1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 #ifdef CONFIG_SLUB_DEBUG
118 #ifdef CONFIG_SLUB_DEBUG_ON
119 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled
);
121 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled
);
125 static inline bool kmem_cache_debug(struct kmem_cache
*s
)
127 return kmem_cache_debug_flags(s
, SLAB_DEBUG_FLAGS
);
130 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
132 if (kmem_cache_debug_flags(s
, SLAB_RED_ZONE
))
133 p
+= s
->red_left_pad
;
138 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
140 #ifdef CONFIG_SLUB_CPU_PARTIAL
141 return !kmem_cache_debug(s
);
148 * Issues still to be resolved:
150 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 * - Variable sizing of the per node arrays
155 /* Enable to test recovery from slab corruption on boot */
156 #undef SLUB_RESILIENCY_TEST
158 /* Enable to log cmpxchg failures */
159 #undef SLUB_DEBUG_CMPXCHG
162 * Mininum number of partial slabs. These will be left on the partial
163 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 #define MIN_PARTIAL 5
168 * Maximum number of desirable partial slabs.
169 * The existence of more partial slabs makes kmem_cache_shrink
170 * sort the partial list by the number of objects in use.
172 #define MAX_PARTIAL 10
174 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_STORE_USER)
178 * These debug flags cannot use CMPXCHG because there might be consistency
179 * issues when checking or reading debug information
181 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
186 * Debugging flags that require metadata to be stored in the slab. These get
187 * disabled when slub_debug=O is used and a cache's min order increases with
190 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
193 #define OO_MASK ((1 << OO_SHIFT) - 1)
194 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196 /* Internal SLUB flags */
198 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
199 /* Use cmpxchg_double */
200 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
203 * Tracking user of a slab.
205 #define TRACK_ADDRS_COUNT 16
207 unsigned long addr
; /* Called from address */
208 #ifdef CONFIG_STACKTRACE
209 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
211 int cpu
; /* Was running on cpu */
212 int pid
; /* Pid context */
213 unsigned long when
; /* When did the operation occur */
216 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
219 static int sysfs_slab_add(struct kmem_cache
*);
220 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
222 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
227 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
229 #ifdef CONFIG_SLUB_STATS
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
234 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
247 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
248 unsigned long ptr_addr
)
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
261 return (void *)((unsigned long)ptr
^ s
->random
^
262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr
)));
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache
*s
,
272 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
273 (unsigned long)ptr_addr
);
276 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
278 object
= kasan_reset_tag(object
);
279 return freelist_dereference(s
, object
+ s
->offset
);
282 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
284 prefetch(object
+ s
->offset
);
287 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
289 unsigned long freepointer_addr
;
292 if (!debug_pagealloc_enabled_static())
293 return get_freepointer(s
, object
);
295 freepointer_addr
= (unsigned long)object
+ s
->offset
;
296 copy_from_kernel_nofault(&p
, (void **)freepointer_addr
, sizeof(p
));
297 return freelist_ptr(s
, p
, freepointer_addr
);
300 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
302 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
308 freeptr_addr
= (unsigned long)kasan_reset_tag((void *)freeptr_addr
);
309 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
318 static inline unsigned int order_objects(unsigned int order
, unsigned int size
)
320 return ((unsigned int)PAGE_SIZE
<< order
) / size
;
323 static inline struct kmem_cache_order_objects
oo_make(unsigned int order
,
326 struct kmem_cache_order_objects x
= {
327 (order
<< OO_SHIFT
) + order_objects(order
, size
)
333 static inline unsigned int oo_order(struct kmem_cache_order_objects x
)
335 return x
.x
>> OO_SHIFT
;
338 static inline unsigned int oo_objects(struct kmem_cache_order_objects x
)
340 return x
.x
& OO_MASK
;
344 * Per slab locking using the pagelock
346 static __always_inline
void slab_lock(struct page
*page
)
348 VM_BUG_ON_PAGE(PageTail(page
), page
);
349 bit_spin_lock(PG_locked
, &page
->flags
);
352 static __always_inline
void slab_unlock(struct page
*page
)
354 VM_BUG_ON_PAGE(PageTail(page
), page
);
355 __bit_spin_unlock(PG_locked
, &page
->flags
);
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
360 void *freelist_old
, unsigned long counters_old
,
361 void *freelist_new
, unsigned long counters_new
,
364 VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 if (s
->flags
& __CMPXCHG_DOUBLE
) {
368 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
369 freelist_old
, counters_old
,
370 freelist_new
, counters_new
))
376 if (page
->freelist
== freelist_old
&&
377 page
->counters
== counters_old
) {
378 page
->freelist
= freelist_new
;
379 page
->counters
= counters_new
;
387 stat(s
, CMPXCHG_DOUBLE_FAIL
);
389 #ifdef SLUB_DEBUG_CMPXCHG
390 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
396 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
397 void *freelist_old
, unsigned long counters_old
,
398 void *freelist_new
, unsigned long counters_new
,
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 if (s
->flags
& __CMPXCHG_DOUBLE
) {
404 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
405 freelist_old
, counters_old
,
406 freelist_new
, counters_new
))
413 local_irq_save(flags
);
415 if (page
->freelist
== freelist_old
&&
416 page
->counters
== counters_old
) {
417 page
->freelist
= freelist_new
;
418 page
->counters
= counters_new
;
420 local_irq_restore(flags
);
424 local_irq_restore(flags
);
428 stat(s
, CMPXCHG_DOUBLE_FAIL
);
430 #ifdef SLUB_DEBUG_CMPXCHG
431 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
437 #ifdef CONFIG_SLUB_DEBUG
438 static unsigned long object_map
[BITS_TO_LONGS(MAX_OBJS_PER_PAGE
)];
439 static DEFINE_SPINLOCK(object_map_lock
);
442 * Determine a map of object in use on a page.
444 * Node listlock must be held to guarantee that the page does
445 * not vanish from under us.
447 static unsigned long *get_map(struct kmem_cache
*s
, struct page
*page
)
448 __acquires(&object_map_lock
)
451 void *addr
= page_address(page
);
453 VM_BUG_ON(!irqs_disabled());
455 spin_lock(&object_map_lock
);
457 bitmap_zero(object_map
, page
->objects
);
459 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
460 set_bit(__obj_to_index(s
, addr
, p
), object_map
);
465 static void put_map(unsigned long *map
) __releases(&object_map_lock
)
467 VM_BUG_ON(map
!= object_map
);
468 spin_unlock(&object_map_lock
);
471 static inline unsigned int size_from_object(struct kmem_cache
*s
)
473 if (s
->flags
& SLAB_RED_ZONE
)
474 return s
->size
- s
->red_left_pad
;
479 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
481 if (s
->flags
& SLAB_RED_ZONE
)
482 p
-= s
->red_left_pad
;
490 #if defined(CONFIG_SLUB_DEBUG_ON)
491 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
493 static slab_flags_t slub_debug
;
496 static char *slub_debug_string
;
497 static int disable_higher_order_debug
;
500 * slub is about to manipulate internal object metadata. This memory lies
501 * outside the range of the allocated object, so accessing it would normally
502 * be reported by kasan as a bounds error. metadata_access_enable() is used
503 * to tell kasan that these accesses are OK.
505 static inline void metadata_access_enable(void)
507 kasan_disable_current();
510 static inline void metadata_access_disable(void)
512 kasan_enable_current();
519 /* Verify that a pointer has an address that is valid within a slab page */
520 static inline int check_valid_pointer(struct kmem_cache
*s
,
521 struct page
*page
, void *object
)
528 base
= page_address(page
);
529 object
= kasan_reset_tag(object
);
530 object
= restore_red_left(s
, object
);
531 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
532 (object
- base
) % s
->size
) {
539 static void print_section(char *level
, char *text
, u8
*addr
,
542 metadata_access_enable();
543 print_hex_dump(level
, kasan_reset_tag(text
), DUMP_PREFIX_ADDRESS
,
544 16, 1, addr
, length
, 1);
545 metadata_access_disable();
549 * See comment in calculate_sizes().
551 static inline bool freeptr_outside_object(struct kmem_cache
*s
)
553 return s
->offset
>= s
->inuse
;
557 * Return offset of the end of info block which is inuse + free pointer if
558 * not overlapping with object.
560 static inline unsigned int get_info_end(struct kmem_cache
*s
)
562 if (freeptr_outside_object(s
))
563 return s
->inuse
+ sizeof(void *);
568 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
569 enum track_item alloc
)
573 p
= object
+ get_info_end(s
);
575 return kasan_reset_tag(p
+ alloc
);
578 static void set_track(struct kmem_cache
*s
, void *object
,
579 enum track_item alloc
, unsigned long addr
)
581 struct track
*p
= get_track(s
, object
, alloc
);
584 #ifdef CONFIG_STACKTRACE
585 unsigned int nr_entries
;
587 metadata_access_enable();
588 nr_entries
= stack_trace_save(kasan_reset_tag(p
->addrs
),
589 TRACK_ADDRS_COUNT
, 3);
590 metadata_access_disable();
592 if (nr_entries
< TRACK_ADDRS_COUNT
)
593 p
->addrs
[nr_entries
] = 0;
596 p
->cpu
= smp_processor_id();
597 p
->pid
= current
->pid
;
600 memset(p
, 0, sizeof(struct track
));
604 static void init_tracking(struct kmem_cache
*s
, void *object
)
606 if (!(s
->flags
& SLAB_STORE_USER
))
609 set_track(s
, object
, TRACK_FREE
, 0UL);
610 set_track(s
, object
, TRACK_ALLOC
, 0UL);
613 static void print_track(const char *s
, struct track
*t
, unsigned long pr_time
)
618 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
619 s
, (void *)t
->addr
, pr_time
- t
->when
, t
->cpu
, t
->pid
);
620 #ifdef CONFIG_STACKTRACE
623 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
625 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
632 void print_tracking(struct kmem_cache
*s
, void *object
)
634 unsigned long pr_time
= jiffies
;
635 if (!(s
->flags
& SLAB_STORE_USER
))
638 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
), pr_time
);
639 print_track("Freed", get_track(s
, object
, TRACK_FREE
), pr_time
);
642 static void print_page_info(struct page
*page
)
644 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
645 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
649 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
651 struct va_format vaf
;
657 pr_err("=============================================================================\n");
658 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
659 pr_err("-----------------------------------------------------------------------------\n\n");
661 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
665 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
667 struct va_format vaf
;
673 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
677 static bool freelist_corrupted(struct kmem_cache
*s
, struct page
*page
,
678 void **freelist
, void *nextfree
)
680 if ((s
->flags
& SLAB_CONSISTENCY_CHECKS
) &&
681 !check_valid_pointer(s
, page
, nextfree
) && freelist
) {
682 object_err(s
, page
, *freelist
, "Freechain corrupt");
684 slab_fix(s
, "Isolate corrupted freechain");
691 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
693 unsigned int off
; /* Offset of last byte */
694 u8
*addr
= page_address(page
);
696 print_tracking(s
, p
);
698 print_page_info(page
);
700 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
701 p
, p
- addr
, get_freepointer(s
, p
));
703 if (s
->flags
& SLAB_RED_ZONE
)
704 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
706 else if (p
> addr
+ 16)
707 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
709 print_section(KERN_ERR
, "Object ", p
,
710 min_t(unsigned int, s
->object_size
, PAGE_SIZE
));
711 if (s
->flags
& SLAB_RED_ZONE
)
712 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
713 s
->inuse
- s
->object_size
);
715 off
= get_info_end(s
);
717 if (s
->flags
& SLAB_STORE_USER
)
718 off
+= 2 * sizeof(struct track
);
720 off
+= kasan_metadata_size(s
);
722 if (off
!= size_from_object(s
))
723 /* Beginning of the filler is the free pointer */
724 print_section(KERN_ERR
, "Padding ", p
+ off
,
725 size_from_object(s
) - off
);
730 void object_err(struct kmem_cache
*s
, struct page
*page
,
731 u8
*object
, char *reason
)
733 slab_bug(s
, "%s", reason
);
734 print_trailer(s
, page
, object
);
737 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct page
*page
,
738 const char *fmt
, ...)
744 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
746 slab_bug(s
, "%s", buf
);
747 print_page_info(page
);
751 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
753 u8
*p
= kasan_reset_tag(object
);
755 if (s
->flags
& SLAB_RED_ZONE
)
756 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
758 if (s
->flags
& __OBJECT_POISON
) {
759 memset(p
, POISON_FREE
, s
->object_size
- 1);
760 p
[s
->object_size
- 1] = POISON_END
;
763 if (s
->flags
& SLAB_RED_ZONE
)
764 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
767 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
768 void *from
, void *to
)
770 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
771 memset(from
, data
, to
- from
);
774 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
775 u8
*object
, char *what
,
776 u8
*start
, unsigned int value
, unsigned int bytes
)
780 u8
*addr
= page_address(page
);
782 metadata_access_enable();
783 fault
= memchr_inv(kasan_reset_tag(start
), value
, bytes
);
784 metadata_access_disable();
789 while (end
> fault
&& end
[-1] == value
)
792 slab_bug(s
, "%s overwritten", what
);
793 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
794 fault
, end
- 1, fault
- addr
,
796 print_trailer(s
, page
, object
);
798 restore_bytes(s
, what
, value
, fault
, end
);
806 * Bytes of the object to be managed.
807 * If the freepointer may overlay the object then the free
808 * pointer is at the middle of the object.
810 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
813 * object + s->object_size
814 * Padding to reach word boundary. This is also used for Redzoning.
815 * Padding is extended by another word if Redzoning is enabled and
816 * object_size == inuse.
818 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
819 * 0xcc (RED_ACTIVE) for objects in use.
822 * Meta data starts here.
824 * A. Free pointer (if we cannot overwrite object on free)
825 * B. Tracking data for SLAB_STORE_USER
826 * C. Padding to reach required alignment boundary or at mininum
827 * one word if debugging is on to be able to detect writes
828 * before the word boundary.
830 * Padding is done using 0x5a (POISON_INUSE)
833 * Nothing is used beyond s->size.
835 * If slabcaches are merged then the object_size and inuse boundaries are mostly
836 * ignored. And therefore no slab options that rely on these boundaries
837 * may be used with merged slabcaches.
840 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
842 unsigned long off
= get_info_end(s
); /* The end of info */
844 if (s
->flags
& SLAB_STORE_USER
)
845 /* We also have user information there */
846 off
+= 2 * sizeof(struct track
);
848 off
+= kasan_metadata_size(s
);
850 if (size_from_object(s
) == off
)
853 return check_bytes_and_report(s
, page
, p
, "Object padding",
854 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
857 /* Check the pad bytes at the end of a slab page */
858 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
867 if (!(s
->flags
& SLAB_POISON
))
870 start
= page_address(page
);
871 length
= page_size(page
);
872 end
= start
+ length
;
873 remainder
= length
% s
->size
;
877 pad
= end
- remainder
;
878 metadata_access_enable();
879 fault
= memchr_inv(kasan_reset_tag(pad
), POISON_INUSE
, remainder
);
880 metadata_access_disable();
883 while (end
> fault
&& end
[-1] == POISON_INUSE
)
886 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p @offset=%tu",
887 fault
, end
- 1, fault
- start
);
888 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
890 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
894 static int check_object(struct kmem_cache
*s
, struct page
*page
,
895 void *object
, u8 val
)
898 u8
*endobject
= object
+ s
->object_size
;
900 if (s
->flags
& SLAB_RED_ZONE
) {
901 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
902 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
905 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
906 endobject
, val
, s
->inuse
- s
->object_size
))
909 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
910 check_bytes_and_report(s
, page
, p
, "Alignment padding",
911 endobject
, POISON_INUSE
,
912 s
->inuse
- s
->object_size
);
916 if (s
->flags
& SLAB_POISON
) {
917 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
918 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
919 POISON_FREE
, s
->object_size
- 1) ||
920 !check_bytes_and_report(s
, page
, p
, "Poison",
921 p
+ s
->object_size
- 1, POISON_END
, 1)))
924 * check_pad_bytes cleans up on its own.
