Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux/fpc-iii.git] / drivers / clocksource / arm_arch_timer.c
blobd7ad425ab9b3515f4e2d47fab6129ebd288a3090
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/clockchips.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_irq.h>
19 #include <linux/io.h>
21 #include <asm/arch_timer.h>
22 #include <asm/virt.h>
24 #include <clocksource/arm_arch_timer.h>
26 static u32 arch_timer_rate;
28 enum ppi_nr {
29 PHYS_SECURE_PPI,
30 PHYS_NONSECURE_PPI,
31 VIRT_PPI,
32 HYP_PPI,
33 MAX_TIMER_PPI
36 static int arch_timer_ppi[MAX_TIMER_PPI];
38 static struct clock_event_device __percpu *arch_timer_evt;
40 static bool arch_timer_use_virtual = true;
43 * Architected system timer support.
46 static inline irqreturn_t timer_handler(const int access,
47 struct clock_event_device *evt)
49 unsigned long ctrl;
50 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
51 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
52 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
53 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
54 evt->event_handler(evt);
55 return IRQ_HANDLED;
58 return IRQ_NONE;
61 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
63 struct clock_event_device *evt = dev_id;
65 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
68 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
70 struct clock_event_device *evt = dev_id;
72 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
75 static inline void timer_set_mode(const int access, int mode)
77 unsigned long ctrl;
78 switch (mode) {
79 case CLOCK_EVT_MODE_UNUSED:
80 case CLOCK_EVT_MODE_SHUTDOWN:
81 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
82 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
83 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
84 break;
85 default:
86 break;
90 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
91 struct clock_event_device *clk)
93 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
96 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
97 struct clock_event_device *clk)
99 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
102 static inline void set_next_event(const int access, unsigned long evt)
104 unsigned long ctrl;
105 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
106 ctrl |= ARCH_TIMER_CTRL_ENABLE;
107 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
108 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
109 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
112 static int arch_timer_set_next_event_virt(unsigned long evt,
113 struct clock_event_device *unused)
115 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
116 return 0;
119 static int arch_timer_set_next_event_phys(unsigned long evt,
120 struct clock_event_device *unused)
122 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
123 return 0;
126 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
128 clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
129 clk->name = "arch_sys_timer";
130 clk->rating = 450;
131 if (arch_timer_use_virtual) {
132 clk->irq = arch_timer_ppi[VIRT_PPI];
133 clk->set_mode = arch_timer_set_mode_virt;
134 clk->set_next_event = arch_timer_set_next_event_virt;
135 } else {
136 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
137 clk->set_mode = arch_timer_set_mode_phys;
138 clk->set_next_event = arch_timer_set_next_event_phys;
141 clk->cpumask = cpumask_of(smp_processor_id());
143 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
145 clockevents_config_and_register(clk, arch_timer_rate,
146 0xf, 0x7fffffff);
148 if (arch_timer_use_virtual)
149 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
150 else {
151 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
152 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
153 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
156 arch_counter_set_user_access();
158 return 0;
161 static int arch_timer_available(void)
163 u32 freq;
165 if (arch_timer_rate == 0) {
166 freq = arch_timer_get_cntfrq();
168 /* Check the timer frequency. */
169 if (freq == 0) {
170 pr_warn("Architected timer frequency not available\n");
171 return -EINVAL;
174 arch_timer_rate = freq;
177 pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
178 (unsigned long)arch_timer_rate / 1000000,
179 (unsigned long)(arch_timer_rate / 10000) % 100,
180 arch_timer_use_virtual ? "virt" : "phys");
181 return 0;
184 u32 arch_timer_get_rate(void)
186 return arch_timer_rate;
190 * Some external users of arch_timer_read_counter (e.g. sched_clock) may try to
191 * call it before it has been initialised. Rather than incur a performance
192 * penalty checking for initialisation, provide a default implementation that
193 * won't lead to time appearing to jump backwards.
