1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Key garbage collector
4 * Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #include <linux/slab.h>
9 #include <linux/security.h>
10 #include <keys/keyring-type.h>
14 * Delay between key revocation/expiry in seconds
16 unsigned key_gc_delay
= 5 * 60;
19 * Reaper for unused keys.
21 static void key_garbage_collector(struct work_struct
*work
);
22 DECLARE_WORK(key_gc_work
, key_garbage_collector
);
25 * Reaper for links from keyrings to dead keys.
27 static void key_gc_timer_func(struct timer_list
*);
28 static DEFINE_TIMER(key_gc_timer
, key_gc_timer_func
);
30 static time64_t key_gc_next_run
= TIME64_MAX
;
31 static struct key_type
*key_gc_dead_keytype
;
33 static unsigned long key_gc_flags
;
34 #define KEY_GC_KEY_EXPIRED 0 /* A key expired and needs unlinking */
35 #define KEY_GC_REAP_KEYTYPE 1 /* A keytype is being unregistered */
36 #define KEY_GC_REAPING_KEYTYPE 2 /* Cleared when keytype reaped */
40 * Any key whose type gets unregistered will be re-typed to this if it can't be
41 * immediately unlinked.
43 struct key_type key_type_dead
= {
48 * Schedule a garbage collection run.
49 * - time precision isn't particularly important
51 void key_schedule_gc(time64_t gc_at
)
53 unsigned long expires
;
54 time64_t now
= ktime_get_real_seconds();
56 kenter("%lld", gc_at
- now
);
58 if (gc_at
<= now
|| test_bit(KEY_GC_REAP_KEYTYPE
, &key_gc_flags
)) {
60 schedule_work(&key_gc_work
);
61 } else if (gc_at
< key_gc_next_run
) {
63 key_gc_next_run
= gc_at
;
64 expires
= jiffies
+ (gc_at
- now
) * HZ
;
65 mod_timer(&key_gc_timer
, expires
);
70 * Schedule a dead links collection run.
72 void key_schedule_gc_links(void)
74 set_bit(KEY_GC_KEY_EXPIRED
, &key_gc_flags
);
75 schedule_work(&key_gc_work
);
79 * Some key's cleanup time was met after it expired, so we need to get the
80 * reaper to go through a cycle finding expired keys.
82 static void key_gc_timer_func(struct timer_list
*unused
)
85 key_gc_next_run
= TIME64_MAX
;
86 key_schedule_gc_links();
90 * Reap keys of dead type.
92 * We use three flags to make sure we see three complete cycles of the garbage
93 * collector: the first to mark keys of that type as being dead, the second to
94 * collect dead links and the third to clean up the dead keys. We have to be
95 * careful as there may already be a cycle in progress.
97 * The caller must be holding key_types_sem.
99 void key_gc_keytype(struct key_type
*ktype
)
101 kenter("%s", ktype
->name
);
103 key_gc_dead_keytype
= ktype
;
104 set_bit(KEY_GC_REAPING_KEYTYPE
, &key_gc_flags
);
106 set_bit(KEY_GC_REAP_KEYTYPE
, &key_gc_flags
);
109 schedule_work(&key_gc_work
);
112 wait_on_bit(&key_gc_flags
, KEY_GC_REAPING_KEYTYPE
,
113 TASK_UNINTERRUPTIBLE
);
115 key_gc_dead_keytype
= NULL
;
120 * Garbage collect a list of unreferenced, detached keys
122 static noinline
void key_gc_unused_keys(struct list_head
*keys
)
124 while (!list_empty(keys
)) {
126 list_entry(keys
->next
, struct key
, graveyard_link
);
127 short state
= key
->state
;
129 list_del(&key
->graveyard_link
);
131 kdebug("- %u", key
->serial
);
134 #ifdef CONFIG_KEY_NOTIFICATIONS
135 remove_watch_list(key
->watchers
, key
->serial
);
136 key
->watchers
= NULL
;
139 /* Throw away the key data if the key is instantiated */
140 if (state
== KEY_IS_POSITIVE
&& key
->type
->destroy
)
141 key
->type
->destroy(key
);
143 security_key_free(key
);
145 /* deal with the user's key tracking and quota */
146 if (test_bit(KEY_FLAG_IN_QUOTA
, &key
->flags
)) {
147 spin_lock(&key
->user
->lock
);
149 key
->user
->qnbytes
-= key
->quotalen
;
150 spin_unlock(&key
->user
->lock
);
153 atomic_dec(&key
->user
->nkeys
);
154 if (state
!= KEY_IS_UNINSTANTIATED
)
155 atomic_dec(&key
->user
->nikeys
);
157 key_user_put(key
->user
);
158 key_put_tag(key
->domain_tag
);
159 kfree(key
->description
);
161 memzero_explicit(key
, sizeof(*key
));
162 kmem_cache_free(key_jar
, key
);
167 * Garbage collector for unused keys.