926 check_pad_bytes(s
, page
, p
);
929 if (!freeptr_outside_object(s
) && val
== SLUB_RED_ACTIVE
)
931 * Object and freepointer overlap. Cannot check
932 * freepointer while object is allocated.
936 /* Check free pointer validity */
937 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
938 object_err(s
, page
, p
, "Freepointer corrupt");
940 * No choice but to zap it and thus lose the remainder
941 * of the free objects in this slab. May cause
942 * another error because the object count is now wrong.
944 set_freepointer(s
, p
, NULL
);
950 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
954 VM_BUG_ON(!irqs_disabled());
956 if (!PageSlab(page
)) {
957 slab_err(s
, page
, "Not a valid slab page");
961 maxobj
= order_objects(compound_order(page
), s
->size
);
962 if (page
->objects
> maxobj
) {
963 slab_err(s
, page
, "objects %u > max %u",
964 page
->objects
, maxobj
);
967 if (page
->inuse
> page
->objects
) {
968 slab_err(s
, page
, "inuse %u > max %u",
969 page
->inuse
, page
->objects
);
972 /* Slab_pad_check fixes things up after itself */
973 slab_pad_check(s
, page
);
978 * Determine if a certain object on a page is on the freelist. Must hold the
979 * slab lock to guarantee that the chains are in a consistent state.
981 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
989 while (fp
&& nr
<= page
->objects
) {
992 if (!check_valid_pointer(s
, page
, fp
)) {
994 object_err(s
, page
, object
,
995 "Freechain corrupt");
996 set_freepointer(s
, object
, NULL
);
998 slab_err(s
, page
, "Freepointer corrupt");
999 page
->freelist
= NULL
;
1000 page
->inuse
= page
->objects
;
1001 slab_fix(s
, "Freelist cleared");
1007 fp
= get_freepointer(s
, object
);
1011 max_objects
= order_objects(compound_order(page
), s
->size
);
1012 if (max_objects
> MAX_OBJS_PER_PAGE
)
1013 max_objects
= MAX_OBJS_PER_PAGE
;
1015 if (page
->objects
!= max_objects
) {
1016 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
1017 page
->objects
, max_objects
);
1018 page
->objects
= max_objects
;
1019 slab_fix(s
, "Number of objects adjusted.");
1021 if (page
->inuse
!= page
->objects
- nr
) {
1022 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
1023 page
->inuse
, page
->objects
- nr
);
1024 page
->inuse
= page
->objects
- nr
;
1025 slab_fix(s
, "Object count adjusted.");
1027 return search
== NULL
;
1030 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
1033 if (s
->flags
& SLAB_TRACE
) {
1034 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1036 alloc
? "alloc" : "free",
1037 object
, page
->inuse
,
1041 print_section(KERN_INFO
, "Object ", (void *)object
,
1049 * Tracking of fully allocated slabs for debugging purposes.
1051 static void add_full(struct kmem_cache
*s
,
1052 struct kmem_cache_node
*n
, struct page
*page
)
1054 if (!(s
->flags
& SLAB_STORE_USER
))
1057 lockdep_assert_held(&n
->list_lock
);
1058 list_add(&page
->slab_list
, &n
->full
);
1061 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1063 if (!(s
->flags
& SLAB_STORE_USER
))
1066 lockdep_assert_held(&n
->list_lock
);
1067 list_del(&page
->slab_list
);
1070 /* Tracking of the number of slabs for debugging purposes */
1071 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1073 struct kmem_cache_node
*n
= get_node(s
, node
);
1075 return atomic_long_read(&n
->nr_slabs
);
1078 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1080 return atomic_long_read(&n
->nr_slabs
);
1083 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1085 struct kmem_cache_node
*n
= get_node(s
, node
);
1088 * May be called early in order to allocate a slab for the
1089 * kmem_cache_node structure. Solve the chicken-egg
1090 * dilemma by deferring the increment of the count during
1091 * bootstrap (see early_kmem_cache_node_alloc).
1094 atomic_long_inc(&n
->nr_slabs
);
1095 atomic_long_add(objects
, &n
->total_objects
);
1098 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1100 struct kmem_cache_node
*n
= get_node(s
, node
);
1102 atomic_long_dec(&n
->nr_slabs
);
1103 atomic_long_sub(objects
, &n
->total_objects
);
1106 /* Object debug checks for alloc/free paths */
1107 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1110 if (!kmem_cache_debug_flags(s
, SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
))
1113 init_object(s
, object
, SLUB_RED_INACTIVE
);
1114 init_tracking(s
, object
);
1118 void setup_page_debug(struct kmem_cache
*s
, struct page
*page
, void *addr
)
1120 if (!kmem_cache_debug_flags(s
, SLAB_POISON
))
1123 metadata_access_enable();
1124 memset(kasan_reset_tag(addr
), POISON_INUSE
, page_size(page
));
1125 metadata_access_disable();
1128 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1129 struct page
*page
, void *object
)
1131 if (!check_slab(s
, page
))
1134 if (!check_valid_pointer(s
, page
, object
)) {
1135 object_err(s
, page
, object
, "Freelist Pointer check fails");
1139 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1145 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1147 void *object
, unsigned long addr
)
1149 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1150 if (!alloc_consistency_checks(s
, page
, object
))
1154 /* Success perform special debug activities for allocs */
1155 if (s
->flags
& SLAB_STORE_USER
)
1156 set_track(s
, object
, TRACK_ALLOC
, addr
);
1157 trace(s
, page
, object
, 1);
1158 init_object(s
, object
, SLUB_RED_ACTIVE
);
1162 if (PageSlab(page
)) {
1164 * If this is a slab page then lets do the best we can
1165 * to avoid issues in the future. Marking all objects
1166 * as used avoids touching the remaining objects.
1168 slab_fix(s
, "Marking all objects used");
1169 page
->inuse
= page
->objects
;
1170 page
->freelist
= NULL
;
1175 static inline int free_consistency_checks(struct kmem_cache
*s
,
1176 struct page
*page
, void *object
, unsigned long addr
)
1178 if (!check_valid_pointer(s
, page
, object
)) {
1179 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1183 if (on_freelist(s
, page
, object
)) {
1184 object_err(s
, page
, object
, "Object already free");
1188 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1191 if (unlikely(s
!= page
->slab_cache
)) {
1192 if (!PageSlab(page
)) {
1193 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1195 } else if (!page
->slab_cache
) {
1196 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1200 object_err(s
, page
, object
,
1201 "page slab pointer corrupt.");
1207 /* Supports checking bulk free of a constructed freelist */
1208 static noinline
int free_debug_processing(
1209 struct kmem_cache
*s
, struct page
*page
,
1210 void *head
, void *tail
, int bulk_cnt
,
1213 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1214 void *object
= head
;
1216 unsigned long flags
;
1219 spin_lock_irqsave(&n
->list_lock
, flags
);
1222 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1223 if (!check_slab(s
, page
))
1230 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1231 if (!free_consistency_checks(s
, page
, object
, addr
))
1235 if (s
->flags
& SLAB_STORE_USER
)
1236 set_track(s
, object
, TRACK_FREE
, addr
);
1237 trace(s
, page
, object
, 0);
1238 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1239 init_object(s
, object
, SLUB_RED_INACTIVE
);
1241 /* Reached end of constructed freelist yet? */
1242 if (object
!= tail
) {
1243 object
= get_freepointer(s
, object
);
1249 if (cnt
!= bulk_cnt
)
1250 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1254 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1256 slab_fix(s
, "Object at 0x%p not freed", object
);
1261 * Parse a block of slub_debug options. Blocks are delimited by ';'
1263 * @str: start of block
1264 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1265 * @slabs: return start of list of slabs, or NULL when there's no list
1266 * @init: assume this is initial parsing and not per-kmem-create parsing
1268 * returns the start of next block if there's any, or NULL
1271 parse_slub_debug_flags(char *str
, slab_flags_t
*flags
, char **slabs
, bool init
)
1273 bool higher_order_disable
= false;
1275 /* Skip any completely empty blocks */
1276 while (*str
&& *str
== ';')
1281 * No options but restriction on slabs. This means full
1282 * debugging for slabs matching a pattern.
1284 *flags
= DEBUG_DEFAULT_FLAGS
;
1289 /* Determine which debug features should be switched on */
1290 for (; *str
&& *str
!= ',' && *str
!= ';'; str
++) {
1291 switch (tolower(*str
)) {
1296 *flags
|= SLAB_CONSISTENCY_CHECKS
;
1299 *flags
|= SLAB_RED_ZONE
;
1302 *flags
|= SLAB_POISON
;
1305 *flags
|= SLAB_STORE_USER
;
1308 *flags
|= SLAB_TRACE
;
1311 *flags
|= SLAB_FAILSLAB
;
1315 * Avoid enabling debugging on caches if its minimum
1316 * order would increase as a result.
1318 higher_order_disable
= true;
1322 pr_err("slub_debug option '%c' unknown. skipped\n", *str
);
1331 /* Skip over the slab list */
1332 while (*str
&& *str
!= ';')
1335 /* Skip any completely empty blocks */
1336 while (*str
&& *str
== ';')
1339 if (init
&& higher_order_disable
)
1340 disable_higher_order_debug
= 1;
1348 static int __init
setup_slub_debug(char *str
)
1353 bool global_slub_debug_changed
= false;
1354 bool slab_list_specified
= false;
1356 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1357 if (*str
++ != '=' || !*str
)
1359 * No options specified. Switch on full debugging.
1365 str
= parse_slub_debug_flags(str
, &flags
, &slab_list
, true);
1369 global_slub_debug_changed
= true;
1371 slab_list_specified
= true;
1376 * For backwards compatibility, a single list of flags with list of
1377 * slabs means debugging is only enabled for those slabs, so the global
1378 * slub_debug should be 0. We can extended that to multiple lists as
1379 * long as there is no option specifying flags without a slab list.
1381 if (slab_list_specified
) {
1382 if (!global_slub_debug_changed
)
1384 slub_debug_string
= saved_str
;
1387 if (slub_debug
!= 0 || slub_debug_string
)
1388 static_branch_enable(&slub_debug_enabled
);
1389 if ((static_branch_unlikely(&init_on_alloc
) ||
1390 static_branch_unlikely(&init_on_free
)) &&
1391 (slub_debug
& SLAB_POISON
))
1392 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1396 __setup("slub_debug", setup_slub_debug
);
1399 * kmem_cache_flags - apply debugging options to the cache
1400 * @object_size: the size of an object without meta data
1401 * @flags: flags to set
1402 * @name: name of the cache
1403 * @ctor: constructor function
1405 * Debug option(s) are applied to @flags. In addition to the debug
1406 * option(s), if a slab name (or multiple) is specified i.e.
1407 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1408 * then only the select slabs will receive the debug option(s).
1410 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1411 slab_flags_t flags
, const char *name
,
1412 void (*ctor
)(void *))
1417 slab_flags_t block_flags
;
1420 next_block
= slub_debug_string
;
1421 /* Go through all blocks of debug options, see if any matches our slab's name */
1422 while (next_block
) {
1423 next_block
= parse_slub_debug_flags(next_block
, &block_flags
, &iter
, false);
1426 /* Found a block that has a slab list, search it */
1431 end
= strchrnul(iter
, ',');
1432 if (next_block
&& next_block
< end
)
1433 end
= next_block
- 1;
1435 glob
= strnchr(iter
, end
- iter
, '*');
1437 cmplen
= glob
- iter
;
1439 cmplen
= max_t(size_t, len
, (end
- iter
));
1441 if (!strncmp(name
, iter
, cmplen
)) {
1442 flags
|= block_flags
;
1446 if (!*end
|| *end
== ';')
1452 return flags
| slub_debug
;
1454 #else /* !CONFIG_SLUB_DEBUG */
1455 static inline void setup_object_debug(struct kmem_cache
*s
,
1456 struct page
*page
, void *object
) {}
1458 void setup_page_debug(struct kmem_cache
*s
, struct page
*page
, void *addr
) {}
1460 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1461 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1463 static inline int free_debug_processing(
1464 struct kmem_cache
*s
, struct page
*page
,
1465 void *head
, void *tail
, int bulk_cnt
,
1466 unsigned long addr
) { return 0; }
1468 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1470 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1471 void *object
, u8 val
) { return 1; }
1472 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1473 struct page
*page
) {}
1474 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1475 struct page
*page
) {}
1476 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1477 slab_flags_t flags
, const char *name
,
1478 void (*ctor
)(void *))
1482 #define slub_debug 0
1484 #define disable_higher_order_debug 0
1486 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1488 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1490 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1492 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1495 static bool freelist_corrupted(struct kmem_cache
*s
, struct page
*page
,
1496 void **freelist
, void *nextfree
)
1500 #endif /* CONFIG_SLUB_DEBUG */
1503 * Hooks for other subsystems that check memory allocations. In a typical
1504 * production configuration these hooks all should produce no code at all.
1506 static inline void *kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1508 ptr
= kasan_kmalloc_large(ptr
, size
, flags
);
1509 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1510 kmemleak_alloc(ptr
, size
, 1, flags
);
1514 static __always_inline
void kfree_hook(void *x
)
1517 kasan_kfree_large(x
, _RET_IP_
);
1520 static __always_inline
bool slab_free_hook(struct kmem_cache
*s
, void *x
)
1522 kmemleak_free_recursive(x
, s
->flags
);
1525 * Trouble is that we may no longer disable interrupts in the fast path
1526 * So in order to make the debug calls that expect irqs to be
1527 * disabled we need to disable interrupts temporarily.