195 static u64 arch_timer_read_zero(void)
197 return 0;
200 u64 (*arch_timer_read_counter)(void) = arch_timer_read_zero;
202 static cycle_t arch_counter_read(struct clocksource *cs)
204 return arch_timer_read_counter();
207 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
209 return arch_timer_read_counter();
212 static struct clocksource clocksource_counter = {
213 .name = "arch_sys_counter",
214 .rating = 400,
215 .read = arch_counter_read,
216 .mask = CLOCKSOURCE_MASK(56),
217 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
220 static struct cyclecounter cyclecounter = {
221 .read = arch_counter_read_cc,
222 .mask = CLOCKSOURCE_MASK(56),
225 static struct timecounter timecounter;
227 struct timecounter *arch_timer_get_timecounter(void)
229 return &timecounter;
232 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
234 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
235 clk->irq, smp_processor_id());
237 if (arch_timer_use_virtual)
238 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
239 else {
240 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
241 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
242 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
245 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
248 static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
249 unsigned long action, void *hcpu)
251 struct clock_event_device *evt = this_cpu_ptr(arch_timer_evt);
253 switch (action & ~CPU_TASKS_FROZEN) {
254 case CPU_STARTING:
255 arch_timer_setup(evt);
256 break;
257 case CPU_DYING:
258 arch_timer_stop(evt);
259 break;
262 return NOTIFY_OK;
265 static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
266 .notifier_call = arch_timer_cpu_notify,
269 static int __init arch_timer_register(void)
271 int err;
272 int ppi;
274 err = arch_timer_available();
275 if (err)
276 goto out;
278 arch_timer_evt = alloc_percpu(struct clock_event_device);
279 if (!arch_timer_evt) {
280 err = -ENOMEM;
281 goto out;
284 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
285 cyclecounter.mult = clocksource_counter.mult;
286 cyclecounter.shift = clocksource_counter.shift;
287 timecounter_init(&timecounter, &cyclecounter,
288 arch_counter_get_cntpct());
290 if (arch_timer_use_virtual) {
291 ppi = arch_timer_ppi[VIRT_PPI];
292 err = request_percpu_irq(ppi, arch_timer_handler_virt,
293 "arch_timer", arch_timer_evt);
294 } else {
295 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
296 err = request_percpu_irq(ppi, arch_timer_handler_phys,
297 "arch_timer", arch_timer_evt);
298 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
299 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
300 err = request_percpu_irq(ppi, arch_timer_handler_phys,
301 "arch_timer", arch_timer_evt);
302 if (err)
303 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
304 arch_timer_evt);
308 if (err) {
309 pr_err("arch_timer: can't register interrupt %d (%d)\n",
310 ppi, err);
311 goto out_free;
314 err = register_cpu_notifier(&arch_timer_cpu_nb);
315 if (err)
316 goto out_free_irq;
318 /* Immediately configure the timer on the boot CPU */
319 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
321 return 0;
323 out_free_irq:
324 if (arch_timer_use_virtual)
325 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
326 else {
327 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
328 arch_timer_evt);
329 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
330 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
331 arch_timer_evt);
334 out_free:
335 free_percpu(arch_timer_evt);
336 out:
337 return err;
340 static const struct of_device_id arch_timer_of_match[] __initconst = {
341 { .compatible = "arm,armv7-timer", },
342 { .compatible = "arm,armv8-timer", },
346 int __init arch_timer_init(void)
348 struct device_node *np;
349 u32 freq;
350 int i;
352 np = of_find_matching_node(NULL, arch_timer_of_match);
353 if (!np) {
354 pr_err("arch_timer: can't find DT node\n");
355 return -ENODEV;
358 /* Try to determine the frequency from the device tree or CNTFRQ */
359 if (!of_property_read_u32(np, "clock-frequency", &freq))
360 arch_timer_rate = freq;
362 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
363 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
365 of_node_put(np);
368 * If HYP mode is available, we know that the physical timer
369 * has been configured to be accessible from PL1. Use it, so
370 * that a guest can use the virtual timer instead.
372 * If no interrupt provided for virtual timer, we'll have to
373 * stick to the physical timer. It'd better be accessible...
375 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
376 arch_timer_use_virtual = false;
378 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
379 !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
380 pr_warn("arch_timer: No interrupt available, giving up\n");
381 return -EINVAL;
385 if (arch_timer_use_virtual)
386 arch_timer_read_counter = arch_counter_get_cntvct;
387 else
388 arch_timer_read_counter = arch_counter_get_cntpct;
390 return arch_timer_register();