
722 &base
, &end
, (void *)_RET_IP_
);
724 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
728 * memblock_isolate_range - isolate given range into disjoint memblocks
729 * @type: memblock type to isolate range for
730 * @base: base of range to isolate
731 * @size: size of range to isolate
732 * @start_rgn: out parameter for the start of isolated region
733 * @end_rgn: out parameter for the end of isolated region
735 * Walk @type and ensure that regions don't cross the boundaries defined by
736 * [@base, @base + @size). Crossing regions are split at the boundaries,
737 * which may create at most two more regions. The index of the first
738 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
741 * 0 on success, -errno on failure.
743 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
744 phys_addr_t base
, phys_addr_t size
,
745 int *start_rgn
, int *end_rgn
)
747 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
749 struct memblock_region
*rgn
;
751 *start_rgn
= *end_rgn
= 0;
756 /* we'll create at most two more regions */
757 while (type
->cnt
+ 2 > type
->max
)
758 if (memblock_double_array(type
, base
, size
) < 0)
761 for_each_memblock_type(idx
, type
, rgn
) {
762 phys_addr_t rbase
= rgn
->base
;
763 phys_addr_t rend
= rbase
+ rgn
->size
;
772 * @rgn intersects from below. Split and continue
773 * to process the next region - the new top half.
776 rgn
->size
-= base
- rbase
;
777 type
->total_size
-= base
- rbase
;
778 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
779 memblock_get_region_node(rgn
),
781 } else if (rend
> end
) {
783 * @rgn intersects from above. Split and redo the
784 * current region - the new bottom half.
787 rgn
->size
-= end
- rbase
;
788 type
->total_size
-= end
- rbase
;
789 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
790 memblock_get_region_node(rgn
),
793 /* @rgn is fully contained, record it */
803 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
804 phys_addr_t base
, phys_addr_t size
)
806 int start_rgn
, end_rgn
;
809 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
813 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
814 memblock_remove_region(type
, i
);
818 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
820 phys_addr_t end
= base
+ size
- 1;
822 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
823 &base
, &end
, (void *)_RET_IP_
);
825 return memblock_remove_range(&memblock
.memory
, base
, size
);
829 * memblock_free - free boot memory block
830 * @base: phys starting address of the boot memory block
831 * @size: size of the boot memory block in bytes
833 * Free boot memory block previously allocated by memblock_alloc_xx() API.
834 * The freeing memory will not be released to the buddy allocator.
836 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
838 phys_addr_t end
= base
+ size
- 1;
840 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
841 &base
, &end
, (void *)_RET_IP_
);
843 kmemleak_free_part_phys(base
, size
);
844 return memblock_remove_range(&memblock
.reserved
, base
, size
);
847 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
849 phys_addr_t end
= base
+ size
- 1;
851 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
852 &base
, &end
, (void *)_RET_IP_
);
854 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
857 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
858 int __init_memblock
memblock_physmem_add(phys_addr_t base
, phys_addr_t size
)
860 phys_addr_t end
= base
+ size
- 1;
862 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
863 &base
, &end
, (void *)_RET_IP_
);
865 return memblock_add_range(&physmem
, base
, size
, MAX_NUMNODES
, 0);
870 * memblock_setclr_flag - set or clear flag for a memory region
871 * @base: base address of the region
872 * @size: size of the region
873 * @set: set or clear the flag
874 * @flag: the flag to update
876 * This function isolates region [@base, @base + @size), and sets/clears flag
878 * Return: 0 on success, -errno on failure.
880 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
881 phys_addr_t size
, int set
, int flag
)
883 struct memblock_type
*type
= &memblock
.memory
;
884 int i
, ret
, start_rgn
, end_rgn
;
886 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
890 for (i
= start_rgn
; i
< end_rgn
; i
++) {
891 struct memblock_region
*r
= &type
->regions
[i
];
899 memblock_merge_regions(type
);
904 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
905 * @base: the base phys addr of the region
906 * @size: the size of the region
908 * Return: 0 on success, -errno on failure.
910 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
912 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
916 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
917 * @base: the base phys addr of the region
918 * @size: the size of the region
920 * Return: 0 on success, -errno on failure.
922 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
924 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
928 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
929 * @base: the base phys addr of the region
930 * @size: the size of the region
932 * Return: 0 on success, -errno on failure.
