2 * TLB Management (flush/create/diagnostics) for ARC700
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
14 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
15 * some of the LMBench tests improved amazingly
16 * = page-fault thrice as fast (75 usec to 28 usec)
17 * = mmap twice as fast (9.6 msec to 4.6 msec),
18 * = fork (5.3 msec to 3.7 msec)
20 * vineetg: April 2011 :
21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22 * helps avoid a shift when preparing PD0 from PTE
24 * vineetg: April 2011 : Preparing for MMU V3
25 * -MMU v2/v3 BCRs decoded differently
26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27 * -tlb_entry_erase( ) can be void
28 * -local_flush_tlb_range( ):
29 * = need not "ceil" @end
30 * = walks MMU only if range spans < 32 entries, as opposed to 256
32 * Vineetg: Sept 10th 2008
33 * -Changes related to MMU v2 (Rel 4.8)
35 * Vineetg: Aug 29th 2008
36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38 * it fails. Thus need to load it with ANY valid value before invoking
41 * Vineetg: Aug 21th 2008:
42 * -Reduced the duration of IRQ lockouts in TLB Flush routines
43 * -Multiple copies of TLB erase code seperated into a "single" function
44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45 * in interrupt-safe region.
47 * Vineetg: April 23rd Bug #93131
48 * Problem: tlb_flush_kernel_range() doesn't do anything if the range to
49 * flush is more than the size of TLB itself.
51 * Rahul Trivedi : Codito Technologies 2004
54 #include <linux/module.h>
55 #include <linux/bug.h>
56 #include <linux/mm_types.h>
58 #include <asm/arcregs.h>
59 #include <asm/setup.h>
60 #include <asm/mmu_context.h>
63 /* Need for ARC MMU v2
65 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
66 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
67 * map into same set, there would be contention for the 2 ways causing severe
70 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
71 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
72 * Given this, the thrasing problem should never happen because once the 3
73 * J-TLB entries are created (even though 3rd will knock out one of the prev
74 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
76 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
77 * This is a simple design for keeping them in sync. So what do we do?
78 * The solution which James came up was pretty neat. It utilised the assoc
79 * of uTLBs by not invalidating always but only when absolutely necessary.
81 * - Existing TLB commands work as before
82 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
83 * - New command (TLBIVUTLB) to invalidate uTLBs.
85 * The uTLBs need only be invalidated when pages are being removed from the
86 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
87 * as a result of a miss, the removed entry is still allowed to exist in the
88 * uTLBs as it is still valid and present in the OS page table. This allows the
89 * full associativity of the uTLBs to hide the limited associativity of the main
92 * During a miss handler, the new "TLBWriteNI" command is used to load
93 * entries without clearing the uTLBs.
95 * When the OS page table is updated, TLB entries that may be associated with a
96 * removed page are removed (flushed) from the TLB using TLBWrite. In this
97 * circumstance, the uTLBs must also be cleared. This is done by using the
98 * existing TLBWrite command. An explicit IVUTLB is also required for those
99 * corner cases when TLBWrite was not executed at all because the corresp
100 * J-TLB entry got evicted/replaced.
104 /* A copy of the ASID from the PID reg is kept in asid_cache */
105 DEFINE_PER_CPU(unsigned int, asid_cache
) = MM_CTXT_FIRST_CYCLE
;
107 static int __read_mostly pae_exists
;
110 * Utility Routine to erase a J-TLB entry
111 * Caller needs to setup Index Reg (manually or via getIndex)
113 static inline void __tlb_entry_erase(void)
115 write_aux_reg(ARC_REG_TLBPD1
, 0);
117 if (is_pae40_enabled())
118 write_aux_reg(ARC_REG_TLBPD1HI
, 0);
120 write_aux_reg(ARC_REG_TLBPD0
, 0);
121 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
124 #if (CONFIG_ARC_MMU_VER < 4)
126 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid
)
130 write_aux_reg(ARC_REG_TLBPD0
, vaddr_n_asid
);
132 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBProbe
);
133 idx
= read_aux_reg(ARC_REG_TLBINDEX
);
138 static void tlb_entry_erase(unsigned int vaddr_n_asid
)
142 /* Locate the TLB entry for this vaddr + ASID */
143 idx
= tlb_entry_lkup(vaddr_n_asid
);
145 /* No error means entry found, zero it out */
146 if (likely(!(idx
& TLB_LKUP_ERR
))) {
149 /* Duplicate entry error */
150 WARN(idx
== TLB_DUP_ERR
, "Probe returned Dup PD for %x\n",
155 /****************************************************************************
156 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
158 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
160 * utlb_invalidate ( )
161 * -For v2 MMU calls Flush uTLB Cmd
162 * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
163 * This is because in v1 TLBWrite itself invalidate uTLBs
164 ***************************************************************************/
166 static void utlb_invalidate(void)
168 #if (CONFIG_ARC_MMU_VER >= 2)
170 #if (CONFIG_ARC_MMU_VER == 2)
171 /* MMU v2 introduced the uTLB Flush command.
