1 // SPDX-License-Identifier: GPL-2.0-only
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
8 /* Implementation notes:
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
56 * - Lock ordering for pending or accept queue sockets is:
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
113 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
);
114 static void vsock_sk_destruct(struct sock
*sk
);
115 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
117 /* Protocol family. */
118 static struct proto vsock_proto
= {
120 .owner
= THIS_MODULE
,
121 .obj_size
= sizeof(struct vsock_sock
),
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport
*transport_h2g
;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport
*transport_g2h
;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport
*transport_dgram
;
139 /* Transport used for local communication */
140 static const struct vsock_transport
*transport_local
;
141 static DEFINE_MUTEX(vsock_register_mutex
);
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
159 #define MAX_PORT_RETRIES 24
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
173 struct list_head vsock_bind_table
[VSOCK_HASH_SIZE
+ 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table
);
175 struct list_head vsock_connected_table
[VSOCK_HASH_SIZE
];
176 EXPORT_SYMBOL_GPL(vsock_connected_table
);
177 DEFINE_SPINLOCK(vsock_table_lock
);
178 EXPORT_SYMBOL_GPL(vsock_table_lock
);
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock
*vsk
)
183 struct sock
*sk
= sk_vsock(vsk
);
184 struct sockaddr_vm local_addr
;
186 if (vsock_addr_bound(&vsk
->local_addr
))
188 vsock_addr_init(&local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
189 return __vsock_bind(sk
, &local_addr
);
192 static void vsock_init_tables(void)
196 for (i
= 0; i
< ARRAY_SIZE(vsock_bind_table
); i
++)
197 INIT_LIST_HEAD(&vsock_bind_table
[i
]);
199 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++)
200 INIT_LIST_HEAD(&vsock_connected_table
[i
]);
203 static void __vsock_insert_bound(struct list_head
*list
,
204 struct vsock_sock
*vsk
)
207 list_add(&vsk
->bound_table
, list
);
210 static void __vsock_insert_connected(struct list_head
*list
,
211 struct vsock_sock
*vsk
)
214 list_add(&vsk
->connected_table
, list
);
217 static void __vsock_remove_bound(struct vsock_sock
*vsk
)
219 list_del_init(&vsk
->bound_table
);
223 static void __vsock_remove_connected(struct vsock_sock
*vsk
)
225 list_del_init(&vsk
->connected_table
);
229 static struct sock
*__vsock_find_bound_socket(struct sockaddr_vm
*addr
)
231 struct vsock_sock
*vsk
;
233 list_for_each_entry(vsk
, vsock_bound_sockets(addr
), bound_table
) {
234 if (vsock_addr_equals_addr(addr
, &vsk
->local_addr
))
235 return sk_vsock(vsk
);
237 if (addr
->svm_port
== vsk
->local_addr
.svm_port
&&
238 (vsk
->local_addr
.svm_cid
== VMADDR_CID_ANY
||
239 addr
->svm_cid
== VMADDR_CID_ANY
))
240 return sk_vsock(vsk
);
246 static struct sock
*__vsock_find_connected_socket(struct sockaddr_vm
*src
,
247 struct sockaddr_vm
*dst
)
249 struct vsock_sock
*vsk
;
251 list_for_each_entry(vsk
, vsock_connected_sockets(src
, dst
),
253 if (vsock_addr_equals_addr(src
, &vsk
->remote_addr
) &&
254 dst
->svm_port
== vsk
->local_addr
.svm_port
) {
255 return sk_vsock(vsk
);
262 static void vsock_insert_unbound(struct vsock_sock
*vsk
)
264 spin_lock_bh(&vsock_table_lock
);
265 __vsock_insert_bound(vsock_unbound_sockets
, vsk
);
266 spin_unlock_bh(&vsock_table_lock
);
269 void vsock_insert_connected(struct vsock_sock
*vsk
)
271 struct list_head
*list
= vsock_connected_sockets(
272 &vsk
->remote_addr
, &vsk
->local_addr
);
274 spin_lock_bh(&vsock_table_lock
);
275 __vsock_insert_connected(list
, vsk
);
276 spin_unlock_bh(&vsock_table_lock
);
278 EXPORT_SYMBOL_GPL(vsock_insert_connected
);
280 void vsock_remove_bound(struct vsock_sock
*vsk
)
282 spin_lock_bh(&vsock_table_lock
);
283 if (__vsock_in_bound_table(vsk
))
284 __vsock_remove_bound(vsk
);
285 spin_unlock_bh(&vsock_table_lock
);
287 EXPORT_SYMBOL_GPL(vsock_remove_bound
);
289 void vsock_remove_connected(struct vsock_sock
*vsk
)
291 spin_lock_bh(&vsock_table_lock
);
292 if (__vsock_in_connected_table(vsk
))
293 __vsock_remove_connected(vsk
);
294 spin_unlock_bh(&vsock_table_lock
);
296 EXPORT_SYMBOL_GPL(vsock_remove_connected
);
298 struct sock
*vsock_find_bound_socket(struct sockaddr_vm
*addr
)
302 spin_lock_bh(&vsock_table_lock
);
303 sk
= __vsock_find_bound_socket(addr
);
307 spin_unlock_bh(&vsock_table_lock
);
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket
);
313 struct sock
*vsock_find_connected_socket(struct sockaddr_vm
*src
,
314 struct sockaddr_vm
*dst
)
318 spin_lock_bh(&vsock_table_lock
);
319 sk
= __vsock_find_connected_socket(src
, dst
);
323 spin_unlock_bh(&vsock_table_lock
);
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket
);
329 void vsock_remove_sock(struct vsock_sock
*vsk
)
331 vsock_remove_bound(vsk
);
332 vsock_remove_connected(vsk
);
334 EXPORT_SYMBOL_GPL(vsock_remove_sock
);
336 void vsock_for_each_connected_socket(void (*fn
)(struct sock
*sk
))
340 spin_lock_bh(&vsock_table_lock
);
342 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++) {
343 struct vsock_sock
*vsk
;
344 list_for_each_entry(vsk
, &vsock_connected_table
[i
],
349 spin_unlock_bh(&vsock_table_lock
);
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket
);
353 void vsock_add_pending(struct sock
*listener
, struct sock
*pending
)
355 struct vsock_sock
*vlistener
;
356 struct vsock_sock
*vpending
;
358 vlistener
= vsock_sk(listener
);
359 vpending
= vsock_sk(pending
);
363 list_add_tail(&vpending
->pending_links
, &vlistener
->pending_links
);
365 EXPORT_SYMBOL_GPL(vsock_add_pending
);
367 void vsock_remove_pending(struct sock
*listener
, struct sock
*pending
)
369 struct vsock_sock
*vpending
= vsock_sk(pending
);
371 list_del_init(&vpending
->pending_links
);
375 EXPORT_SYMBOL_GPL(vsock_remove_pending
);
377 void vsock_enqueue_accept(struct sock
*listener
, struct sock
*connected
)
379 struct vsock_sock
*vlistener
;
380 struct vsock_sock
*vconnected
;
382 vlistener
= vsock_sk(listener
);
383 vconnected
= vsock_sk(connected
);
385 sock_hold(connected
);
387 list_add_tail(&vconnected
->accept_queue
, &vlistener
->accept_queue
);
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept
);
391 static bool vsock_use_local_transport(unsigned int remote_cid
)
393 if (!transport_local
)
396 if (remote_cid
== VMADDR_CID_LOCAL
)
400 return remote_cid
== transport_g2h
->get_local_cid();
402 return remote_cid
== VMADDR_CID_HOST
;
406 static void vsock_deassign_transport(struct vsock_sock
*vsk
)
411 vsk
->transport
->destruct(vsk
);
412 module_put(vsk
->transport
->module
);
413 vsk
->transport
= NULL
;
416 /* Assign a transport to a socket and call the .init transport callback.
