usb: dwc3: implement runtime PM
[linux/fpc-iii.git] / arch / tile / kernel / pci_gx.c
blob0e7a5d09e023820e17ee1e47958d32fee1cc9136
1 /*
2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/kernel.h>
16 #include <linux/mmzone.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/capability.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/irq.h>
25 #include <linux/msi.h>
26 #include <linux/io.h>
27 #include <linux/uaccess.h>
28 #include <linux/ctype.h>
30 #include <asm/processor.h>
31 #include <asm/sections.h>
32 #include <asm/byteorder.h>
34 #include <gxio/iorpc_globals.h>
35 #include <gxio/kiorpc.h>
36 #include <gxio/trio.h>
37 #include <gxio/iorpc_trio.h>
38 #include <hv/drv_trio_intf.h>
40 #include <arch/sim.h>
43 * This file contains the routines to search for PCI buses,
44 * enumerate the buses, and configure any attached devices.
47 #define DEBUG_PCI_CFG 0
49 #if DEBUG_PCI_CFG
50 #define TRACE_CFG_WR(size, val, bus, dev, func, offset) \
51 pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \
52 size, val, bus, dev, func, offset & 0xFFF);
53 #define TRACE_CFG_RD(size, val, bus, dev, func, offset) \
54 pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \
55 size, val, bus, dev, func, offset & 0xFFF);
56 #else
57 #define TRACE_CFG_WR(...)
58 #define TRACE_CFG_RD(...)
59 #endif
61 static int pci_probe = 1;
63 /* Information on the PCIe RC ports configuration. */
64 static int pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
67 * On some platforms with one or more Gx endpoint ports, we need to
68 * delay the PCIe RC port probe for a few seconds to work around
69 * a HW PCIe link-training bug. The exact delay is specified with
70 * a kernel boot argument in the form of "pcie_rc_delay=T,P,S",
71 * where T is the TRIO instance number, P is the port number and S is
72 * the delay in seconds. If the argument is specified, but the delay is
73 * not provided, the value will be DEFAULT_RC_DELAY.
75 static int rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
77 /* Default number of seconds that the PCIe RC port probe can be delayed. */
78 #define DEFAULT_RC_DELAY 10
80 /* The PCI I/O space size in each PCI domain. */
81 #define IO_SPACE_SIZE 0x10000
83 /* Provide shorter versions of some very long constant names. */
84 #define AUTO_CONFIG_RC \
85 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC
86 #define AUTO_CONFIG_RC_G1 \
87 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1
88 #define AUTO_CONFIG_EP \
89 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT
90 #define AUTO_CONFIG_EP_G1 \
91 TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1
93 /* Array of the PCIe ports configuration info obtained from the BIB. */
94 struct pcie_trio_ports_property pcie_ports[TILEGX_NUM_TRIO];
96 /* Number of configured TRIO instances. */
97 int num_trio_shims;
99 /* All drivers share the TRIO contexts defined here. */
100 gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
102 /* Pointer to an array of PCIe RC controllers. */
103 struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
104 int num_rc_controllers;
106 static struct pci_ops tile_cfg_ops;
108 /* Mask of CPUs that should receive PCIe interrupts. */
109 static struct cpumask intr_cpus_map;
111 /* We don't need to worry about the alignment of resources. */
112 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
113 resource_size_t size,
114 resource_size_t align)
116 return res->start;
118 EXPORT_SYMBOL(pcibios_align_resource);
121 * Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #.
122 * For now, we simply send interrupts to non-dataplane CPUs.
123 * We may implement methods to allow user to specify the target CPUs,
124 * e.g. via boot arguments.
126 static int tile_irq_cpu(int irq)
128 unsigned int count;
129 int i = 0;
130 int cpu;
132 count = cpumask_weight(&intr_cpus_map);
133 if (unlikely(count == 0)) {
134 pr_warn("intr_cpus_map empty, interrupts will be delievered to dataplane tiles\n");
135 return irq % (smp_height * smp_width);
138 count = irq % count;
139 for_each_cpu(cpu, &intr_cpus_map) {
140 if (i++ == count)
141 break;
143 return cpu;
146 /* Open a file descriptor to the TRIO shim. */
147 static int tile_pcie_open(int trio_index)
149 gxio_trio_context_t *context = &trio_contexts[trio_index];
150 int ret;
151 int mac;
153 /* This opens a file descriptor to the TRIO shim. */
154 ret = gxio_trio_init(context, trio_index);
155 if (ret < 0)
156 goto gxio_trio_init_failure;
158 /* Allocate an ASID for the kernel. */
159 ret = gxio_trio_alloc_asids(context, 1, 0, 0);
160 if (ret < 0) {
161 pr_err("PCI: ASID alloc failure on TRIO %d, give up\n",
162 trio_index);
163 goto asid_alloc_failure;
166 context->asid = ret;
168 #ifdef USE_SHARED_PCIE_CONFIG_REGION
170 * Alloc a PIO region for config access, shared by all MACs per TRIO.
171 * This shouldn't fail since the kernel is supposed to the first
172 * client of the TRIO's PIO regions.
174 ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0);
175 if (ret < 0) {
176 pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n",
177 trio_index);
178 goto pio_alloc_failure;
181 context->pio_cfg_index = ret;
184 * For PIO CFG, the bus_address_hi parameter is 0. The mac parameter
185 * is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR.