1529 #ifdef CONFIG_LOCKDEP
1531 unsigned long flags
;
1533 local_irq_save(flags
);
1534 debug_check_no_locks_freed(x
, s
->object_size
);
1535 local_irq_restore(flags
);
1538 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1539 debug_check_no_obj_freed(x
, s
->object_size
);
1541 /* Use KCSAN to help debug racy use-after-free. */
1542 if (!(s
->flags
& SLAB_TYPESAFE_BY_RCU
))
1543 __kcsan_check_access(x
, s
->object_size
,
1544 KCSAN_ACCESS_WRITE
| KCSAN_ACCESS_ASSERT
);
1546 /* KASAN might put x into memory quarantine, delaying its reuse */
1547 return kasan_slab_free(s
, x
, _RET_IP_
);
1550 static inline bool slab_free_freelist_hook(struct kmem_cache
*s
,
1551 void **head
, void **tail
)
1556 void *old_tail
= *tail
? *tail
: *head
;
1559 /* Head and tail of the reconstructed freelist */
1565 next
= get_freepointer(s
, object
);
1567 if (slab_want_init_on_free(s
)) {
1569 * Clear the object and the metadata, but don't touch
1572 memset(kasan_reset_tag(object
), 0, s
->object_size
);
1573 rsize
= (s
->flags
& SLAB_RED_ZONE
) ? s
->red_left_pad
1575 memset((char *)kasan_reset_tag(object
) + s
->inuse
, 0,
1576 s
->size
- s
->inuse
- rsize
);
1579 /* If object's reuse doesn't have to be delayed */
1580 if (!slab_free_hook(s
, object
)) {
1581 /* Move object to the new freelist */
1582 set_freepointer(s
, object
, *head
);
1587 } while (object
!= old_tail
);
1592 return *head
!= NULL
;
1595 static void *setup_object(struct kmem_cache
*s
, struct page
*page
,
1598 setup_object_debug(s
, page
, object
);
1599 object
= kasan_init_slab_obj(s
, object
);
1600 if (unlikely(s
->ctor
)) {
1601 kasan_unpoison_object_data(s
, object
);
1603 kasan_poison_object_data(s
, object
);
1609 * Slab allocation and freeing
1611 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1612 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1615 unsigned int order
= oo_order(oo
);
1617 if (node
== NUMA_NO_NODE
)
1618 page
= alloc_pages(flags
, order
);
1620 page
= __alloc_pages_node(node
, flags
, order
);
1625 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1626 /* Pre-initialize the random sequence cache */
1627 static int init_cache_random_seq(struct kmem_cache
*s
)
1629 unsigned int count
= oo_objects(s
->oo
);
1632 /* Bailout if already initialised */
1636 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1638 pr_err("SLUB: Unable to initialize free list for %s\n",
1643 /* Transform to an offset on the set of pages */
1644 if (s
->random_seq
) {
1647 for (i
= 0; i
< count
; i
++)
1648 s
->random_seq
[i
] *= s
->size
;
1653 /* Initialize each random sequence freelist per cache */
1654 static void __init
init_freelist_randomization(void)
1656 struct kmem_cache
*s
;
1658 mutex_lock(&slab_mutex
);
1660 list_for_each_entry(s
, &slab_caches
, list
)
1661 init_cache_random_seq(s
);
1663 mutex_unlock(&slab_mutex
);
1666 /* Get the next entry on the pre-computed freelist randomized */
1667 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1668 unsigned long *pos
, void *start
,
1669 unsigned long page_limit
,
1670 unsigned long freelist_count
)
1675 * If the target page allocation failed, the number of objects on the
1676 * page might be smaller than the usual size defined by the cache.
1679 idx
= s
->random_seq
[*pos
];
1681 if (*pos
>= freelist_count
)
1683 } while (unlikely(idx
>= page_limit
));
1685 return (char *)start
+ idx
;
1688 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1689 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1694 unsigned long idx
, pos
, page_limit
, freelist_count
;
1696 if (page
->objects
< 2 || !s
->random_seq
)
1699 freelist_count
= oo_objects(s
->oo
);
1700 pos
= get_random_int() % freelist_count
;
1702 page_limit
= page
->objects
* s
->size
;
1703 start
= fixup_red_left(s
, page_address(page
));
1705 /* First entry is used as the base of the freelist */
1706 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1708 cur
= setup_object(s
, page
, cur
);
1709 page
->freelist
= cur
;
1711 for (idx
= 1; idx
< page
->objects
; idx
++) {
1712 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1714 next
= setup_object(s
, page
, next
);
1715 set_freepointer(s
, cur
, next
);
1718 set_freepointer(s
, cur
, NULL
);
1723 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1727 static inline void init_freelist_randomization(void) { }
1728 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1732 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1734 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1737 struct kmem_cache_order_objects oo
= s
->oo
;
1739 void *start
, *p
, *next
;
1743 flags
&= gfp_allowed_mask
;
1745 if (gfpflags_allow_blocking(flags
))
1748 flags
|= s
->allocflags
;
1751 * Let the initial higher-order allocation fail under memory pressure
1752 * so we fall-back to the minimum order allocation.
1754 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1755 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1756 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1758 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1759 if (unlikely(!page
)) {
1763 * Allocation may have failed due to fragmentation.
1764 * Try a lower order alloc if possible
1766 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1767 if (unlikely(!page
))
1769 stat(s
, ORDER_FALLBACK
);
1772 page
->objects
= oo_objects(oo
);
1774 account_slab_page(page
, oo_order(oo
), s
);
1776 page
->slab_cache
= s
;
1777 __SetPageSlab(page
);
1778 if (page_is_pfmemalloc(page
))
1779 SetPageSlabPfmemalloc(page
);
1781 kasan_poison_slab(page
);
1783 start
= page_address(page
);
1785 setup_page_debug(s
, page
, start
);
1787 shuffle
= shuffle_freelist(s
, page
);
1790 start
= fixup_red_left(s
, start
);
1791 start
= setup_object(s
, page
, start
);
1792 page
->freelist
= start
;
1793 for (idx
= 0, p
= start
; idx
< page
->objects
- 1; idx
++) {
1795 next
= setup_object(s
, page
, next
);
1796 set_freepointer(s
, p
, next
);
1799 set_freepointer(s
, p
, NULL
);
1802 page
->inuse
= page
->objects
;
1806 if (gfpflags_allow_blocking(flags
))
1807 local_irq_disable();
1811 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1816 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1818 if (unlikely(flags
& GFP_SLAB_BUG_MASK
))
1819 flags
= kmalloc_fix_flags(flags
);
1821 return allocate_slab(s
,
1822 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1825 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1827 int order
= compound_order(page
);
1828 int pages
= 1 << order
;
1830 if (kmem_cache_debug_flags(s
, SLAB_CONSISTENCY_CHECKS
)) {
1833 slab_pad_check(s
, page
);
1834 for_each_object(p
, s
, page_address(page
),
1836 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1839 __ClearPageSlabPfmemalloc(page
);
1840 __ClearPageSlab(page
);
1841 /* In union with page->mapping where page allocator expects NULL */
1842 page
->slab_cache
= NULL
;
1843 if (current
->reclaim_state
)
1844 current
->reclaim_state
->reclaimed_slab
+= pages
;
1845 unaccount_slab_page(page
, order
, s
);
1846 __free_pages(page
, order
);
1849 static void rcu_free_slab(struct rcu_head
*h
)
1851 struct page
*page
= container_of(h
, struct page
, rcu_head
);
1853 __free_slab(page
->slab_cache
, page
);
1856 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1858 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1859 call_rcu(&page
->rcu_head
, rcu_free_slab
);
1861 __free_slab(s
, page
);
1864 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1866 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1871 * Management of partially allocated slabs.
1874 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1877 if (tail
== DEACTIVATE_TO_TAIL
)
1878 list_add_tail(&page
->slab_list
, &n
->partial
);
1880 list_add(&page
->slab_list
, &n
->partial
);
1883 static inline void add_partial(struct kmem_cache_node
*n
,
1884 struct page
*page
, int tail
)
1886 lockdep_assert_held(&n
->list_lock
);
1887 __add_partial(n
, page
, tail
);
1890 static inline void remove_partial(struct kmem_cache_node
*n
,
1893 lockdep_assert_held(&n
->list_lock
);
1894 list_del(&page
->slab_list
);
1899 * Remove slab from the partial list, freeze it and
1900 * return the pointer to the freelist.
1902 * Returns a list of objects or NULL if it fails.
1904 static inline void *acquire_slab(struct kmem_cache
*s
,
1905 struct kmem_cache_node
*n
, struct page
*page
,
1906 int mode
, int *objects
)
1909 unsigned long counters
;
1912 lockdep_assert_held(&n
->list_lock
);
1915 * Zap the freelist and set the frozen bit.
1916 * The old freelist is the list of objects for the
1917 * per cpu allocation list.
1919 freelist
= page
->freelist
;
1920 counters
= page
->counters
;
1921 new.counters
= counters
;
1922 *objects
= new.objects
- new.inuse
;
1924 new.inuse
= page
->objects
;
1925 new.freelist
= NULL
;
1927 new.freelist
= freelist
;
1930 VM_BUG_ON(new.frozen
);
1933 if (!__cmpxchg_double_slab(s
, page
,
1935 new.freelist
, new.counters
,
1939 remove_partial(n
, page
);
1944 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1945 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1948 * Try to allocate a partial slab from a specific node.
1950 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1951 struct kmem_cache_cpu
*c
, gfp_t flags
)
1953 struct page
*page
, *page2
;
1954 void *object
= NULL
;
1955 unsigned int available
= 0;
1959 * Racy check. If we mistakenly see no partial slabs then we
1960 * just allocate an empty slab. If we mistakenly try to get a
1961 * partial slab and there is none available then get_partial()
1964 if (!n
|| !n
->nr_partial
)
1967 spin_lock(&n
->list_lock
);
1968 list_for_each_entry_safe(page
, page2
, &n
->partial
, slab_list
) {
1971 if (!pfmemalloc_match(page
, flags
))
1974 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1978 available
+= objects
;
1981 stat(s
, ALLOC_FROM_PARTIAL
);
1984 put_cpu_partial(s
, page
, 0);
1985 stat(s
, CPU_PARTIAL_NODE
);
1987 if (!kmem_cache_has_cpu_partial(s
)
1988 || available
> slub_cpu_partial(s
) / 2)
1992 spin_unlock(&n
->list_lock
);
1997 * Get a page from somewhere. Search in increasing NUMA distances.
1999 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
2000 struct kmem_cache_cpu
*c
)
2003 struct zonelist
*zonelist
;
2006 enum zone_type highest_zoneidx
= gfp_zone(flags
);
2008 unsigned int cpuset_mems_cookie
;
2011 * The defrag ratio allows a configuration of the tradeoffs between
2012 * inter node defragmentation and node local allocations. A lower
2013 * defrag_ratio increases the tendency to do local allocations
2014 * instead of attempting to obtain partial slabs from other nodes.
2016 * If the defrag_ratio is set to 0 then kmalloc() always
2017 * returns node local objects. If the ratio is higher then kmalloc()
2018 * may return off node objects because partial slabs are obtained
2019 * from other nodes and filled up.
2021 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2022 * (which makes defrag_ratio = 1000) then every (well almost)
2023 * allocation will first attempt to defrag slab caches on other nodes.
2024 * This means scanning over all nodes to look for partial slabs which
2025 * may be expensive if we do it every time we are trying to find a slab
2026 * with available objects.
2028 if (!s
->remote_node_defrag_ratio
||
2029 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
2033 cpuset_mems_cookie
= read_mems_allowed_begin();
2034 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
2035 for_each_zone_zonelist(zone
, z
, zonelist
, highest_zoneidx
) {
2036 struct kmem_cache_node
*n
;
2038 n
= get_node(s
, zone_to_nid(zone
));
2040 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
2041 n
->nr_partial
> s
->min_partial
) {
2042 object
= get_partial_node(s
, n
, c
, flags
);
2045 * Don't check read_mems_allowed_retry()
2046 * here - if mems_allowed was updated in
2047 * parallel, that was a harmless race
2048 * between allocation and the cpuset
2055 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
2056 #endif /* CONFIG_NUMA */
2061 * Get a partial page, lock it and return it.
2063 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
2064 struct kmem_cache_cpu
*c
)
2067 int searchnode
= node
;
2069 if (node
== NUMA_NO_NODE
)
2070 searchnode
= numa_mem_id();
2072 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
2073 if (object
|| node
!= NUMA_NO_NODE
)
2076 return get_any_partial(s
, flags
, c
);
2079 #ifdef CONFIG_PREEMPTION
2081 * Calculate the next globally unique transaction for disambiguation
2082 * during cmpxchg. The transactions start with the cpu number and are then
2083 * incremented by CONFIG_NR_CPUS.
2085 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2088 * No preemption supported therefore also no need to check for
2094 static inline unsigned long next_tid(unsigned long tid
)
2096 return tid
+ TID_STEP
;
2099 #ifdef SLUB_DEBUG_CMPXCHG
2100 static inline unsigned int tid_to_cpu(unsigned long tid
)
2102 return tid
% TID_STEP
;
2105 static inline unsigned long tid_to_event(unsigned long tid
)
2107 return tid
/ TID_STEP
;
2111 static inline unsigned int init_tid(int cpu
)
2116 static inline void note_cmpxchg_failure(const char *n
,
2117 const struct kmem_cache
*s
, unsigned long tid
)
2119 #ifdef SLUB_DEBUG_CMPXCHG
2120 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
2122 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
2124 #ifdef CONFIG_PREEMPTION
2125 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
2126 pr_warn("due to cpu change %d -> %d\n",
2127 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
2130 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
2131 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2132 tid_to_event(tid
), tid_to_event(actual_tid
));
2134 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2135 actual_tid
, tid
, next_tid(tid
));
2137 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
2140 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
2144 for_each_possible_cpu(cpu
)
2145 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2149 * Remove the cpu slab
2151 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2152 void *freelist
, struct kmem_cache_cpu
*c
)
2154 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2155 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2157 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2159 int tail
= DEACTIVATE_TO_HEAD
;
2163 if (page
->freelist
) {
2164 stat(s
, DEACTIVATE_REMOTE_FREES
);
2165 tail
= DEACTIVATE_TO_TAIL
;
2169 * Stage one: Free all available per cpu objects back
2170 * to the page freelist while it is still frozen. Leave the
2173 * There is no need to take the list->lock because the page
2176 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2178 unsigned long counters
;
2181 * If 'nextfree' is invalid, it is possible that the object at
2182 * 'freelist' is already corrupted. So isolate all objects
2183 * starting at 'freelist'.
2185 if (freelist_corrupted(s
, page
, &freelist
, nextfree
))
2189 prior
= page
->freelist
;
2190 counters
= page
->counters
;
2191 set_freepointer(s
, freelist
, prior
);
2192 new.counters
= counters
;
2194 VM_BUG_ON(!new.frozen
);
2196 } while (!__cmpxchg_double_slab(s
, page
,
2198 freelist
, new.counters
,
2199 "drain percpu freelist"));
2201 freelist
= nextfree
;
2205 * Stage two: Ensure that the page is unfrozen while the
2206 * list presence reflects the actual number of objects
2209 * We setup the list membership and then perform a cmpxchg
2210 * with the count. If there is a mismatch then the page
2211 * is not unfrozen but the page is on the wrong list.
2213 * Then we restart the process which may have to remove
2214 * the page from the list that we just put it on again
2215 * because the number of objects in the slab may have
2220 old
.freelist
= page
->freelist
;
2221 old
.counters
= page
->counters
;
2222 VM_BUG_ON(!old
.frozen
);
2224 /* Determine target state of the slab */
2225 new.counters
= old
.counters
;
2228 set_freepointer(s
, freelist
, old
.freelist
);
2229 new.freelist
= freelist
;
2231 new.freelist
= old
.freelist
;
2235 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2237 else if (new.freelist
) {
2242 * Taking the spinlock removes the possibility
2243 * that acquire_slab() will see a slab page that
2246 spin_lock(&n
->list_lock
);
2250 if (kmem_cache_debug_flags(s
, SLAB_STORE_USER
) && !lock
) {
2253 * This also ensures that the scanning of full
2254 * slabs from diagnostic functions will not see
2257 spin_lock(&n
->list_lock
);
2263 remove_partial(n
, page
);
2264 else if (l
== M_FULL
)
2265 remove_full(s
, n
, page
);
2268 add_partial(n
, page
, tail
);
2269 else if (m
== M_FULL
)
2270 add_full(s
, n
, page
);
2274 if (!__cmpxchg_double_slab(s
, page
,
2275 old
.freelist
, old
.counters
,
2276 new.freelist
, new.counters
,
2281 spin_unlock(&n
->list_lock
);
2285 else if (m
== M_FULL
)
2286 stat(s
, DEACTIVATE_FULL
);
2287 else if (m
== M_FREE
) {
2288 stat(s
, DEACTIVATE_EMPTY
);
2289 discard_slab(s
, page
);
2298 * Unfreeze all the cpu partial slabs.