418 * Note: for stream socket this must be called when vsk->remote_addr is set
419 * (e.g. during the connect() or when a connection request on a listener
420 * socket is received).
421 * The vsk->remote_addr is used to decide which transport to use:
422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423 * g2h is not loaded, will use local transport;
424 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
425 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
426 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
428 int vsock_assign_transport(struct vsock_sock
*vsk
, struct vsock_sock
*psk
)
430 const struct vsock_transport
*new_transport
;
431 struct sock
*sk
= sk_vsock(vsk
);
432 unsigned int remote_cid
= vsk
->remote_addr
.svm_cid
;
436 /* If the packet is coming with the source and destination CIDs higher
437 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
438 * forwarded to the host should be established. Then the host will
439 * need to forward the packets to the guest.
441 * The flag is set on the (listen) receive path (psk is not NULL). On
442 * the connect path the flag can be set by the user space application.
444 if (psk
&& vsk
->local_addr
.svm_cid
> VMADDR_CID_HOST
&&
445 vsk
->remote_addr
.svm_cid
> VMADDR_CID_HOST
)
446 vsk
->remote_addr
.svm_flags
|= VMADDR_FLAG_TO_HOST
;
448 remote_flags
= vsk
->remote_addr
.svm_flags
;
450 switch (sk
->sk_type
) {
452 new_transport
= transport_dgram
;
455 if (vsock_use_local_transport(remote_cid
))
456 new_transport
= transport_local
;
457 else if (remote_cid
<= VMADDR_CID_HOST
|| !transport_h2g
||
458 (remote_flags
& VMADDR_FLAG_TO_HOST
))
459 new_transport
= transport_g2h
;
461 new_transport
= transport_h2g
;
464 return -ESOCKTNOSUPPORT
;
467 if (vsk
->transport
) {
468 if (vsk
->transport
== new_transport
)
471 /* transport->release() must be called with sock lock acquired.
472 * This path can only be taken during vsock_stream_connect(),
473 * where we have already held the sock lock.
474 * In the other cases, this function is called on a new socket
475 * which is not assigned to any transport.
477 vsk
->transport
->release(vsk
);
478 vsock_deassign_transport(vsk
);
481 /* We increase the module refcnt to prevent the transport unloading
482 * while there are open sockets assigned to it.
484 if (!new_transport
|| !try_module_get(new_transport
->module
))
487 ret
= new_transport
->init(vsk
, psk
);
489 module_put(new_transport
->module
);
493 vsk
->transport
= new_transport
;
497 EXPORT_SYMBOL_GPL(vsock_assign_transport
);
499 bool vsock_find_cid(unsigned int cid
)
501 if (transport_g2h
&& cid
== transport_g2h
->get_local_cid())
504 if (transport_h2g
&& cid
== VMADDR_CID_HOST
)
507 if (transport_local
&& cid
== VMADDR_CID_LOCAL
)
512 EXPORT_SYMBOL_GPL(vsock_find_cid
);
514 static struct sock
*vsock_dequeue_accept(struct sock
*listener
)
516 struct vsock_sock
*vlistener
;
517 struct vsock_sock
*vconnected
;
519 vlistener
= vsock_sk(listener
);
521 if (list_empty(&vlistener
->accept_queue
))
524 vconnected
= list_entry(vlistener
->accept_queue
.next
,
525 struct vsock_sock
, accept_queue
);
527 list_del_init(&vconnected
->accept_queue
);
529 /* The caller will need a reference on the connected socket so we let
530 * it call sock_put().
533 return sk_vsock(vconnected
);
536 static bool vsock_is_accept_queue_empty(struct sock
*sk
)
538 struct vsock_sock
*vsk
= vsock_sk(sk
);
539 return list_empty(&vsk
->accept_queue
);
542 static bool vsock_is_pending(struct sock
*sk
)
544 struct vsock_sock
*vsk
= vsock_sk(sk
);
545 return !list_empty(&vsk
->pending_links
);
548 static int vsock_send_shutdown(struct sock
*sk
, int mode
)
550 struct vsock_sock
*vsk
= vsock_sk(sk
);
555 return vsk
->transport
->shutdown(vsk
, mode
);
558 static void vsock_pending_work(struct work_struct
*work
)
561 struct sock
*listener
;
562 struct vsock_sock
*vsk
;
565 vsk
= container_of(work
, struct vsock_sock
, pending_work
.work
);
567 listener
= vsk
->listener
;
571 lock_sock_nested(sk
, SINGLE_DEPTH_NESTING
);
573 if (vsock_is_pending(sk
)) {
574 vsock_remove_pending(listener
, sk
);
576 sk_acceptq_removed(listener
);
577 } else if (!vsk
->rejected
) {
578 /* We are not on the pending list and accept() did not reject
579 * us, so we must have been accepted by our user process. We
580 * just need to drop our references to the sockets and be on
587 /* We need to remove ourself from the global connected sockets list so
588 * incoming packets can't find this socket, and to reduce the reference
591 vsock_remove_connected(vsk
);
593 sk
->sk_state
= TCP_CLOSE
;
597 release_sock(listener
);
605 /**** SOCKET OPERATIONS ****/
607 static int __vsock_bind_stream(struct vsock_sock
*vsk
,
608 struct sockaddr_vm
*addr
)
611 struct sockaddr_vm new_addr
;
614 port
= LAST_RESERVED_PORT
+ 1 +
615 prandom_u32_max(U32_MAX
- LAST_RESERVED_PORT
);
617 vsock_addr_init(&new_addr
, addr
->svm_cid
, addr
->svm_port
);
619 if (addr
->svm_port
== VMADDR_PORT_ANY
) {
623 for (i
= 0; i
< MAX_PORT_RETRIES
; i
++) {
624 if (port
<= LAST_RESERVED_PORT
)
625 port
= LAST_RESERVED_PORT
+ 1;
627 new_addr
.svm_port
= port
++;
629 if (!__vsock_find_bound_socket(&new_addr
)) {
636 return -EADDRNOTAVAIL
;
638 /* If port is in reserved range, ensure caller
639 * has necessary privileges.