187 ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index,
188 0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
189 if (ret < 0) {
190 pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n",
191 trio_index);
192 goto pio_alloc_failure;
194 #endif
196 /* Get the properties of the PCIe ports on this TRIO instance. */
197 ret = gxio_trio_get_port_property(context, &pcie_ports[trio_index]);
198 if (ret < 0) {
199 pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d, on TRIO %d\n",
200 ret, trio_index);
201 goto get_port_property_failure;
204 context->mmio_base_mac =
205 iorpc_ioremap(context->fd, 0, HV_TRIO_CONFIG_IOREMAP_SIZE);
206 if (context->mmio_base_mac == NULL) {
207 pr_err("PCI: TRIO config space mapping failure, error %d, on TRIO %d\n",
208 ret, trio_index);
209 ret = -ENOMEM;
211 goto trio_mmio_mapping_failure;
214 /* Check the port strap state which will override the BIB setting. */
215 for (mac = 0; mac < TILEGX_TRIO_PCIES; mac++) {
216 TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
217 unsigned int reg_offset;
219 /* Ignore ports that are not specified in the BIB. */
220 if (!pcie_ports[trio_index].ports[mac].allow_rc &&
221 !pcie_ports[trio_index].ports[mac].allow_ep)
222 continue;
224 reg_offset =
225 (TRIO_PCIE_INTFC_PORT_CONFIG <<
226 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
227 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
228 TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
229 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
231 port_config.word =
232 __gxio_mmio_read(context->mmio_base_mac + reg_offset);
234 if (port_config.strap_state != AUTO_CONFIG_RC &&
235 port_config.strap_state != AUTO_CONFIG_RC_G1) {
237 * If this is really intended to be an EP port, record
238 * it so that the endpoint driver will know about it.
240 if (port_config.strap_state == AUTO_CONFIG_EP ||
241 port_config.strap_state == AUTO_CONFIG_EP_G1)
242 pcie_ports[trio_index].ports[mac].allow_ep = 1;
246 return ret;
248 trio_mmio_mapping_failure:
249 get_port_property_failure:
250 asid_alloc_failure:
251 #ifdef USE_SHARED_PCIE_CONFIG_REGION
252 pio_alloc_failure:
253 #endif
254 hv_dev_close(context->fd);
255 gxio_trio_init_failure:
256 context->fd = -1;
258 return ret;
261 static int __init tile_trio_init(void)
263 int i;
265 /* We loop over all the TRIO shims. */
266 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
267 if (tile_pcie_open(i) < 0)
268 continue;
269 num_trio_shims++;
272 return 0;
274 postcore_initcall(tile_trio_init);
276 static void tilegx_legacy_irq_ack(struct irq_data *d)
278 __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
281 static void tilegx_legacy_irq_mask(struct irq_data *d)
283 __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
286 static void tilegx_legacy_irq_unmask(struct irq_data *d)
288 __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
291 static struct irq_chip tilegx_legacy_irq_chip = {
292 .name = "tilegx_legacy_irq",
293 .irq_ack = tilegx_legacy_irq_ack,
294 .irq_mask = tilegx_legacy_irq_mask,
295 .irq_unmask = tilegx_legacy_irq_unmask,
297 /* TBD: support set_affinity. */
301 * This is a wrapper function of the kernel level-trigger interrupt
302 * handler handle_level_irq() for PCI legacy interrupts. The TRIO
303 * is configured such that only INTx Assert interrupts are proxied
304 * to Linux which just calls handle_level_irq() after clearing the
305 * MAC INTx Assert status bit associated with this interrupt.
307 static void trio_handle_level_irq(struct irq_desc *desc)
309 struct pci_controller *controller = irq_desc_get_handler_data(desc);
310 gxio_trio_context_t *trio_context = controller->trio;
311 uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc);
312 int mac = controller->mac;
313 unsigned int reg_offset;
314 uint64_t level_mask;
316 handle_level_irq(desc);
319 * Clear the INTx Level status, otherwise future interrupts are
320 * not sent.
322 reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS <<
323 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
324 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
325 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
326 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
328 level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx;
330 __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask);
334 * Create kernel irqs and set up the handlers for the legacy interrupts.
335 * Also some minimum initialization for the MSI support.
337 static int tile_init_irqs(struct pci_controller *controller)
339 int i;
340 int j;
341 int irq;
342 int result;
344 cpumask_copy(&intr_cpus_map, cpu_online_mask);
347 for (i = 0; i < 4; i++) {
348 gxio_trio_context_t *context = controller->trio;
349 int cpu;
351 /* Ask the kernel to allocate an IRQ. */
352 irq = irq_alloc_hwirq(-1);
353 if (!irq) {
354 pr_err("PCI: no free irq vectors, failed for %d\n", i);
355 goto free_irqs;
357 controller->irq_intx_table[i] = irq;
359 /* Distribute the 4 IRQs to different tiles. */
360 cpu = tile_irq_cpu(irq);
362 /* Configure the TRIO intr binding for this IRQ. */
363 result = gxio_trio_config_legacy_intr(context, cpu_x(cpu),
364 cpu_y(cpu), KERNEL_PL,
365 irq, controller->mac, i);
366 if (result < 0) {
367 pr_err("PCI: MAC intx config failed for %d\n", i);
369 goto free_irqs;
372 /* Register the IRQ handler with the kernel. */
373 irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip,
374 trio_handle_level_irq);
375 irq_set_chip_data(irq, (void *)(uint64_t)i);
376 irq_set_handler_data(irq, controller);
379 return 0;
381 free_irqs:
382 for (j = 0; j < i; j++)
383 irq_free_hwirq(controller->irq_intx_table[j]);
385 return -1;
389 * Return 1 if the port is strapped to operate in RC mode.
391 static int
392 strapped_for_rc(gxio_trio_context_t *trio_context, int mac)
394 TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
395 unsigned int reg_offset;
397 /* Check the port configuration. */
398 reg_offset =
399 (TRIO_PCIE_INTFC_PORT_CONFIG <<
400 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
401 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
402 TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
403 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
404 port_config.word =
405 __gxio_mmio_read(trio_context->mmio_base_mac + reg_offset);
407 if (port_config.strap_state == AUTO_CONFIG_RC ||
408 port_config.strap_state == AUTO_CONFIG_RC_G1)
409 return 1;
410 else
411 return 0;
415 * Find valid controllers and fill in pci_controller structs for each
416 * of them.
