2 * Copyright (C) 2012 Red Hat. All rights reserved.
4 * This file is released under the GPL.
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
22 #define DM_MSG_PREFIX "cache"
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle
,
25 "A percentage of time allocated for copying to and/or from cache");
27 /*----------------------------------------------------------------*/
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
40 /*----------------------------------------------------------------*/
46 * Sectors of in-flight IO.
51 * The time, in jiffies, when this device became idle (if it is
54 unsigned long idle_time
;
55 unsigned long last_update_time
;
58 static void iot_init(struct io_tracker
*iot
)
60 spin_lock_init(&iot
->lock
);
63 iot
->last_update_time
= jiffies
;
66 static bool __iot_idle_for(struct io_tracker
*iot
, unsigned long jifs
)
71 return time_after(jiffies
, iot
->idle_time
+ jifs
);
74 static bool iot_idle_for(struct io_tracker
*iot
, unsigned long jifs
)
79 spin_lock_irqsave(&iot
->lock
, flags
);
80 r
= __iot_idle_for(iot
, jifs
);
81 spin_unlock_irqrestore(&iot
->lock
, flags
);
86 static void iot_io_begin(struct io_tracker
*iot
, sector_t len
)
90 spin_lock_irqsave(&iot
->lock
, flags
);
91 iot
->in_flight
+= len
;
92 spin_unlock_irqrestore(&iot
->lock
, flags
);
95 static void __iot_io_end(struct io_tracker
*iot
, sector_t len
)
100 iot
->in_flight
-= len
;
102 iot
->idle_time
= jiffies
;
105 static void iot_io_end(struct io_tracker
*iot
, sector_t len
)
109 spin_lock_irqsave(&iot
->lock
, flags
);
110 __iot_io_end(iot
, len
);
111 spin_unlock_irqrestore(&iot
->lock
, flags
);
114 /*----------------------------------------------------------------*/
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
120 struct continuation
{
121 struct work_struct ws
;
125 static inline void init_continuation(struct continuation
*k
,
126 void (*fn
)(struct work_struct
*))
128 INIT_WORK(&k
->ws
, fn
);
132 static inline void queue_continuation(struct workqueue_struct
*wq
,
133 struct continuation
*k
)
135 queue_work(wq
, &k
->ws
);
138 /*----------------------------------------------------------------*/
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
146 * The operation that everyone is waiting for.
148 blk_status_t (*commit_op
)(void *context
);
149 void *commit_context
;
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
155 void (*issue_op
)(struct bio
*bio
, void *context
);
159 * Queued work gets put on here after commit.
161 struct workqueue_struct
*wq
;
164 struct list_head work_items
;
165 struct bio_list bios
;
166 struct work_struct commit_work
;
168 bool commit_scheduled
;
171 static void __commit(struct work_struct
*_ws
)
173 struct batcher
*b
= container_of(_ws
, struct batcher
, commit_work
);
176 struct list_head work_items
;
177 struct work_struct
*ws
, *tmp
;
178 struct continuation
*k
;
180 struct bio_list bios
;
182 INIT_LIST_HEAD(&work_items
);
183 bio_list_init(&bios
);
186 * We have to grab these before the commit_op to avoid a race
189 spin_lock_irqsave(&b
->lock
, flags
);
190 list_splice_init(&b
->work_items
, &work_items
);
191 bio_list_merge(&bios
, &b
->bios
);
192 bio_list_init(&b
->bios
);
193 b
->commit_scheduled
= false;
194 spin_unlock_irqrestore(&b
->lock
, flags
);
196 r
= b
->commit_op(b
->commit_context
);
198 list_for_each_entry_safe(ws
, tmp
, &work_items
, entry
) {
199 k
= container_of(ws
, struct continuation
, ws
);
201 INIT_LIST_HEAD(&ws
->entry
); /* to avoid a WARN_ON */
202 queue_work(b
->wq
, ws
);
205 while ((bio
= bio_list_pop(&bios
))) {
210 b
->issue_op(bio
, b
->issue_context
);
214 static void batcher_init(struct batcher
*b
,
215 blk_status_t (*commit_op
)(void *),
216 void *commit_context
,
217 void (*issue_op
)(struct bio
*bio
, void *),
219 struct workqueue_struct
*wq
)
221 b
->commit_op
= commit_op
;
222 b
->commit_context
= commit_context
;
223 b
->issue_op
= issue_op
;
224 b
->issue_context
= issue_context
;
227 spin_lock_init(&b
->lock
);
228 INIT_LIST_HEAD(&b
->work_items
);
229 bio_list_init(&b
->bios
);
230 INIT_WORK(&b
->commit_work
, __commit
);
231 b
->commit_scheduled
= false;
234 static void async_commit(struct batcher
*b
)
236 queue_work(b
->wq
, &b
->commit_work
);
239 static void continue_after_commit(struct batcher
*b
, struct continuation
*k
)
242 bool commit_scheduled
;
244 spin_lock_irqsave(&b
->lock
, flags
);
245 commit_scheduled
= b
->commit_scheduled
;
246 list_add_tail(&k
->ws
.entry
, &b
->work_items
);
247 spin_unlock_irqrestore(&b
->lock
, flags
);
249 if (commit_scheduled
)
254 * Bios are errored if commit failed.
