2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/signal.h>
30 #include <linux/delay.h>
31 #include <linux/context_tracking.h>
32 #include <asm/stack.h>
33 #include <asm/switch_to.h>
34 #include <asm/homecache.h>
35 #include <asm/syscalls.h>
36 #include <asm/traps.h>
37 #include <asm/setup.h>
38 #include <asm/uaccess.h>
39 #ifdef CONFIG_HARDWALL
40 #include <asm/hardwall.h>
42 #include <arch/chip.h>
44 #include <arch/sim_def.h>
47 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
48 * idle loop over low power while in the idle loop, e.g. if we have
49 * one thread per core and we want to get threads out of futex waits fast.
51 static int __init
idle_setup(char *str
)
56 if (!strcmp(str
, "poll")) {
57 pr_info("using polling idle threads\n");
58 cpu_idle_poll_ctrl(true);
60 } else if (!strcmp(str
, "halt")) {
65 early_param("idle", idle_setup
);
67 void arch_cpu_idle(void)
69 __this_cpu_write(irq_stat
.idle_timestamp
, jiffies
);
74 * Release a thread_info structure
76 void arch_release_thread_info(struct thread_info
*info
)
78 struct single_step_state
*step_state
= info
->step_state
;
83 * FIXME: we don't munmap step_state->buffer
84 * because the mm_struct for this process (info->task->mm)
85 * has already been zeroed in exit_mm(). Keeping a
86 * reference to it here seems like a bad move, so this
87 * means we can't munmap() the buffer, and therefore if we
88 * ptrace multiple threads in a process, we will slowly
89 * leak user memory. (Note that as soon as the last
90 * thread in a process dies, we will reclaim all user
91 * memory including single-step buffers in the usual way.)
92 * We should either assign a kernel VA to this buffer
93 * somehow, or we should associate the buffer(s) with the
94 * mm itself so we can clean them up that way.
100 static void save_arch_state(struct thread_struct
*t
);
102 int copy_thread(unsigned long clone_flags
, unsigned long sp
,
103 unsigned long arg
, struct task_struct
*p
)
105 struct pt_regs
*childregs
= task_pt_regs(p
);
107 unsigned long *callee_regs
;
110 * Set up the stack and stack pointer appropriately for the
111 * new child to find itself woken up in __switch_to().
112 * The callee-saved registers must be on the stack to be read;
113 * the new task will then jump to assembly support to handle
114 * calling schedule_tail(), etc., and (for userspace tasks)
115 * returning to the context set up in the pt_regs.
117 ksp
= (unsigned long) childregs
;
118 ksp
-= C_ABI_SAVE_AREA_SIZE
; /* interrupt-entry save area */
119 ((long *)ksp
)[0] = ((long *)ksp
)[1] = 0;
120 ksp
-= CALLEE_SAVED_REGS_COUNT
* sizeof(unsigned long);
121 callee_regs
= (unsigned long *)ksp
;
122 ksp
-= C_ABI_SAVE_AREA_SIZE
; /* __switch_to() save area */
123 ((long *)ksp
)[0] = ((long *)ksp
)[1] = 0;
126 /* Record the pid of the task that created this one. */
127 p
->thread
.creator_pid
= current
->pid
;
129 if (unlikely(p
->flags
& PF_KTHREAD
)) {
131 memset(childregs
, 0, sizeof(struct pt_regs
));
132 memset(&callee_regs
[2], 0,
133 (CALLEE_SAVED_REGS_COUNT
- 2) * sizeof(unsigned long));
134 callee_regs
[0] = sp
; /* r30 = function */
135 callee_regs
[1] = arg
; /* r31 = arg */
136 p
->thread
.pc
= (unsigned long) ret_from_kernel_thread
;
141 * Start new thread in ret_from_fork so it schedules properly
142 * and then return from interrupt like the parent.
144 p
->thread
.pc
= (unsigned long) ret_from_fork
;
147 * Do not clone step state from the parent; each thread
148 * must make its own lazily.