418 * Return the number of controllers discovered.
420 int __init tile_pci_init(void)
422 int ctl_index = 0;
423 int i, j;
425 if (!pci_probe) {
426 pr_info("PCI: disabled by boot argument\n");
427 return 0;
430 pr_info("PCI: Searching for controllers...\n");
432 if (num_trio_shims == 0 || sim_is_simulator())
433 return 0;
436 * Now determine which PCIe ports are configured to operate in RC
437 * mode. There is a difference in the port configuration capability
438 * between the Gx36 and Gx72 devices.
440 * The Gx36 has configuration capability for each of the 3 PCIe
441 * interfaces (disable, auto endpoint, auto RC, etc.).
442 * On the Gx72, you can only select one of the 3 PCIe interfaces per
443 * TRIO to train automatically. Further, the allowable training modes
444 * are reduced to four options (auto endpoint, auto RC, stream x1,
445 * stream x4).
447 * For Gx36 ports, it must be allowed to be in RC mode by the
448 * Board Information Block, and the hardware strapping pins must be
449 * set to RC mode.
451 * For Gx72 ports, the port will operate in RC mode if either of the
452 * following is true:
453 * 1. It is allowed to be in RC mode by the Board Information Block,
454 * and the BIB doesn't allow the EP mode.
455 * 2. It is allowed to be in either the RC or the EP mode by the BIB,
456 * and the hardware strapping pin is set to RC mode.
458 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
459 gxio_trio_context_t *context = &trio_contexts[i];
461 if (context->fd < 0)
462 continue;
464 for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
465 int is_rc = 0;
467 if (pcie_ports[i].is_gx72 &&
468 pcie_ports[i].ports[j].allow_rc) {
469 if (!pcie_ports[i].ports[j].allow_ep ||
470 strapped_for_rc(context, j))
471 is_rc = 1;
472 } else if (pcie_ports[i].ports[j].allow_rc &&
473 strapped_for_rc(context, j)) {
474 is_rc = 1;
476 if (is_rc) {
477 pcie_rc[i][j] = 1;
478 num_rc_controllers++;
483 /* Return if no PCIe ports are configured to operate in RC mode. */
484 if (num_rc_controllers == 0)
485 return 0;
487 /* Set the TRIO pointer and MAC index for each PCIe RC port. */
488 for (i = 0; i < TILEGX_NUM_TRIO; i++) {
489 for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
490 if (pcie_rc[i][j]) {
491 pci_controllers[ctl_index].trio =
492 &trio_contexts[i];
493 pci_controllers[ctl_index].mac = j;
494 pci_controllers[ctl_index].trio_index = i;
495 ctl_index++;
496 if (ctl_index == num_rc_controllers)
497 goto out;
502 out:
503 /* Configure each PCIe RC port. */
504 for (i = 0; i < num_rc_controllers; i++) {
506 /* Configure the PCIe MAC to run in RC mode. */
507 struct pci_controller *controller = &pci_controllers[i];
509 controller->index = i;
510 controller->ops = &tile_cfg_ops;
512 controller->io_space.start = PCIBIOS_MIN_IO +
513 (i * IO_SPACE_SIZE);
514 controller->io_space.end = controller->io_space.start +
515 IO_SPACE_SIZE - 1;
516 BUG_ON(controller->io_space.end > IO_SPACE_LIMIT);
517 controller->io_space.flags = IORESOURCE_IO;
518 snprintf(controller->io_space_name,
519 sizeof(controller->io_space_name),
520 "PCI I/O domain %d", i);
521 controller->io_space.name = controller->io_space_name;
524 * The PCI memory resource is located above the PA space.
525 * For every host bridge, the BAR window or the MMIO aperture
526 * is in range [3GB, 4GB - 1] of a 4GB space beyond the
527 * PA space.
529 controller->mem_offset = TILE_PCI_MEM_START +
530 (i * TILE_PCI_BAR_WINDOW_TOP);
531 controller->mem_space.start = controller->mem_offset +
532 TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE;
533 controller->mem_space.end = controller->mem_offset +
534 TILE_PCI_BAR_WINDOW_TOP - 1;
535 controller->mem_space.flags = IORESOURCE_MEM;
536 snprintf(controller->mem_space_name,
537 sizeof(controller->mem_space_name),
538 "PCI mem domain %d", i);
539 controller->mem_space.name = controller->mem_space_name;
542 return num_rc_controllers;
546 * (pin - 1) converts from the PCI standard's [1:4] convention to
547 * a normal [0:3] range.
549 static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin)
551 struct pci_controller *controller =
552 (struct pci_controller *)dev->sysdata;
553 return controller->irq_intx_table[pin - 1];
556 static void fixup_read_and_payload_sizes(struct pci_controller *controller)
558 gxio_trio_context_t *trio_context = controller->trio;
559 struct pci_bus *root_bus = controller->root_bus;
560 TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control;
561 TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap;
562 unsigned int reg_offset;
563 struct pci_bus *child;
564 int mac;
565 int err;
567 mac = controller->mac;
569 /* Set our max read request size to be 4KB. */
570 reg_offset =
571 (TRIO_PCIE_RC_DEVICE_CONTROL <<
572 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
573 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
574 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
575 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
577 dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
578 reg_offset);
579 dev_control.max_read_req_sz = 5;
580 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
581 dev_control.word);
584 * Set the max payload size supported by this Gx PCIe MAC.
585 * Though Gx PCIe supports Max Payload Size of up to 1024 bytes,
586 * experiments have shown that setting MPS to 256 yields the
587 * best performance.
