x86/quirks: Disable HPET on Intel Coffe Lake platforms
[linux/fpc-iii.git] / security / selinux / netnode.c
blob9ab84efa46c7eb5cd640f7db3b3598f34dcd567b
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Network node table
5 * SELinux must keep a mapping of network nodes to labels/SIDs. This
6 * mapping is maintained as part of the normal policy but a fast cache is
7 * needed to reduce the lookup overhead since most of these queries happen on
8 * a per-packet basis.
10 * Author: Paul Moore <paul@paul-moore.com>
12 * This code is heavily based on the "netif" concept originally developed by
13 * James Morris <jmorris@redhat.com>
14 * (see security/selinux/netif.c for more information)
18 * (c) Copyright Hewlett-Packard Development Company, L.P., 2007
21 #include <linux/types.h>
22 #include <linux/rcupdate.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/in.h>
27 #include <linux/in6.h>
28 #include <linux/ip.h>
29 #include <linux/ipv6.h>
30 #include <net/ip.h>
31 #include <net/ipv6.h>
33 #include "netnode.h"
34 #include "objsec.h"
36 #define SEL_NETNODE_HASH_SIZE 256
37 #define SEL_NETNODE_HASH_BKT_LIMIT 16
39 struct sel_netnode_bkt {
40 unsigned int size;
41 struct list_head list;
44 struct sel_netnode {
45 struct netnode_security_struct nsec;
47 struct list_head list;
48 struct rcu_head rcu;
51 /* NOTE: we are using a combined hash table for both IPv4 and IPv6, the reason
52 * for this is that I suspect most users will not make heavy use of both
53 * address families at the same time so one table will usually end up wasted,
54 * if this becomes a problem we can always add a hash table for each address
55 * family later */
57 static LIST_HEAD(sel_netnode_list);
58 static DEFINE_SPINLOCK(sel_netnode_lock);
59 static struct sel_netnode_bkt sel_netnode_hash[SEL_NETNODE_HASH_SIZE];
61 /**
62 * sel_netnode_hashfn_ipv4 - IPv4 hashing function for the node table
63 * @addr: IPv4 address
65 * Description:
66 * This is the IPv4 hashing function for the node interface table, it returns
67 * the bucket number for the given IP address.
70 static unsigned int sel_netnode_hashfn_ipv4(__be32 addr)
72 /* at some point we should determine if the mismatch in byte order
73 * affects the hash function dramatically */
74 return (addr & (SEL_NETNODE_HASH_SIZE - 1));
77 /**
78 * sel_netnode_hashfn_ipv6 - IPv6 hashing function for the node table
79 * @addr: IPv6 address
81 * Description:
82 * This is the IPv6 hashing function for the node interface table, it returns
83 * the bucket number for the given IP address.
86 static unsigned int sel_netnode_hashfn_ipv6(const struct in6_addr *addr)
88 /* just hash the least significant 32 bits to keep things fast (they
89 * are the most likely to be different anyway), we can revisit this
90 * later if needed */
91 return (addr->s6_addr32[3] & (SEL_NETNODE_HASH_SIZE - 1));
94 /**
95 * sel_netnode_find - Search for a node record
96 * @addr: IP address
97 * @family: address family
99 * Description:
100 * Search the network node table and return the record matching @addr. If an
101 * entry can not be found in the table return NULL.
104 static struct sel_netnode *sel_netnode_find(const void *addr, u16 family)
106 unsigned int idx;
107 struct sel_netnode *node;
109 switch (family) {
110 case PF_INET:
111 idx = sel_netnode_hashfn_ipv4(*(__be32 *)addr);
112 break;
113 case PF_INET6:
114 idx = sel_netnode_hashfn_ipv6(addr);
115 break;
116 default:
117 BUG();
118 return NULL;
121 list_for_each_entry_rcu(node, &sel_netnode_hash[idx].list, list)
122 if (node->nsec.family == family)
123 switch (family) {
124 case PF_INET:
125 if (node->nsec.addr.ipv4 == *(__be32 *)addr)
126 return node;
127 break;
128 case PF_INET6:
129 if (ipv6_addr_equal(&node->nsec.addr.ipv6,
130 addr))
131 return node;
132 break;
135 return NULL;
139 * sel_netnode_insert - Insert a new node into the table
140 * @node: the new node record
142 * Description:
143 * Add a new node record to the network address hash table.