641 if (addr
->svm_port
<= LAST_RESERVED_PORT
&&
642 !capable(CAP_NET_BIND_SERVICE
)) {
646 if (__vsock_find_bound_socket(&new_addr
))
650 vsock_addr_init(&vsk
->local_addr
, new_addr
.svm_cid
, new_addr
.svm_port
);
652 /* Remove stream sockets from the unbound list and add them to the hash
653 * table for easy lookup by its address. The unbound list is simply an
654 * extra entry at the end of the hash table, a trick used by AF_UNIX.
656 __vsock_remove_bound(vsk
);
657 __vsock_insert_bound(vsock_bound_sockets(&vsk
->local_addr
), vsk
);
662 static int __vsock_bind_dgram(struct vsock_sock
*vsk
,
663 struct sockaddr_vm
*addr
)
665 return vsk
->transport
->dgram_bind(vsk
, addr
);
668 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
)
670 struct vsock_sock
*vsk
= vsock_sk(sk
);
673 /* First ensure this socket isn't already bound. */
674 if (vsock_addr_bound(&vsk
->local_addr
))
677 /* Now bind to the provided address or select appropriate values if
678 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
679 * like AF_INET prevents binding to a non-local IP address (in most
680 * cases), we only allow binding to a local CID.
682 if (addr
->svm_cid
!= VMADDR_CID_ANY
&& !vsock_find_cid(addr
->svm_cid
))
683 return -EADDRNOTAVAIL
;
685 switch (sk
->sk_socket
->type
) {
687 spin_lock_bh(&vsock_table_lock
);
688 retval
= __vsock_bind_stream(vsk
, addr
);
689 spin_unlock_bh(&vsock_table_lock
);
693 retval
= __vsock_bind_dgram(vsk
, addr
);
704 static void vsock_connect_timeout(struct work_struct
*work
);
706 static struct sock
*__vsock_create(struct net
*net
,
714 struct vsock_sock
*psk
;
715 struct vsock_sock
*vsk
;
717 sk
= sk_alloc(net
, AF_VSOCK
, priority
, &vsock_proto
, kern
);
721 sock_init_data(sock
, sk
);
723 /* sk->sk_type is normally set in sock_init_data, but only if sock is
724 * non-NULL. We make sure that our sockets always have a type by
725 * setting it here if needed.
731 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
732 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
734 sk
->sk_destruct
= vsock_sk_destruct
;
735 sk
->sk_backlog_rcv
= vsock_queue_rcv_skb
;
736 sock_reset_flag(sk
, SOCK_DONE
);
738 INIT_LIST_HEAD(&vsk
->bound_table
);
739 INIT_LIST_HEAD(&vsk
->connected_table
);
740 vsk
->listener
= NULL
;
741 INIT_LIST_HEAD(&vsk
->pending_links
);
742 INIT_LIST_HEAD(&vsk
->accept_queue
);
743 vsk
->rejected
= false;
744 vsk
->sent_request
= false;
745 vsk
->ignore_connecting_rst
= false;
746 vsk
->peer_shutdown
= 0;
747 INIT_DELAYED_WORK(&vsk
->connect_work
, vsock_connect_timeout
);
748 INIT_DELAYED_WORK(&vsk
->pending_work
, vsock_pending_work
);
750 psk
= parent
? vsock_sk(parent
) : NULL
;
752 vsk
->trusted
= psk
->trusted
;
753 vsk
->owner
= get_cred(psk
->owner
);
754 vsk
->connect_timeout
= psk
->connect_timeout
;
755 vsk
->buffer_size
= psk
->buffer_size
;
756 vsk
->buffer_min_size
= psk
->buffer_min_size
;
757 vsk
->buffer_max_size
= psk
->buffer_max_size
;
759 vsk
->trusted
= ns_capable_noaudit(&init_user_ns
, CAP_NET_ADMIN
);
760 vsk
->owner
= get_current_cred();
761 vsk
->connect_timeout
= VSOCK_DEFAULT_CONNECT_TIMEOUT
;
762 vsk
->buffer_size
= VSOCK_DEFAULT_BUFFER_SIZE
;
763 vsk
->buffer_min_size
= VSOCK_DEFAULT_BUFFER_MIN_SIZE
;
764 vsk
->buffer_max_size
= VSOCK_DEFAULT_BUFFER_MAX_SIZE
;
770 static void __vsock_release(struct sock
*sk
, int level
)
773 struct sock
*pending
;
774 struct vsock_sock
*vsk
;
777 pending
= NULL
; /* Compiler warning. */
779 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
780 * version to avoid the warning "possible recursive locking
781 * detected". When "level" is 0, lock_sock_nested(sk, level)
782 * is the same as lock_sock(sk).