2300 * This function must be called with interrupts disabled
2301 * for the cpu using c (or some other guarantee must be there
2302 * to guarantee no concurrent accesses).
2304 static void unfreeze_partials(struct kmem_cache
*s
,
2305 struct kmem_cache_cpu
*c
)
2307 #ifdef CONFIG_SLUB_CPU_PARTIAL
2308 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2309 struct page
*page
, *discard_page
= NULL
;
2311 while ((page
= slub_percpu_partial(c
))) {
2315 slub_set_percpu_partial(c
, page
);
2317 n2
= get_node(s
, page_to_nid(page
));
2320 spin_unlock(&n
->list_lock
);
2323 spin_lock(&n
->list_lock
);
2328 old
.freelist
= page
->freelist
;
2329 old
.counters
= page
->counters
;
2330 VM_BUG_ON(!old
.frozen
);
2332 new.counters
= old
.counters
;
2333 new.freelist
= old
.freelist
;
2337 } while (!__cmpxchg_double_slab(s
, page
,
2338 old
.freelist
, old
.counters
,
2339 new.freelist
, new.counters
,
2340 "unfreezing slab"));
2342 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2343 page
->next
= discard_page
;
2344 discard_page
= page
;
2346 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2347 stat(s
, FREE_ADD_PARTIAL
);
2352 spin_unlock(&n
->list_lock
);
2354 while (discard_page
) {
2355 page
= discard_page
;
2356 discard_page
= discard_page
->next
;
2358 stat(s
, DEACTIVATE_EMPTY
);
2359 discard_slab(s
, page
);
2362 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2366 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2367 * partial page slot if available.
2369 * If we did not find a slot then simply move all the partials to the
2370 * per node partial list.
2372 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2374 #ifdef CONFIG_SLUB_CPU_PARTIAL
2375 struct page
*oldpage
;
2383 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2386 pobjects
= oldpage
->pobjects
;
2387 pages
= oldpage
->pages
;
2388 if (drain
&& pobjects
> slub_cpu_partial(s
)) {
2389 unsigned long flags
;
2391 * partial array is full. Move the existing
2392 * set to the per node partial list.
2394 local_irq_save(flags
);
2395 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2396 local_irq_restore(flags
);
2400 stat(s
, CPU_PARTIAL_DRAIN
);
2405 pobjects
+= page
->objects
- page
->inuse
;
2407 page
->pages
= pages
;
2408 page
->pobjects
= pobjects
;
2409 page
->next
= oldpage
;
2411 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2413 if (unlikely(!slub_cpu_partial(s
))) {
2414 unsigned long flags
;
2416 local_irq_save(flags
);
2417 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2418 local_irq_restore(flags
);
2421 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2424 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2426 stat(s
, CPUSLAB_FLUSH
);
2427 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2429 c
->tid
= next_tid(c
->tid
);
2435 * Called from IPI handler with interrupts disabled.
2437 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2439 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2444 unfreeze_partials(s
, c
);
2447 static void flush_cpu_slab(void *d
)
2449 struct kmem_cache
*s
= d
;
2451 __flush_cpu_slab(s
, smp_processor_id());
2454 static bool has_cpu_slab(int cpu
, void *info
)
2456 struct kmem_cache
*s
= info
;
2457 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2459 return c
->page
|| slub_percpu_partial(c
);
2462 static void flush_all(struct kmem_cache
*s
)
2464 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1);
2468 * Use the cpu notifier to insure that the cpu slabs are flushed when
2471 static int slub_cpu_dead(unsigned int cpu
)
2473 struct kmem_cache
*s
;
2474 unsigned long flags
;
2476 mutex_lock(&slab_mutex
);
2477 list_for_each_entry(s
, &slab_caches
, list
) {
2478 local_irq_save(flags
);
2479 __flush_cpu_slab(s
, cpu
);
2480 local_irq_restore(flags
);
2482 mutex_unlock(&slab_mutex
);
2487 * Check if the objects in a per cpu structure fit numa
2488 * locality expectations.
2490 static inline int node_match(struct page
*page
, int node
)
2493 if (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
)
2499 #ifdef CONFIG_SLUB_DEBUG
2500 static int count_free(struct page
*page
)
2502 return page
->objects
- page
->inuse
;
2505 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2507 return atomic_long_read(&n
->total_objects
);
2509 #endif /* CONFIG_SLUB_DEBUG */
2511 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2512 static unsigned long count_partial(struct kmem_cache_node
*n
,
2513 int (*get_count
)(struct page
*))
2515 unsigned long flags
;
2516 unsigned long x
= 0;
2519 spin_lock_irqsave(&n
->list_lock
, flags
);
2520 list_for_each_entry(page
, &n
->partial
, slab_list
)
2521 x
+= get_count(page
);
2522 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2525 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2527 static noinline
void
2528 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2530 #ifdef CONFIG_SLUB_DEBUG
2531 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2532 DEFAULT_RATELIMIT_BURST
);
2534 struct kmem_cache_node
*n
;
2536 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2539 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2540 nid
, gfpflags
, &gfpflags
);
2541 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2542 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2545 if (oo_order(s
->min
) > get_order(s
->object_size
))
2546 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2549 for_each_kmem_cache_node(s
, node
, n
) {
2550 unsigned long nr_slabs
;
2551 unsigned long nr_objs
;
2552 unsigned long nr_free
;
2554 nr_free
= count_partial(n
, count_free
);
2555 nr_slabs
= node_nr_slabs(n
);
2556 nr_objs
= node_nr_objs(n
);
2558 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2559 node
, nr_slabs
, nr_objs
, nr_free
);
2564 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2565 int node
, struct kmem_cache_cpu
**pc
)
2568 struct kmem_cache_cpu
*c
= *pc
;
2571 WARN_ON_ONCE(s
->ctor
&& (flags
& __GFP_ZERO
));
2573 freelist
= get_partial(s
, flags
, node
, c
);
2578 page
= new_slab(s
, flags
, node
);
2580 c
= raw_cpu_ptr(s
->cpu_slab
);
2585 * No other reference to the page yet so we can
2586 * muck around with it freely without cmpxchg
2588 freelist
= page
->freelist
;
2589 page
->freelist
= NULL
;
2591 stat(s
, ALLOC_SLAB
);
2599 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2601 if (unlikely(PageSlabPfmemalloc(page
)))
2602 return gfp_pfmemalloc_allowed(gfpflags
);
2608 * Check the page->freelist of a page and either transfer the freelist to the
2609 * per cpu freelist or deactivate the page.
2611 * The page is still frozen if the return value is not NULL.
2613 * If this function returns NULL then the page has been unfrozen.
2615 * This function must be called with interrupt disabled.
2617 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2620 unsigned long counters
;
2624 freelist
= page
->freelist
;
2625 counters
= page
->counters
;
2627 new.counters
= counters
;
2628 VM_BUG_ON(!new.frozen
);
2630 new.inuse
= page
->objects
;
2631 new.frozen
= freelist
!= NULL
;
2633 } while (!__cmpxchg_double_slab(s
, page
,
2642 * Slow path. The lockless freelist is empty or we need to perform
2645 * Processing is still very fast if new objects have been freed to the
2646 * regular freelist. In that case we simply take over the regular freelist
2647 * as the lockless freelist and zap the regular freelist.
2649 * If that is not working then we fall back to the partial lists. We take the
2650 * first element of the freelist as the object to allocate now and move the
2651 * rest of the freelist to the lockless freelist.
2653 * And if we were unable to get a new slab from the partial slab lists then
2654 * we need to allocate a new slab. This is the slowest path since it involves
2655 * a call to the page allocator and the setup of a new slab.
2657 * Version of __slab_alloc to use when we know that interrupts are
2658 * already disabled (which is the case for bulk allocation).
2660 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2661 unsigned long addr
, struct kmem_cache_cpu
*c
)
2666 stat(s
, ALLOC_SLOWPATH
);
2671 * if the node is not online or has no normal memory, just
2672 * ignore the node constraint
2674 if (unlikely(node
!= NUMA_NO_NODE
&&
2675 !node_state(node
, N_NORMAL_MEMORY
)))
2676 node
= NUMA_NO_NODE
;
2681 if (unlikely(!node_match(page
, node
))) {
2683 * same as above but node_match() being false already
2684 * implies node != NUMA_NO_NODE
2686 if (!node_state(node
, N_NORMAL_MEMORY
)) {
2687 node
= NUMA_NO_NODE
;
2690 stat(s
, ALLOC_NODE_MISMATCH
);
2691 deactivate_slab(s
, page
, c
->freelist
, c
);
2697 * By rights, we should be searching for a slab page that was
2698 * PFMEMALLOC but right now, we are losing the pfmemalloc
2699 * information when the page leaves the per-cpu allocator
2701 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2702 deactivate_slab(s
, page
, c
->freelist
, c
);
2706 /* must check again c->freelist in case of cpu migration or IRQ */
2707 freelist
= c
->freelist
;
2711 freelist
= get_freelist(s
, page
);
2715 stat(s
, DEACTIVATE_BYPASS
);
2719 stat(s
, ALLOC_REFILL
);
2723 * freelist is pointing to the list of objects to be used.
2724 * page is pointing to the page from which the objects are obtained.
2725 * That page must be frozen for per cpu allocations to work.
2727 VM_BUG_ON(!c
->page
->frozen
);
2728 c
->freelist
= get_freepointer(s
, freelist
);
2729 c
->tid
= next_tid(c
->tid
);
2734 if (slub_percpu_partial(c
)) {
2735 page
= c
->page
= slub_percpu_partial(c
);
2736 slub_set_percpu_partial(c
, page
);
2737 stat(s
, CPU_PARTIAL_ALLOC
);
2741 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2743 if (unlikely(!freelist
)) {
2744 slab_out_of_memory(s
, gfpflags
, node
);
2749 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2752 /* Only entered in the debug case */
2753 if (kmem_cache_debug(s
) &&
2754 !alloc_debug_processing(s
, page
, freelist
, addr
))
2755 goto new_slab
; /* Slab failed checks. Next slab needed */
2757 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2762 * Another one that disabled interrupt and compensates for possible
2763 * cpu changes by refetching the per cpu area pointer.
2765 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2766 unsigned long addr
, struct kmem_cache_cpu
*c
)
2769 unsigned long flags
;
2771 local_irq_save(flags
);
2772 #ifdef CONFIG_PREEMPTION
2774 * We may have been preempted and rescheduled on a different
2775 * cpu before disabling interrupts. Need to reload cpu area
2778 c
= this_cpu_ptr(s
->cpu_slab
);
2781 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2782 local_irq_restore(flags
);
2787 * If the object has been wiped upon free, make sure it's fully initialized by
2788 * zeroing out freelist pointer.
2790 static __always_inline
void maybe_wipe_obj_freeptr(struct kmem_cache
*s
,
2793 if (unlikely(slab_want_init_on_free(s
)) && obj
)
2794 memset((void *)((char *)obj
+ s
->offset
), 0, sizeof(void *));
2798 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2799 * have the fastpath folded into their functions. So no function call
2800 * overhead for requests that can be satisfied on the fastpath.
2802 * The fastpath works by first checking if the lockless freelist can be used.
2803 * If not then __slab_alloc is called for slow processing.
2805 * Otherwise we can simply pick the next object from the lockless free list.
2807 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2808 gfp_t gfpflags
, int node
, unsigned long addr
)
2811 struct kmem_cache_cpu
*c
;
2814 struct obj_cgroup
*objcg
= NULL
;
2816 s
= slab_pre_alloc_hook(s
, &objcg
, 1, gfpflags
);
2821 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2822 * enabled. We may switch back and forth between cpus while
2823 * reading from one cpu area. That does not matter as long
2824 * as we end up on the original cpu again when doing the cmpxchg.
2826 * We should guarantee that tid and kmem_cache are retrieved on
2827 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2828 * to check if it is matched or not.
2831 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2832 c
= raw_cpu_ptr(s
->cpu_slab
);
2833 } while (IS_ENABLED(CONFIG_PREEMPTION
) &&
2834 unlikely(tid
!= READ_ONCE(c
->tid
)));
2837 * Irqless object alloc/free algorithm used here depends on sequence
2838 * of fetching cpu_slab's data. tid should be fetched before anything
2839 * on c to guarantee that object and page associated with previous tid
2840 * won't be used with current tid. If we fetch tid first, object and
2841 * page could be one associated with next tid and our alloc/free
2842 * request will be failed. In this case, we will retry. So, no problem.
2847 * The transaction ids are globally unique per cpu and per operation on
2848 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2849 * occurs on the right processor and that there was no operation on the
2850 * linked list in between.
2853 object
= c
->freelist
;
2855 if (unlikely(!object
|| !page
|| !node_match(page
, node
))) {
2856 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2858 void *next_object
= get_freepointer_safe(s
, object
);
2861 * The cmpxchg will only match if there was no additional
2862 * operation and if we are on the right processor.
2864 * The cmpxchg does the following atomically (without lock
2866 * 1. Relocate first pointer to the current per cpu area.
2867 * 2. Verify that tid and freelist have not been changed
2868 * 3. If they were not changed replace tid and freelist
2870 * Since this is without lock semantics the protection is only
2871 * against code executing on this cpu *not* from access by
2874 if (unlikely(!this_cpu_cmpxchg_double(
2875 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2877 next_object
, next_tid(tid
)))) {
2879 note_cmpxchg_failure("slab_alloc", s
, tid
);
2882 prefetch_freepointer(s
, next_object
);
2883 stat(s
, ALLOC_FASTPATH
);
2886 maybe_wipe_obj_freeptr(s
, kasan_reset_tag(object
));
2888 if (unlikely(slab_want_init_on_alloc(gfpflags
, s
)) && object
)
2889 memset(kasan_reset_tag(object
), 0, s
->object_size
);
2891 slab_post_alloc_hook(s
, objcg
, gfpflags
, 1, &object
);
2896 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2897 gfp_t gfpflags
, unsigned long addr
)
2899 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2902 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2904 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2906 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2911 EXPORT_SYMBOL(kmem_cache_alloc
);
2913 #ifdef CONFIG_TRACING
2914 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2916 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2917 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2918 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2921 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2925 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2927 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2929 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2930 s
->object_size
, s
->size
, gfpflags
, node
);
2934 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2936 #ifdef CONFIG_TRACING
2937 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2939 int node
, size_t size
)
2941 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2943 trace_kmalloc_node(_RET_IP_
, ret
,
2944 size
, s
->size
, gfpflags
, node
);
2946 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2949 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2951 #endif /* CONFIG_NUMA */
2954 * Slow path handling. This may still be called frequently since objects
2955 * have a longer lifetime than the cpu slabs in most processing loads.
2957 * So we still attempt to reduce cache line usage. Just take the slab
2958 * lock and free the item. If there is no additional partial page
2959 * handling required then we can return immediately.
2961 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2962 void *head
, void *tail
, int cnt
,
2969 unsigned long counters
;
2970 struct kmem_cache_node
*n
= NULL
;
2971 unsigned long flags
;
2973 stat(s
, FREE_SLOWPATH
);
2975 if (kmem_cache_debug(s
) &&
2976 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2981 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2984 prior
= page
->freelist
;
2985 counters
= page
->counters
;
2986 set_freepointer(s
, tail
, prior
);
2987 new.counters
= counters
;
2988 was_frozen
= new.frozen
;
2990 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2992 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2995 * Slab was on no list before and will be
2997 * We can defer the list move and instead
3002 } else { /* Needs to be taken off a list */
3004 n
= get_node(s
, page_to_nid(page
));
3006 * Speculatively acquire the list_lock.