150 task_thread_info(p
)->step_state
= NULL
;
154 * Do not clone unalign jit fixup from the parent; each thread
155 * must allocate its own on demand.
157 task_thread_info(p
)->unalign_jit_base
= NULL
;
161 * Copy the registers onto the kernel stack so the
162 * return-from-interrupt code will reload it into registers.
164 *childregs
= *current_pt_regs();
165 childregs
->regs
[0] = 0; /* return value is zero */
167 childregs
->sp
= sp
; /* override with new user stack pointer */
168 memcpy(callee_regs
, &childregs
->regs
[CALLEE_SAVED_FIRST_REG
],
169 CALLEE_SAVED_REGS_COUNT
* sizeof(unsigned long));
171 /* Save user stack top pointer so we can ID the stack vm area later. */
172 p
->thread
.usp0
= childregs
->sp
;
175 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
176 * which is passed in as arg #5 to sys_clone().
178 if (clone_flags
& CLONE_SETTLS
)
179 childregs
->tp
= childregs
->regs
[4];
182 #if CHIP_HAS_TILE_DMA()
184 * No DMA in the new thread. We model this on the fact that
185 * fork() clears the pending signals, alarms, and aio for the child.
187 memset(&p
->thread
.tile_dma_state
, 0, sizeof(struct tile_dma_state
));
188 memset(&p
->thread
.dma_async_tlb
, 0, sizeof(struct async_tlb
));
191 /* New thread has its miscellaneous processor state bits clear. */
192 p
->thread
.proc_status
= 0;
194 #ifdef CONFIG_HARDWALL
195 /* New thread does not own any networks. */
196 memset(&p
->thread
.hardwall
[0], 0,
197 sizeof(struct hardwall_task
) * HARDWALL_TYPES
);
202 * Start the new thread with the current architecture state
203 * (user interrupt masks, etc.).
205 save_arch_state(&p
->thread
);
210 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
212 task_thread_info(tsk
)->align_ctl
= val
;
216 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
218 return put_user(task_thread_info(tsk
)->align_ctl
,
219 (unsigned int __user
*)adr
);
222 static struct task_struct corrupt_current
= { .comm
= "<corrupt>" };
225 * Return "current" if it looks plausible, or else a pointer to a dummy.
226 * This can be helpful if we are just trying to emit a clean panic.
228 struct task_struct
*validate_current(void)
230 struct task_struct
*tsk
= current
;
231 if (unlikely((unsigned long)tsk
< PAGE_OFFSET
||
232 (high_memory
&& (void *)tsk
> high_memory
) ||
233 ((unsigned long)tsk
& (__alignof__(*tsk
) - 1)) != 0)) {
234 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk
, stack_pointer
);
235 tsk
= &corrupt_current
;
240 /* Take and return the pointer to the previous task, for schedule_tail(). */
241 struct task_struct
*sim_notify_fork(struct task_struct
*prev
)
243 struct task_struct
*tsk
= current
;
244 __insn_mtspr(SPR_SIM_CONTROL
, SIM_CONTROL_OS_FORK_PARENT
|
245 (tsk
->thread
.creator_pid
<< _SIM_CONTROL_OPERATOR_BITS
));
246 __insn_mtspr(SPR_SIM_CONTROL
, SIM_CONTROL_OS_FORK
|
247 (tsk
->pid
<< _SIM_CONTROL_OPERATOR_BITS
));
251 int dump_task_regs(struct task_struct
*tsk
, elf_gregset_t
*regs
)
253 struct pt_regs
*ptregs
= task_pt_regs(tsk
);
254 elf_core_copy_regs(regs
, ptregs
);
258 #if CHIP_HAS_TILE_DMA()
260 /* Allow user processes to access the DMA SPRs */
261 void grant_dma_mpls(void)
263 #if CONFIG_KERNEL_PL == 2
264 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1
, 1);
265 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1