172 * There was however an obscure hardware bug, where uTLB flush would
173 * fail when a prior probe for J-TLB (both totally unrelated) would
174 * return lkup err - because the entry didn't exist in MMU.
175 * The Workround was to set Index reg with some valid value, prior to
176 * flush. This was fixed in MMU v3 hence not needed any more
180 /* make sure INDEX Reg is valid */
181 idx
= read_aux_reg(ARC_REG_TLBINDEX
);
183 /* If not write some dummy val */
184 if (unlikely(idx
& TLB_LKUP_ERR
))
185 write_aux_reg(ARC_REG_TLBINDEX
, 0xa);
188 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBIVUTLB
);
193 static void tlb_entry_insert(unsigned int pd0
, pte_t pd1
)
198 * First verify if entry for this vaddr+ASID already exists
199 * This also sets up PD0 (vaddr, ASID..) for final commit
201 idx
= tlb_entry_lkup(pd0
);
204 * If Not already present get a free slot from MMU.
205 * Otherwise, Probe would have located the entry and set INDEX Reg
206 * with existing location. This will cause Write CMD to over-write
207 * existing entry with new PD0 and PD1
209 if (likely(idx
& TLB_LKUP_ERR
))
210 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBGetIndex
);
212 /* setup the other half of TLB entry (pfn, rwx..) */
213 write_aux_reg(ARC_REG_TLBPD1
, pd1
);
216 * Commit the Entry to MMU
217 * It doesn't sound safe to use the TLBWriteNI cmd here
218 * which doesn't flush uTLBs. I'd rather be safe than sorry.
220 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
223 #else /* CONFIG_ARC_MMU_VER >= 4) */
225 static void utlb_invalidate(void)
227 /* No need since uTLB is always in sync with JTLB */
230 static void tlb_entry_erase(unsigned int vaddr_n_asid
)
232 write_aux_reg(ARC_REG_TLBPD0
, vaddr_n_asid
| _PAGE_PRESENT
);
233 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBDeleteEntry
);
236 static void tlb_entry_insert(unsigned int pd0
, pte_t pd1
)
238 write_aux_reg(ARC_REG_TLBPD0
, pd0
);
239 write_aux_reg(ARC_REG_TLBPD1
, pd1
);
241 if (is_pae40_enabled())
242 write_aux_reg(ARC_REG_TLBPD1HI
, (u64
)pd1
>> 32);
244 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBInsertEntry
);
250 * Un-conditionally (without lookup) erase the entire MMU contents
253 noinline
void local_flush_tlb_all(void)
255 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
258 int num_tlb
= mmu
->sets
* mmu
->ways
;
260 local_irq_save(flags
);
262 /* Load PD0 and PD1 with template for a Blank Entry */
263 write_aux_reg(ARC_REG_TLBPD1
, 0);
265 if (is_pae40_enabled())
266 write_aux_reg(ARC_REG_TLBPD1HI
, 0);
268 write_aux_reg(ARC_REG_TLBPD0
, 0);
270 for (entry
= 0; entry
< num_tlb
; entry
++) {
271 /* write this entry to the TLB */
272 write_aux_reg(ARC_REG_TLBINDEX
, entry
);
273 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
276 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
)) {
277 const int stlb_idx
= 0x800;
279 /* Blank sTLB entry */
280 write_aux_reg(ARC_REG_TLBPD0
, _PAGE_HW_SZ
);
282 for (entry
= stlb_idx
; entry
< stlb_idx
+ 16; entry
++) {
283 write_aux_reg(ARC_REG_TLBINDEX
, entry
);
284 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
290 local_irq_restore(flags
);
294 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
296 noinline
void local_flush_tlb_mm(struct mm_struct
*mm
)
299 * Small optimisation courtesy IA64
300 * flush_mm called during fork,exit,munmap etc, multiple times as well.
