usb: dwc3: implement runtime PM
[linux/fpc-iii.git] / arch / frv / include / asm / pgtable.h
blob07d7a7ef8bd59c7387328e6add1b6426b0b51a52
1 /* pgtable.h: FR-V page table mangling
3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Derived from:
12 * include/asm-m68knommu/pgtable.h
13 * include/asm-i386/pgtable.h
16 #ifndef _ASM_PGTABLE_H
17 #define _ASM_PGTABLE_H
19 #include <asm/mem-layout.h>
20 #include <asm/setup.h>
21 #include <asm/processor.h>
23 #ifndef __ASSEMBLY__
24 #include <linux/threads.h>
25 #include <linux/slab.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
28 #include <linux/sched.h>
29 struct vm_area_struct;
30 #endif
32 #ifndef __ASSEMBLY__
33 #if defined(CONFIG_HIGHPTE)
34 typedef unsigned long pte_addr_t;
35 #else
36 typedef pte_t *pte_addr_t;
37 #endif
38 #endif
40 /*****************************************************************************/
42 * MMU-less operation case first
44 #ifndef CONFIG_MMU
46 #define pgd_present(pgd) (1) /* pages are always present on NO_MM */
47 #define pgd_none(pgd) (0)
48 #define pgd_bad(pgd) (0)
49 #define pgd_clear(pgdp)
50 #define kern_addr_valid(addr) (1)
51 #define pmd_offset(a, b) ((void *) 0)
53 #define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */
54 #define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */
55 #define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */
56 #define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */
57 #define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */
59 #define __swp_type(x) (0)
60 #define __swp_offset(x) (0)
61 #define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
62 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
63 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
65 #define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
67 #define swapper_pg_dir ((pgd_t *) NULL)
69 #define pgtable_cache_init() do {} while (0)
71 #include <asm-generic/pgtable.h>
73 #else /* !CONFIG_MMU */
74 /*****************************************************************************/
76 * then MMU operation
80 * ZERO_PAGE is a global shared page that is always zero: used
81 * for zero-mapped memory areas etc..
83 #ifndef __ASSEMBLY__
84 extern unsigned long empty_zero_page;
85 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
86 #endif
89 * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry)
90 * [see Documentation/frv/mmu-layout.txt]
92 * Page Directory:
93 * - Size: 16KB
94 * - 64 PGEs per PGD
95 * - Each PGE holds 1 PUD and covers 64MB
97 * Page Upper Directory:
98 * - Size: 256B
99 * - 1 PUE per PUD
100 * - Each PUE holds 1 PMD and covers 64MB
102 * Page Mid-Level Directory
103 * - Size: 256B
104 * - 1 PME per PMD
105 * - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table
106 * - All STEs are instantiated at the same time
108 * Page Table
109 * - Size: 16KB
110 * - 4096 PTEs per PT
111 * - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries
113 * Pages
114 * - Size: 4KB
116 * total PTEs
117 * = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs
118 * = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT
119 * = 262144 (or 256 * 1024)
121 #define PGDIR_SHIFT 26
122 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
123 #define PGDIR_MASK (~(PGDIR_SIZE - 1))
124 #define PTRS_PER_PGD 64
126 #define __PAGETABLE_PUD_FOLDED
127 #define PUD_SHIFT 26
128 #define PTRS_PER_PUD 1
129 #define PUD_SIZE (1UL << PUD_SHIFT)
130 #define PUD_MASK (~(PUD_SIZE - 1))
131 #define PUE_SIZE 256
133 #define __PAGETABLE_PMD_FOLDED
134 #define PMD_SHIFT 26
135 #define PMD_SIZE (1UL << PMD_SHIFT)
136 #define PMD_MASK (~(PMD_SIZE - 1))
137 #define PTRS_PER_PMD 1
138 #define PME_SIZE 256
140 #define __frv_PT_SIZE 256
142 #define PTRS_PER_PTE 4096
144 #define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE)
145 #define FIRST_USER_ADDRESS 0UL
147 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
148 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
150 #define TWOLEVEL_PGDIR_SHIFT 26
151 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
152 #define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS)
154 #ifndef __ASSEMBLY__
156 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
158 #define pte_ERROR(e) \
159 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte)
160 #define pmd_ERROR(e) \
161 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
162 #define pud_ERROR(e) \
163 printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e)))
164 #define pgd_ERROR(e) \
165 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e))))
168 * Certain architectures need to do special things when PTEs
169 * within a page table are directly modified. Thus, the following
170 * hook is made available.