3007 * If the cmpxchg does not succeed then we may
3008 * drop the list_lock without any processing.
3010 * Otherwise the list_lock will synchronize with
3011 * other processors updating the list of slabs.
3013 spin_lock_irqsave(&n
->list_lock
, flags
);
3018 } while (!cmpxchg_double_slab(s
, page
,
3025 if (likely(was_frozen
)) {
3027 * The list lock was not taken therefore no list
3028 * activity can be necessary.
3030 stat(s
, FREE_FROZEN
);
3031 } else if (new.frozen
) {
3033 * If we just froze the page then put it onto the
3034 * per cpu partial list.
3036 put_cpu_partial(s
, page
, 1);
3037 stat(s
, CPU_PARTIAL_FREE
);
3043 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
3047 * Objects left in the slab. If it was not on the partial list before
3050 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
3051 remove_full(s
, n
, page
);
3052 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
3053 stat(s
, FREE_ADD_PARTIAL
);
3055 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3061 * Slab on the partial list.
3063 remove_partial(n
, page
);
3064 stat(s
, FREE_REMOVE_PARTIAL
);
3066 /* Slab must be on the full list */
3067 remove_full(s
, n
, page
);
3070 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3072 discard_slab(s
, page
);
3076 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3077 * can perform fastpath freeing without additional function calls.
3079 * The fastpath is only possible if we are freeing to the current cpu slab
3080 * of this processor. This typically the case if we have just allocated
3083 * If fastpath is not possible then fall back to __slab_free where we deal
3084 * with all sorts of special processing.
3086 * Bulk free of a freelist with several objects (all pointing to the
3087 * same page) possible by specifying head and tail ptr, plus objects
3088 * count (cnt). Bulk free indicated by tail pointer being set.
3090 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
3091 struct page
*page
, void *head
, void *tail
,
3092 int cnt
, unsigned long addr
)
3094 void *tail_obj
= tail
? : head
;
3095 struct kmem_cache_cpu
*c
;
3098 memcg_slab_free_hook(s
, &head
, 1);
3101 * Determine the currently cpus per cpu slab.
3102 * The cpu may change afterward. However that does not matter since
3103 * data is retrieved via this pointer. If we are on the same cpu
3104 * during the cmpxchg then the free will succeed.
3107 tid
= this_cpu_read(s
->cpu_slab
->tid
);
3108 c
= raw_cpu_ptr(s
->cpu_slab
);
3109 } while (IS_ENABLED(CONFIG_PREEMPTION
) &&
3110 unlikely(tid
!= READ_ONCE(c
->tid
)));
3112 /* Same with comment on barrier() in slab_alloc_node() */
3115 if (likely(page
== c
->page
)) {
3116 void **freelist
= READ_ONCE(c
->freelist
);
3118 set_freepointer(s
, tail_obj
, freelist
);
3120 if (unlikely(!this_cpu_cmpxchg_double(
3121 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
3123 head
, next_tid(tid
)))) {
3125 note_cmpxchg_failure("slab_free", s
, tid
);
3128 stat(s
, FREE_FASTPATH
);
3130 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
3134 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
3135 void *head
, void *tail
, int cnt
,
3139 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3140 * to remove objects, whose reuse must be delayed.
3142 if (slab_free_freelist_hook(s
, &head
, &tail
))
3143 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
3146 #ifdef CONFIG_KASAN_GENERIC
3147 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
3149 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
3153 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
3155 s
= cache_from_obj(s
, x
);
3158 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
3159 trace_kmem_cache_free(_RET_IP_
, x
);
3161 EXPORT_SYMBOL(kmem_cache_free
);
3163 struct detached_freelist
{
3168 struct kmem_cache
*s
;
3172 * This function progressively scans the array with free objects (with
3173 * a limited look ahead) and extract objects belonging to the same
3174 * page. It builds a detached freelist directly within the given
3175 * page/objects. This can happen without any need for
3176 * synchronization, because the objects are owned by running process.
3177 * The freelist is build up as a single linked list in the objects.
3178 * The idea is, that this detached freelist can then be bulk
3179 * transferred to the real freelist(s), but only requiring a single
3180 * synchronization primitive. Look ahead in the array is limited due
3181 * to performance reasons.
3184 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3185 void **p
, struct detached_freelist
*df
)
3187 size_t first_skipped_index
= 0;
3192 /* Always re-init detached_freelist */
3197 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3198 } while (!object
&& size
);
3203 page
= virt_to_head_page(object
);
3205 /* Handle kalloc'ed objects */
3206 if (unlikely(!PageSlab(page
))) {
3207 BUG_ON(!PageCompound(page
));
3209 __free_pages(page
, compound_order(page
));
3210 p
[size
] = NULL
; /* mark object processed */
3213 /* Derive kmem_cache from object */
3214 df
->s
= page
->slab_cache
;
3216 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3219 /* Start new detached freelist */
3221 set_freepointer(df
->s
, object
, NULL
);
3223 df
->freelist
= object
;
3224 p
[size
] = NULL
; /* mark object processed */
3230 continue; /* Skip processed objects */
3232 /* df->page is always set at this point */
3233 if (df
->page
== virt_to_head_page(object
)) {
3234 /* Opportunity build freelist */
3235 set_freepointer(df
->s
, object
, df
->freelist
);
3236 df
->freelist
= object
;
3238 p
[size
] = NULL
; /* mark object processed */
3243 /* Limit look ahead search */
3247 if (!first_skipped_index
)
3248 first_skipped_index
= size
+ 1;
3251 return first_skipped_index
;
3254 /* Note that interrupts must be enabled when calling this function. */
3255 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3260 memcg_slab_free_hook(s
, p
, size
);
3262 struct detached_freelist df
;
3264 size
= build_detached_freelist(s
, size
, p
, &df
);
3268 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3269 } while (likely(size
));
3271 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3273 /* Note that interrupts must be enabled when calling this function. */
3274 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3277 struct kmem_cache_cpu
*c
;
3279 struct obj_cgroup
*objcg
= NULL
;
3281 /* memcg and kmem_cache debug support */
3282 s
= slab_pre_alloc_hook(s
, &objcg
, size
, flags
);
3286 * Drain objects in the per cpu slab, while disabling local
3287 * IRQs, which protects against PREEMPT and interrupts
3288 * handlers invoking normal fastpath.
3290 local_irq_disable();
3291 c
= this_cpu_ptr(s
->cpu_slab
);
3293 for (i
= 0; i
< size
; i
++) {
3294 void *object
= c
->freelist
;
3296 if (unlikely(!object
)) {
3298 * We may have removed an object from c->freelist using
3299 * the fastpath in the previous iteration; in that case,
3300 * c->tid has not been bumped yet.
3301 * Since ___slab_alloc() may reenable interrupts while
3302 * allocating memory, we should bump c->tid now.
3304 c
->tid
= next_tid(c
->tid
);
3307 * Invoking slow path likely have side-effect
3308 * of re-populating per CPU c->freelist
3310 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3312 if (unlikely(!p
[i
]))
3315 c
= this_cpu_ptr(s
->cpu_slab
);
3316 maybe_wipe_obj_freeptr(s
, p
[i
]);
3318 continue; /* goto for-loop */
3320 c
->freelist
= get_freepointer(s
, object
);
3322 maybe_wipe_obj_freeptr(s
, p
[i
]);
3324 c
->tid
= next_tid(c
->tid
);
3327 /* Clear memory outside IRQ disabled fastpath loop */
3328 if (unlikely(slab_want_init_on_alloc(flags
, s
))) {
3331 for (j
= 0; j
< i
; j
++)
3332 memset(p
[j
], 0, s
->object_size
);
3335 /* memcg and kmem_cache debug support */
3336 slab_post_alloc_hook(s
, objcg
, flags
, size
, p
);
3340 slab_post_alloc_hook(s
, objcg
, flags
, i
, p
);
3341 __kmem_cache_free_bulk(s
, i
, p
);
3344 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3348 * Object placement in a slab is made very easy because we always start at
3349 * offset 0. If we tune the size of the object to the alignment then we can
3350 * get the required alignment by putting one properly sized object after
3353 * Notice that the allocation order determines the sizes of the per cpu
3354 * caches. Each processor has always one slab available for allocations.
3355 * Increasing the allocation order reduces the number of times that slabs
3356 * must be moved on and off the partial lists and is therefore a factor in
3361 * Mininum / Maximum order of slab pages. This influences locking overhead
3362 * and slab fragmentation. A higher order reduces the number of partial slabs
3363 * and increases the number of allocations possible without having to
3364 * take the list_lock.
3366 static unsigned int slub_min_order
;
3367 static unsigned int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3368 static unsigned int slub_min_objects
;
3371 * Calculate the order of allocation given an slab object size.
3373 * The order of allocation has significant impact on performance and other
3374 * system components. Generally order 0 allocations should be preferred since
3375 * order 0 does not cause fragmentation in the page allocator. Larger objects
3376 * be problematic to put into order 0 slabs because there may be too much
3377 * unused space left. We go to a higher order if more than 1/16th of the slab
3380 * In order to reach satisfactory performance we must ensure that a minimum
3381 * number of objects is in one slab. Otherwise we may generate too much
3382 * activity on the partial lists which requires taking the list_lock. This is
3383 * less a concern for large slabs though which are rarely used.
3385 * slub_max_order specifies the order where we begin to stop considering the
3386 * number of objects in a slab as critical. If we reach slub_max_order then
3387 * we try to keep the page order as low as possible. So we accept more waste
3388 * of space in favor of a small page order.
3390 * Higher order allocations also allow the placement of more objects in a
3391 * slab and thereby reduce object handling overhead. If the user has
3392 * requested a higher mininum order then we start with that one instead of
3393 * the smallest order which will fit the object.
3395 static inline unsigned int slab_order(unsigned int size
,
3396 unsigned int min_objects
, unsigned int max_order
,
3397 unsigned int fract_leftover
)
3399 unsigned int min_order
= slub_min_order
;
3402 if (order_objects(min_order
, size
) > MAX_OBJS_PER_PAGE
)
3403 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3405 for (order
= max(min_order
, (unsigned int)get_order(min_objects
* size
));
3406 order
<= max_order
; order
++) {
3408 unsigned int slab_size
= (unsigned int)PAGE_SIZE
<< order
;
3411 rem
= slab_size
% size
;
3413 if (rem
<= slab_size
/ fract_leftover
)
3420 static inline int calculate_order(unsigned int size
)
3423 unsigned int min_objects
;
3424 unsigned int max_objects
;
3427 * Attempt to find best configuration for a slab. This
3428 * works by first attempting to generate a layout with
3429 * the best configuration and backing off gradually.
3431 * First we increase the acceptable waste in a slab. Then
3432 * we reduce the minimum objects required in a slab.
3434 min_objects
= slub_min_objects
;
3436 min_objects
= 4 * (fls(num_online_cpus()) + 1);
3437 max_objects
= order_objects(slub_max_order
, size
);
3438 min_objects
= min(min_objects
, max_objects
);
3440 while (min_objects
> 1) {
3441 unsigned int fraction
;
3444 while (fraction
>= 4) {
3445 order
= slab_order(size
, min_objects
,
3446 slub_max_order
, fraction
);
3447 if (order
<= slub_max_order
)
3455 * We were unable to place multiple objects in a slab. Now
3456 * lets see if we can place a single object there.
3458 order
= slab_order(size
, 1, slub_max_order
, 1);
3459 if (order
<= slub_max_order
)
3463 * Doh this slab cannot be placed using slub_max_order.
3465 order
= slab_order(size
, 1, MAX_ORDER
, 1);
3466 if (order
< MAX_ORDER
)
3472 init_kmem_cache_node(struct kmem_cache_node
*n
)
3475 spin_lock_init(&n
->list_lock
);
3476 INIT_LIST_HEAD(&n
->partial
);
3477 #ifdef CONFIG_SLUB_DEBUG
3478 atomic_long_set(&n
->nr_slabs
, 0);
3479 atomic_long_set(&n
->total_objects
, 0);
3480 INIT_LIST_HEAD(&n
->full
);
3484 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3486 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3487 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3490 * Must align to double word boundary for the double cmpxchg
3491 * instructions to work; see __pcpu_double_call_return_bool().
3493 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3494 2 * sizeof(void *));
3499 init_kmem_cache_cpus(s
);
3504 static struct kmem_cache
*kmem_cache_node
;
3507 * No kmalloc_node yet so do it by hand. We know that this is the first
3508 * slab on the node for this slabcache. There are no concurrent accesses
3511 * Note that this function only works on the kmem_cache_node
3512 * when allocating for the kmem_cache_node. This is used for bootstrapping
3513 * memory on a fresh node that has no slab structures yet.
3515 static void early_kmem_cache_node_alloc(int node
)
3518 struct kmem_cache_node
*n
;
3520 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3522 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3525 if (page_to_nid(page
) != node
) {
3526 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3527 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3532 #ifdef CONFIG_SLUB_DEBUG
3533 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3534 init_tracking(kmem_cache_node
, n
);
3536 n
= kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3538 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3541 kmem_cache_node
->node
[node
] = n
;
3542 init_kmem_cache_node(n
);
3543 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3546 * No locks need to be taken here as it has just been
3547 * initialized and there is no concurrent access.
3549 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3552 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3555 struct kmem_cache_node
*n
;
3557 for_each_kmem_cache_node(s
, node
, n
) {
3558 s
->node
[node
] = NULL
;
3559 kmem_cache_free(kmem_cache_node
, n
);
3563 void __kmem_cache_release(struct kmem_cache
*s
)
3565 cache_random_seq_destroy(s
);
3566 free_percpu(s
->cpu_slab
);
3567 free_kmem_cache_nodes(s
);
3570 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3574 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3575 struct kmem_cache_node
*n
;
3577 if (slab_state
== DOWN
) {
3578 early_kmem_cache_node_alloc(node
);
3581 n
= kmem_cache_alloc_node(kmem_cache_node
,
3585 free_kmem_cache_nodes(s
);
3589 init_kmem_cache_node(n
);
3595 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3597 if (min
< MIN_PARTIAL
)
3599 else if (min
> MAX_PARTIAL
)
3601 s
->min_partial
= min
;
3604 static void set_cpu_partial(struct kmem_cache
*s
)
3606 #ifdef CONFIG_SLUB_CPU_PARTIAL
3608 * cpu_partial determined the maximum number of objects kept in the
3609 * per cpu partial lists of a processor.
3611 * Per cpu partial lists mainly contain slabs that just have one
3612 * object freed. If they are used for allocation then they can be
3613 * filled up again with minimal effort. The slab will never hit the
3614 * per node partial lists and therefore no locking will be required.
3616 * This setting also determines
3618 * A) The number of objects from per cpu partial slabs dumped to the
3619 * per node list when we reach the limit.
3620 * B) The number of objects in cpu partial slabs to extract from the
3621 * per node list when we run out of per cpu objects. We only fetch
3622 * 50% to keep some capacity around for frees.