301 * Only for fork( ) do we need to move parent to a new MMU ctxt,
302 * all other cases are NOPs, hence this check.
304 if (atomic_read(&mm
->mm_users
) == 0)
308 * - Move to a new ASID, but only if the mm is still wired in
309 * (Android Binder ended up calling this for vma->mm != tsk->mm,
310 * causing h/w - s/w ASID to get out of sync)
311 * - Also get_new_mmu_context() new implementation allocates a new
312 * ASID only if it is not allocated already - so unallocate first
315 if (current
->mm
== mm
)
316 get_new_mmu_context(mm
);
320 * Flush a Range of TLB entries for userland.
321 * @start is inclusive, while @end is exclusive
322 * Difference between this and Kernel Range Flush is
323 * -Here the fastest way (if range is too large) is to move to next ASID
324 * without doing any explicit Shootdown
325 * -In case of kernel Flush, entry has to be shot down explictly
327 void local_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
330 const unsigned int cpu
= smp_processor_id();
333 /* If range @start to @end is more than 32 TLB entries deep,
334 * its better to move to a new ASID rather than searching for
335 * individual entries and then shooting them down
337 * The calc above is rough, doesn't account for unaligned parts,
338 * since this is heuristics based anyways
340 if (unlikely((end
- start
) >= PAGE_SIZE
* 32)) {
341 local_flush_tlb_mm(vma
->vm_mm
);
346 * @start moved to page start: this alone suffices for checking
347 * loop end condition below, w/o need for aligning @end to end
348 * e.g. 2000 to 4001 will anyhow loop twice
352 local_irq_save(flags
);
354 if (asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
) {
355 while (start
< end
) {
356 tlb_entry_erase(start
| hw_pid(vma
->vm_mm
, cpu
));
363 local_irq_restore(flags
);
366 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
367 * @start, @end interpreted as kvaddr
368 * Interestingly, shared TLB entries can also be flushed using just
369 * @start,@end alone (interpreted as user vaddr), although technically SASID
370 * is also needed. However our smart TLbProbe lookup takes care of that.
372 void local_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
376 /* exactly same as above, except for TLB entry not taking ASID */
378 if (unlikely((end
- start
) >= PAGE_SIZE
* 32)) {
379 local_flush_tlb_all();
385 local_irq_save(flags
);
386 while (start
< end
) {
387 tlb_entry_erase(start
);
393 local_irq_restore(flags
);
397 * Delete TLB entry in MMU for a given page (??? address)
398 * NOTE One TLB entry contains translation for single PAGE
401 void local_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
403 const unsigned int cpu
= smp_processor_id();
406 /* Note that it is critical that interrupts are DISABLED between
407 * checking the ASID and using it flush the TLB entry
409 local_irq_save(flags
);
411 if (asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
) {
412 tlb_entry_erase((page
& PAGE_MASK
) | hw_pid(vma
->vm_mm
, cpu
));
416 local_irq_restore(flags
);
422 struct vm_area_struct
*ta_vma
;
423 unsigned long ta_start
;
424 unsigned long ta_end
;
427 static inline void ipi_flush_tlb_page(void *arg
)
429 struct tlb_args
*ta
= arg
;
431 local_flush_tlb_page(ta
->ta_vma
, ta
->ta_start
);
434 static inline void ipi_flush_tlb_range(void *arg
)
436 struct tlb_args
*ta
= arg
;
438 local_flush_tlb_range(ta
->ta_vma
, ta
->ta_start
, ta
->ta_end
);
441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
442 static inline void ipi_flush_pmd_tlb_range(void *arg
)
444 struct tlb_args
*ta
= arg
;
446 local_flush_pmd_tlb_range(ta
->ta_vma
, ta
->ta_start
, ta
->ta_end
);
450 static inline void ipi_flush_tlb_kernel_range(void *arg
)
452 struct tlb_args
*ta
= (struct tlb_args
*)arg
;
454 local_flush_tlb_kernel_range(ta
->ta_start
, ta
->ta_end
);
457 void flush_tlb_all(void)
459 on_each_cpu((smp_call_func_t
)local_flush_tlb_all
, NULL
, 1);
462 void flush_tlb_mm(struct mm_struct
*mm
)
464 on_each_cpu_mask(mm_cpumask(mm
), (smp_call_func_t
)local_flush_tlb_mm
,