, 1);
267 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0
, 1);
268 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0
, 1);
272 /* Forbid user processes from accessing the DMA SPRs */
273 void restrict_dma_mpls(void)
275 #if CONFIG_KERNEL_PL == 2
276 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2
, 1);
277 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2
, 1);
279 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1
, 1);
280 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1
, 1);
284 /* Pause the DMA engine, then save off its state registers. */
285 static void save_tile_dma_state(struct tile_dma_state
*dma
)
287 unsigned long state
= __insn_mfspr(SPR_DMA_USER_STATUS
);
288 unsigned long post_suspend_state
;
290 /* If we're running, suspend the engine. */
291 if ((state
& DMA_STATUS_MASK
) == SPR_DMA_STATUS__RUNNING_MASK
)
292 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__SUSPEND_MASK
);
295 * Wait for the engine to idle, then save regs. Note that we
296 * want to record the "running" bit from before suspension,
297 * and the "done" bit from after, so that we can properly
298 * distinguish a case where the user suspended the engine from
299 * the case where the kernel suspended as part of the context
303 post_suspend_state
= __insn_mfspr(SPR_DMA_USER_STATUS
);
304 } while (post_suspend_state
& SPR_DMA_STATUS__BUSY_MASK
);
306 dma
->src
= __insn_mfspr(SPR_DMA_SRC_ADDR
);
307 dma
->src_chunk
= __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR
);
308 dma
->dest
= __insn_mfspr(SPR_DMA_DST_ADDR
);
309 dma
->dest_chunk
= __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR
);
310 dma
->strides
= __insn_mfspr(SPR_DMA_STRIDE
);
311 dma
->chunk_size
= __insn_mfspr(SPR_DMA_CHUNK_SIZE
);
312 dma
->byte
= __insn_mfspr(SPR_DMA_BYTE
);
313 dma
->status
= (state
& SPR_DMA_STATUS__RUNNING_MASK
) |
314 (post_suspend_state
& SPR_DMA_STATUS__DONE_MASK
);
317 /* Restart a DMA that was running before we were context-switched out. */
318 static void restore_tile_dma_state(struct thread_struct
*t
)
320 const struct tile_dma_state
*dma
= &t
->tile_dma_state
;
323 * The only way to restore the done bit is to run a zero
324 * length transaction.
326 if ((dma
->status
& SPR_DMA_STATUS__DONE_MASK
) &&
327 !(__insn_mfspr(SPR_DMA_USER_STATUS
) & SPR_DMA_STATUS__DONE_MASK
)) {
328 __insn_mtspr(SPR_DMA_BYTE
, 0);
329 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
330 while (__insn_mfspr(SPR_DMA_USER_STATUS
) &
331 SPR_DMA_STATUS__BUSY_MASK
)
335 __insn_mtspr(SPR_DMA_SRC_ADDR
, dma
->src
);
336 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR
, dma
->src_chunk
);
337 __insn_mtspr(SPR_DMA_DST_ADDR
, dma
->dest
);
338 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR
, dma
->dest_chunk
);
339 __insn_mtspr(SPR_DMA_STRIDE
, dma
->strides
);
340 __insn_mtspr(SPR_DMA_CHUNK_SIZE
, dma
->chunk_size
);
341 __insn_mtspr(SPR_DMA_BYTE
, dma
->byte
);
344 * Restart the engine if we were running and not done.
345 * Clear a pending async DMA fault that we were waiting on return
346 * to user space to execute, since we expect the DMA engine
347 * to regenerate those faults for us now. Note that we don't
348 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
349 * harmless if set, and it covers both DMA and the SN processor.