3624 if (!kmem_cache_has_cpu_partial(s
))
3625 slub_set_cpu_partial(s
, 0);
3626 else if (s
->size
>= PAGE_SIZE
)
3627 slub_set_cpu_partial(s
, 2);
3628 else if (s
->size
>= 1024)
3629 slub_set_cpu_partial(s
, 6);
3630 else if (s
->size
>= 256)
3631 slub_set_cpu_partial(s
, 13);
3633 slub_set_cpu_partial(s
, 30);
3638 * calculate_sizes() determines the order and the distribution of data within
3641 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3643 slab_flags_t flags
= s
->flags
;
3644 unsigned int size
= s
->object_size
;
3645 unsigned int freepointer_area
;
3649 * Round up object size to the next word boundary. We can only
3650 * place the free pointer at word boundaries and this determines
3651 * the possible location of the free pointer.
3653 size
= ALIGN(size
, sizeof(void *));
3655 * This is the area of the object where a freepointer can be
3656 * safely written. If redzoning adds more to the inuse size, we
3657 * can't use that portion for writing the freepointer, so
3658 * s->offset must be limited within this for the general case.
3660 freepointer_area
= size
;
3662 #ifdef CONFIG_SLUB_DEBUG
3664 * Determine if we can poison the object itself. If the user of
3665 * the slab may touch the object after free or before allocation
3666 * then we should never poison the object itself.
3668 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3670 s
->flags
|= __OBJECT_POISON
;
3672 s
->flags
&= ~__OBJECT_POISON
;
3676 * If we are Redzoning then check if there is some space between the
3677 * end of the object and the free pointer. If not then add an
3678 * additional word to have some bytes to store Redzone information.
3680 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3681 size
+= sizeof(void *);
3685 * With that we have determined the number of bytes in actual use
3686 * by the object. This is the potential offset to the free pointer.
3690 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3693 * Relocate free pointer after the object if it is not
3694 * permitted to overwrite the first word of the object on
3697 * This is the case if we do RCU, have a constructor or
3698 * destructor or are poisoning the objects.
3700 * The assumption that s->offset >= s->inuse means free
3701 * pointer is outside of the object is used in the
3702 * freeptr_outside_object() function. If that is no
3703 * longer true, the function needs to be modified.
3706 size
+= sizeof(void *);
3707 } else if (freepointer_area
> sizeof(void *)) {
3709 * Store freelist pointer near middle of object to keep
3710 * it away from the edges of the object to avoid small
3711 * sized over/underflows from neighboring allocations.
3713 s
->offset
= ALIGN(freepointer_area
/ 2, sizeof(void *));
3716 #ifdef CONFIG_SLUB_DEBUG
3717 if (flags
& SLAB_STORE_USER
)
3719 * Need to store information about allocs and frees after
3722 size
+= 2 * sizeof(struct track
);
3725 kasan_cache_create(s
, &size
, &s
->flags
);
3726 #ifdef CONFIG_SLUB_DEBUG
3727 if (flags
& SLAB_RED_ZONE
) {
3729 * Add some empty padding so that we can catch
3730 * overwrites from earlier objects rather than let
3731 * tracking information or the free pointer be
3732 * corrupted if a user writes before the start
3735 size
+= sizeof(void *);
3737 s
->red_left_pad
= sizeof(void *);
3738 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3739 size
+= s
->red_left_pad
;
3744 * SLUB stores one object immediately after another beginning from
3745 * offset 0. In order to align the objects we have to simply size
3746 * each object to conform to the alignment.
3748 size
= ALIGN(size
, s
->align
);
3750 s
->reciprocal_size
= reciprocal_value(size
);
3751 if (forced_order
>= 0)
3752 order
= forced_order
;
3754 order
= calculate_order(size
);
3761 s
->allocflags
|= __GFP_COMP
;
3763 if (s
->flags
& SLAB_CACHE_DMA
)
3764 s
->allocflags
|= GFP_DMA
;
3766 if (s
->flags
& SLAB_CACHE_DMA32
)
3767 s
->allocflags
|= GFP_DMA32
;
3769 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3770 s
->allocflags
|= __GFP_RECLAIMABLE
;
3773 * Determine the number of objects per slab
3775 s
->oo
= oo_make(order
, size
);
3776 s
->min
= oo_make(get_order(size
), size
);
3777 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3780 return !!oo_objects(s
->oo
);
3783 static int kmem_cache_open(struct kmem_cache
*s
, slab_flags_t flags
)
3785 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3786 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3787 s
->random
= get_random_long();
3790 if (!calculate_sizes(s
, -1))
3792 if (disable_higher_order_debug
) {
3794 * Disable debugging flags that store metadata if the min slab
3797 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3798 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3800 if (!calculate_sizes(s
, -1))
3805 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3806 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3807 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3808 /* Enable fast mode */
3809 s
->flags
|= __CMPXCHG_DOUBLE
;
3813 * The larger the object size is, the more pages we want on the partial
3814 * list to avoid pounding the page allocator excessively.
3816 set_min_partial(s
, ilog2(s
->size
) / 2);
3821 s
->remote_node_defrag_ratio
= 1000;
3824 /* Initialize the pre-computed randomized freelist if slab is up */
3825 if (slab_state
>= UP
) {
3826 if (init_cache_random_seq(s
))
3830 if (!init_kmem_cache_nodes(s
))
3833 if (alloc_kmem_cache_cpus(s
))
3836 free_kmem_cache_nodes(s
);
3841 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3844 #ifdef CONFIG_SLUB_DEBUG
3845 void *addr
= page_address(page
);
3849 slab_err(s
, page
, text
, s
->name
);
3852 map
= get_map(s
, page
);
3853 for_each_object(p
, s
, addr
, page
->objects
) {
3855 if (!test_bit(__obj_to_index(s
, addr
, p
), map
)) {
3856 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3857 print_tracking(s
, p
);
3866 * Attempt to free all partial slabs on a node.
3867 * This is called from __kmem_cache_shutdown(). We must take list_lock
3868 * because sysfs file might still access partial list after the shutdowning.
3870 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3873 struct page
*page
, *h
;
3875 BUG_ON(irqs_disabled());
3876 spin_lock_irq(&n
->list_lock
);
3877 list_for_each_entry_safe(page
, h
, &n
->partial
, slab_list
) {
3879 remove_partial(n
, page
);
3880 list_add(&page
->slab_list
, &discard
);
3882 list_slab_objects(s
, page
,
3883 "Objects remaining in %s on __kmem_cache_shutdown()");
3886 spin_unlock_irq(&n
->list_lock
);
3888 list_for_each_entry_safe(page
, h
, &discard
, slab_list
)
3889 discard_slab(s
, page
);
3892 bool __kmem_cache_empty(struct kmem_cache
*s
)
3895 struct kmem_cache_node
*n
;
3897 for_each_kmem_cache_node(s
, node
, n
)
3898 if (n
->nr_partial
|| slabs_node(s
, node
))
3904 * Release all resources used by a slab cache.
3906 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3909 struct kmem_cache_node
*n
;
3912 /* Attempt to free all objects */
3913 for_each_kmem_cache_node(s
, node
, n
) {
3915 if (n
->nr_partial
|| slabs_node(s
, node
))
3921 /********************************************************************
3923 *******************************************************************/
3925 static int __init
setup_slub_min_order(char *str
)
3927 get_option(&str
, (int *)&slub_min_order
);
3932 __setup("slub_min_order=", setup_slub_min_order
);
3934 static int __init
setup_slub_max_order(char *str
)
3936 get_option(&str
, (int *)&slub_max_order
);
3937 slub_max_order
= min(slub_max_order
, (unsigned int)MAX_ORDER
- 1);
3942 __setup("slub_max_order=", setup_slub_max_order
);
3944 static int __init
setup_slub_min_objects(char *str
)
3946 get_option(&str
, (int *)&slub_min_objects
);
3951 __setup("slub_min_objects=", setup_slub_min_objects
);
3953 void *__kmalloc(size_t size
, gfp_t flags
)
3955 struct kmem_cache
*s
;
3958 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3959 return kmalloc_large(size
, flags
);
3961 s
= kmalloc_slab(size
, flags
);
3963 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3966 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3968 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3970 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
3974 EXPORT_SYMBOL(__kmalloc
);
3977 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3981 unsigned int order
= get_order(size
);
3983 flags
|= __GFP_COMP
;
3984 page
= alloc_pages_node(node
, flags
, order
);
3986 ptr
= page_address(page
);
3987 mod_node_page_state(page_pgdat(page
), NR_SLAB_UNRECLAIMABLE_B
,
3988 PAGE_SIZE
<< order
);
3991 return kmalloc_large_node_hook(ptr
, size
, flags
);
3994 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3996 struct kmem_cache
*s
;
3999 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4000 ret
= kmalloc_large_node(size
, flags
, node
);
4002 trace_kmalloc_node(_RET_IP_
, ret
,
4003 size
, PAGE_SIZE
<< get_order(size
),
4009 s
= kmalloc_slab(size
, flags
);
4011 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4014 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
4016 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
4018 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
4022 EXPORT_SYMBOL(__kmalloc_node
);
4023 #endif /* CONFIG_NUMA */
4025 #ifdef CONFIG_HARDENED_USERCOPY
4027 * Rejects incorrectly sized objects and objects that are to be copied
4028 * to/from userspace but do not fall entirely within the containing slab
4029 * cache's usercopy region.
4031 * Returns NULL if check passes, otherwise const char * to name of cache
4032 * to indicate an error.
4034 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
4037 struct kmem_cache
*s
;
4038 unsigned int offset
;
4041 ptr
= kasan_reset_tag(ptr
);
4043 /* Find object and usable object size. */
4044 s
= page
->slab_cache
;
4046 /* Reject impossible pointers. */
4047 if (ptr
< page_address(page
))
4048 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
4051 /* Find offset within object. */
4052 offset
= (ptr
- page_address(page
)) % s
->size
;
4054 /* Adjust for redzone and reject if within the redzone. */
4055 if (kmem_cache_debug_flags(s
, SLAB_RED_ZONE
)) {
4056 if (offset
< s
->red_left_pad
)
4057 usercopy_abort("SLUB object in left red zone",
4058 s
->name
, to_user
, offset
, n
);
4059 offset
-= s
->red_left_pad
;
4062 /* Allow address range falling entirely within usercopy region. */
4063 if (offset
>= s
->useroffset
&&
4064 offset
- s
->useroffset
<= s
->usersize
&&
4065 n
<= s
->useroffset
- offset
+ s
->usersize
)
4069 * If the copy is still within the allocated object, produce
4070 * a warning instead of rejecting the copy. This is intended
4071 * to be a temporary method to find any missing usercopy
4074 object_size
= slab_ksize(s
);
4075 if (usercopy_fallback
&&
4076 offset
<= object_size
&& n
<= object_size
- offset
) {
4077 usercopy_warn("SLUB object", s
->name
, to_user
, offset
, n
);
4081 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
4083 #endif /* CONFIG_HARDENED_USERCOPY */
4085 size_t __ksize(const void *object
)
4089 if (unlikely(object
== ZERO_SIZE_PTR
))
4092 page
= virt_to_head_page(object
);
4094 if (unlikely(!PageSlab(page
))) {
4095 WARN_ON(!PageCompound(page
));
4096 return page_size(page
);
4099 return slab_ksize(page
->slab_cache
);
4101 EXPORT_SYMBOL(__ksize
);
4103 void kfree(const void *x
)
4106 void *object
= (void *)x
;
4108 trace_kfree(_RET_IP_
, x
);
4110 if (unlikely(ZERO_OR_NULL_PTR(x
)))
4113 page
= virt_to_head_page(x
);
4114 if (unlikely(!PageSlab(page
))) {
4115 unsigned int order
= compound_order(page
);
4117 BUG_ON(!PageCompound(page
));
4119 mod_node_page_state(page_pgdat(page
), NR_SLAB_UNRECLAIMABLE_B
,
4120 -(PAGE_SIZE
<< order
));
4121 __free_pages(page
, order
);
4124 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
4126 EXPORT_SYMBOL(kfree
);
4128 #define SHRINK_PROMOTE_MAX 32
4131 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4132 * up most to the head of the partial lists. New allocations will then
4133 * fill those up and thus they can be removed from the partial lists.
4135 * The slabs with the least items are placed last. This results in them
4136 * being allocated from last increasing the chance that the last objects
4137 * are freed in them.
4139 int __kmem_cache_shrink(struct kmem_cache
*s
)
4143 struct kmem_cache_node
*n
;
4146 struct list_head discard
;
4147 struct list_head promote
[SHRINK_PROMOTE_MAX
];
4148 unsigned long flags
;
4152 for_each_kmem_cache_node(s
, node
, n
) {
4153 INIT_LIST_HEAD(&discard
);
4154 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
4155 INIT_LIST_HEAD(promote
+ i
);
4157 spin_lock_irqsave(&n
->list_lock
, flags
);
4160 * Build lists of slabs to discard or promote.
4162 * Note that concurrent frees may occur while we hold the
4163 * list_lock. page->inuse here is the upper limit.
4165 list_for_each_entry_safe(page
, t
, &n
->partial
, slab_list
) {
4166 int free
= page
->objects
- page
->inuse
;
4168 /* Do not reread page->inuse */
4171 /* We do not keep full slabs on the list */
4174 if (free
== page
->objects
) {
4175 list_move(&page
->slab_list
, &discard
);
4177 } else if (free
<= SHRINK_PROMOTE_MAX
)
4178 list_move(&page
->slab_list
, promote
+ free
- 1);
4182 * Promote the slabs filled up most to the head of the
4185 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
4186 list_splice(promote
+ i
, &n
->partial
);
4188 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4190 /* Release empty slabs */
4191 list_for_each_entry_safe(page
, t
, &discard
, slab_list
)
4192 discard_slab(s
, page
);
4194 if (slabs_node(s
, node
))
4201 static int slab_mem_going_offline_callback(void *arg
)
4203 struct kmem_cache
*s
;
4205 mutex_lock(&slab_mutex
);
4206 list_for_each_entry(s
, &slab_caches
, list
)
4207 __kmem_cache_shrink(s
);
4208 mutex_unlock(&slab_mutex
);
4213 static void slab_mem_offline_callback(void *arg
)
4215 struct kmem_cache_node
*n
;
4216 struct kmem_cache
*s
;
4217 struct memory_notify
*marg
= arg
;
4220 offline_node
= marg
->status_change_nid_normal
;
4223 * If the node still has available memory. we need kmem_cache_node
4226 if (offline_node
< 0)
4229 mutex_lock(&slab_mutex
);
4230 list_for_each_entry(s
, &slab_caches
, list
) {
4231 n
= get_node(s
, offline_node
);
4234 * if n->nr_slabs > 0, slabs still exist on the node
4235 * that is going down. We were unable to free them,
4236 * and offline_pages() function shouldn't call this
4237 * callback. So, we must fail.
4239 BUG_ON(slabs_node(s
, offline_node
));
4241 s
->node
[offline_node
] = NULL
;
4242 kmem_cache_free(kmem_cache_node
, n
);
4245 mutex_unlock(&slab_mutex
);
4248 static int slab_mem_going_online_callback(void *arg
)
4250 struct kmem_cache_node
*n
;
4251 struct kmem_cache
*s
;
4252 struct memory_notify
*marg
= arg
;
4253 int nid
= marg
->status_change_nid_normal
;
4257 * If the node's memory is already available, then kmem_cache_node is
4258 * already created. Nothing to do.