468 void flush_tlb_page(struct vm_area_struct
*vma
, unsigned long uaddr
)
470 struct tlb_args ta
= {
475 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_tlb_page
, &ta
, 1);
478 void flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
481 struct tlb_args ta
= {
487 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_tlb_range
, &ta
, 1);
490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
491 void flush_pmd_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
494 struct tlb_args ta
= {
500 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_pmd_tlb_range
, &ta
, 1);
504 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
506 struct tlb_args ta
= {
511 on_each_cpu(ipi_flush_tlb_kernel_range
, &ta
, 1);
516 * Routine to create a TLB entry
518 void create_tlb(struct vm_area_struct
*vma
, unsigned long vaddr
, pte_t
*ptep
)
521 unsigned int asid_or_sasid
, rwx
;
526 * create_tlb() assumes that current->mm == vma->mm, since
527 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
528 * -completes the lazy write to SASID reg (again valid for curr tsk)
530 * Removing the assumption involves
531 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
532 * -Fix the TLB paranoid debug code to not trigger false negatives.
533 * -More importantly it makes this handler inconsistent with fast-path
534 * TLB Refill handler which always deals with "current"
536 * Lets see the use cases when current->mm != vma->mm and we land here
537 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
538 * Here VM wants to pre-install a TLB entry for user stack while
539 * current->mm still points to pre-execve mm (hence the condition).
540 * However the stack vaddr is soon relocated (randomization) and
541 * move_page_tables() tries to undo that TLB entry.
542 * Thus not creating TLB entry is not any worse.
544 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
545 * breakpoint in debugged task. Not creating a TLB now is not
546 * performance critical.
548 * Both the cases above are not good enough for code churn.
550 if (current
->active_mm
!= vma
->vm_mm
)
553 local_irq_save(flags
);
555 tlb_paranoid_check(asid_mm(vma
->vm_mm
, smp_processor_id()), vaddr
);
559 /* update this PTE credentials */
560 pte_val(*ptep
) |= (_PAGE_PRESENT
| _PAGE_ACCESSED
);
562 /* Create HW TLB(PD0,PD1) from PTE */
564 /* ASID for this task */
565 asid_or_sasid
= read_aux_reg(ARC_REG_PID
) & 0xff;
567 pd0
= vaddr
| asid_or_sasid
| (pte_val(*ptep
) & PTE_BITS_IN_PD0
);
570 * ARC MMU provides fully orthogonal access bits for K/U mode,
571 * however Linux only saves 1 set to save PTE real-estate
572 * Here we convert 3 PTE bits into 6 MMU bits:
573 * -Kernel only entries have Kr Kw Kx 0 0 0
574 * -User entries have mirrored K and U bits
576 rwx
= pte_val(*ptep
) & PTE_BITS_RWX
;
578 if (pte_val(*ptep
) & _PAGE_GLOBAL
)
579 rwx
<<= 3; /* r w x => Kr Kw Kx 0 0 0 */
581 rwx
|= (rwx
<< 3); /* r w x => Kr Kw Kx Ur Uw Ux */
583 pd1
= rwx
| (pte_val(*ptep
) & PTE_BITS_NON_RWX_IN_PD1
);
585 tlb_entry_insert(pd0
, pd1
);
587 local_irq_restore(flags
);
591 * Called at the end of pagefault, for a userspace mapped page
592 * -pre-install the corresponding TLB entry into MMU
593 * -Finalize the delayed D-cache flush of kernel mapping of page due to
594 * flush_dcache_page(), copy_user_page()
596 * Note that flush (when done) involves both WBACK - so physical page is
597 * in sync as well as INV - so any non-congruent aliases don't remain
599 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long vaddr_unaligned
,
602 unsigned long vaddr
= vaddr_unaligned
& PAGE_MASK
;
603 phys_addr_t paddr
= pte_val(*ptep
) & PAGE_MASK
;
604 struct page
*page
= pfn_to_page(pte_pfn(*ptep
));
606 create_tlb(vma
, vaddr
, ptep
);
608 if (page
== ZERO_PAGE(0)) {
613 * Exec page : Independent of aliasing/page-color considerations,
614 * since icache doesn't snoop dcache on ARC, any dirty
615 * K-mapping of a code page needs to be wback+inv so that
616 * icache fetch by userspace sees code correctly.