589 reg_offset =
590 (TRIO_PCIE_RC_DEVICE_CAP <<
591 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
592 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
593 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
594 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
596 rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
597 reg_offset);
598 rc_dev_cap.mps_sup = 1;
599 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
600 rc_dev_cap.word);
602 /* Configure PCI Express MPS setting. */
603 list_for_each_entry(child, &root_bus->children, node)
604 pcie_bus_configure_settings(child);
607 * Set the mac_config register in trio based on the MPS/MRS of the link.
609 reg_offset =
610 (TRIO_PCIE_RC_DEVICE_CONTROL <<
611 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
612 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
613 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
614 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
616 dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
617 reg_offset);
619 err = gxio_trio_set_mps_mrs(trio_context,
620 dev_control.max_payload_size,
621 dev_control.max_read_req_sz,
622 mac);
623 if (err < 0) {
624 pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, MAC %d on TRIO %d\n",
625 mac, controller->trio_index);
629 static int setup_pcie_rc_delay(char *str)
631 unsigned long delay = 0;
632 unsigned long trio_index;
633 unsigned long mac;
635 if (str == NULL || !isdigit(*str))
636 return -EINVAL;
637 trio_index = simple_strtoul(str, (char **)&str, 10);
638 if (trio_index >= TILEGX_NUM_TRIO)
639 return -EINVAL;
641 if (*str != ',')
642 return -EINVAL;
644 str++;
645 if (!isdigit(*str))
646 return -EINVAL;
647 mac = simple_strtoul(str, (char **)&str, 10);
648 if (mac >= TILEGX_TRIO_PCIES)
649 return -EINVAL;
651 if (*str != '\0') {
652 if (*str != ',')
653 return -EINVAL;
655 str++;
656 if (!isdigit(*str))
657 return -EINVAL;
658 delay = simple_strtoul(str, (char **)&str, 10);
661 rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY;
662 return 0;
664 early_param("pcie_rc_delay", setup_pcie_rc_delay);
666 /* PCI initialization entry point, called by subsys_initcall. */
667 int __init pcibios_init(void)
669 resource_size_t offset;
670 LIST_HEAD(resources);
671 int next_busno;
672 int i;
674 tile_pci_init();
676 if (num_rc_controllers == 0)
677 return 0;
680 * Delay a bit in case devices aren't ready. Some devices are
681 * known to require at least 20ms here, but we use a more
682 * conservative value.
684 msleep(250);
686 /* Scan all of the recorded PCI controllers. */
687 for (next_busno = 0, i = 0; i < num_rc_controllers; i++) {
688 struct pci_controller *controller = &pci_controllers[i];
689 gxio_trio_context_t *trio_context = controller->trio;
690 TRIO_PCIE_INTFC_PORT_STATUS_t port_status;
691 TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl;
692 struct pci_bus *bus;
693 unsigned int reg_offset;
694 unsigned int class_code_revision;
695 int trio_index;
696 int mac;
697 int ret;
699 if (trio_context->fd < 0)
700 continue;
702 trio_index = controller->trio_index;
703 mac = controller->mac;
706 * Check for PCIe link-up status to decide if we need
707 * to force the link to come up.
709 reg_offset =
710 (TRIO_PCIE_INTFC_PORT_STATUS <<
711 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
712 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
713 TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
714 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
716 port_status.word =
717 __gxio_mmio_read(trio_context->mmio_base_mac +
718 reg_offset);
719 if (!port_status.dl_up) {
720 if (rc_delay[trio_index][mac]) {
721 pr_info("Delaying PCIe RC TRIO init %d sec on MAC %d on TRIO %d\n",
722 rc_delay[trio_index][mac], mac,
723 trio_index);
724 msleep(rc_delay[trio_index][mac] * 1000);
726 ret = gxio_trio_force_rc_link_up(trio_context, mac);
727 if (ret < 0)
728 pr_err("PCI: PCIE_FORCE_LINK_UP failure, MAC %d on TRIO %d\n",
729 mac, trio_index);
732 pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n",
733 i, trio_index, controller->mac);
735 /* Delay the bus probe if needed. */
736 if (rc_delay[trio_index][mac]) {
737 pr_info("Delaying PCIe RC bus enumerating %d sec on MAC %d on TRIO %d\n",
738 rc_delay[trio_index][mac], mac, trio_index);
739 msleep(rc_delay[trio_index][mac] * 1000);
740 } else {
742 * Wait a bit here because some EP devices
743 * take longer to come up.
745 msleep(1000);
748 /* Check for PCIe link-up status again. */
749 port_status.word =
750 __gxio_mmio_read(trio_context->mmio_base_mac +
751 reg_offset);
752 if (!port_status.dl_up) {
753 if (pcie_ports[trio_index].ports[mac].removable) {
754 pr_info("PCI: link is down, MAC %d on TRIO %d\n",
755 mac, trio_index);
756 pr_info("This is expected if no PCIe card is connected to this link\n");
757 } else
758 pr_err("PCI: link is down, MAC %d on TRIO %d\n",
759 mac, trio_index);
760 continue;
764 * Ensure that the link can come out of L1 power down state.
765 * Strictly speaking, this is needed only in the case of
766 * heavy RC-initiated DMAs.
768 reg_offset =
769 (TRIO_PCIE_INTFC_TX_FIFO_CTL <<
770 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
771 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
772 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
773 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
774 tx_fifo_ctl.word =
775 __gxio_mmio_read(trio_context->mmio_base_mac +
776 reg_offset);
777 tx_fifo_ctl.min_p_credits = 0;
778 __gxio_mmio_write(trio_context->mmio_base_mac + reg_offset,
779 tx_fifo_ctl.word);
782 * Change the device ID so that Linux bus crawl doesn't confuse
783 * the internal bridge with any Tilera endpoints.