4264 * We are bringing a node online. No memory is available yet. We must
4265 * allocate a kmem_cache_node structure in order to bring the node
4268 mutex_lock(&slab_mutex
);
4269 list_for_each_entry(s
, &slab_caches
, list
) {
4271 * XXX: kmem_cache_alloc_node will fallback to other nodes
4272 * since memory is not yet available from the node that
4275 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4280 init_kmem_cache_node(n
);
4284 mutex_unlock(&slab_mutex
);
4288 static int slab_memory_callback(struct notifier_block
*self
,
4289 unsigned long action
, void *arg
)
4294 case MEM_GOING_ONLINE
:
4295 ret
= slab_mem_going_online_callback(arg
);
4297 case MEM_GOING_OFFLINE
:
4298 ret
= slab_mem_going_offline_callback(arg
);
4301 case MEM_CANCEL_ONLINE
:
4302 slab_mem_offline_callback(arg
);
4305 case MEM_CANCEL_OFFLINE
:
4309 ret
= notifier_from_errno(ret
);
4315 static struct notifier_block slab_memory_callback_nb
= {
4316 .notifier_call
= slab_memory_callback
,
4317 .priority
= SLAB_CALLBACK_PRI
,
4320 /********************************************************************
4321 * Basic setup of slabs
4322 *******************************************************************/
4325 * Used for early kmem_cache structures that were allocated using
4326 * the page allocator. Allocate them properly then fix up the pointers
4327 * that may be pointing to the wrong kmem_cache structure.
4330 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4333 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4334 struct kmem_cache_node
*n
;
4336 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4339 * This runs very early, and only the boot processor is supposed to be
4340 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4343 __flush_cpu_slab(s
, smp_processor_id());
4344 for_each_kmem_cache_node(s
, node
, n
) {
4347 list_for_each_entry(p
, &n
->partial
, slab_list
)
4350 #ifdef CONFIG_SLUB_DEBUG
4351 list_for_each_entry(p
, &n
->full
, slab_list
)
4355 list_add(&s
->list
, &slab_caches
);
4359 void __init
kmem_cache_init(void)
4361 static __initdata
struct kmem_cache boot_kmem_cache
,
4362 boot_kmem_cache_node
;
4364 if (debug_guardpage_minorder())
4367 kmem_cache_node
= &boot_kmem_cache_node
;
4368 kmem_cache
= &boot_kmem_cache
;
4370 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4371 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
, 0, 0);
4373 register_hotmemory_notifier(&slab_memory_callback_nb
);
4375 /* Able to allocate the per node structures */
4376 slab_state
= PARTIAL
;
4378 create_boot_cache(kmem_cache
, "kmem_cache",
4379 offsetof(struct kmem_cache
, node
) +
4380 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4381 SLAB_HWCACHE_ALIGN
, 0, 0);
4383 kmem_cache
= bootstrap(&boot_kmem_cache
);
4384 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4386 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4387 setup_kmalloc_cache_index_table();
4388 create_kmalloc_caches(0);
4390 /* Setup random freelists for each cache */
4391 init_freelist_randomization();
4393 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4396 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4398 slub_min_order
, slub_max_order
, slub_min_objects
,
4399 nr_cpu_ids
, nr_node_ids
);
4402 void __init
kmem_cache_init_late(void)
4407 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
4408 slab_flags_t flags
, void (*ctor
)(void *))
4410 struct kmem_cache
*s
;
4412 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4417 * Adjust the object sizes so that we clear
4418 * the complete object on kzalloc.
4420 s
->object_size
= max(s
->object_size
, size
);
4421 s
->inuse
= max(s
->inuse
, ALIGN(size
, sizeof(void *)));
4423 if (sysfs_slab_alias(s
, name
)) {
4432 int __kmem_cache_create(struct kmem_cache
*s
, slab_flags_t flags
)
4436 err
= kmem_cache_open(s
, flags
);
4440 /* Mutex is not taken during early boot */
4441 if (slab_state
<= UP
)
4444 err
= sysfs_slab_add(s
);
4446 __kmem_cache_release(s
);
4451 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4453 struct kmem_cache
*s
;
4456 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4457 return kmalloc_large(size
, gfpflags
);
4459 s
= kmalloc_slab(size
, gfpflags
);
4461 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4464 ret
= slab_alloc(s
, gfpflags
, caller
);
4466 /* Honor the call site pointer we received. */
4467 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4471 EXPORT_SYMBOL(__kmalloc_track_caller
);
4474 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4475 int node
, unsigned long caller
)
4477 struct kmem_cache
*s
;
4480 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4481 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4483 trace_kmalloc_node(caller
, ret
,
4484 size
, PAGE_SIZE
<< get_order(size
),
4490 s
= kmalloc_slab(size
, gfpflags
);
4492 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4495 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4497 /* Honor the call site pointer we received. */
4498 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4502 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
4506 static int count_inuse(struct page
*page
)
4511 static int count_total(struct page
*page
)
4513 return page
->objects
;
4517 #ifdef CONFIG_SLUB_DEBUG
4518 static void validate_slab(struct kmem_cache
*s
, struct page
*page
)
4521 void *addr
= page_address(page
);
4526 if (!check_slab(s
, page
) || !on_freelist(s
, page
, NULL
))
4529 /* Now we know that a valid freelist exists */
4530 map
= get_map(s
, page
);
4531 for_each_object(p
, s
, addr
, page
->objects
) {
4532 u8 val
= test_bit(__obj_to_index(s
, addr
, p
), map
) ?
4533 SLUB_RED_INACTIVE
: SLUB_RED_ACTIVE
;
4535 if (!check_object(s
, page
, p
, val
))
4543 static int validate_slab_node(struct kmem_cache
*s
,
4544 struct kmem_cache_node
*n
)
4546 unsigned long count
= 0;
4548 unsigned long flags
;
4550 spin_lock_irqsave(&n
->list_lock
, flags
);
4552 list_for_each_entry(page
, &n
->partial
, slab_list
) {
4553 validate_slab(s
, page
);
4556 if (count
!= n
->nr_partial
)
4557 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4558 s
->name
, count
, n
->nr_partial
);
4560 if (!(s
->flags
& SLAB_STORE_USER
))
4563 list_for_each_entry(page
, &n
->full
, slab_list
) {
4564 validate_slab(s
, page
);
4567 if (count
!= atomic_long_read(&n
->nr_slabs
))
4568 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4569 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4572 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4576 static long validate_slab_cache(struct kmem_cache
*s
)
4579 unsigned long count
= 0;
4580 struct kmem_cache_node
*n
;
4583 for_each_kmem_cache_node(s
, node
, n
)
4584 count
+= validate_slab_node(s
, n
);
4589 * Generate lists of code addresses where slabcache objects are allocated
4594 unsigned long count
;
4601 DECLARE_BITMAP(cpus
, NR_CPUS
);
4607 unsigned long count
;
4608 struct location
*loc
;
4611 static void free_loc_track(struct loc_track
*t
)
4614 free_pages((unsigned long)t
->loc
,
4615 get_order(sizeof(struct location
) * t
->max
));
4618 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4623 order
= get_order(sizeof(struct location
) * max
);
4625 l
= (void *)__get_free_pages(flags
, order
);
4630 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4638 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4639 const struct track
*track
)
4641 long start
, end
, pos
;
4643 unsigned long caddr
;
4644 unsigned long age
= jiffies
- track
->when
;
4650 pos
= start
+ (end
- start
+ 1) / 2;
4653 * There is nothing at "end". If we end up there
4654 * we need to add something to before end.
4659 caddr
= t
->loc
[pos
].addr
;
4660 if (track
->addr
== caddr
) {
4666 if (age
< l
->min_time
)
4668 if (age
> l
->max_time
)
4671 if (track
->pid
< l
->min_pid
)
4672 l
->min_pid
= track
->pid
;
4673 if (track
->pid
> l
->max_pid
)
4674 l
->max_pid
= track
->pid
;
4676 cpumask_set_cpu(track
->cpu
,
4677 to_cpumask(l
->cpus
));
4679 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4683 if (track
->addr
< caddr
)
4690 * Not found. Insert new tracking element.
4692 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4698 (t
->count
- pos
) * sizeof(struct location
));
4701 l
->addr
= track
->addr
;
4705 l
->min_pid
= track
->pid
;
4706 l
->max_pid
= track
->pid
;
4707 cpumask_clear(to_cpumask(l
->cpus
));
4708 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4709 nodes_clear(l
->nodes
);
4710 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4714 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4715 struct page
*page
, enum track_item alloc
)
4717 void *addr
= page_address(page
);
4721 map
= get_map(s
, page
);
4722 for_each_object(p
, s
, addr
, page
->objects
)
4723 if (!test_bit(__obj_to_index(s
, addr
, p
), map
))
4724 add_location(t
, s
, get_track(s
, p
, alloc
));
4728 static int list_locations(struct kmem_cache
*s
, char *buf
,
4729 enum track_item alloc
)
4733 struct loc_track t
= { 0, 0, NULL
};
4735 struct kmem_cache_node
*n
;
4737 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4739 return sysfs_emit(buf
, "Out of memory\n");
4741 /* Push back cpu slabs */
4744 for_each_kmem_cache_node(s
, node
, n
) {
4745 unsigned long flags
;
4748 if (!atomic_long_read(&n
->nr_slabs
))
4751 spin_lock_irqsave(&n
->list_lock
, flags
);
4752 list_for_each_entry(page
, &n
->partial
, slab_list
)
4753 process_slab(&t
, s
, page
, alloc
);
4754 list_for_each_entry(page
, &n
->full
, slab_list
)
4755 process_slab(&t
, s
, page
, alloc
);
4756 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4759 for (i
= 0; i
< t
.count
; i
++) {
4760 struct location
*l
= &t
.loc
[i
];
4762 len
+= sysfs_emit_at(buf
, len
, "%7ld ", l
->count
);
4765 len
+= sysfs_emit_at(buf
, len
, "%pS", (void *)l
->addr
);
4767 len
+= sysfs_emit_at(buf
, len
, "<not-available>");
4769 if (l
->sum_time
!= l
->min_time
)
4770 len
+= sysfs_emit_at(buf
, len
, " age=%ld/%ld/%ld",
4772 (long)div_u64(l
->sum_time
,
4776 len
+= sysfs_emit_at(buf
, len
, " age=%ld", l
->min_time
);
4778 if (l
->min_pid
!= l
->max_pid
)
4779 len
+= sysfs_emit_at(buf
, len
, " pid=%ld-%ld",
4780 l
->min_pid
, l
->max_pid
);
4782 len
+= sysfs_emit_at(buf
, len
, " pid=%ld",
4785 if (num_online_cpus() > 1 &&
4786 !cpumask_empty(to_cpumask(l
->cpus
)))
4787 len
+= sysfs_emit_at(buf
, len
, " cpus=%*pbl",
4788 cpumask_pr_args(to_cpumask(l
->cpus
)));
4790 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
))
4791 len
+= sysfs_emit_at(buf
, len
, " nodes=%*pbl",
4792 nodemask_pr_args(&l
->nodes
));
4794 len
+= sysfs_emit_at(buf
, len
, "\n");
4799 len
+= sysfs_emit_at(buf
, len
, "No data\n");
4803 #endif /* CONFIG_SLUB_DEBUG */
4805 #ifdef SLUB_RESILIENCY_TEST
4806 static void __init
resiliency_test(void)
4809 int type
= KMALLOC_NORMAL
;
4811 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4813 pr_err("SLUB resiliency testing\n");
4814 pr_err("-----------------------\n");
4815 pr_err("A. Corruption after allocation\n");
4817 p
= kzalloc(16, GFP_KERNEL
);
4819 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4822 validate_slab_cache(kmalloc_caches
[type
][4]);
4824 /* Hmmm... The next two are dangerous */
4825 p
= kzalloc(32, GFP_KERNEL
);
4826 p
[32 + sizeof(void *)] = 0x34;
4827 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4829 pr_err("If allocated object is overwritten then not detectable\n\n");
4831 validate_slab_cache(kmalloc_caches
[type
][5]);
4832 p
= kzalloc(64, GFP_KERNEL
);
4833 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4835 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4837 pr_err("If allocated object is overwritten then not detectable\n\n");
4838 validate_slab_cache(kmalloc_caches
[type
][6]);
4840 pr_err("\nB. Corruption after free\n");
4841 p
= kzalloc(128, GFP_KERNEL
);
4844 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4845 validate_slab_cache(kmalloc_caches
[type
][7]);
4847 p
= kzalloc(256, GFP_KERNEL
);
4850 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4851 validate_slab_cache(kmalloc_caches
[type
][8]);
4853 p
= kzalloc(512, GFP_KERNEL
);
4856 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4857 validate_slab_cache(kmalloc_caches
[type
][9]);
4861 static void resiliency_test(void) {};
4863 #endif /* SLUB_RESILIENCY_TEST */
4866 enum slab_stat_type
{
4867 SL_ALL
, /* All slabs */
4868 SL_PARTIAL
, /* Only partially allocated slabs */
4869 SL_CPU
, /* Only slabs used for cpu caches */
4870 SL_OBJECTS
, /* Determine allocated objects not slabs */
4871 SL_TOTAL
/* Determine object capacity not slabs */
4874 #define SO_ALL (1 << SL_ALL)
4875 #define SO_PARTIAL (1 << SL_PARTIAL)
4876 #define SO_CPU (1 << SL_CPU)
4877 #define SO_OBJECTS (1 << SL_OBJECTS)
4878 #define SO_TOTAL (1 << SL_TOTAL)
4881 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4883 static int __init
setup_slub_memcg_sysfs(char *str
)
4887 if (get_option(&str
, &v
) > 0)
4888 memcg_sysfs_enabled
= v
;
4893 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4896 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4897 char *buf
, unsigned long flags
)
4899 unsigned long total
= 0;
4902 unsigned long *nodes
;
4905 nodes
= kcalloc(nr_node_ids
, sizeof(unsigned long), GFP_KERNEL
);
4909 if (flags
& SO_CPU
) {
4912 for_each_possible_cpu(cpu
) {
4913 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4918 page
= READ_ONCE(c
->page
);
4922 node
= page_to_nid(page
);
4923 if (flags
& SO_TOTAL
)
4925 else if (flags
& SO_OBJECTS
)
4933 page
= slub_percpu_partial_read_once(c
);
4935 node
= page_to_nid(page
);
4936 if (flags
& SO_TOTAL
)
4938 else if (flags
& SO_OBJECTS
)
4949 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4950 * already held which will conflict with an existing lock order:
4952 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4954 * We don't really need mem_hotplug_lock (to hold off
4955 * slab_mem_going_offline_callback) here because slab's memory hot
4956 * unplug code doesn't destroy the kmem_cache->node[] data.