617 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
618 * so userspace sees the right data.
619 * (Avoids the flush for Non-exec + congruent mapping case)
621 if ((vma
->vm_flags
& VM_EXEC
) ||
622 addr_not_cache_congruent(paddr
, vaddr
)) {
624 int dirty
= !test_and_set_bit(PG_dc_clean
, &page
->flags
);
626 /* wback + inv dcache lines (K-mapping) */
627 __flush_dcache_page(paddr
, paddr
);
629 /* invalidate any existing icache lines (U-mapping) */
630 if (vma
->vm_flags
& VM_EXEC
)
631 __inv_icache_page(paddr
, vaddr
);
636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
642 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
643 * new bit "SZ" in TLB page descriptor to distinguish between them.
644 * Super Page size is configurable in hardware (4K to 16M), but fixed once
647 * The exact THP size a Linx configuration will support is a function of:
648 * - MMU page size (typical 8K, RTL fixed)
649 * - software page walker address split between PGD:PTE:PFN (typical
650 * 11:8:13, but can be changed with 1 line)
651 * So for above default, THP size supported is 8K * (2^8) = 2M
653 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
654 * reduces to 1 level (as PTE is folded into PGD and canonically referred
656 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
659 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
662 pte_t pte
= __pte(pmd_val(*pmd
));
663 update_mmu_cache(vma
, addr
, &pte
);
666 void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
669 struct list_head
*lh
= (struct list_head
*) pgtable
;
671 assert_spin_locked(&mm
->page_table_lock
);
674 if (!pmd_huge_pte(mm
, pmdp
))
677 list_add(lh
, (struct list_head
*) pmd_huge_pte(mm
, pmdp
));
678 pmd_huge_pte(mm
, pmdp
) = pgtable
;
681 pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
)
683 struct list_head
*lh
;
686 assert_spin_locked(&mm
->page_table_lock
);
688 pgtable
= pmd_huge_pte(mm
, pmdp
);
689 lh
= (struct list_head
*) pgtable
;
691 pmd_huge_pte(mm
, pmdp
) = NULL
;
693 pmd_huge_pte(mm
, pmdp
) = (pgtable_t
) lh
->next
;
697 pte_val(pgtable
[0]) = 0;
698 pte_val(pgtable
[1]) = 0;
703 void local_flush_pmd_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
709 local_irq_save(flags
);
711 cpu
= smp_processor_id();
713 if (likely(asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
)) {
714 unsigned int asid
= hw_pid(vma
->vm_mm
, cpu
);
716 /* No need to loop here: this will always be for 1 Huge Page */
717 tlb_entry_erase(start
| _PAGE_HW_SZ
| asid
);
720 local_irq_restore(flags
);
725 /* Read the Cache Build Confuration Registers, Decode them and save into
726 * the cpuinfo structure for later use.