934 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
936 system_has_some_mirror
= true;
938 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
942 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
943 * @base: the base phys addr of the region
944 * @size: the size of the region
946 * Return: 0 on success, -errno on failure.
948 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
950 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
954 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
955 * @base: the base phys addr of the region
956 * @size: the size of the region
958 * Return: 0 on success, -errno on failure.
960 int __init_memblock
memblock_clear_nomap(phys_addr_t base
, phys_addr_t size
)
962 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_NOMAP
);
965 static bool should_skip_region(struct memblock_type
*type
,
966 struct memblock_region
*m
,
969 int m_nid
= memblock_get_region_node(m
);
971 /* we never skip regions when iterating memblock.reserved or physmem */
972 if (type
!= memblock_memory
)
975 /* only memory regions are associated with nodes, check it */
976 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
979 /* skip hotpluggable memory regions if needed */
980 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
983 /* if we want mirror memory skip non-mirror memory regions */
984 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
987 /* skip nomap memory unless we were asked for it explicitly */
988 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
995 * __next_mem_range - next function for for_each_free_mem_range() etc.
996 * @idx: pointer to u64 loop variable
997 * @nid: node selector, %NUMA_NO_NODE for all nodes
998 * @flags: pick from blocks based on memory attributes
999 * @type_a: pointer to memblock_type from where the range is taken
1000 * @type_b: pointer to memblock_type which excludes memory from being taken
1001 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1002 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1003 * @out_nid: ptr to int for nid of the range, can be %NULL
1005 * Find the first area from *@idx which matches @nid, fill the out
1006 * parameters, and update *@idx for the next iteration. The lower 32bit of
1007 * *@idx contains index into type_a and the upper 32bit indexes the
1008 * areas before each region in type_b. For example, if type_b regions
1009 * look like the following,
1011 * 0:[0-16), 1:[32-48), 2:[128-130)
1013 * The upper 32bit indexes the following regions.
1015 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1017 * As both region arrays are sorted, the function advances the two indices
1018 * in lockstep and returns each intersection.
1020 void __next_mem_range(u64
*idx
, int nid
, enum memblock_flags flags
,
1021 struct memblock_type
*type_a
,
1022 struct memblock_type
*type_b
, phys_addr_t
*out_start
,
1023 phys_addr_t
*out_end
, int *out_nid
)
1025 int idx_a
= *idx
& 0xffffffff;
1026 int idx_b
= *idx
>> 32;
1028 if (WARN_ONCE(nid
== MAX_NUMNODES
,
1029 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1032 for (; idx_a
< type_a
->cnt
; idx_a
++) {
1033 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1035 phys_addr_t m_start
= m
->base
;
1036 phys_addr_t m_end
= m
->base
+ m
->size
;
1037 int m_nid
= memblock_get_region_node(m
);
1039 if (should_skip_region(type_a
, m
, nid
, flags
))
1044 *out_start
= m_start
;
1050 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1054 /* scan areas before each reservation */
1055 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
1056 struct memblock_region
*r
;
1057 phys_addr_t r_start
;
1060 r
= &type_b
->regions
[idx_b
];
1061 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1062 r_end
= idx_b
< type_b
->cnt
?
1063 r
->base
: PHYS_ADDR_MAX
;
1066 * if idx_b advanced past idx_a,
1067 * break out to advance idx_a
1069 if (r_start
>= m_end
)
1071 /* if the two regions intersect, we're done */
1072 if (m_start
< r_end
) {
1075 max(m_start
, r_start
);
1077 *out_end
= min(m_end
, r_end
);
1081 * The region which ends first is
1082 * advanced for the next iteration.
1088 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1094 /* signal end of iteration */
1099 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1101 * @idx: pointer to u64 loop variable
1102 * @nid: node selector, %NUMA_NO_NODE for all nodes
1103 * @flags: pick from blocks based on memory attributes
1104 * @type_a: pointer to memblock_type from where the range is taken
1105 * @type_b: pointer to memblock_type which excludes memory from being taken
1106 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1107 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1108 * @out_nid: ptr to int for nid of the range, can be %NULL
1110 * Finds the next range from type_a which is not marked as unsuitable
1113 * Reverse of __next_mem_range().