784 lock_sock_nested(sk
, level
);
787 vsk
->transport
->release(vsk
);
788 else if (sk
->sk_type
== SOCK_STREAM
)
789 vsock_remove_sock(vsk
);
792 sk
->sk_shutdown
= SHUTDOWN_MASK
;
794 skb_queue_purge(&sk
->sk_receive_queue
);
796 /* Clean up any sockets that never were accepted. */
797 while ((pending
= vsock_dequeue_accept(sk
)) != NULL
) {
798 __vsock_release(pending
, SINGLE_DEPTH_NESTING
);
807 static void vsock_sk_destruct(struct sock
*sk
)
809 struct vsock_sock
*vsk
= vsock_sk(sk
);
811 vsock_deassign_transport(vsk
);
813 /* When clearing these addresses, there's no need to set the family and
814 * possibly register the address family with the kernel.
816 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
817 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
819 put_cred(vsk
->owner
);
822 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
826 err
= sock_queue_rcv_skb(sk
, skb
);
833 struct sock
*vsock_create_connected(struct sock
*parent
)
835 return __vsock_create(sock_net(parent
), NULL
, parent
, GFP_KERNEL
,
838 EXPORT_SYMBOL_GPL(vsock_create_connected
);
840 s64
vsock_stream_has_data(struct vsock_sock
*vsk
)
842 return vsk
->transport
->stream_has_data(vsk
);
844 EXPORT_SYMBOL_GPL(vsock_stream_has_data
);
846 s64
vsock_stream_has_space(struct vsock_sock
*vsk
)
848 return vsk
->transport
->stream_has_space(vsk
);
850 EXPORT_SYMBOL_GPL(vsock_stream_has_space
);
852 static int vsock_release(struct socket
*sock
)
854 __vsock_release(sock
->sk
, 0);
856 sock
->state
= SS_FREE
;
862 vsock_bind(struct socket
*sock
, struct sockaddr
*addr
, int addr_len
)
866 struct sockaddr_vm
*vm_addr
;
870 if (vsock_addr_cast(addr
, addr_len
, &vm_addr
) != 0)
874 err
= __vsock_bind(sk
, vm_addr
);
880 static int vsock_getname(struct socket
*sock
,
881 struct sockaddr
*addr
, int peer
)
885 struct vsock_sock
*vsk
;
886 struct sockaddr_vm
*vm_addr
;
895 if (sock
->state
!= SS_CONNECTED
) {
899 vm_addr
= &vsk
->remote_addr
;
901 vm_addr
= &vsk
->local_addr
;
909 /* sys_getsockname() and sys_getpeername() pass us a
910 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
911 * that macro is defined in socket.c instead of .h, so we hardcode its
914 BUILD_BUG_ON(sizeof(*vm_addr
) > 128);
915 memcpy(addr
, vm_addr
, sizeof(*vm_addr
));
916 err
= sizeof(*vm_addr
);
923 static int vsock_shutdown(struct socket
*sock
, int mode
)
928 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
929 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
930 * here like the other address families do. Note also that the
931 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
932 * which is what we want.
936 if ((mode
& ~SHUTDOWN_MASK
) || !mode
)
939 /* If this is a STREAM socket and it is not connected then bail out
940 * immediately. If it is a DGRAM socket then we must first kick the
941 * socket so that it wakes up from any sleeping calls, for example
942 * recv(), and then afterwards return the error.
946 if (sock
->state
== SS_UNCONNECTED
) {
948 if (sk
->sk_type
== SOCK_STREAM
)
951 sock
->state
= SS_DISCONNECTING
;
955 /* Receive and send shutdowns are treated alike. */
956 mode
= mode
& (RCV_SHUTDOWN
| SEND_SHUTDOWN
);
959 sk
->sk_shutdown
|= mode
;
960 sk
->sk_state_change(sk
);
963 if (sk
->sk_type
== SOCK_STREAM
) {
964 sock_reset_flag(sk
, SOCK_DONE
);
965 vsock_send_shutdown(sk
, mode
);
972 static __poll_t
vsock_poll(struct file
*file
, struct socket
*sock
,
977 struct vsock_sock
*vsk
;
982 poll_wait(file
, sk_sleep(sk
), wait
);
986 /* Signify that there has been an error on this socket. */
989 /* INET sockets treat local write shutdown and peer write shutdown as a
990 * case of EPOLLHUP set.
992 if ((sk
->sk_shutdown
== SHUTDOWN_MASK
) ||
993 ((sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
994 (vsk
->peer_shutdown
& SEND_SHUTDOWN
))) {
998 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
999 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
1003 if (sock
->type
== SOCK_DGRAM
) {
1004 /* For datagram sockets we can read if there is something in
1005 * the queue and write as long as the socket isn't shutdown for
1008 if (!skb_queue_empty_lockless(&sk
->sk_receive_queue
) ||
1009 (sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1010 mask
|= EPOLLIN
| EPOLLRDNORM
;
1013 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
1014 mask
|= EPOLLOUT
| EPOLLWRNORM
| EPOLLWRBAND
;
1016 } else if (sock
->type
== SOCK_STREAM
) {
1017 const struct vsock_transport
*transport
= vsk
->transport
;
1020 /* Listening sockets that have connections in their accept
1021 * queue can be read.
1023 if (sk
->sk_state
== TCP_LISTEN
1024 && !vsock_is_accept_queue_empty(sk
))
1025 mask
|= EPOLLIN
| EPOLLRDNORM
;
1027 /* If there is something in the queue then we can read. */
1028 if (transport
&& transport
->stream_is_active(vsk
) &&
1029 !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1030 bool data_ready_now
= false;
1031 int ret
= transport
->notify_poll_in(
1032 vsk
, 1, &data_ready_now
);
1037 mask
|= EPOLLIN
| EPOLLRDNORM
;
1042 /* Sockets whose connections have been closed, reset, or
1043 * terminated should also be considered read, and we check the
1044 * shutdown flag for that.
1046 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
1047 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
1048 mask
|= EPOLLIN
| EPOLLRDNORM
;
1051 /* Connected sockets that can produce data can be written. */
1052 if (transport
&& sk
->sk_state
== TCP_ESTABLISHED
) {
1053 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
1054 bool space_avail_now
= false;
1055 int ret
= transport
->notify_poll_out(
1056 vsk
, 1, &space_avail_now
);
1060 if (space_avail_now
)
1061 /* Remove EPOLLWRBAND since INET
1062 * sockets are not setting it.
1064 mask
|= EPOLLOUT
| EPOLLWRNORM
;
1070 /* Simulate INET socket poll behaviors, which sets
1071 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1072 * but local send is not shutdown.