351 if ((dma
->status
& DMA_STATUS_MASK
) == SPR_DMA_STATUS__RUNNING_MASK
) {
352 t
->dma_async_tlb
.fault_num
= 0;
353 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
359 static void save_arch_state(struct thread_struct
*t
)
361 #if CHIP_HAS_SPLIT_INTR_MASK()
362 t
->interrupt_mask
= __insn_mfspr(SPR_INTERRUPT_MASK_0_0
) |
363 ((u64
)__insn_mfspr(SPR_INTERRUPT_MASK_0_1
) << 32);
365 t
->interrupt_mask
= __insn_mfspr(SPR_INTERRUPT_MASK_0
);
367 t
->ex_context
[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0
);
368 t
->ex_context
[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1
);
369 t
->system_save
[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0
);
370 t
->system_save
[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1
);
371 t
->system_save
[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2
);
372 t
->system_save
[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3
);
373 t
->intctrl_0
= __insn_mfspr(SPR_INTCTRL_0_STATUS
);
374 t
->proc_status
= __insn_mfspr(SPR_PROC_STATUS
);
375 #if !CHIP_HAS_FIXED_INTVEC_BASE()
376 t
->interrupt_vector_base
= __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0
);
378 t
->tile_rtf_hwm
= __insn_mfspr(SPR_TILE_RTF_HWM
);
379 #if CHIP_HAS_DSTREAM_PF()
380 t
->dstream_pf
= __insn_mfspr(SPR_DSTREAM_PF
);
384 static void restore_arch_state(const struct thread_struct
*t
)
386 #if CHIP_HAS_SPLIT_INTR_MASK()
387 __insn_mtspr(SPR_INTERRUPT_MASK_0_0
, (u32
) t
->interrupt_mask
);
388 __insn_mtspr(SPR_INTERRUPT_MASK_0_1
, t
->interrupt_mask
>> 32);
390 __insn_mtspr(SPR_INTERRUPT_MASK_0
, t
->interrupt_mask
);
392 __insn_mtspr(SPR_EX_CONTEXT_0_0
, t
->ex_context
[0]);
393 __insn_mtspr(SPR_EX_CONTEXT_0_1
, t
->ex_context
[1]);
394 __insn_mtspr(SPR_SYSTEM_SAVE_0_0
, t
->system_save
[0]);
395 __insn_mtspr(SPR_SYSTEM_SAVE_0_1
, t
->system_save
[1]);
396 __insn_mtspr(SPR_SYSTEM_SAVE_0_2
, t
->system_save
[2]);
397 __insn_mtspr(SPR_SYSTEM_SAVE_0_3
, t
->system_save
[3]);
398 __insn_mtspr(SPR_INTCTRL_0_STATUS
, t
->intctrl_0
);
399 __insn_mtspr(SPR_PROC_STATUS
, t
->proc_status
);
400 #if !CHIP_HAS_FIXED_INTVEC_BASE()
401 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0
, t
->interrupt_vector_base
);
403 __insn_mtspr(SPR_TILE_RTF_HWM
, t
->tile_rtf_hwm
);
404 #if CHIP_HAS_DSTREAM_PF()
405 __insn_mtspr(SPR_DSTREAM_PF
, t
->dstream_pf
);
410 void _prepare_arch_switch(struct task_struct
*next
)
412 #if CHIP_HAS_TILE_DMA()
413 struct tile_dma_state
*dma
= ¤t
->thread
.tile_dma_state
;
415 save_tile_dma_state(dma
);
420 struct task_struct
*__sched
_switch_to(struct task_struct
*prev
,
421 struct task_struct
*next
)
423 /* DMA state is already saved; save off other arch state. */
424 save_arch_state(&prev
->thread
);
426 #if CHIP_HAS_TILE_DMA()
428 * Restore DMA in new task if desired.
429 * Note that it is only safe to restart here since interrupts
430 * are disabled, so we can't take any DMATLB miss or access
431 * interrupts before we have finished switching stacks.
433 if (next
->thread
.tile_dma_state
.enabled
) {
434 restore_tile_dma_state(&next
->thread
);
441 /* Restore other arch state. */
442 restore_arch_state(&next
->thread
);
444 #ifdef CONFIG_HARDWALL
445 /* Enable or disable access to the network registers appropriately. */
446 hardwall_switch_tasks(prev
, next
);
449 /* Notify the simulator of task exit. */
450 if (unlikely(prev
->state
== TASK_DEAD
))
451 __insn_mtspr(SPR_SIM_CONTROL
, SIM_CONTROL_OS_EXIT
|
452 (prev
->pid
<< _SIM_CONTROL_OPERATOR_BITS
));
455 * Switch kernel SP, PC, and callee-saved registers.