1115 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
,
1116 enum memblock_flags flags
,
1117 struct memblock_type
*type_a
,
1118 struct memblock_type
*type_b
,
1119 phys_addr_t
*out_start
,
1120 phys_addr_t
*out_end
, int *out_nid
)
1122 int idx_a
= *idx
& 0xffffffff;
1123 int idx_b
= *idx
>> 32;
1125 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1128 if (*idx
== (u64
)ULLONG_MAX
) {
1129 idx_a
= type_a
->cnt
- 1;
1131 idx_b
= type_b
->cnt
;
1136 for (; idx_a
>= 0; idx_a
--) {
1137 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1139 phys_addr_t m_start
= m
->base
;
1140 phys_addr_t m_end
= m
->base
+ m
->size
;
1141 int m_nid
= memblock_get_region_node(m
);
1143 if (should_skip_region(type_a
, m
, nid
, flags
))
1148 *out_start
= m_start
;
1154 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1158 /* scan areas before each reservation */
1159 for (; idx_b
>= 0; idx_b
--) {
1160 struct memblock_region
*r
;
1161 phys_addr_t r_start
;
1164 r
= &type_b
->regions
[idx_b
];
1165 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1166 r_end
= idx_b
< type_b
->cnt
?
1167 r
->base
: PHYS_ADDR_MAX
;
1169 * if idx_b advanced past idx_a,
1170 * break out to advance idx_a
1173 if (r_end
<= m_start
)
1175 /* if the two regions intersect, we're done */
1176 if (m_end
> r_start
) {
1178 *out_start
= max(m_start
, r_start
);
1180 *out_end
= min(m_end
, r_end
);
1183 if (m_start
>= r_start
)
1187 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1192 /* signal end of iteration */
1197 * Common iterator interface used to define for_each_mem_pfn_range().
1199 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1200 unsigned long *out_start_pfn
,
1201 unsigned long *out_end_pfn
, int *out_nid
)
1203 struct memblock_type
*type
= &memblock
.memory
;
1204 struct memblock_region
*r
;
1207 while (++*idx
< type
->cnt
) {
1208 r
= &type
->regions
[*idx
];
1209 r_nid
= memblock_get_region_node(r
);
1211 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1213 if (nid
== MAX_NUMNODES
|| nid
== r_nid
)
1216 if (*idx
>= type
->cnt
) {
1222 *out_start_pfn
= PFN_UP(r
->base
);
1224 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1230 * memblock_set_node - set node ID on memblock regions
1231 * @base: base of area to set node ID for
1232 * @size: size of area to set node ID for
1233 * @type: memblock type to set node ID for
1234 * @nid: node ID to set
1236 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1237 * Regions which cross the area boundaries are split as necessary.
1240 * 0 on success, -errno on failure.
1242 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1243 struct memblock_type
*type
, int nid
)
1245 #ifdef CONFIG_NEED_MULTIPLE_NODES
1246 int start_rgn
, end_rgn
;
1249 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1253 for (i
= start_rgn
; i
< end_rgn
; i
++)
1254 memblock_set_region_node(&type
->regions
[i
], nid
);
1256 memblock_merge_regions(type
);
1261 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1263 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1265 * @idx: pointer to u64 loop variable
1266 * @zone: zone in which all of the memory blocks reside
1267 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1268 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1270 * This function is meant to be a zone/pfn specific wrapper for the
1271 * for_each_mem_range type iterators. Specifically they are used in the
1272 * deferred memory init routines and as such we were duplicating much of
1273 * this logic throughout the code. So instead of having it in multiple
1274 * locations it seemed like it would make more sense to centralize this to
1275 * one new iterator that does everything they need.
1277 void __init_memblock
1278 __next_mem_pfn_range_in_zone(u64
*idx
, struct zone
*zone
,
1279 unsigned long *out_spfn
, unsigned long *out_epfn
)
1281 int zone_nid
= zone_to_nid(zone
);
1282 phys_addr_t spa
, epa
;
1285 __next_mem_range(idx
, zone_nid
, MEMBLOCK_NONE
,
1286 &memblock
.memory
, &memblock
.reserved
,
1289 while (*idx
!= U64_MAX
) {
1290 unsigned long epfn
= PFN_DOWN(epa
);
1291 unsigned long spfn
= PFN_UP(spa
);
1294 * Verify the end is at least past the start of the zone and
1295 * that we have at least one PFN to initialize.