4959 #ifdef CONFIG_SLUB_DEBUG
4960 if (flags
& SO_ALL
) {
4961 struct kmem_cache_node
*n
;
4963 for_each_kmem_cache_node(s
, node
, n
) {
4965 if (flags
& SO_TOTAL
)
4966 x
= atomic_long_read(&n
->total_objects
);
4967 else if (flags
& SO_OBJECTS
)
4968 x
= atomic_long_read(&n
->total_objects
) -
4969 count_partial(n
, count_free
);
4971 x
= atomic_long_read(&n
->nr_slabs
);
4978 if (flags
& SO_PARTIAL
) {
4979 struct kmem_cache_node
*n
;
4981 for_each_kmem_cache_node(s
, node
, n
) {
4982 if (flags
& SO_TOTAL
)
4983 x
= count_partial(n
, count_total
);
4984 else if (flags
& SO_OBJECTS
)
4985 x
= count_partial(n
, count_inuse
);
4993 len
+= sysfs_emit_at(buf
, len
, "%lu", total
);
4995 for (node
= 0; node
< nr_node_ids
; node
++) {
4997 len
+= sysfs_emit_at(buf
, len
, " N%d=%lu",
5001 len
+= sysfs_emit_at(buf
, len
, "\n");
5007 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5008 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5010 struct slab_attribute
{
5011 struct attribute attr
;
5012 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
5013 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
5016 #define SLAB_ATTR_RO(_name) \
5017 static struct slab_attribute _name##_attr = \
5018 __ATTR(_name, 0400, _name##_show, NULL)
5020 #define SLAB_ATTR(_name) \
5021 static struct slab_attribute _name##_attr = \
5022 __ATTR(_name, 0600, _name##_show, _name##_store)
5024 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
5026 return sysfs_emit(buf
, "%u\n", s
->size
);
5028 SLAB_ATTR_RO(slab_size
);
5030 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
5032 return sysfs_emit(buf
, "%u\n", s
->align
);
5034 SLAB_ATTR_RO(align
);
5036 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
5038 return sysfs_emit(buf
, "%u\n", s
->object_size
);
5040 SLAB_ATTR_RO(object_size
);
5042 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
5044 return sysfs_emit(buf
, "%u\n", oo_objects(s
->oo
));
5046 SLAB_ATTR_RO(objs_per_slab
);
5048 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
5050 return sysfs_emit(buf
, "%u\n", oo_order(s
->oo
));
5052 SLAB_ATTR_RO(order
);
5054 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
5056 return sysfs_emit(buf
, "%lu\n", s
->min_partial
);
5059 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
5065 err
= kstrtoul(buf
, 10, &min
);
5069 set_min_partial(s
, min
);
5072 SLAB_ATTR(min_partial
);
5074 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5076 return sysfs_emit(buf
, "%u\n", slub_cpu_partial(s
));
5079 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
5082 unsigned int objects
;
5085 err
= kstrtouint(buf
, 10, &objects
);
5088 if (objects
&& !kmem_cache_has_cpu_partial(s
))
5091 slub_set_cpu_partial(s
, objects
);
5095 SLAB_ATTR(cpu_partial
);
5097 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
5101 return sysfs_emit(buf
, "%pS\n", s
->ctor
);
5105 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
5107 return sysfs_emit(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
5109 SLAB_ATTR_RO(aliases
);
5111 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
5113 return show_slab_objects(s
, buf
, SO_PARTIAL
);
5115 SLAB_ATTR_RO(partial
);
5117 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
5119 return show_slab_objects(s
, buf
, SO_CPU
);
5121 SLAB_ATTR_RO(cpu_slabs
);
5123 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
5125 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
5127 SLAB_ATTR_RO(objects
);
5129 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5131 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5133 SLAB_ATTR_RO(objects_partial
);
5135 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5142 for_each_online_cpu(cpu
) {
5145 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5148 pages
+= page
->pages
;
5149 objects
+= page
->pobjects
;
5153 len
+= sysfs_emit_at(buf
, len
, "%d(%d)", objects
, pages
);
5156 for_each_online_cpu(cpu
) {
5159 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5161 len
+= sysfs_emit_at(buf
, len
, " C%d=%d(%d)",
5162 cpu
, page
->pobjects
, page
->pages
);
5165 len
+= sysfs_emit_at(buf
, len
, "\n");
5169 SLAB_ATTR_RO(slabs_cpu_partial
);
5171 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5173 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5175 SLAB_ATTR_RO(reclaim_account
);
5177 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5179 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5181 SLAB_ATTR_RO(hwcache_align
);
5183 #ifdef CONFIG_ZONE_DMA
5184 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5186 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5188 SLAB_ATTR_RO(cache_dma
);
5191 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
5193 return sysfs_emit(buf
, "%u\n", s
->usersize
);
5195 SLAB_ATTR_RO(usersize
);
5197 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5199 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5201 SLAB_ATTR_RO(destroy_by_rcu
);
5203 #ifdef CONFIG_SLUB_DEBUG
5204 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5206 return show_slab_objects(s
, buf
, SO_ALL
);
5208 SLAB_ATTR_RO(slabs
);
5210 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5212 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5214 SLAB_ATTR_RO(total_objects
);
5216 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5218 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5220 SLAB_ATTR_RO(sanity_checks
);
5222 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5224 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5226 SLAB_ATTR_RO(trace
);
5228 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5230 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5233 SLAB_ATTR_RO(red_zone
);
5235 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5237 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5240 SLAB_ATTR_RO(poison
);
5242 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5244 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5247 SLAB_ATTR_RO(store_user
);
5249 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5254 static ssize_t
validate_store(struct kmem_cache
*s
,
5255 const char *buf
, size_t length
)
5259 if (buf
[0] == '1') {
5260 ret
= validate_slab_cache(s
);
5266 SLAB_ATTR(validate
);
5268 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5270 if (!(s
->flags
& SLAB_STORE_USER
))
5272 return list_locations(s
, buf
, TRACK_ALLOC
);
5274 SLAB_ATTR_RO(alloc_calls
);
5276 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5278 if (!(s
->flags
& SLAB_STORE_USER
))
5280 return list_locations(s
, buf
, TRACK_FREE
);
5282 SLAB_ATTR_RO(free_calls
);
5283 #endif /* CONFIG_SLUB_DEBUG */
5285 #ifdef CONFIG_FAILSLAB
5286 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5288 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5290 SLAB_ATTR_RO(failslab
);
5293 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5298 static ssize_t
shrink_store(struct kmem_cache
*s
,
5299 const char *buf
, size_t length
)
5302 kmem_cache_shrink(s
);
5310 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5312 return sysfs_emit(buf
, "%u\n", s
->remote_node_defrag_ratio
/ 10);
5315 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5316 const char *buf
, size_t length
)
5321 err
= kstrtouint(buf
, 10, &ratio
);
5327 s
->remote_node_defrag_ratio
= ratio
* 10;
5331 SLAB_ATTR(remote_node_defrag_ratio
);
5334 #ifdef CONFIG_SLUB_STATS
5335 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5337 unsigned long sum
= 0;
5340 int *data
= kmalloc_array(nr_cpu_ids
, sizeof(int), GFP_KERNEL
);
5345 for_each_online_cpu(cpu
) {
5346 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5352 len
+= sysfs_emit_at(buf
, len
, "%lu", sum
);
5355 for_each_online_cpu(cpu
) {
5357 len
+= sysfs_emit_at(buf
, len
, " C%d=%u",
5362 len
+= sysfs_emit_at(buf
, len
, "\n");
5367 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5371 for_each_online_cpu(cpu
)
5372 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5375 #define STAT_ATTR(si, text) \
5376 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5378 return show_stat(s, buf, si); \
5380 static ssize_t text##_store(struct kmem_cache *s, \
5381 const char *buf, size_t length) \
5383 if (buf[0] != '0') \
5385 clear_stat(s, si); \
5390 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5391 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5392 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5393 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5394 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5395 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5396 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5397 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5398 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5399 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5400 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5401 STAT_ATTR(FREE_SLAB
, free_slab
);
5402 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5403 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5404 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5405 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5406 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5407 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5408 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5409 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5410 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5411 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5412 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5413 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5414 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5415 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5416 #endif /* CONFIG_SLUB_STATS */
5418 static struct attribute
*slab_attrs
[] = {
5419 &slab_size_attr
.attr
,
5420 &object_size_attr
.attr
,
5421 &objs_per_slab_attr
.attr
,
5423 &min_partial_attr
.attr
,
5424 &cpu_partial_attr
.attr
,
5426 &objects_partial_attr
.attr
,
5428 &cpu_slabs_attr
.attr
,
5432 &hwcache_align_attr
.attr
,
5433 &reclaim_account_attr
.attr
,
5434 &destroy_by_rcu_attr
.attr
,
5436 &slabs_cpu_partial_attr
.attr
,
5437 #ifdef CONFIG_SLUB_DEBUG
5438 &total_objects_attr
.attr
,
5440 &sanity_checks_attr
.attr
,
5442 &red_zone_attr
.attr
,
5444 &store_user_attr
.attr
,
5445 &validate_attr
.attr
,
5446 &alloc_calls_attr
.attr
,
5447 &free_calls_attr
.attr
,
5449 #ifdef CONFIG_ZONE_DMA
5450 &cache_dma_attr
.attr
,
5453 &remote_node_defrag_ratio_attr
.attr
,
5455 #ifdef CONFIG_SLUB_STATS
5456 &alloc_fastpath_attr
.attr
,
5457 &alloc_slowpath_attr
.attr
,
5458 &free_fastpath_attr
.attr
,
5459 &free_slowpath_attr
.attr
,
5460 &free_frozen_attr
.attr
,
5461 &free_add_partial_attr
.attr
,
5462 &free_remove_partial_attr
.attr
,
5463 &alloc_from_partial_attr
.attr
,
5464 &alloc_slab_attr
.attr
,
5465 &alloc_refill_attr
.attr
,
5466 &alloc_node_mismatch_attr
.attr
,
5467 &free_slab_attr
.attr
,
5468 &cpuslab_flush_attr
.attr
,
5469 &deactivate_full_attr
.attr
,
5470 &deactivate_empty_attr
.attr
,
5471 &deactivate_to_head_attr
.attr
,
5472 &deactivate_to_tail_attr
.attr
,
5473 &deactivate_remote_frees_attr
.attr
,
5474 &deactivate_bypass_attr
.attr
,
5475 &order_fallback_attr
.attr
,
5476 &cmpxchg_double_fail_attr
.attr
,
5477 &cmpxchg_double_cpu_fail_attr
.attr
,
5478 &cpu_partial_alloc_attr
.attr
,
5479 &cpu_partial_free_attr
.attr
,
5480 &cpu_partial_node_attr
.attr
,
5481 &cpu_partial_drain_attr
.attr
,
5483 #ifdef CONFIG_FAILSLAB
5484 &failslab_attr
.attr
,
5486 &usersize_attr
.attr
,
5491 static const struct attribute_group slab_attr_group
= {
5492 .attrs
= slab_attrs
,
5495 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5496 struct attribute
*attr
,
5499 struct slab_attribute
*attribute
;
5500 struct kmem_cache
*s
;
5503 attribute
= to_slab_attr(attr
);
5506 if (!attribute
->show
)
5509 err
= attribute
->show(s
, buf
);
5514 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5515 struct attribute
*attr
,
5516 const char *buf
, size_t len
)
5518 struct slab_attribute
*attribute
;
5519 struct kmem_cache
*s
;
5522 attribute
= to_slab_attr(attr
);
5525 if (!attribute
->store
)
5528 err
= attribute
->store(s
, buf
, len
);
5532 static void kmem_cache_release(struct kobject
*k
)
5534 slab_kmem_cache_release(to_slab(k
));
5537 static const struct sysfs_ops slab_sysfs_ops
= {
5538 .show
= slab_attr_show
,
5539 .store
= slab_attr_store
,
5542 static struct kobj_type slab_ktype
= {
5543 .sysfs_ops
= &slab_sysfs_ops
,
5544 .release
= kmem_cache_release
,
5547 static struct kset
*slab_kset
;
5549 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5554 #define ID_STR_LENGTH 64
5556 /* Create a unique string id for a slab cache:
5558 * Format :[flags-]size
5560 static char *create_unique_id(struct kmem_cache
*s
)
5562 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5569 * First flags affecting slabcache operations. We will only
5570 * get here for aliasable slabs so we do not need to support
5571 * too many flags. The flags here must cover all flags that
5572 * are matched during merging to guarantee that the id is
5575 if (s
->flags
& SLAB_CACHE_DMA
)
5577 if (s
->flags
& SLAB_CACHE_DMA32
)
5579 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5581 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5583 if (s
->flags
& SLAB_ACCOUNT
)
5587 p
+= sprintf(p
, "%07u", s
->size
);
5589 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5593 static int sysfs_slab_add(struct kmem_cache
*s
)
5597 struct kset
*kset
= cache_kset(s
);
5598 int unmergeable
= slab_unmergeable(s
);
5601 kobject_init(&s
->kobj
, &slab_ktype
);
5605 if (!unmergeable
&& disable_higher_order_debug
&&
5606 (slub_debug
& DEBUG_METADATA_FLAGS
))
5611 * Slabcache can never be merged so we can use the name proper.
5612 * This is typically the case for debug situations. In that
5613 * case we can catch duplicate names easily.
5615 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5619 * Create a unique name for the slab as a target
5622 name
= create_unique_id(s
);
5625 s
->kobj
.kset
= kset
;
5626 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5628 kobject_put(&s
->kobj
);
5632 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5637 /* Setup first alias */
5638 sysfs_slab_alias(s
, s
->name
);
5645 kobject_del(&s
->kobj
);
5649 void sysfs_slab_unlink(struct kmem_cache
*s
)
5651 if (slab_state
>= FULL
)
5652 kobject_del(&s
->kobj
);
5655 void sysfs_slab_release(struct kmem_cache
*s
)
5657 if (slab_state
>= FULL
)
5658 kobject_put(&s
->kobj
);
5662 * Need to buffer aliases during bootup until sysfs becomes
5663 * available lest we lose that information.
5665 struct saved_alias
{
5666 struct kmem_cache
*s
;
5668 struct saved_alias
*next
;
5671 static struct saved_alias
*alias_list
;
5673 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5675 struct saved_alias
*al
;
5677 if (slab_state
== FULL
) {
5679 * If we have a leftover link then remove it.
5681 sysfs_remove_link(&slab_kset
->kobj
, name
);
5682 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5685 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5691 al
->next
= alias_list
;
5696 static int __init
slab_sysfs_init(void)
5698 struct kmem_cache
*s
;
5701 mutex_lock(&slab_mutex
);
5703 slab_kset
= kset_create_and_add("slab", NULL
, kernel_kobj
);
5705 mutex_unlock(&slab_mutex
);
5706 pr_err("Cannot register slab subsystem.\n");
5712 list_for_each_entry(s
, &slab_caches
, list
) {
5713 err
= sysfs_slab_add(s
);
5715 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5719 while (alias_list
) {
5720 struct saved_alias
*al
= alias_list
;
5722 alias_list
= alias_list
->next
;
5723 err
= sysfs_slab_alias(al
->s
, al
->name
);
5725 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5730 mutex_unlock(&slab_mutex
);
5735 __initcall(slab_sysfs_init
);
5736 #endif /* CONFIG_SYSFS */
5739 * The /proc/slabinfo ABI
5741 #ifdef CONFIG_SLUB_DEBUG
5742 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5744 unsigned long nr_slabs
= 0;
5745 unsigned long nr_objs
= 0;
5746 unsigned long nr_free
= 0;
5748 struct kmem_cache_node
*n
;
5750 for_each_kmem_cache_node(s
, node
, n
) {
5751 nr_slabs
+= node_nr_slabs(n
);
5752 nr_objs
+= node_nr_objs(n
);
5753 nr_free
+= count_partial(n
, count_free
);
5756 sinfo
->active_objs
= nr_objs
- nr_free
;
5757 sinfo
->num_objs
= nr_objs
;
5758 sinfo
->active_slabs
= nr_slabs
;
5759 sinfo
->num_slabs
= nr_slabs
;
5760 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5761 sinfo
->cache_order
= oo_order(s
->oo
);
5764 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5768 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5769 size_t count
, loff_t
*ppos
)
5773 #endif /* CONFIG_SLUB_DEBUG */