1074 if (sk
->sk_state
== TCP_CLOSE
|| sk
->sk_state
== TCP_CLOSING
) {
1075 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
1076 mask
|= EPOLLOUT
| EPOLLWRNORM
;
1086 static int vsock_dgram_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
1091 struct vsock_sock
*vsk
;
1092 struct sockaddr_vm
*remote_addr
;
1093 const struct vsock_transport
*transport
;
1095 if (msg
->msg_flags
& MSG_OOB
)
1098 /* For now, MSG_DONTWAIT is always assumed... */
1102 transport
= vsk
->transport
;
1106 err
= vsock_auto_bind(vsk
);
1111 /* If the provided message contains an address, use that. Otherwise
1112 * fall back on the socket's remote handle (if it has been connected).
1114 if (msg
->msg_name
&&
1115 vsock_addr_cast(msg
->msg_name
, msg
->msg_namelen
,
1116 &remote_addr
) == 0) {
1117 /* Ensure this address is of the right type and is a valid
1121 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1122 remote_addr
->svm_cid
= transport
->get_local_cid();
1124 if (!vsock_addr_bound(remote_addr
)) {
1128 } else if (sock
->state
== SS_CONNECTED
) {
1129 remote_addr
= &vsk
->remote_addr
;
1131 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1132 remote_addr
->svm_cid
= transport
->get_local_cid();
1134 /* XXX Should connect() or this function ensure remote_addr is
1137 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1146 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1147 remote_addr
->svm_port
)) {
1152 err
= transport
->dgram_enqueue(vsk
, remote_addr
, msg
, len
);
1159 static int vsock_dgram_connect(struct socket
*sock
,
1160 struct sockaddr
*addr
, int addr_len
, int flags
)
1164 struct vsock_sock
*vsk
;
1165 struct sockaddr_vm
*remote_addr
;
1170 err
= vsock_addr_cast(addr
, addr_len
, &remote_addr
);
1171 if (err
== -EAFNOSUPPORT
&& remote_addr
->svm_family
== AF_UNSPEC
) {
1173 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
,
1175 sock
->state
= SS_UNCONNECTED
;
1178 } else if (err
!= 0)
1183 err
= vsock_auto_bind(vsk
);
1187 if (!vsk
->transport
->dgram_allow(remote_addr
->svm_cid
,
1188 remote_addr
->svm_port
)) {
1193 memcpy(&vsk
->remote_addr
, remote_addr
, sizeof(vsk
->remote_addr
));
1194 sock
->state
= SS_CONNECTED
;
1201 static int vsock_dgram_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
1202 size_t len
, int flags
)
1204 struct vsock_sock
*vsk
= vsock_sk(sock
->sk
);
1206 return vsk
->transport
->dgram_dequeue(vsk
, msg
, len
, flags
);
1209 static const struct proto_ops vsock_dgram_ops
= {
1211 .owner
= THIS_MODULE
,
1212 .release
= vsock_release
,
1214 .connect
= vsock_dgram_connect
,
1215 .socketpair
= sock_no_socketpair
,
1216 .accept
= sock_no_accept
,
1217 .getname
= vsock_getname
,
1219 .ioctl
= sock_no_ioctl
,
1220 .listen
= sock_no_listen
,
1221 .shutdown
= vsock_shutdown
,
1222 .sendmsg
= vsock_dgram_sendmsg
,
1223 .recvmsg
= vsock_dgram_recvmsg
,
1224 .mmap
= sock_no_mmap
,
1225 .sendpage
= sock_no_sendpage
,
1228 static int vsock_transport_cancel_pkt(struct vsock_sock
*vsk
)
1230 const struct vsock_transport
*transport
= vsk
->transport
;
1232 if (!transport
->cancel_pkt
)
1235 return transport
->cancel_pkt(vsk
);
1238 static void vsock_connect_timeout(struct work_struct
*work
)
1241 struct vsock_sock
*vsk
;
1244 vsk
= container_of(work
, struct vsock_sock
, connect_work
.work
);
1248 if (sk
->sk_state
== TCP_SYN_SENT
&&
1249 (sk
->sk_shutdown
!= SHUTDOWN_MASK
)) {
1250 sk
->sk_state
= TCP_CLOSE
;
1251 sk
->sk_err
= ETIMEDOUT
;
1252 sk
->sk_error_report(sk
);
1257 vsock_transport_cancel_pkt(vsk
);
1262 static int vsock_stream_connect(struct socket
*sock
, struct sockaddr
*addr
,
1263 int addr_len
, int flags
)
1267 struct vsock_sock
*vsk
;
1268 const struct vsock_transport
*transport
;
1269 struct sockaddr_vm
*remote_addr
;
1279 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1280 switch (sock
->state
) {
1284 case SS_DISCONNECTING
:
1288 /* This continues on so we can move sock into the SS_CONNECTED
1289 * state once the connection has completed (at which point err
1290 * will be set to zero also). Otherwise, we will either wait
1291 * for the connection or return -EALREADY should this be a
1292 * non-blocking call.
1297 if ((sk
->sk_state
== TCP_LISTEN
) ||
1298 vsock_addr_cast(addr
, addr_len
, &remote_addr
) != 0) {
1303 /* Set the remote address that we are connecting to. */
1304 memcpy(&vsk
->remote_addr
, remote_addr
,
1305 sizeof(vsk
->remote_addr
));
1307 err
= vsock_assign_transport(vsk
, NULL
);
1311 transport
= vsk
->transport
;
1313 /* The hypervisor and well-known contexts do not have socket
1317 !transport
->stream_allow(remote_addr
->svm_cid
,
1318 remote_addr
->svm_port
)) {
1323 err
= vsock_auto_bind(vsk
);
1327 sk
->sk_state
= TCP_SYN_SENT
;
1329 err
= transport
->connect(vsk
);
1333 /* Mark sock as connecting and set the error code to in
1334 * progress in case this is a non-blocking connect.
1336 sock
->state
= SS_CONNECTING
;
1340 /* The receive path will handle all communication until we are able to
1341 * enter the connected state. Here we wait for the connection to be
1342 * completed or a notification of an error.