1297 if (zone
->zone_start_pfn
< epfn
&& spfn
< epfn
) {
1298 /* if we went too far just stop searching */
1299 if (zone_end_pfn(zone
) <= spfn
) {
1305 *out_spfn
= max(zone
->zone_start_pfn
, spfn
);
1307 *out_epfn
= min(zone_end_pfn(zone
), epfn
);
1312 __next_mem_range(idx
, zone_nid
, MEMBLOCK_NONE
,
1313 &memblock
.memory
, &memblock
.reserved
,
1317 /* signal end of iteration */
1319 *out_spfn
= ULONG_MAX
;
1324 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1327 * memblock_alloc_range_nid - allocate boot memory block
1328 * @size: size of memory block to be allocated in bytes
1329 * @align: alignment of the region and block's size
1330 * @start: the lower bound of the memory region to allocate (phys address)
1331 * @end: the upper bound of the memory region to allocate (phys address)
1332 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1333 * @exact_nid: control the allocation fall back to other nodes
1335 * The allocation is performed from memory region limited by
1336 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1338 * If the specified node can not hold the requested memory and @exact_nid
1339 * is false, the allocation falls back to any node in the system.
1341 * For systems with memory mirroring, the allocation is attempted first
1342 * from the regions with mirroring enabled and then retried from any
1345 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1346 * allocated boot memory block, so that it is never reported as leaks.
1349 * Physical address of allocated memory block on success, %0 on failure.
1351 phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1352 phys_addr_t align
, phys_addr_t start
,
1353 phys_addr_t end
, int nid
,
1356 enum memblock_flags flags
= choose_memblock_flags();
1359 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1363 /* Can't use WARNs this early in boot on powerpc */
1365 align
= SMP_CACHE_BYTES
;
1369 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1371 if (found
&& !memblock_reserve(found
, size
))
1374 if (nid
!= NUMA_NO_NODE
&& !exact_nid
) {
1375 found
= memblock_find_in_range_node(size
, align
, start
,
1378 if (found
&& !memblock_reserve(found
, size
))
1382 if (flags
& MEMBLOCK_MIRROR
) {
1383 flags
&= ~MEMBLOCK_MIRROR
;
1384 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1392 /* Skip kmemleak for kasan_init() due to high volume. */
1393 if (end
!= MEMBLOCK_ALLOC_KASAN
)
1395 * The min_count is set to 0 so that memblock allocated
1396 * blocks are never reported as leaks. This is because many
1397 * of these blocks are only referred via the physical
1398 * address which is not looked up by kmemleak.
1400 kmemleak_alloc_phys(found
, size
, 0, 0);
1406 * memblock_phys_alloc_range - allocate a memory block inside specified range
1407 * @size: size of memory block to be allocated in bytes
1408 * @align: alignment of the region and block's size
1409 * @start: the lower bound of the memory region to allocate (physical address)
1410 * @end: the upper bound of the memory region to allocate (physical address)
1412 * Allocate @size bytes in the between @start and @end.
1414 * Return: physical address of the allocated memory block on success,
1417 phys_addr_t __init
memblock_phys_alloc_range(phys_addr_t size
,
1422 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1423 __func__
, (u64
)size
, (u64
)align
, &start
, &end
,
1425 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1430 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1431 * @size: size of memory block to be allocated in bytes
1432 * @align: alignment of the region and block's size
1433 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1435 * Allocates memory block from the specified NUMA node. If the node
1436 * has no available memory, attempts to allocated from any node in the
1439 * Return: physical address of the allocated memory block on success,
1442 phys_addr_t __init
memblock_phys_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1444 return memblock_alloc_range_nid(size
, align
, 0,
1445 MEMBLOCK_ALLOC_ACCESSIBLE
, nid
, false);
1449 * memblock_alloc_internal - allocate boot memory block
1450 * @size: size of memory block to be allocated in bytes
1451 * @align: alignment of the region and block's size
1452 * @min_addr: the lower bound of the memory region to allocate (phys address)
1453 * @max_addr: the upper bound of the memory region to allocate (phys address)
1454 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1455 * @exact_nid: control the allocation fall back to other nodes
1457 * Allocates memory block using memblock_alloc_range_nid() and
1458 * converts the returned physical address to virtual.