785 reg_offset =
786 (TRIO_PCIE_RC_DEVICE_ID_VEN_ID <<
787 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
788 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
789 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
790 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
792 __gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
793 (TILERA_GX36_RC_DEV_ID <<
794 TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) |
795 TILERA_VENDOR_ID);
797 /* Set the internal P2P bridge class code. */
798 reg_offset =
799 (TRIO_PCIE_RC_REVISION_ID <<
800 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
801 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
802 TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
803 (mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
805 class_code_revision =
806 __gxio_mmio_read32(trio_context->mmio_base_mac +
807 reg_offset);
808 class_code_revision = (class_code_revision & 0xff) |
809 (PCI_CLASS_BRIDGE_PCI << 16);
811 __gxio_mmio_write32(trio_context->mmio_base_mac +
812 reg_offset, class_code_revision);
814 #ifdef USE_SHARED_PCIE_CONFIG_REGION
816 /* Map in the MMIO space for the PIO region. */
817 offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) |
818 (((unsigned long long)mac) <<
819 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
821 #else
823 /* Alloc a PIO region for PCI config access per MAC. */
824 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
825 if (ret < 0) {
826 pr_err("PCI: PCI CFG PIO alloc failure for mac %d on TRIO %d, give up\n",
827 mac, trio_index);
829 continue;
832 trio_context->pio_cfg_index[mac] = ret;
834 /* For PIO CFG, the bus_address_hi parameter is 0. */
835 ret = gxio_trio_init_pio_region_aux(trio_context,
836 trio_context->pio_cfg_index[mac],
837 mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
838 if (ret < 0) {
839 pr_err("PCI: PCI CFG PIO init failure for mac %d on TRIO %d, give up\n",
840 mac, trio_index);
842 continue;
845 offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) |
846 (((unsigned long long)mac) <<
847 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
849 #endif
852 * To save VMALLOC space, we take advantage of the fact that
853 * bit 29 in the PIO CFG address format is reserved 0. With
854 * TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT being 30,
855 * this cuts VMALLOC space usage from 1GB to 512MB per mac.
857 trio_context->mmio_base_pio_cfg[mac] =
858 iorpc_ioremap(trio_context->fd, offset, (1UL <<
859 (TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT - 1)));
860 if (trio_context->mmio_base_pio_cfg[mac] == NULL) {
861 pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
862 mac, trio_index);
864 continue;
867 /* Initialize the PCIe interrupts. */
868 if (tile_init_irqs(controller)) {
869 pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n",
870 mac, trio_index);
872 continue;
876 * The PCI memory resource is located above the PA space.
877 * The memory range for the PCI root bus should not overlap
878 * with the physical RAM.
880 pci_add_resource_offset(&resources, &controller->mem_space,
881 controller->mem_offset);
882 pci_add_resource(&resources, &controller->io_space);
883 controller->first_busno = next_busno;
884 bus = pci_scan_root_bus(NULL, next_busno, controller->ops,
885 controller, &resources);
886 controller->root_bus = bus;
887 next_busno = bus->busn_res.end + 1;
890 /* Do machine dependent PCI interrupt routing */
891 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
894 * This comes from the generic Linux PCI driver.
896 * It allocates all of the resources (I/O memory, etc)
897 * associated with the devices read in above.
899 pci_assign_unassigned_resources();
901 /* Record the I/O resources in the PCI controller structure. */
902 for (i = 0; i < num_rc_controllers; i++) {
903 struct pci_controller *controller = &pci_controllers[i];
904 gxio_trio_context_t *trio_context = controller->trio;
905 struct pci_bus *root_bus = pci_controllers[i].root_bus;
906 int ret;
907 int j;
910 * Skip controllers that are not properly initialized or
911 * have down links.
913 if (root_bus == NULL)
914 continue;
916 /* Configure the max_payload_size values for this domain. */
917 fixup_read_and_payload_sizes(controller);
919 /* Alloc a PIO region for PCI memory access for each RC port. */
920 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
921 if (ret < 0) {
922 pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, give up\n",
923 controller->trio_index, controller->mac);
925 continue;
928 controller->pio_mem_index = ret;
931 * For PIO MEM, the bus_address_hi parameter is hard-coded 0
932 * because we always assign 32-bit PCI bus BAR ranges.
934 ret = gxio_trio_init_pio_region_aux(trio_context,
935 controller->pio_mem_index,
936 controller->mac,
939 if (ret < 0) {
940 pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, give up\n",
941 controller->trio_index, controller->mac);
943 continue;
946 #ifdef CONFIG_TILE_PCI_IO
948 * Alloc a PIO region for PCI I/O space access for each RC port.
950 ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
951 if (ret < 0) {
952 pr_err("PCI: I/O PIO alloc failure on TRIO %d mac %d, give up\n",
953 controller->trio_index, controller->mac);
955 continue;
958 controller->pio_io_index = ret;
961 * For PIO IO, the bus_address_hi parameter is hard-coded 0
962 * because PCI I/O address space is 32-bit.
964 ret = gxio_trio_init_pio_region_aux(trio_context,
965 controller->pio_io_index,
966 controller->mac,
968 HV_TRIO_PIO_FLAG_IO_SPACE);
969 if (ret < 0) {
970 pr_err("PCI: I/O PIO init failure on TRIO %d mac %d, give up\n",
971 controller->trio_index, controller->mac);
973 continue;
975 #endif
978 * Configure a Mem-Map region for each memory controller so
979 * that Linux can map all of its PA space to the PCI bus.
980 * Use the IOMMU to handle hash-for-home memory.