1344 timeout
= vsk
->connect_timeout
;
1345 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1347 while (sk
->sk_state
!= TCP_ESTABLISHED
&& sk
->sk_err
== 0) {
1348 if (flags
& O_NONBLOCK
) {
1349 /* If we're not going to block, we schedule a timeout
1350 * function to generate a timeout on the connection
1351 * attempt, in case the peer doesn't respond in a
1352 * timely manner. We hold on to the socket until the
1356 schedule_delayed_work(&vsk
->connect_work
, timeout
);
1358 /* Skip ahead to preserve error code set above. */
1363 timeout
= schedule_timeout(timeout
);
1366 if (signal_pending(current
)) {
1367 err
= sock_intr_errno(timeout
);
1368 sk
->sk_state
= TCP_CLOSE
;
1369 sock
->state
= SS_UNCONNECTED
;
1370 vsock_transport_cancel_pkt(vsk
);
1372 } else if (timeout
== 0) {
1374 sk
->sk_state
= TCP_CLOSE
;
1375 sock
->state
= SS_UNCONNECTED
;
1376 vsock_transport_cancel_pkt(vsk
);
1380 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1385 sk
->sk_state
= TCP_CLOSE
;
1386 sock
->state
= SS_UNCONNECTED
;
1392 finish_wait(sk_sleep(sk
), &wait
);
1398 static int vsock_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
1401 struct sock
*listener
;
1403 struct sock
*connected
;
1404 struct vsock_sock
*vconnected
;
1409 listener
= sock
->sk
;
1411 lock_sock(listener
);
1413 if (sock
->type
!= SOCK_STREAM
) {
1418 if (listener
->sk_state
!= TCP_LISTEN
) {
1423 /* Wait for children sockets to appear; these are the new sockets
1424 * created upon connection establishment.
1426 timeout
= sock_rcvtimeo(listener
, flags
& O_NONBLOCK
);
1427 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1429 while ((connected
= vsock_dequeue_accept(listener
)) == NULL
&&
1430 listener
->sk_err
== 0) {
1431 release_sock(listener
);
1432 timeout
= schedule_timeout(timeout
);
1433 finish_wait(sk_sleep(listener
), &wait
);
1434 lock_sock(listener
);
1436 if (signal_pending(current
)) {
1437 err
= sock_intr_errno(timeout
);
1439 } else if (timeout
== 0) {
1444 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1446 finish_wait(sk_sleep(listener
), &wait
);
1448 if (listener
->sk_err
)
1449 err
= -listener
->sk_err
;
1452 sk_acceptq_removed(listener
);
1454 lock_sock_nested(connected
, SINGLE_DEPTH_NESTING
);
1455 vconnected
= vsock_sk(connected
);
1457 /* If the listener socket has received an error, then we should
1458 * reject this socket and return. Note that we simply mark the
1459 * socket rejected, drop our reference, and let the cleanup
1460 * function handle the cleanup; the fact that we found it in
1461 * the listener's accept queue guarantees that the cleanup
1462 * function hasn't run yet.
1465 vconnected
->rejected
= true;
1467 newsock
->state
= SS_CONNECTED
;
1468 sock_graft(connected
, newsock
);
1471 release_sock(connected
);
1472 sock_put(connected
);
1476 release_sock(listener
);
1480 static int vsock_listen(struct socket
*sock
, int backlog
)
1484 struct vsock_sock
*vsk
;
1490 if (sock
->type
!= SOCK_STREAM
) {
1495 if (sock
->state
!= SS_UNCONNECTED
) {
1502 if (!vsock_addr_bound(&vsk
->local_addr
)) {
1507 sk
->sk_max_ack_backlog
= backlog
;
1508 sk
->sk_state
= TCP_LISTEN
;
1517 static void vsock_update_buffer_size(struct vsock_sock
*vsk
,
1518 const struct vsock_transport
*transport
,
1521 if (val
> vsk
->buffer_max_size
)
1522 val
= vsk
->buffer_max_size
;
1524 if (val
< vsk
->buffer_min_size
)
1525 val
= vsk
->buffer_min_size
;
1527 if (val
!= vsk
->buffer_size
&&
1528 transport
&& transport
->notify_buffer_size
)
1529 transport
->notify_buffer_size(vsk
, &val
);
1531 vsk
->buffer_size
= val
;
1534 static int vsock_stream_setsockopt(struct socket
*sock
,
1538 unsigned int optlen
)
1542 struct vsock_sock
*vsk
;
1543 const struct vsock_transport
*transport
;
1546 if (level
!= AF_VSOCK
)
1547 return -ENOPROTOOPT
;
1549 #define COPY_IN(_v) \
1551 if (optlen < sizeof(_v)) { \
1555 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1564 transport
= vsk
->transport
;
1569 case SO_VM_SOCKETS_BUFFER_SIZE
:
1571 vsock_update_buffer_size(vsk
, transport
, val
);
1574 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1576 vsk
->buffer_max_size
= val
;
1577 vsock_update_buffer_size(vsk
, transport
, vsk
->buffer_size
);
1580 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1582 vsk
->buffer_min_size
= val
;
1583 vsock_update_buffer_size(vsk
, transport
, vsk
->buffer_size
);
1586 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1587 struct __kernel_old_timeval tv
;
1589 if (tv
.tv_sec
>= 0 && tv
.tv_usec
< USEC_PER_SEC
&&
1590 tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/ HZ
- 1)) {
1591 vsk
->connect_timeout
= tv
.tv_sec
* HZ
+
1592 DIV_ROUND_UP(tv
.tv_usec
, (1000000 / HZ
));
1593 if (vsk
->connect_timeout
== 0)
1594 vsk
->connect_timeout
=
1595 VSOCK_DEFAULT_CONNECT_TIMEOUT
;
1615 static int vsock_stream_getsockopt(struct socket
*sock
,
1616 int level
, int optname
,
1617 char __user
*optval
,
1623 struct vsock_sock
*vsk
;
1626 if (level
!= AF_VSOCK
)
1627 return -ENOPROTOOPT
;
1629 err
= get_user(len
, optlen
);
1633 #define COPY_OUT(_v) \
1635 if (len < sizeof(_v)) \
1639 if (copy_to_user(optval, &_v, len) != 0) \
1649 case SO_VM_SOCKETS_BUFFER_SIZE
:
1650 val
= vsk
->buffer_size
;
1654 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1655 val
= vsk
->buffer_max_size
;