1460 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1461 * will fall back to memory below @min_addr. Other constraints, such
1462 * as node and mirrored memory will be handled again in
1463 * memblock_alloc_range_nid().
1466 * Virtual address of allocated memory block on success, NULL on failure.
1468 static void * __init
memblock_alloc_internal(
1469 phys_addr_t size
, phys_addr_t align
,
1470 phys_addr_t min_addr
, phys_addr_t max_addr
,
1471 int nid
, bool exact_nid
)
1476 * Detect any accidental use of these APIs after slab is ready, as at
1477 * this moment memblock may be deinitialized already and its
1478 * internal data may be destroyed (after execution of memblock_free_all)
1480 if (WARN_ON_ONCE(slab_is_available()))
1481 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1483 if (max_addr
> memblock
.current_limit
)
1484 max_addr
= memblock
.current_limit
;
1486 alloc
= memblock_alloc_range_nid(size
, align
, min_addr
, max_addr
, nid
,
1489 /* retry allocation without lower limit */
1490 if (!alloc
&& min_addr
)
1491 alloc
= memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
,
1497 return phys_to_virt(alloc
);
1501 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1502 * without zeroing memory
1503 * @size: size of memory block to be allocated in bytes
1504 * @align: alignment of the region and block's size
1505 * @min_addr: the lower bound of the memory region from where the allocation
1506 * is preferred (phys address)
1507 * @max_addr: the upper bound of the memory region from where the allocation
1508 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1509 * allocate only from memory limited by memblock.current_limit value
1510 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1512 * Public function, provides additional debug information (including caller
1513 * info), if enabled. Does not zero allocated memory.
1516 * Virtual address of allocated memory block on success, NULL on failure.
1518 void * __init
memblock_alloc_exact_nid_raw(
1519 phys_addr_t size
, phys_addr_t align
,
1520 phys_addr_t min_addr
, phys_addr_t max_addr
,
1525 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1526 __func__
, (u64
)size
, (u64
)align
, nid
, &min_addr
,
1527 &max_addr
, (void *)_RET_IP_
);
1529 ptr
= memblock_alloc_internal(size
, align
,
1530 min_addr
, max_addr
, nid
, true);
1531 if (ptr
&& size
> 0)
1532 page_init_poison(ptr
, size
);
1538 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1539 * memory and without panicking
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 * is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546 * allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. Does not zero allocated memory, does not panic if request
1551 * cannot be satisfied.
1554 * Virtual address of allocated memory block on success, NULL on failure.
1556 void * __init
memblock_alloc_try_nid_raw(
1557 phys_addr_t size
, phys_addr_t align
,
1558 phys_addr_t min_addr
, phys_addr_t max_addr
,
1563 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1564 __func__
, (u64
)size
, (u64
)align
, nid
, &min_addr
,
1565 &max_addr
, (void *)_RET_IP_
);
1567 ptr
= memblock_alloc_internal(size
, align
,
1568 min_addr
, max_addr
, nid
, false);
1569 if (ptr
&& size
> 0)
1570 page_init_poison(ptr
, size
);
1576 * memblock_alloc_try_nid - allocate boot memory block
1577 * @size: size of memory block to be allocated in bytes
1578 * @align: alignment of the region and block's size
1579 * @min_addr: the lower bound of the memory region from where the allocation
1580 * is preferred (phys address)
1581 * @max_addr: the upper bound of the memory region from where the allocation
1582 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1583 * allocate only from memory limited by memblock.current_limit value
1584 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1586 * Public function, provides additional debug information (including caller
1587 * info), if enabled. This function zeroes the allocated memory.
1590 * Virtual address of allocated memory block on success, NULL on failure.
1592 void * __init
memblock_alloc_try_nid(
1593 phys_addr_t size
, phys_addr_t align
,
1594 phys_addr_t min_addr
, phys_addr_t max_addr
,
1599 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1600 __func__
, (u64
)size
, (u64
)align
, nid
, &min_addr
,
1601 &max_addr
, (void *)_RET_IP_
);
1602 ptr
= memblock_alloc_internal(size
, align
,
1603 min_addr
, max_addr
, nid
, false);
1605 memset(ptr
, 0, size
);
1611 * __memblock_free_late - free pages directly to buddy allocator
1612 * @base: phys starting address of the boot memory block
1613 * @size: size of the boot memory block in bytes
1615 * This is only useful when the memblock allocator has already been torn
1616 * down, but we are still initializing the system. Pages are released directly
1617 * to the buddy allocator.