256 static void issue_after_commit(struct batcher
*b
, struct bio
*bio
)
259 bool commit_scheduled
;
261 spin_lock_irqsave(&b
->lock
, flags
);
262 commit_scheduled
= b
->commit_scheduled
;
263 bio_list_add(&b
->bios
, bio
);
264 spin_unlock_irqrestore(&b
->lock
, flags
);
266 if (commit_scheduled
)
271 * Call this if some urgent work is waiting for the commit to complete.
273 static void schedule_commit(struct batcher
*b
)
278 spin_lock_irqsave(&b
->lock
, flags
);
279 immediate
= !list_empty(&b
->work_items
) || !bio_list_empty(&b
->bios
);
280 b
->commit_scheduled
= true;
281 spin_unlock_irqrestore(&b
->lock
, flags
);
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
292 struct dm_hook_info
{
293 bio_end_io_t
*bi_end_io
;
296 static void dm_hook_bio(struct dm_hook_info
*h
, struct bio
*bio
,
297 bio_end_io_t
*bi_end_io
, void *bi_private
)
299 h
->bi_end_io
= bio
->bi_end_io
;
301 bio
->bi_end_io
= bi_end_io
;
302 bio
->bi_private
= bi_private
;
305 static void dm_unhook_bio(struct dm_hook_info
*h
, struct bio
*bio
)
307 bio
->bi_end_io
= h
->bi_end_io
;
310 /*----------------------------------------------------------------*/
312 #define MIGRATION_POOL_SIZE 128
313 #define COMMIT_PERIOD HZ
314 #define MIGRATION_COUNT_WINDOW 10
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
320 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
323 enum cache_metadata_mode
{
324 CM_WRITE
, /* metadata may be changed */
325 CM_READ_ONLY
, /* metadata may not be changed */
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
352 struct cache_features
{
353 enum cache_metadata_mode mode
;
354 enum cache_io_mode io_mode
;
355 unsigned metadata_version
;
356 bool discard_passdown
:1;
367 atomic_t copies_avoided
;
368 atomic_t cache_cell_clash
;
369 atomic_t commit_count
;
370 atomic_t discard_count
;
374 struct dm_target
*ti
;
378 * Fields for converting from sectors to blocks.
380 int sectors_per_block_shift
;
381 sector_t sectors_per_block
;
383 struct dm_cache_metadata
*cmd
;
386 * Metadata is written to this device.
388 struct dm_dev
*metadata_dev
;
391 * The slower of the two data devices. Typically a spindle.
393 struct dm_dev
*origin_dev
;
396 * The faster of the two data devices. Typically an SSD.
398 struct dm_dev
*cache_dev
;
401 * Size of the origin device in _complete_ blocks and native sectors.
403 dm_oblock_t origin_blocks
;
404 sector_t origin_sectors
;
407 * Size of the cache device in blocks.