982 for_each_online_node(j) {
983 unsigned long start_pfn = node_start_pfn[j];
984 unsigned long end_pfn = node_end_pfn[j];
985 unsigned long nr_pages = end_pfn - start_pfn;
987 ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0,
989 if (ret < 0) {
990 pr_err("PCI: Mem-Map alloc failure on TRIO %d mac %d for MC %d, give up\n",
991 controller->trio_index, controller->mac,
994 goto alloc_mem_map_failed;
997 controller->mem_maps[j] = ret;
1000 * Initialize the Mem-Map and the I/O MMU so that all
1001 * the physical memory can be accessed by the endpoint
1002 * devices. The base bus address is set to the base CPA
1003 * of this memory controller plus an offset (see pci.h).
1004 * The region's base VA is set to the base CPA. The
1005 * I/O MMU table essentially translates the CPA to
1006 * the real PA. Implicitly, for node 0, we create
1007 * a separate Mem-Map region that serves as the inbound
1008 * window for legacy 32-bit devices. This is a direct
1009 * map of the low 4GB CPA space.
1011 ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
1012 controller->mem_maps[j],
1013 start_pfn << PAGE_SHIFT,
1014 nr_pages << PAGE_SHIFT,
1015 trio_context->asid,
1016 controller->mac,
1017 (start_pfn << PAGE_SHIFT) +
1018 TILE_PCI_MEM_MAP_BASE_OFFSET,
1020 GXIO_TRIO_ORDER_MODE_UNORDERED);
1021 if (ret < 0) {
1022 pr_err("PCI: Mem-Map init failure on TRIO %d mac %d for MC %d, give up\n",
1023 controller->trio_index, controller->mac,
1026 goto alloc_mem_map_failed;
1028 continue;
1030 alloc_mem_map_failed:
1031 break;
1034 pci_bus_add_devices(root_bus);
1037 return 0;
1039 subsys_initcall(pcibios_init);
1041 /* No bus fixups needed. */
1042 void pcibios_fixup_bus(struct pci_bus *bus)
1046 /* Process any "pci=" kernel boot arguments. */
1047 char *__init pcibios_setup(char *str)
1049 if (!strcmp(str, "off")) {
1050 pci_probe = 0;
1051 return NULL;
1053 return str;
1057 * Called for each device after PCI setup is done.
1058 * We initialize the PCI device capabilities conservatively, assuming that
1059 * all devices can only address the 32-bit DMA space. The exception here is
1060 * that the device dma_offset is set to the value that matches the 64-bit
1061 * capable devices. This is OK because dma_offset is not used by legacy
1062 * dma_ops, nor by the hybrid dma_ops's streaming DMAs, which are 64-bit ops.
1063 * This implementation matches the kernel design of setting PCI devices'
1064 * coherent_dma_mask to 0xffffffffull by default, allowing the device drivers
1065 * to skip calling pci_set_consistent_dma_mask(DMA_BIT_MASK(32)).
1067 static void pcibios_fixup_final(struct pci_dev *pdev)
1069 set_dma_ops(&pdev->dev, gx_legacy_pci_dma_map_ops);
1070 set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET);
1071 pdev->dev.archdata.max_direct_dma_addr =
1072 TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
1073 pdev->dev.coherent_dma_mask = TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
1075 DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final);
1077 /* Map a PCI MMIO bus address into VA space. */
1078 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
1080 struct pci_controller *controller = NULL;
1081 resource_size_t bar_start;
1082 resource_size_t bar_end;
1083 resource_size_t offset;
1084 resource_size_t start;
1085 resource_size_t end;
1086 int trio_fd;
1087 int i;
1089 start = phys_addr;
1090 end = phys_addr + size - 1;
1093 * By searching phys_addr in each controller's mem_space, we can
1094 * determine the controller that should accept the PCI memory access.
1096 for (i = 0; i < num_rc_controllers; i++) {
1098 * Skip controllers that are not properly initialized or
1099 * have down links.
1101 if (pci_controllers[i].root_bus == NULL)
1102 continue;
1104 bar_start = pci_controllers[i].mem_space.start;
1105 bar_end = pci_controllers[i].mem_space.end;
1107 if ((start >= bar_start) && (end <= bar_end)) {
1108 controller = &pci_controllers[i];
1109 break;
1113 if (controller == NULL)
1114 return NULL;
1116 trio_fd = controller->trio->fd;
1118 /* Convert the resource start to the bus address offset. */
1119 start = phys_addr - controller->mem_offset;
1121 offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + start;
1123 /* We need to keep the PCI bus address's in-page offset in the VA. */
1124 return iorpc_ioremap(trio_fd, offset, size) +
1125 (start & (PAGE_SIZE - 1));
1127 EXPORT_SYMBOL(ioremap);
1129 #ifdef CONFIG_TILE_PCI_IO
1130 /* Map a PCI I/O address into VA space. */
1131 void __iomem *ioport_map(unsigned long port, unsigned int size)
1133 struct pci_controller *controller = NULL;
1134 resource_size_t bar_start;
1135 resource_size_t bar_end;
1136 resource_size_t offset;
1137 resource_size_t start;
1138 resource_size_t end;
1139 int trio_fd;
1140 int i;
1142 start = port;
1143 end = port + size - 1;
1146 * By searching the port in each controller's io_space, we can
1147 * determine the controller that should accept the PCI I/O access.
1149 for (i = 0; i < num_rc_controllers; i++) {
1151 * Skip controllers that are not properly initialized or
1152 * have down links.