727 * No Validation is done here, simply read/convert the BCRs
729 void read_decode_mmu_bcr(void)
731 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
734 #ifdef CONFIG_CPU_BIG_ENDIAN
735 unsigned int ver
:8, ways
:4, sets
:4, u_itlb
:8, u_dtlb
:8;
737 unsigned int u_dtlb
:8, u_itlb
:8, sets
:4, ways
:4, ver
:8;
742 #ifdef CONFIG_CPU_BIG_ENDIAN
743 unsigned int ver
:8, ways
:4, sets
:4, res
:3, sasid
:1, pg_sz
:4,
746 unsigned int u_dtlb
:4, u_itlb
:4, pg_sz
:4, sasid
:1, res
:3, sets
:4,
752 #ifdef CONFIG_CPU_BIG_ENDIAN
753 unsigned int ver
:8, sasid
:1, sz1
:4, sz0
:4, res
:2, pae
:1,
754 n_ways
:2, n_entry
:2, n_super
:2, u_itlb
:3, u_dtlb
:3;
756 /* DTLB ITLB JES JE JA */
757 unsigned int u_dtlb
:3, u_itlb
:3, n_super
:2, n_entry
:2, n_ways
:2,
758 pae
:1, res
:2, sz0
:4, sz1
:4, sasid
:1, ver
:8;
762 tmp
= read_aux_reg(ARC_REG_MMU_BCR
);
763 mmu
->ver
= (tmp
>> 24);
766 mmu2
= (struct bcr_mmu_1_2
*)&tmp
;
767 mmu
->pg_sz_k
= TO_KB(0x2000);
768 mmu
->sets
= 1 << mmu2
->sets
;
769 mmu
->ways
= 1 << mmu2
->ways
;
770 mmu
->u_dtlb
= mmu2
->u_dtlb
;
771 mmu
->u_itlb
= mmu2
->u_itlb
;
772 } else if (mmu
->ver
== 3) {
773 mmu3
= (struct bcr_mmu_3
*)&tmp
;
774 mmu
->pg_sz_k
= 1 << (mmu3
->pg_sz
- 1);
775 mmu
->sets
= 1 << mmu3
->sets
;
776 mmu
->ways
= 1 << mmu3
->ways
;
777 mmu
->u_dtlb
= mmu3
->u_dtlb
;
778 mmu
->u_itlb
= mmu3
->u_itlb
;
779 mmu
->sasid
= mmu3
->sasid
;
781 mmu4
= (struct bcr_mmu_4
*)&tmp
;
782 mmu
->pg_sz_k
= 1 << (mmu4
->sz0
- 1);
783 mmu
->s_pg_sz_m
= 1 << (mmu4
->sz1
- 11);
784 mmu
->sets
= 64 << mmu4
->n_entry
;
785 mmu
->ways
= mmu4
->n_ways
* 2;
786 mmu
->u_dtlb
= mmu4
->u_dtlb
* 4;
787 mmu
->u_itlb
= mmu4
->u_itlb
* 4;
788 mmu
->sasid
= mmu4
->sasid
;
789 pae_exists
= mmu
->pae
= mmu4
->pae
;
793 char *arc_mmu_mumbojumbo(int cpu_id
, char *buf
, int len
)
796 struct cpuinfo_arc_mmu
*p_mmu
= &cpuinfo_arc700
[cpu_id
].mmu
;
797 char super_pg
[64] = "";
799 if (p_mmu
->s_pg_sz_m
)
800 scnprintf(super_pg
, 64, "%dM Super Page %s",
802 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE
));
804 n
+= scnprintf(buf
+ n
, len
- n
,
805 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
806 p_mmu
->ver
, p_mmu
->pg_sz_k
, super_pg
,
807 p_mmu
->sets
* p_mmu
->ways
, p_mmu
->sets
, p_mmu
->ways
,
808 p_mmu
->u_dtlb
, p_mmu
->u_itlb
,
809 IS_AVAIL2(p_mmu
->pae
, ", PAE40 ", CONFIG_ARC_HAS_PAE40
));
814 int pae40_exist_but_not_enab(void)
816 return pae_exists
&& !is_pae40_enabled();
819 void arc_mmu_init(void)
822 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
824 pr_info("%s", arc_mmu_mumbojumbo(0, str
, sizeof(str
)));
827 * Can't be done in processor.h due to header include depenedencies
829 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE
<< 20), PMD_SIZE
));
832 * stack top size sanity check,
833 * Can't be done in processor.h due to header include depenedencies
835 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP
, PMD_SIZE
));
837 /* For efficiency sake, kernel is compile time built for a MMU ver
838 * This must match the hardware it is running on.
839 * Linux built for MMU V2, if run on MMU V1 will break down because V1
840 * hardware doesn't understand cmds such as WriteNI, or IVUTLB
841 * On the other hand, Linux built for V1 if run on MMU V2 will do
842 * un-needed workarounds to prevent memcpy thrashing.