1619 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1621 phys_addr_t cursor
, end
;
1623 end
= base
+ size
- 1;
1624 memblock_dbg("%s: [%pa-%pa] %pS\n",
1625 __func__
, &base
, &end
, (void *)_RET_IP_
);
1626 kmemleak_free_part_phys(base
, size
);
1627 cursor
= PFN_UP(base
);
1628 end
= PFN_DOWN(base
+ size
);
1630 for (; cursor
< end
; cursor
++) {
1631 memblock_free_pages(pfn_to_page(cursor
), cursor
, 0);
1632 totalram_pages_inc();
1637 * Remaining API functions
1640 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1642 return memblock
.memory
.total_size
;
1645 phys_addr_t __init_memblock
memblock_reserved_size(void)
1647 return memblock
.reserved
.total_size
;
1650 /* lowest address */
1651 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1653 return memblock
.memory
.regions
[0].base
;
1656 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1658 int idx
= memblock
.memory
.cnt
- 1;
1660 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1663 static phys_addr_t __init_memblock
__find_max_addr(phys_addr_t limit
)
1665 phys_addr_t max_addr
= PHYS_ADDR_MAX
;
1666 struct memblock_region
*r
;
1669 * translate the memory @limit size into the max address within one of
1670 * the memory memblock regions, if the @limit exceeds the total size
1671 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1673 for_each_mem_region(r
) {
1674 if (limit
<= r
->size
) {
1675 max_addr
= r
->base
+ limit
;
1684 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1686 phys_addr_t max_addr
;
1691 max_addr
= __find_max_addr(limit
);
1693 /* @limit exceeds the total size of the memory, do nothing */
1694 if (max_addr
== PHYS_ADDR_MAX
)
1697 /* truncate both memory and reserved regions */
1698 memblock_remove_range(&memblock
.memory
, max_addr
,
1700 memblock_remove_range(&memblock
.reserved
, max_addr
,
1704 void __init
memblock_cap_memory_range(phys_addr_t base
, phys_addr_t size
)
1706 int start_rgn
, end_rgn
;
1712 ret
= memblock_isolate_range(&memblock
.memory
, base
, size
,
1713 &start_rgn
, &end_rgn
);
1717 /* remove all the MAP regions */
1718 for (i
= memblock
.memory
.cnt
- 1; i
>= end_rgn
; i
--)
1719 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1720 memblock_remove_region(&memblock
.memory
, i
);
1722 for (i
= start_rgn
- 1; i
>= 0; i
--)
1723 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1724 memblock_remove_region(&memblock
.memory
, i
);
1726 /* truncate the reserved regions */
1727 memblock_remove_range(&memblock
.reserved
, 0, base
);
1728 memblock_remove_range(&memblock
.reserved
,
1729 base
+ size
, PHYS_ADDR_MAX
);
1732 void __init
memblock_mem_limit_remove_map(phys_addr_t limit
)
1734 phys_addr_t max_addr
;
1739 max_addr
= __find_max_addr(limit
);
1741 /* @limit exceeds the total size of the memory, do nothing */
1742 if (max_addr
== PHYS_ADDR_MAX
)
1745 memblock_cap_memory_range(0, max_addr
);
1748 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1750 unsigned int left
= 0, right
= type
->cnt
;
1753 unsigned int mid
= (right
+ left
) / 2;
1755 if (addr
< type
->regions
[mid
].base
)
1757 else if (addr
>= (type
->regions
[mid
].base
+
1758 type
->regions
[mid
].size
))
1762 } while (left
< right
);
1766 bool __init_memblock
memblock_is_reserved(phys_addr_t addr
)
1768 return memblock_search(&memblock
.reserved
, addr
) != -1;
1771 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1773 return memblock_search(&memblock
.memory
, addr
) != -1;
1776 bool __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1778 int i
= memblock_search(&memblock
.memory
, addr
);
1782 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1785 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1786 unsigned long *start_pfn
, unsigned long *end_pfn
)
1788 struct memblock_type
*type
= &memblock
.memory
;
1789 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1794 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1795 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1797 return memblock_get_region_node(&type
->regions
[mid
]);
1801 * memblock_is_region_memory - check if a region is a subset of memory
1802 * @base: base of region to check
1803 * @size: size of region to check
1805 * Check if the region [@base, @base + @size) is a subset of a memory block.