1659 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1660 val
= vsk
->buffer_min_size
;
1664 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1665 struct __kernel_old_timeval tv
;
1666 tv
.tv_sec
= vsk
->connect_timeout
/ HZ
;
1668 (vsk
->connect_timeout
-
1669 tv
.tv_sec
* HZ
) * (1000000 / HZ
);
1674 return -ENOPROTOOPT
;
1677 err
= put_user(len
, optlen
);
1686 static int vsock_stream_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
1690 struct vsock_sock
*vsk
;
1691 const struct vsock_transport
*transport
;
1692 ssize_t total_written
;
1695 struct vsock_transport_send_notify_data send_data
;
1696 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
1700 transport
= vsk
->transport
;
1704 if (msg
->msg_flags
& MSG_OOB
)
1709 /* Callers should not provide a destination with stream sockets. */
1710 if (msg
->msg_namelen
) {
1711 err
= sk
->sk_state
== TCP_ESTABLISHED
? -EISCONN
: -EOPNOTSUPP
;
1715 /* Send data only if both sides are not shutdown in the direction. */
1716 if (sk
->sk_shutdown
& SEND_SHUTDOWN
||
1717 vsk
->peer_shutdown
& RCV_SHUTDOWN
) {
1722 if (!transport
|| sk
->sk_state
!= TCP_ESTABLISHED
||
1723 !vsock_addr_bound(&vsk
->local_addr
)) {
1728 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1729 err
= -EDESTADDRREQ
;
1733 /* Wait for room in the produce queue to enqueue our user's data. */
1734 timeout
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
1736 err
= transport
->notify_send_init(vsk
, &send_data
);
1740 while (total_written
< len
) {
1743 add_wait_queue(sk_sleep(sk
), &wait
);
1744 while (vsock_stream_has_space(vsk
) == 0 &&
1746 !(sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
1747 !(vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1749 /* Don't wait for non-blocking sockets. */
1752 remove_wait_queue(sk_sleep(sk
), &wait
);
1756 err
= transport
->notify_send_pre_block(vsk
, &send_data
);
1758 remove_wait_queue(sk_sleep(sk
), &wait
);
1763 timeout
= wait_woken(&wait
, TASK_INTERRUPTIBLE
, timeout
);
1765 if (signal_pending(current
)) {
1766 err
= sock_intr_errno(timeout
);
1767 remove_wait_queue(sk_sleep(sk
), &wait
);
1769 } else if (timeout
== 0) {
1771 remove_wait_queue(sk_sleep(sk
), &wait
);
1775 remove_wait_queue(sk_sleep(sk
), &wait
);
1777 /* These checks occur both as part of and after the loop
1778 * conditional since we need to check before and after
1784 } else if ((sk
->sk_shutdown
& SEND_SHUTDOWN
) ||
1785 (vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1790 err
= transport
->notify_send_pre_enqueue(vsk
, &send_data
);
1794 /* Note that enqueue will only write as many bytes as are free
1795 * in the produce queue, so we don't need to ensure len is
1796 * smaller than the queue size. It is the caller's
1797 * responsibility to check how many bytes we were able to send.
1800 written
= transport
->stream_enqueue(
1802 len
- total_written
);
1808 total_written
+= written
;
1810 err
= transport
->notify_send_post_enqueue(
1811 vsk
, written
, &send_data
);
1818 if (total_written
> 0)
1819 err
= total_written
;
1827 vsock_stream_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t len
,
1831 struct vsock_sock
*vsk
;
1832 const struct vsock_transport
*transport
;
1837 struct vsock_transport_recv_notify_data recv_data
;
1843 transport
= vsk
->transport
;
1848 if (!transport
|| sk
->sk_state
!= TCP_ESTABLISHED
) {
1849 /* Recvmsg is supposed to return 0 if a peer performs an
1850 * orderly shutdown. Differentiate between that case and when a
1851 * peer has not connected or a local shutdown occured with the
1854 if (sock_flag(sk
, SOCK_DONE
))
1862 if (flags
& MSG_OOB
) {
1867 /* We don't check peer_shutdown flag here since peer may actually shut
1868 * down, but there can be data in the queue that a local socket can
1871 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
1876 /* It is valid on Linux to pass in a zero-length receive buffer. This
1877 * is not an error. We may as well bail out now.
1884 /* We must not copy less than target bytes into the user's buffer
1885 * before returning successfully, so we wait for the consume queue to
1886 * have that much data to consume before dequeueing. Note that this
1887 * makes it impossible to handle cases where target is greater than the
1890 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1891 if (target
>= transport
->stream_rcvhiwat(vsk
)) {
1895 timeout
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1898 err
= transport
->notify_recv_init(vsk
, target
, &recv_data
);
1906 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1907 ready
= vsock_stream_has_data(vsk
);
1910 if (sk
->sk_err
!= 0 ||
1911 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1912 (vsk
->peer_shutdown
& SEND_SHUTDOWN
)) {
1913 finish_wait(sk_sleep(sk
), &wait
);
1916 /* Don't wait for non-blocking sockets. */
1919 finish_wait(sk_sleep(sk
), &wait
);
1923 err
= transport
->notify_recv_pre_block(
1924 vsk
, target
, &recv_data
);
1926 finish_wait(sk_sleep(sk
), &wait
);
1930 timeout
= schedule_timeout(timeout
);
1933 if (signal_pending(current
)) {
1934 err
= sock_intr_errno(timeout
);
1935 finish_wait(sk_sleep(sk
), &wait
);
1937 } else if (timeout
== 0) {
1939 finish_wait(sk_sleep(sk
), &wait
);
1945 finish_wait(sk_sleep(sk
), &wait
);
1948 /* Invalid queue pair content. XXX This should