456 * In the context of the new task, return the old task pointer
457 * (i.e. the task that actually called __switch_to).
458 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
460 return __switch_to(prev
, next
, next_current_ksp0(next
));
464 * This routine is called on return from interrupt if any of the
465 * TIF_ALLWORK_MASK flags are set in thread_info->flags. It is
466 * entered with interrupts disabled so we don't miss an event that
467 * modified the thread_info flags. We loop until all the tested flags
468 * are clear. Note that the function is called on certain conditions
469 * that are not listed in the loop condition here (e.g. SINGLESTEP)
470 * which guarantees we will do those things once, and redo them if any
471 * of the other work items is re-done, but won't continue looping if
472 * all the other work is done.
474 void prepare_exit_to_usermode(struct pt_regs
*regs
, u32 thread_info_flags
)
476 if (WARN_ON(!user_mode(regs
)))
482 if (thread_info_flags
& _TIF_NEED_RESCHED
)
485 #if CHIP_HAS_TILE_DMA()
486 if (thread_info_flags
& _TIF_ASYNC_TLB
)
487 do_async_page_fault(regs
);
490 if (thread_info_flags
& _TIF_SIGPENDING
)
493 if (thread_info_flags
& _TIF_NOTIFY_RESUME
) {
494 clear_thread_flag(TIF_NOTIFY_RESUME
);
495 tracehook_notify_resume(regs
);
499 thread_info_flags
= READ_ONCE(current_thread_info()->flags
);
501 } while (thread_info_flags
& _TIF_WORK_MASK
);
503 if (thread_info_flags
& _TIF_SINGLESTEP
) {
504 single_step_once(regs
);
507 * FIXME: on tilepro, since we enable interrupts in
508 * this routine, it's possible that we miss a signal
509 * or other asynchronous event.
518 unsigned long get_wchan(struct task_struct
*p
)
520 struct KBacktraceIterator kbt
;
522 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
525 for (KBacktraceIterator_init(&kbt
, p
, NULL
);
526 !KBacktraceIterator_end(&kbt
);
527 KBacktraceIterator_next(&kbt
)) {
528 if (!in_sched_functions(kbt
.it
.pc
))
535 /* Flush thread state. */
536 void flush_thread(void)
542 * Free current thread data structures etc..
544 void exit_thread(struct task_struct
*tsk
)
546 #ifdef CONFIG_HARDWALL
548 * Remove the task from the list of tasks that are associated
549 * with any live hardwalls. (If the task that is exiting held
550 * the last reference to a hardwall fd, it would already have
551 * been released and deactivated at this point.)
553 hardwall_deactivate_all(tsk
);
557 void tile_show_regs(struct pt_regs
*regs
)
561 for (i
= 0; i
< 17; i
++)
562 pr_err(" r%-2d: "REGFMT
" r%-2d: "REGFMT
" r%-2d: "REGFMT
"\n",
563 i
, regs
->regs
[i
], i
+18, regs
->regs
[i
+18],
564 i
+36, regs
->regs
[i
+36]);
565 pr_err(" r17: "REGFMT
" r35: "REGFMT
" tp : "REGFMT
"\n",
566 regs
->regs
[17], regs
->regs
[35], regs
->tp
);
567 pr_err(" sp : "REGFMT
" lr : "REGFMT
"\n", regs
->sp
, regs
->lr
);
569 for (i
= 0; i
< 13; i
++)
570 pr_err(" r%-2d: "REGFMT
" r%-2d: "REGFMT
571 " r%-2d: "REGFMT
" r%-2d: "REGFMT
"\n",
572 i
, regs
->regs