1808 * 0 if false, non-zero if true
1810 bool __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1812 int idx
= memblock_search(&memblock
.memory
, base
);
1813 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1817 return (memblock
.memory
.regions
[idx
].base
+
1818 memblock
.memory
.regions
[idx
].size
) >= end
;
1822 * memblock_is_region_reserved - check if a region intersects reserved memory
1823 * @base: base of region to check
1824 * @size: size of region to check
1826 * Check if the region [@base, @base + @size) intersects a reserved
1830 * True if they intersect, false if not.
1832 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1834 memblock_cap_size(base
, &size
);
1835 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1838 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1840 phys_addr_t start
, end
, orig_start
, orig_end
;
1841 struct memblock_region
*r
;
1843 for_each_mem_region(r
) {
1844 orig_start
= r
->base
;
1845 orig_end
= r
->base
+ r
->size
;
1846 start
= round_up(orig_start
, align
);
1847 end
= round_down(orig_end
, align
);
1849 if (start
== orig_start
&& end
== orig_end
)
1854 r
->size
= end
- start
;
1856 memblock_remove_region(&memblock
.memory
,
1857 r
- memblock
.memory
.regions
);
1863 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1865 memblock
.current_limit
= limit
;
1868 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1870 return memblock
.current_limit
;
1873 static void __init_memblock
memblock_dump(struct memblock_type
*type
)
1875 phys_addr_t base
, end
, size
;
1876 enum memblock_flags flags
;
1878 struct memblock_region
*rgn
;
1880 pr_info(" %s.cnt = 0x%lx\n", type
->name
, type
->cnt
);
1882 for_each_memblock_type(idx
, type
, rgn
) {
1883 char nid_buf
[32] = "";
1887 end
= base
+ size
- 1;
1889 #ifdef CONFIG_NEED_MULTIPLE_NODES
1890 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1891 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1892 memblock_get_region_node(rgn
));
1894 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1895 type
->name
, idx
, &base
, &end
, &size
, nid_buf
, flags
);
1899 static void __init_memblock
__memblock_dump_all(void)
1901 pr_info("MEMBLOCK configuration:\n");
1902 pr_info(" memory size = %pa reserved size = %pa\n",
1903 &memblock
.memory
.total_size
,
1904 &memblock
.reserved
.total_size
);
1906 memblock_dump(&memblock
.memory
);
1907 memblock_dump(&memblock
.reserved
);
1908 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1909 memblock_dump(&physmem
);
1913 void __init_memblock
memblock_dump_all(void)
1916 __memblock_dump_all();
1919 void __init
memblock_allow_resize(void)
1921 memblock_can_resize
= 1;
1924 static int __init
early_memblock(char *p
)
1926 if (p
&& strstr(p
, "debug"))
1930 early_param("memblock", early_memblock
);
1932 static void __init
free_memmap(unsigned long start_pfn
, unsigned long end_pfn
)
1934 struct page
*start_pg
, *end_pg
;
1935 phys_addr_t pg
, pgend
;
1938 * Convert start_pfn/end_pfn to a struct page pointer.
1940 start_pg
= pfn_to_page(start_pfn
- 1) + 1;
1941 end_pg
= pfn_to_page(end_pfn
- 1) + 1;
1944 * Convert to physical addresses, and round start upwards and end
1947 pg
= PAGE_ALIGN(__pa(start_pg
));
1948 pgend
= __pa(end_pg
) & PAGE_MASK
;
1951 * If there are free pages between these, free the section of the
1955 memblock_free(pg
, pgend
- pg
);
1959 * The mem_map array can get very big. Free the unused area of the memory map.
1961 static void __init
free_unused_memmap(void)
1963 unsigned long start
, end
, prev_end
= 0;
1966 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID
) ||
1967 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP
))
1971 * This relies on each bank being in address order.
1972 * The banks are sorted previously in bootmem_init().
1974 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, NULL
) {
1975 #ifdef CONFIG_SPARSEMEM
1977 * Take care not to free memmap entries that don't exist
1978 * due to SPARSEMEM sections which aren't present.