169 * This is done in process context so that we don't have to disable interrupts
170 * all over the place. key_put() schedules this rather than trying to do the
171 * cleanup itself, which means key_put() doesn't have to sleep.
173 static void key_garbage_collector(struct work_struct
*work
)
175 static LIST_HEAD(graveyard
);
176 static u8 gc_state
; /* Internal persistent state */
177 #define KEY_GC_REAP_AGAIN 0x01 /* - Need another cycle */
178 #define KEY_GC_REAPING_LINKS 0x02 /* - We need to reap links */
179 #define KEY_GC_SET_TIMER 0x04 /* - We need to restart the timer */
180 #define KEY_GC_REAPING_DEAD_1 0x10 /* - We need to mark dead keys */
181 #define KEY_GC_REAPING_DEAD_2 0x20 /* - We need to reap dead key links */
182 #define KEY_GC_REAPING_DEAD_3 0x40 /* - We need to reap dead keys */
183 #define KEY_GC_FOUND_DEAD_KEY 0x80 /* - We found at least one dead key */
185 struct rb_node
*cursor
;
187 time64_t new_timer
, limit
;
189 kenter("[%lx,%x]", key_gc_flags
, gc_state
);
191 limit
= ktime_get_real_seconds();
192 if (limit
> key_gc_delay
)
193 limit
-= key_gc_delay
;
195 limit
= key_gc_delay
;
197 /* Work out what we're going to be doing in this pass */
198 gc_state
&= KEY_GC_REAPING_DEAD_1
| KEY_GC_REAPING_DEAD_2
;
200 if (test_and_clear_bit(KEY_GC_KEY_EXPIRED
, &key_gc_flags
))
201 gc_state
|= KEY_GC_REAPING_LINKS
| KEY_GC_SET_TIMER
;
203 if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE
, &key_gc_flags
))
204 gc_state
|= KEY_GC_REAPING_DEAD_1
;
205 kdebug("new pass %x", gc_state
);
207 new_timer
= TIME64_MAX
;
209 /* As only this function is permitted to remove things from the key
210 * serial tree, if cursor is non-NULL then it will always point to a
211 * valid node in the tree - even if lock got dropped.
213 spin_lock(&key_serial_lock
);
214 cursor
= rb_first(&key_serial_tree
);
218 key
= rb_entry(cursor
, struct key
, serial_node
);
219 cursor
= rb_next(cursor
);
221 if (refcount_read(&key
->usage
) == 0)
222 goto found_unreferenced_key
;
224 if (unlikely(gc_state
& KEY_GC_REAPING_DEAD_1
)) {
225 if (key
->type
== key_gc_dead_keytype
) {
226 gc_state
|= KEY_GC_FOUND_DEAD_KEY
;
227 set_bit(KEY_FLAG_DEAD
, &key
->flags
);
230 } else if (key
->type
== &key_type_keyring
&&
231 key
->restrict_link
) {
232 goto found_restricted_keyring
;
236 if (gc_state
& KEY_GC_SET_TIMER
) {
237 if (key
->expiry
> limit
&& key
->expiry
< new_timer
) {
238 kdebug("will expire %x in %lld",
239 key_serial(key
), key
->expiry
- limit
);
240 new_timer
= key
->expiry
;
244 if (unlikely(gc_state
& KEY_GC_REAPING_DEAD_2
))
245 if (key
->type
== key_gc_dead_keytype
)
246 gc_state
|= KEY_GC_FOUND_DEAD_KEY
;
248 if ((gc_state
& KEY_GC_REAPING_LINKS
) ||
249 unlikely(gc_state
& KEY_GC_REAPING_DEAD_2
)) {
250 if (key
->type
== &key_type_keyring
)
254 if (unlikely(gc_state
& KEY_GC_REAPING_DEAD_3
))
255 if (key
->type
== key_gc_dead_keytype
)
256 goto destroy_dead_key
;
259 if (spin_is_contended(&key_serial_lock
) || need_resched())
264 spin_unlock(&key_serial_lock
);
269 spin_lock(&key_serial_lock
);
270 goto continue_scanning
;
273 /* We've completed the pass. Set the timer if we need to and queue a
274 * new cycle if necessary. We keep executing cycles until we find one
275 * where we didn't reap any keys.