172 #define set_pte(pteptr, pteval) \
173 do { \
174 *(pteptr) = (pteval); \
175 asm volatile("dcf %M0" :: "U"(*pteptr)); \
176 } while(0)
177 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
180 * pgd_offset() returns a (pgd_t *)
181 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
183 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
186 * a shortcut which implies the use of the kernel's pgd, instead
187 * of a process's
189 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
192 * The "pgd_xxx()" functions here are trivial for a folded two-level
193 * setup: the pud is never bad, and a pud always exists (as it's folded
194 * into the pgd entry)
196 static inline int pgd_none(pgd_t pgd) { return 0; }
197 static inline int pgd_bad(pgd_t pgd) { return 0; }
198 static inline int pgd_present(pgd_t pgd) { return 1; }
199 static inline void pgd_clear(pgd_t *pgd) { }
201 #define pgd_populate(mm, pgd, pud) do { } while (0)
203 * (puds are folded into pgds so this doesn't get actually called,
204 * but the define is needed for a generic inline function.)
206 #define set_pgd(pgdptr, pgdval) \
207 do { \
208 memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \
209 asm volatile("dcf %M0" :: "U"(*(pgdptr))); \
210 } while(0)
212 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
214 return (pud_t *) pgd;
217 #define pgd_page(pgd) (pud_page((pud_t){ pgd }))
218 #define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd }))
221 * allocating and freeing a pud is trivial: the 1-entry pud is
222 * inside the pgd, so has no extra memory associated with it.
224 #define pud_alloc_one(mm, address) NULL
225 #define pud_free(mm, x) do { } while (0)
226 #define __pud_free_tlb(tlb, x, address) do { } while (0)
229 * The "pud_xxx()" functions here are trivial for a folded two-level
230 * setup: the pmd is never bad, and a pmd always exists (as it's folded
231 * into the pud entry)
233 static inline int pud_none(pud_t pud) { return 0; }
234 static inline int pud_bad(pud_t pud) { return 0; }
235 static inline int pud_present(pud_t pud) { return 1; }
236 static inline void pud_clear(pud_t *pud) { }
238 #define pud_populate(mm, pmd, pte) do { } while (0)
241 * (pmds are folded into puds so this doesn't get actually called,
242 * but the define is needed for a generic inline function.)
244 #define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval })
246 #define pud_page(pud) (pmd_page((pmd_t){ pud }))
247 #define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud }))
250 * (pmds are folded into pgds so this doesn't get actually called,
251 * but the define is needed for a generic inline function.)
253 extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd);
255 #define set_pmd(pmdptr, pmdval) \
256 do { \
257 __set_pmd((pmdptr), (pmdval).ste[0]); \
258 } while(0)
260 #define __pmd_index(address) 0
262 static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address)
264 return (pmd_t *) dir + __pmd_index(address);
267 #define pte_same(a, b) ((a).pte == (b).pte)
268 #define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT))))
269 #define pte_none(x) (!(x).pte)
270 #define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT)))
271 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
272 #define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
274 #define VMALLOC_VMADDR(x) ((unsigned long) (x))
276 #endif /* !__ASSEMBLY__ */
279 * control flags in AMPR registers and TLB entries
281 #define _PAGE_BIT_PRESENT xAMPRx_V_BIT
282 #define _PAGE_BIT_WP DAMPRx_WP_BIT
283 #define _PAGE_BIT_NOCACHE xAMPRx_C_BIT
284 #define _PAGE_BIT_SUPER xAMPRx_S_BIT
285 #define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT
286 #define _PAGE_BIT_DIRTY xAMPRx_M_BIT
287 #define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT
289 #define _PAGE_PRESENT xAMPRx_V
290 #define _PAGE_WP DAMPRx_WP
291 #define _PAGE_NOCACHE xAMPRx_C
292 #define _PAGE_SUPER xAMPRx_S
293 #define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */
294 #define _PAGE_DIRTY xAMPRx_M
295 #define _PAGE_NOTGLOBAL xAMPRx_NG
297 #define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13)
299 #define _PAGE_PROTNONE 0x000 /* If not present */
301 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
303 #define __PGPROT_BASE \
304 (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED)
306 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
307 #define PAGE_SHARED __pgprot(__PGPROT_BASE)
308 #define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP)
309 #define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP)
311 #define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY)
312 #define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE)
313 #define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP)
315 #define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL)
317 #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
318 #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
319 #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
321 #define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb)
323 #ifndef __ASSEMBLY__
326 * The FR451 can do execute protection by virtue of having separate TLB miss handlers for
327 * instruction access and for data access. However, we don't have enough reserved bits to say
328 * "execute only", so we don't bother. If you can read it, you can execute it and vice versa.