1980 start
= min(start
, ALIGN(prev_end
, PAGES_PER_SECTION
));
1983 * Align down here since the VM subsystem insists that the
1984 * memmap entries are valid from the bank start aligned to
1985 * MAX_ORDER_NR_PAGES.
1987 start
= round_down(start
, MAX_ORDER_NR_PAGES
);
1991 * If we had a previous bank, and there is a space
1992 * between the current bank and the previous, free it.
1994 if (prev_end
&& prev_end
< start
)
1995 free_memmap(prev_end
, start
);
1998 * Align up here since the VM subsystem insists that the
1999 * memmap entries are valid from the bank end aligned to
2000 * MAX_ORDER_NR_PAGES.
2002 prev_end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
2005 #ifdef CONFIG_SPARSEMEM
2006 if (!IS_ALIGNED(prev_end
, PAGES_PER_SECTION
))
2007 free_memmap(prev_end
, ALIGN(prev_end
, PAGES_PER_SECTION
));
2011 static void __init
__free_pages_memory(unsigned long start
, unsigned long end
)
2015 while (start
< end
) {
2016 order
= min(MAX_ORDER
- 1UL, __ffs(start
));
2018 while (start
+ (1UL << order
) > end
)
2021 memblock_free_pages(pfn_to_page(start
), start
, order
);
2023 start
+= (1UL << order
);
2027 static unsigned long __init
__free_memory_core(phys_addr_t start
,
2030 unsigned long start_pfn
= PFN_UP(start
);
2031 unsigned long end_pfn
= min_t(unsigned long,
2032 PFN_DOWN(end
), max_low_pfn
);
2034 if (start_pfn
>= end_pfn
)
2037 __free_pages_memory(start_pfn
, end_pfn
);
2039 return end_pfn
- start_pfn
;
2042 static unsigned long __init
free_low_memory_core_early(void)
2044 unsigned long count
= 0;
2045 phys_addr_t start
, end
;
2048 memblock_clear_hotplug(0, -1);
2050 for_each_reserved_mem_range(i
, &start
, &end
)
2051 reserve_bootmem_region(start
, end
);
2054 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2055 * because in some case like Node0 doesn't have RAM installed
2056 * low ram will be on Node1
2058 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
,
2060 count
+= __free_memory_core(start
, end
);
2065 static int reset_managed_pages_done __initdata
;
2067 void reset_node_managed_pages(pg_data_t
*pgdat
)
2071 for (z
= pgdat
->node_zones
; z
< pgdat
->node_zones
+ MAX_NR_ZONES
; z
++)
2072 atomic_long_set(&z
->managed_pages
, 0);
2075 void __init
reset_all_zones_managed_pages(void)
2077 struct pglist_data
*pgdat
;
2079 if (reset_managed_pages_done
)
2082 for_each_online_pgdat(pgdat
)
2083 reset_node_managed_pages(pgdat
);
2085 reset_managed_pages_done
= 1;
2089 * memblock_free_all - release free pages to the buddy allocator
2091 * Return: the number of pages actually released.
2093 unsigned long __init
memblock_free_all(void)
2095 unsigned long pages
;
2097 free_unused_memmap();
2098 reset_all_zones_managed_pages();
2100 pages
= free_low_memory_core_early();
2101 totalram_pages_add(pages
);
2106 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2108 static int memblock_debug_show(struct seq_file
*m
, void *private)
2110 struct memblock_type
*type
= m
->private;
2111 struct memblock_region
*reg
;
2115 for (i
= 0; i
< type
->cnt
; i
++) {
2116 reg
= &type
->regions
[i
];
2117 end
= reg
->base
+ reg
->size
- 1;
2119 seq_printf(m
, "%4d: ", i
);
2120 seq_printf(m
, "%pa..%pa\n", ®
->base
, &end
);
2124 DEFINE_SHOW_ATTRIBUTE(memblock_debug
);
2126 static int __init
memblock_init_debugfs(void)
2128 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
2130 debugfs_create_file("memory", 0444, root
,
2131 &memblock
.memory
, &memblock_debug_fops
);
2132 debugfs_create_file("reserved", 0444, root
,
2133 &memblock
.reserved
, &memblock_debug_fops
);
2134 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2135 debugfs_create_file("physmem", 0444, root
, &physmem
,
2136 &memblock_debug_fops
);
2141 __initcall(memblock_init_debugfs
);
2143 #endif /* CONFIG_DEBUG_FS */