277 kdebug("pass complete");
279 if (gc_state
& KEY_GC_SET_TIMER
&& new_timer
!= (time64_t
)TIME64_MAX
) {
280 new_timer
+= key_gc_delay
;
281 key_schedule_gc(new_timer
);
284 if (unlikely(gc_state
& KEY_GC_REAPING_DEAD_2
) ||
285 !list_empty(&graveyard
)) {
286 /* Make sure that all pending keyring payload destructions are
287 * fulfilled and that people aren't now looking at dead or
288 * dying keys that they don't have a reference upon or a link
295 if (!list_empty(&graveyard
)) {
297 key_gc_unused_keys(&graveyard
);
300 if (unlikely(gc_state
& (KEY_GC_REAPING_DEAD_1
|
301 KEY_GC_REAPING_DEAD_2
))) {
302 if (!(gc_state
& KEY_GC_FOUND_DEAD_KEY
)) {
303 /* No remaining dead keys: short circuit the remaining
304 * keytype reap cycles.
306 kdebug("dead short");
307 gc_state
&= ~(KEY_GC_REAPING_DEAD_1
| KEY_GC_REAPING_DEAD_2
);
308 gc_state
|= KEY_GC_REAPING_DEAD_3
;
310 gc_state
|= KEY_GC_REAP_AGAIN
;
314 if (unlikely(gc_state
& KEY_GC_REAPING_DEAD_3
)) {
317 clear_bit(KEY_GC_REAPING_KEYTYPE
, &key_gc_flags
);
318 wake_up_bit(&key_gc_flags
, KEY_GC_REAPING_KEYTYPE
);
321 if (gc_state
& KEY_GC_REAP_AGAIN
)
322 schedule_work(&key_gc_work
);
323 kleave(" [end %x]", gc_state
);
326 /* We found an unreferenced key - once we've removed it from the tree,
327 * we can safely drop the lock.
329 found_unreferenced_key
:
330 kdebug("unrefd key %d", key
->serial
);
331 rb_erase(&key
->serial_node
, &key_serial_tree
);
332 spin_unlock(&key_serial_lock
);
334 list_add_tail(&key
->graveyard_link
, &graveyard
);
335 gc_state
|= KEY_GC_REAP_AGAIN
;
338 /* We found a restricted keyring and need to update the restriction if
339 * it is associated with the dead key type.
341 found_restricted_keyring
:
342 spin_unlock(&key_serial_lock
);
343 keyring_restriction_gc(key
, key_gc_dead_keytype
);
346 /* We found a keyring and we need to check the payload for links to
347 * dead or expired keys. We don't flag another reap immediately as we
348 * have to wait for the old payload to be destroyed by RCU before we
349 * can reap the keys to which it refers.
352 spin_unlock(&key_serial_lock
);
353 keyring_gc(key
, limit
);
356 /* We found a dead key that is still referenced. Reset its type and
357 * destroy its payload with its semaphore held.
360 spin_unlock(&key_serial_lock
);
361 kdebug("destroy key %d", key
->serial
);
362 down_write(&key
->sem
);
363 key
->type
= &key_type_dead
;
364 if (key_gc_dead_keytype
->destroy
)
365 key_gc_dead_keytype
->destroy(key
);
366 memset(&key
->payload
, KEY_DESTROY
, sizeof(key
->payload
));