[i
], i
+14, regs
->regs
[i
+14],
573 i
+27, regs
->regs
[i
+27], i
+40, regs
->regs
[i
+40]);
574 pr_err(" r13: "REGFMT
" tp : "REGFMT
" sp : "REGFMT
" lr : "REGFMT
"\n",
575 regs
->regs
[13], regs
->tp
, regs
->sp
, regs
->lr
);
577 pr_err(" pc : "REGFMT
" ex1: %ld faultnum: %ld flags:%s%s%s%s\n",
578 regs
->pc
, regs
->ex1
, regs
->faultnum
,
579 is_compat_task() ? " compat" : "",
580 (regs
->flags
& PT_FLAGS_DISABLE_IRQ
) ? " noirq" : "",
581 !(regs
->flags
& PT_FLAGS_CALLER_SAVES
) ? " nocallersave" : "",
582 (regs
->flags
& PT_FLAGS_RESTORE_REGS
) ? " restoreregs" : "");
585 void show_regs(struct pt_regs
*regs
)
587 struct KBacktraceIterator kbt
;
589 show_regs_print_info(KERN_DEFAULT
);
590 tile_show_regs(regs
);
592 KBacktraceIterator_init(&kbt
, NULL
, regs
);
593 tile_show_stack(&kbt
);
596 /* To ensure stack dump on tiles occurs one by one. */
597 static DEFINE_SPINLOCK(backtrace_lock
);
598 /* To ensure no backtrace occurs before all of the stack dump are done. */
599 static atomic_t backtrace_cpus
;
600 /* The cpu mask to avoid reentrance. */
601 static struct cpumask backtrace_mask
;
603 void do_nmi_dump_stack(struct pt_regs
*regs
)
605 int is_idle
= is_idle_task(current
) && !in_interrupt();
609 cpu
= smp_processor_id();
610 if (WARN_ON_ONCE(!cpumask_test_and_clear_cpu(cpu
, &backtrace_mask
)))
613 spin_lock(&backtrace_lock
);
615 pr_info("CPU: %d idle\n", cpu
);
618 spin_unlock(&backtrace_lock
);
619 atomic_dec(&backtrace_cpus
);
625 void arch_trigger_all_cpu_backtrace(bool self
)
629 unsigned int timeout
;
632 HV_NMI_Info info
[NR_CPUS
];
634 ongoing
= atomic_cmpxchg(&backtrace_cpus
, 0, num_online_cpus() - 1);
636 pr_err("Trying to do all-cpu backtrace.\n");
637 pr_err("But another all-cpu backtrace is ongoing (%d cpus left)\n",
640 pr_err("Reporting the stack on this cpu only.\n");
646 cpumask_copy(&mask
, cpu_online_mask
);
647 cpumask_clear_cpu(smp_processor_id(), &mask
);
648 cpumask_copy(&backtrace_mask
, &mask
);
650 /* Backtrace for myself first. */
654 /* Tentatively dump stack on remote tiles via NMI. */
656 while (!cpumask_empty(&mask
) && timeout
) {
657 for_each_cpu(cpu
, &mask
) {
660 info
[cpu
] = hv_send_nmi(tile
, TILE_NMI_DUMP_STACK
, 0);
661 if (info
[cpu
].result
== HV_NMI_RESULT_OK
)
662 cpumask_clear_cpu(cpu
, &mask
);
669 /* Warn about cpus stuck in ICS and decrement their counts here. */
670 if (!cpumask_empty(&mask
)) {
671 for_each_cpu(cpu
, &mask
) {
672 switch (info
[cpu
].result
) {
673 case HV_NMI_RESULT_FAIL_ICS
:
674 pr_warn("Skipping stack dump of cpu %d in ICS at pc %#llx\n",
677 case HV_NMI_RESULT_FAIL_HV
:
678 pr_warn("Skipping stack dump of cpu %d in hypervisor\n",
682 pr_warn("Hypervisor too old to allow remote stack dumps.\n");
684 default: /* should not happen */
685 pr_warn("Skipping stack dump of cpu %d [%d,%#llx]\n",
686 cpu
, info
[cpu
].result
, info
[cpu
].pc
);
691 atomic_sub(cpumask_weight(&mask
), &backtrace_cpus
);
694 #endif /* __tilegx_ */