330 #define __P000 PAGE_NONE
331 #define __P001 PAGE_READONLY
332 #define __P010 PAGE_COPY
333 #define __P011 PAGE_COPY
334 #define __P100 PAGE_READONLY
335 #define __P101 PAGE_READONLY
336 #define __P110 PAGE_COPY
337 #define __P111 PAGE_COPY
339 #define __S000 PAGE_NONE
340 #define __S001 PAGE_READONLY
341 #define __S010 PAGE_SHARED
342 #define __S011 PAGE_SHARED
343 #define __S100 PAGE_READONLY
344 #define __S101 PAGE_READONLY
345 #define __S110 PAGE_SHARED
346 #define __S111 PAGE_SHARED
349 * Define this to warn about kernel memory accesses that are
350 * done without a 'access_ok(VERIFY_WRITE,..)'
352 #undef TEST_ACCESS_OK
354 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
355 #define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
357 #define pmd_none(x) (!pmd_val(x))
358 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
359 #define pmd_bad(x) (pmd_val(x) & xAMPRx_SS)
360 #define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0)
362 #define pmd_page_vaddr(pmd) \
363 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
365 #ifndef CONFIG_DISCONTIGMEM
366 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
367 #endif
369 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
372 * The following only work if pte_present() is true.
373 * Undefined behaviour if not..
375 static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; }
376 static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; }
377 static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); }
378 static inline int pte_special(pte_t pte) { return 0; }
380 static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; }
381 static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; }
382 static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; }
383 static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; }
384 static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; }
385 static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; }
386 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
388 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
390 int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep);
391 asm volatile("dcf %M0" :: "U"(*ptep));
392 return i;
395 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
397 unsigned long x = xchg(&ptep->pte, 0);
398 asm volatile("dcf %M0" :: "U"(*ptep));
399 return __pte(x);
402 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
404 set_bit(_PAGE_BIT_WP, ptep);
405 asm volatile("dcf %M0" :: "U"(*ptep));
409 * Macro to mark a page protection value as "uncacheable"
411 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE))
414 * Conversion functions: convert a page and protection to a page entry,
415 * and a page entry and page directory to the page they refer to.
418 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
419 #define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
421 /* This takes a physical page address that is used by the remapping functions */
422 #define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot)
424 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
426 pte.pte &= _PAGE_CHG_MASK;
427 pte.pte |= pgprot_val(newprot);
428 return pte;
431 /* to find an entry in a page-table-directory. */
432 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
433 #define pgd_index_k(addr) pgd_index(addr)
435 /* Find an entry in the bottom-level page table.. */
436 #define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
439 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
441 * this macro returns the index of the entry in the pte page which would
442 * control the given virtual address
444 #define pte_index(address) \
445 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
446 #define pte_offset_kernel(dir, address) \
447 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
449 #if defined(CONFIG_HIGHPTE)
450 #define pte_offset_map(dir, address) \
451 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + pte_index(address))
452 #define pte_unmap(pte) kunmap_atomic(pte)
453 #else
454 #define pte_offset_map(dir, address) \
455 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
456 #define pte_unmap(pte) do { } while (0)
457 #endif
460 * Handle swap and file entries
461 * - the PTE is encoded in the following format:
462 * bit 0: Must be 0 (!_PAGE_PRESENT)
463 * bits 1-6: Swap type
464 * bits 7-31: Swap offset
466 #define __swp_type(x) (((x).val >> 1) & 0x1f)
467 #define __swp_offset(x) ((x).val >> 7)
468 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 7) })
469 #define __pte_to_swp_entry(_pte) ((swp_entry_t) { (_pte).pte })
470 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
472 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
473 #define PageSkip(page) (0)
474 #define kern_addr_valid(addr) (1)
476 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
477 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
478 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
479 #define __HAVE_ARCH_PTE_SAME
480 #include <asm-generic/pgtable.h>
483 * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache
485 static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
487 struct mm_struct *mm;
488 unsigned long ampr;
490 mm = current->mm;
491 if (mm) {
492 pgd_t *pge = pgd_offset(mm, address);
493 pud_t *pue = pud_offset(pge, address);
494 pmd_t *pme = pmd_offset(pue, address);
496 ampr = pme->ste[0] & 0xffffff00;
497 ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C |
498 xAMPRx_V;
499 } else {
500 address = ULONG_MAX;
501 ampr = 0;
504 asm volatile("movgs %0,scr0\n"
505 "movgs %0,scr1\n"
506 "movgs %1,dampr4\n"
507 "movgs %1,dampr5\n"
509 : "r"(address), "r"(ampr)
513 #ifdef CONFIG_PROC_FS
514 extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer);
515 #endif
517 extern void __init pgtable_cache_init(void);
519 #endif /* !__ASSEMBLY__ */
520 #endif /* !CONFIG_MMU */
522 #ifndef __ASSEMBLY__
523 extern void __init paging_init(void);
524 #endif /* !__ASSEMBLY__ */
526 #endif /* _ASM_PGTABLE_H */