146 static void sel_netnode_insert(struct sel_netnode *node)
148 unsigned int idx;
150 switch (node->nsec.family) {
151 case PF_INET:
152 idx = sel_netnode_hashfn_ipv4(node->nsec.addr.ipv4);
153 break;
154 case PF_INET6:
155 idx = sel_netnode_hashfn_ipv6(&node->nsec.addr.ipv6);
156 break;
157 default:
158 BUG();
159 return;
162 /* we need to impose a limit on the growth of the hash table so check
163 * this bucket to make sure it is within the specified bounds */
164 list_add_rcu(&node->list, &sel_netnode_hash[idx].list);
165 if (sel_netnode_hash[idx].size == SEL_NETNODE_HASH_BKT_LIMIT) {
166 struct sel_netnode *tail;
167 tail = list_entry(
168 rcu_dereference_protected(sel_netnode_hash[idx].list.prev,
169 lockdep_is_held(&sel_netnode_lock)),
170 struct sel_netnode, list);
171 list_del_rcu(&tail->list);
172 kfree_rcu(tail, rcu);
173 } else
174 sel_netnode_hash[idx].size++;
178 * sel_netnode_sid_slow - Lookup the SID of a network address using the policy
179 * @addr: the IP address
180 * @family: the address family
181 * @sid: node SID
183 * Description:
184 * This function determines the SID of a network address by quering the
185 * security policy. The result is added to the network address table to
186 * speedup future queries. Returns zero on success, negative values on
187 * failure.
190 static int sel_netnode_sid_slow(void *addr, u16 family, u32 *sid)
192 int ret;
193 struct sel_netnode *node;
194 struct sel_netnode *new;
196 spin_lock_bh(&sel_netnode_lock);
197 node = sel_netnode_find(addr, family);
198 if (node != NULL) {
199 *sid = node->nsec.sid;
200 spin_unlock_bh(&sel_netnode_lock);
201 return 0;
204 new = kzalloc(sizeof(*new), GFP_ATOMIC);
205 switch (family) {
206 case PF_INET:
207 ret = security_node_sid(&selinux_state, PF_INET,
208 addr, sizeof(struct in_addr), sid);
209 if (new)
210 new->nsec.addr.ipv4 = *(__be32 *)addr;
211 break;
212 case PF_INET6:
213 ret = security_node_sid(&selinux_state, PF_INET6,
214 addr, sizeof(struct in6_addr), sid);
215 if (new)
216 new->nsec.addr.ipv6 = *(struct in6_addr *)addr;
217 break;
218 default:
219 BUG();
220 ret = -EINVAL;
222 if (ret == 0 && new) {
223 new->nsec.family = family;
224 new->nsec.sid = *sid;
225 sel_netnode_insert(new);
226 } else
227 kfree(new);
229 spin_unlock_bh(&sel_netnode_lock);
230 if (unlikely(ret))
231 pr_warn("SELinux: failure in %s(), unable to determine network node label\n",
232 __func__);
233 return ret;
237 * sel_netnode_sid - Lookup the SID of a network address
238 * @addr: the IP address
239 * @family: the address family
240 * @sid: node SID
242 * Description:
243 * This function determines the SID of a network address using the fastest
244 * method possible. First the address table is queried, but if an entry
245 * can't be found then the policy is queried and the result is added to the
246 * table to speedup future queries. Returns zero on success, negative values
247 * on failure.
250 int sel_netnode_sid(void *addr, u16 family, u32 *sid)
252 struct sel_netnode *node;
254 rcu_read_lock();
255 node = sel_netnode_find(addr, family);
256 if (node != NULL) {
257 *sid = node->nsec.sid;
258 rcu_read_unlock();
259 return 0;
261 rcu_read_unlock();
263 return sel_netnode_sid_slow(addr, family, sid);
267 * sel_netnode_flush - Flush the entire network address table
269 * Description:
270 * Remove all entries from the network address table.
273 void sel_netnode_flush(void)
275 unsigned int idx;
276 struct sel_netnode *node, *node_tmp;
278 spin_lock_bh(&sel_netnode_lock);
279 for (idx = 0; idx < SEL_NETNODE_HASH_SIZE; idx++) {
280 list_for_each_entry_safe(node, node_tmp,
281 &sel_netnode_hash[idx].list, list) {
282 list_del_rcu(&node->list);
283 kfree_rcu(node, rcu);
285 sel_netnode_hash[idx].size = 0;
287 spin_unlock_bh(&sel_netnode_lock);
290 static __init int sel_netnode_init(void)
292 int iter;
294 if (!selinux_enabled)
295 return 0;
297 for (iter = 0; iter < SEL_NETNODE_HASH_SIZE; iter++) {
298 INIT_LIST_HEAD(&sel_netnode_hash[iter].list);
299 sel_netnode_hash[iter].size = 0;
302 return 0;
305 __initcall(sel_netnode_init);