843 * Similarly MMU V3 has new features which won't work on older MMU
845 if (mmu
->ver
!= CONFIG_ARC_MMU_VER
) {
846 panic("MMU ver %d doesn't match kernel built for %d...\n",
847 mmu
->ver
, CONFIG_ARC_MMU_VER
);
850 if (mmu
->pg_sz_k
!= TO_KB(PAGE_SIZE
))
851 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE
));
853 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) &&
854 mmu
->s_pg_sz_m
!= TO_MB(HPAGE_PMD_SIZE
))
855 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
856 (unsigned long)TO_MB(HPAGE_PMD_SIZE
));
858 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40
) && !mmu
->pae
)
859 panic("Hardware doesn't support PAE40\n");
862 write_aux_reg(ARC_REG_PID
, MMU_ENABLE
);
864 /* In smp we use this reg for interrupt 1 scratch */
866 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
867 write_aux_reg(ARC_REG_SCRATCH_DATA0
, swapper_pg_dir
);
870 if (pae40_exist_but_not_enab())
871 write_aux_reg(ARC_REG_TLBPD1HI
, 0);
875 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
876 * The mapping is Column-first.
877 * --------------------- -----------
878 * |way0|way1|way2|way3| |way0|way1|
879 * --------------------- -----------
880 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
881 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
883 * [set127] | 508| 509| 510| 511| | 254| 255|
884 * --------------------- -----------
885 * For normal operations we don't(must not) care how above works since
886 * MMU cmd getIndex(vaddr) abstracts that out.
887 * However for walking WAYS of a SET, we need to know this
889 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
891 /* Handling of Duplicate PD (TLB entry) in MMU.
892 * -Could be due to buggy customer tapeouts or obscure kernel bugs
893 * -MMU complaints not at the time of duplicate PD installation, but at the
894 * time of lookup matching multiple ways.
895 * -Ideally these should never happen - but if they do - workaround by deleting
897 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
899 volatile int dup_pd_silent
; /* Be slient abt it or complain (default) */
901 void do_tlb_overlap_fault(unsigned long cause
, unsigned long address
,
902 struct pt_regs
*regs
)
904 struct cpuinfo_arc_mmu
*mmu
= &cpuinfo_arc700
[smp_processor_id()].mmu
;
905 unsigned int pd0
[mmu
->ways
];
909 local_irq_save(flags
);
911 /* loop thru all sets of TLB */
912 for (set
= 0; set
< mmu
->sets
; set
++) {
916 /* read out all the ways of current set */
917 for (way
= 0, is_valid
= 0; way
< mmu
->ways
; way
++) {
918 write_aux_reg(ARC_REG_TLBINDEX
,
919 SET_WAY_TO_IDX(mmu
, set
, way
));
920 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBRead
);
921 pd0
[way
] = read_aux_reg(ARC_REG_TLBPD0
);
922 is_valid
|= pd0
[way
] & _PAGE_PRESENT
;
923 pd0
[way
] &= PAGE_MASK
;
926 /* If all the WAYS in SET are empty, skip to next SET */
930 /* Scan the set for duplicate ways: needs a nested loop */
931 for (way
= 0; way
< mmu
->ways
- 1; way
++) {
938 for (n
= way
+ 1; n
< mmu
->ways
; n
++) {
939 if (pd0
[way
] != pd0
[n
])
943 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
944 pd0
[way
], set
, way
, n
);
947 * clear entry @way and not @n.
948 * This is critical to our optimised loop
951 write_aux_reg(ARC_REG_TLBINDEX
,
952 SET_WAY_TO_IDX(mmu
, set
, way
));
958 local_irq_restore(flags
);
961 /***********************************************************************
962 * Diagnostic Routines
963 * -Called from Low Level TLB Hanlders if things don;t look good
964 **********************************************************************/
966 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
969 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
972 void print_asid_mismatch(int mm_asid
, int mmu_asid
, int is_fast_path
)
974 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
975 is_fast_path
? "Fast" : "Slow", mm_asid
, mmu_asid
);
977 __asm__
__volatile__("flag 1");
980 void tlb_paranoid_check(unsigned int mm_asid
, unsigned long addr
)
982 unsigned int mmu_asid
;
984 mmu_asid
= read_aux_reg(ARC_REG_PID
) & 0xff;
987 * At the time of a TLB miss/installation
988 * - HW version needs to match SW version
989 * - SW needs to have a valid ASID
991 if (addr
< 0x70000000 &&
992 ((mm_asid
== MM_CTXT_NO_ASID
) ||
993 (mmu_asid
!= (mm_asid
& MM_CTXT_ASID_MASK
))))
994 print_asid_mismatch(mm_asid
, mmu_asid
, 0);