1949 * be changed to a connection reset in a later
1957 err
= transport
->notify_recv_pre_dequeue(
1958 vsk
, target
, &recv_data
);
1962 read
= transport
->stream_dequeue(
1964 len
- copied
, flags
);
1972 err
= transport
->notify_recv_post_dequeue(
1974 !(flags
& MSG_PEEK
), &recv_data
);
1978 if (read
>= target
|| flags
& MSG_PEEK
)
1987 else if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1998 static const struct proto_ops vsock_stream_ops
= {
2000 .owner
= THIS_MODULE
,
2001 .release
= vsock_release
,
2003 .connect
= vsock_stream_connect
,
2004 .socketpair
= sock_no_socketpair
,
2005 .accept
= vsock_accept
,
2006 .getname
= vsock_getname
,
2008 .ioctl
= sock_no_ioctl
,
2009 .listen
= vsock_listen
,
2010 .shutdown
= vsock_shutdown
,
2011 .setsockopt
= vsock_stream_setsockopt
,
2012 .getsockopt
= vsock_stream_getsockopt
,
2013 .sendmsg
= vsock_stream_sendmsg
,
2014 .recvmsg
= vsock_stream_recvmsg
,
2015 .mmap
= sock_no_mmap
,
2016 .sendpage
= sock_no_sendpage
,
2019 static int vsock_create(struct net
*net
, struct socket
*sock
,
2020 int protocol
, int kern
)
2022 struct vsock_sock
*vsk
;
2029 if (protocol
&& protocol
!= PF_VSOCK
)
2030 return -EPROTONOSUPPORT
;
2032 switch (sock
->type
) {
2034 sock
->ops
= &vsock_dgram_ops
;
2037 sock
->ops
= &vsock_stream_ops
;
2040 return -ESOCKTNOSUPPORT
;
2043 sock
->state
= SS_UNCONNECTED
;
2045 sk
= __vsock_create(net
, sock
, NULL
, GFP_KERNEL
, 0, kern
);
2051 if (sock
->type
== SOCK_DGRAM
) {
2052 ret
= vsock_assign_transport(vsk
, NULL
);
2059 vsock_insert_unbound(vsk
);
2064 static const struct net_proto_family vsock_family_ops
= {
2066 .create
= vsock_create
,
2067 .owner
= THIS_MODULE
,
2070 static long vsock_dev_do_ioctl(struct file
*filp
,
2071 unsigned int cmd
, void __user
*ptr
)
2073 u32 __user
*p
= ptr
;
2074 u32 cid
= VMADDR_CID_ANY
;
2078 case IOCTL_VM_SOCKETS_GET_LOCAL_CID
:
2079 /* To be compatible with the VMCI behavior, we prioritize the
2080 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2083 cid
= transport_g2h
->get_local_cid();
2084 else if (transport_h2g
)
2085 cid
= transport_h2g
->get_local_cid();
2087 if (put_user(cid
, p
) != 0)
2092 retval
= -ENOIOCTLCMD
;
2098 static long vsock_dev_ioctl(struct file
*filp
,
2099 unsigned int cmd
, unsigned long arg
)
2101 return vsock_dev_do_ioctl(filp
, cmd
, (void __user
*)arg
);
2104 #ifdef CONFIG_COMPAT
2105 static long vsock_dev_compat_ioctl(struct file
*filp
,
2106 unsigned int cmd
, unsigned long arg
)
2108 return vsock_dev_do_ioctl(filp
, cmd
, compat_ptr(arg
));
2112 static const struct file_operations vsock_device_ops
= {
2113 .owner
= THIS_MODULE
,
2114 .unlocked_ioctl
= vsock_dev_ioctl
,
2115 #ifdef CONFIG_COMPAT
2116 .compat_ioctl
= vsock_dev_compat_ioctl
,
2118 .open
= nonseekable_open
,
2121 static struct miscdevice vsock_device
= {
2123 .fops
= &vsock_device_ops
,
2126 static int __init
vsock_init(void)
2130 vsock_init_tables();
2132 vsock_proto
.owner
= THIS_MODULE
;
2133 vsock_device
.minor
= MISC_DYNAMIC_MINOR
;
2134 err
= misc_register(&vsock_device
);
2136 pr_err("Failed to register misc device\n");
2137 goto err_reset_transport
;
2140 err
= proto_register(&vsock_proto
, 1); /* we want our slab */
2142 pr_err("Cannot register vsock protocol\n");
2143 goto err_deregister_misc
;
2146 err
= sock_register(&vsock_family_ops
);
2148 pr_err("could not register af_vsock (%d) address family: %d\n",
2150 goto err_unregister_proto
;
2155 err_unregister_proto
:
2156 proto_unregister(&vsock_proto
);
2157 err_deregister_misc
:
2158 misc_deregister(&vsock_device
);
2159 err_reset_transport
:
2163 static void __exit
vsock_exit(void)
2165 misc_deregister(&vsock_device
);
2166 sock_unregister(AF_VSOCK
);
2167 proto_unregister(&vsock_proto
);
2170 const struct vsock_transport
*vsock_core_get_transport(struct vsock_sock
*vsk
)
2172 return vsk
->transport
;
2174 EXPORT_SYMBOL_GPL(vsock_core_get_transport
);
2176 int vsock_core_register(const struct vsock_transport
*t
, int features
)
2178 const struct vsock_transport
*t_h2g
, *t_g2h
, *t_dgram
, *t_local
;
2179 int err
= mutex_lock_interruptible(&vsock_register_mutex
);
2184 t_h2g
= transport_h2g
;
2185 t_g2h
= transport_g2h
;
2186 t_dgram
= transport_dgram
;
2187 t_local
= transport_local
;
2189 if (features
& VSOCK_TRANSPORT_F_H2G
) {
2197 if (features
& VSOCK_TRANSPORT_F_G2H
) {
2205 if (features
& VSOCK_TRANSPORT_F_DGRAM
) {
2213 if (features
& VSOCK_TRANSPORT_F_LOCAL
) {
2221 transport_h2g
= t_h2g
;
2222 transport_g2h
= t_g2h
;
2223 transport_dgram
= t_dgram
;
2224 transport_local
= t_local
;
2227 mutex_unlock(&vsock_register_mutex
);
2230 EXPORT_SYMBOL_GPL(vsock_core_register
);
2232 void vsock_core_unregister(const struct vsock_transport
*t
)
2234 mutex_lock(&vsock_register_mutex
);
2236 if (transport_h2g
== t
)
2237 transport_h2g
= NULL
;
2239 if (transport_g2h
== t
)
2240 transport_g2h
= NULL
;
2242 if (transport_dgram
== t
)
2243 transport_dgram
= NULL
;
2245 if (transport_local
== t
)
2246 transport_local
= NULL
;
2248 mutex_unlock(&vsock_register_mutex
);
2250 EXPORT_SYMBOL_GPL(vsock_core_unregister
);
2252 module_init(vsock_init
);
2253 module_exit(vsock_exit
);
2255 MODULE_AUTHOR("VMware, Inc.");
2256 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2257 MODULE_VERSION("1.0.2.0-k");
2258 MODULE_LICENSE("GPL v2");