1154 if (pci_controllers[i].root_bus == NULL)
1155 continue;
1157 bar_start = pci_controllers[i].io_space.start;
1158 bar_end = pci_controllers[i].io_space.end;
1160 if ((start >= bar_start) && (end <= bar_end)) {
1161 controller = &pci_controllers[i];
1162 break;
1166 if (controller == NULL)
1167 return NULL;
1169 trio_fd = controller->trio->fd;
1171 /* Convert the resource start to the bus address offset. */
1172 port -= controller->io_space.start;
1174 offset = HV_TRIO_PIO_OFFSET(controller->pio_io_index) + port;
1176 /* We need to keep the PCI bus address's in-page offset in the VA. */
1177 return iorpc_ioremap(trio_fd, offset, size) + (port & (PAGE_SIZE - 1));
1179 EXPORT_SYMBOL(ioport_map);
1181 void ioport_unmap(void __iomem *addr)
1183 iounmap(addr);
1185 EXPORT_SYMBOL(ioport_unmap);
1186 #endif
1188 void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
1190 iounmap(addr);
1192 EXPORT_SYMBOL(pci_iounmap);
1194 /****************************************************************
1196 * Tile PCI config space read/write routines
1198 ****************************************************************/
1201 * These are the normal read and write ops
1202 * These are expanded with macros from pci_bus_read_config_byte() etc.
1204 * devfn is the combined PCI device & function.
1206 * offset is in bytes, from the start of config space for the
1207 * specified bus & device.
1209 static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
1210 int size, u32 *val)
1212 struct pci_controller *controller = bus->sysdata;
1213 gxio_trio_context_t *trio_context = controller->trio;
1214 int busnum = bus->number & 0xff;
1215 int device = PCI_SLOT(devfn);
1216 int function = PCI_FUNC(devfn);
1217 int config_type = 1;
1218 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
1219 void *mmio_addr;
1222 * Map all accesses to the local device on root bus into the
1223 * MMIO space of the MAC. Accesses to the downstream devices
1224 * go to the PIO space.
1226 if (pci_is_root_bus(bus)) {
1227 if (device == 0) {
1229 * This is the internal downstream P2P bridge,
1230 * access directly.
1232 unsigned int reg_offset;
1234 reg_offset = ((offset & 0xFFF) <<
1235 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
1236 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
1237 << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
1238 (controller->mac <<
1239 TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
1241 mmio_addr = trio_context->mmio_base_mac + reg_offset;
1243 goto valid_device;
1245 } else {
1247 * We fake an empty device for (device > 0),
1248 * since there is only one device on bus 0.
1250 goto invalid_device;
1255 * Accesses to the directly attached device have to be
1256 * sent as type-0 configs.
1258 if (busnum == (controller->first_busno + 1)) {
1260 * There is only one device off of our built-in P2P bridge.
1262 if (device != 0)
1263 goto invalid_device;
1265 config_type = 0;
1268 cfg_addr.word = 0;
1269 cfg_addr.reg_addr = (offset & 0xFFF);
1270 cfg_addr.fn = function;
1271 cfg_addr.dev = device;
1272 cfg_addr.bus = busnum;
1273 cfg_addr.type = config_type;
1276 * Note that we don't set the mac field in cfg_addr because the
1277 * mapping is per port.
1279 mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
1280 cfg_addr.word;
1282 valid_device:
1284 switch (size) {
1285 case 4:
1286 *val = __gxio_mmio_read32(mmio_addr);
1287 break;
1289 case 2:
1290 *val = __gxio_mmio_read16(mmio_addr);
1291 break;
1293 case 1:
1294 *val = __gxio_mmio_read8(mmio_addr);
1295 break;
1297 default:
1298 return PCIBIOS_FUNC_NOT_SUPPORTED;
1301 TRACE_CFG_RD(size, *val, busnum, device, function, offset);
1303 return 0;
1305 invalid_device:
1307 switch (size) {
1308 case 4:
1309 *val = 0xFFFFFFFF;
1310 break;
1312 case 2:
1313 *val = 0xFFFF;
1314 break;
1316 case 1:
1317 *val = 0xFF;
1318 break;
1320 default:
1321 return PCIBIOS_FUNC_NOT_SUPPORTED;
1324 return 0;
1329 * See tile_cfg_read() for relevant comments.
1330 * Note that "val" is the value to write, not a pointer to that value.
1332 static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
1333 int size, u32 val)
1335 struct pci_controller *controller = bus->sysdata;
1336 gxio_trio_context_t *trio_context = controller->trio;
1337 int busnum = bus->number & 0xff;
1338 int device = PCI_SLOT(devfn);
1339 int function = PCI_FUNC(devfn);
1340 int config_type = 1;
1341 TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
1342 void *mmio_addr;
1343 u32 val_32 = (u32)val;
1344 u16 val_16 = (u16)val;
1345 u8 val_8 = (u8)val;
1348 * Map all accesses to the local device on root bus into the
1349 * MMIO space of the MAC. Accesses to the downstream devices
1350 * go to the PIO space.
1352 if (pci_is_root_bus(bus)) {
1353 if (device == 0) {
1355 * This is the internal downstream P2P bridge,
1356 * access directly.
1358 unsigned int reg_offset;
1360 reg_offset = ((offset & 0xFFF) <<
1361 TRIO_CFG_REGION_ADDR__REG_SHIFT) |
1362 (TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
1363 << TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
1364 (controller->mac <<
1365 TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
1367 mmio_addr = trio_context->mmio_base_mac + reg_offset;
1369 goto valid_device;
1371 } else {
1373 * We fake an empty device for (device > 0),
1374 * since there is only one device on bus 0.
1376 goto invalid_device;
1381 * Accesses to the directly attached device have to be
1382 * sent as type-0 configs.
1384 if (busnum == (controller->first_busno + 1)) {
1386 * There is only one device off of our built-in P2P bridge.
1388 if (device != 0)
1389 goto invalid_device;
1391 config_type = 0;
1394 cfg_addr.word = 0;
1395 cfg_addr.reg_addr = (offset & 0xFFF);
1396 cfg_addr.fn = function;
1397 cfg_addr.dev = device;
1398 cfg_addr.bus = busnum;
1399 cfg_addr.type = config_type;
1402 * Note that we don't set the mac field in cfg_addr because the
1403 * mapping is per port.
1405 mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
1406 cfg_addr.word;
1408 valid_device:
1410 switch (size) {
1411 case 4:
1412 __gxio_mmio_write32(mmio_addr, val_32);
1413 TRACE_CFG_WR(size, val_32, busnum, device, function, offset);
1414 break;
1416 case 2:
1417 __gxio_mmio_write16(mmio_addr, val_16);
1418 TRACE_CFG_WR(size, val_16, busnum, device, function, offset);
1419 break;
1421 case 1:
1422 __gxio_mmio_write8(mmio_addr, val_8);
1423 TRACE_CFG_WR(size, val_8, busnum, device, function, offset);
1424 break;
1426 default:
1427 return PCIBIOS_FUNC_NOT_SUPPORTED;
1430 invalid_device:
1432 return 0;
1436 static struct pci_ops tile_cfg_ops = {
1437 .read = tile_cfg_read,
1438 .write = tile_cfg_write,
1442 /* MSI support starts here. */
1443 static unsigned int tilegx_msi_startup(struct irq_data *d)
1445 if (irq_data_get_msi_desc(d))
1446 pci_msi_unmask_irq(d);
1448 return 0;
1451 static void tilegx_msi_ack(struct irq_data *d)
1453 __insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
1456 static void tilegx_msi_mask(struct irq_data *d)
1458 pci_msi_mask_irq(d);
1459 __insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
1462 static void tilegx_msi_unmask(struct irq_data *d)
1464 __insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
1465 pci_msi_unmask_irq(d);
1468 static struct irq_chip tilegx_msi_chip = {
1469 .name = "tilegx_msi",
1470 .irq_startup = tilegx_msi_startup,
1471 .irq_ack = tilegx_msi_ack,
1472 .irq_mask = tilegx_msi_mask,
1473 .irq_unmask = tilegx_msi_unmask,
1475 /* TBD: support set_affinity. */
1478 int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
1480 struct pci_controller *controller;
1481 gxio_trio_context_t *trio_context;
1482 struct msi_msg msg;
1483 int default_irq;
1484 uint64_t mem_map_base;
1485 uint64_t mem_map_limit;
1486 u64 msi_addr;
1487 int mem_map;
1488 int cpu;
1489 int irq;
1490 int ret;
1492 irq = irq_alloc_hwirq(-1);
1493 if (!irq)
1494 return -ENOSPC;
1497 * Since we use a 64-bit Mem-Map to accept the MSI write, we fail
1498 * devices that are not capable of generating a 64-bit message address.
1499 * These devices will fall back to using the legacy interrupts.
1500 * Most PCIe endpoint devices do support 64-bit message addressing.
1502 if (desc->msi_attrib.is_64 == 0) {
1503 dev_info(&pdev->dev, "64-bit MSI message address not supported, falling back to legacy interrupts\n");
1505 ret = -ENOMEM;
1506 goto is_64_failure;
1509 default_irq = desc->msi_attrib.default_irq;
1510 controller = irq_get_handler_data(default_irq);
1512 BUG_ON(!controller);
1514 trio_context = controller->trio;
1517 * Allocate a scatter-queue that will accept the MSI write and
1518 * trigger the TILE-side interrupts. We use the scatter-queue regions
1519 * before the mem map regions, because the latter are needed by more
1520 * applications.
1522 mem_map = gxio_trio_alloc_scatter_queues(trio_context, 1, 0, 0);
1523 if (mem_map >= 0) {
1524 TRIO_MAP_SQ_DOORBELL_FMT_t doorbell_template = {{
1525 .pop = 0,
1526 .doorbell = 1,
1529 mem_map += TRIO_NUM_MAP_MEM_REGIONS;
1530 mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
1531 mem_map * MEM_MAP_INTR_REGION_SIZE;
1532 mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
1534 msi_addr = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 8;
1535 msg.data = (unsigned int)doorbell_template.word;
1536 } else {
1537 /* SQ regions are out, allocate from map mem regions. */
1538 mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0);
1539 if (mem_map < 0) {
1540 dev_info(&pdev->dev, "%s Mem-Map alloc failure - failed to initialize MSI interrupts - falling back to legacy interrupts\n",
1541 desc->msi_attrib.is_msix ? "MSI-X" : "MSI");
1542 ret = -ENOMEM;
1543 goto msi_mem_map_alloc_failure;
1546 mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
1547 mem_map * MEM_MAP_INTR_REGION_SIZE;
1548 mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
1550 msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 -
1551 TRIO_MAP_MEM_REG_INT0;
1553 msg.data = mem_map;
1556 /* We try to distribute different IRQs to different tiles. */
1557 cpu = tile_irq_cpu(irq);
1560 * Now call up to the HV to configure the MSI interrupt and
1561 * set up the IPI binding.
1563 ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu),
1564 KERNEL_PL, irq, controller->mac,
1565 mem_map, mem_map_base, mem_map_limit,
1566 trio_context->asid);
1567 if (ret < 0) {
1568 dev_info(&pdev->dev, "HV MSI config failed\n");
1570 goto hv_msi_config_failure;
1573 irq_set_msi_desc(irq, desc);
1575 msg.address_hi = msi_addr >> 32;
1576 msg.address_lo = msi_addr & 0xffffffff;
1578 pci_write_msi_msg(irq, &msg);
1579 irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq);
1580 irq_set_handler_data(irq, controller);
1582 return 0;
1584 hv_msi_config_failure:
1585 /* Free mem-map */
1586 msi_mem_map_alloc_failure:
1587 is_64_failure:
1588 irq_free_hwirq(irq);
1589 return ret;
1592 void arch_teardown_msi_irq(unsigned int irq)
1594 irq_free_hwirq(irq);