409 dm_cblock_t cache_size
;
412 * Invalidation fields.
414 spinlock_t invalidation_lock
;
415 struct list_head invalidation_requests
;
417 sector_t migration_threshold
;
418 wait_queue_head_t migration_wait
;
419 atomic_t nr_allocated_migrations
;
422 * The number of in flight migrations that are performing
423 * background io. eg, promotion, writeback.
425 atomic_t nr_io_migrations
;
427 struct bio_list deferred_bios
;
429 struct rw_semaphore quiesce_lock
;
431 struct dm_target_callbacks callbacks
;
434 * origin_blocks entries, discarded if set.
436 dm_dblock_t discard_nr_blocks
;
437 unsigned long *discard_bitset
;
438 uint32_t discard_block_size
; /* a power of 2 times sectors per block */
441 * Rather than reconstructing the table line for the status we just
442 * save it and regurgitate.
444 unsigned nr_ctr_args
;
445 const char **ctr_args
;
447 struct dm_kcopyd_client
*copier
;
448 struct work_struct deferred_bio_worker
;
449 struct work_struct migration_worker
;
450 struct workqueue_struct
*wq
;
451 struct delayed_work waker
;
452 struct dm_bio_prison_v2
*prison
;
455 * cache_size entries, dirty if set
457 unsigned long *dirty_bitset
;
460 unsigned policy_nr_args
;
461 struct dm_cache_policy
*policy
;
464 * Cache features such as write-through.
466 struct cache_features features
;
468 struct cache_stats stats
;
470 bool need_tick_bio
:1;
473 bool commit_requested
:1;
474 bool loaded_mappings
:1;
475 bool loaded_discards
:1;
477 struct rw_semaphore background_work_lock
;
479 struct batcher committer
;
480 struct work_struct commit_ws
;
482 struct io_tracker tracker
;
484 mempool_t migration_pool
;
489 struct per_bio_data
{
492 struct dm_bio_prison_cell_v2
*cell
;
493 struct dm_hook_info hook_info
;
497 struct dm_cache_migration
{
498 struct continuation k
;
501 struct policy_work
*op
;
502 struct bio
*overwrite_bio
;
503 struct dm_bio_prison_cell_v2
*cell
;
505 dm_cblock_t invalidate_cblock
;
506 dm_oblock_t invalidate_oblock
;
509 /*----------------------------------------------------------------*/
511 static bool writethrough_mode(struct cache
*cache
)
513 return cache
->features
.io_mode
== CM_IO_WRITETHROUGH
;
516 static bool writeback_mode(struct cache
*cache
)
518 return cache
->features
.io_mode
== CM_IO_WRITEBACK
;
521 static inline bool passthrough_mode(struct cache
*cache
)
523 return unlikely(cache
->features
.io_mode
== CM_IO_PASSTHROUGH
);
526 /*----------------------------------------------------------------*/
528 static void wake_deferred_bio_worker(struct cache
*cache
)
530 queue_work(cache
->wq
, &cache
->deferred_bio_worker
);
533 static void wake_migration_worker(struct cache
*cache
)
535 if (passthrough_mode(cache
))
538 queue_work(cache
->wq
, &cache
->migration_worker
);
541 /*----------------------------------------------------------------*/
543 static struct dm_bio_prison_cell_v2
*alloc_prison_cell(struct cache
*cache
)
545 return dm_bio_prison_alloc_cell_v2(cache
->prison
, GFP_NOIO
);
548 static void free_prison_cell(struct cache
*cache
, struct dm_bio_prison_cell_v2
*cell
)
550 dm_bio_prison_free_cell_v2(cache
->prison
, cell
);
553 static struct dm_cache_migration
*alloc_migration(struct cache
*cache
)
555 struct dm_cache_migration
*mg
;
557 mg
= mempool_alloc(&cache
->migration_pool
, GFP_NOIO
);
559 memset(mg
, 0, sizeof(*mg
));
562 atomic_inc(&cache
->nr_allocated_migrations
);
567 static void free_migration(struct dm_cache_migration
*mg
)
569 struct cache
*cache
= mg
->cache
;
571 if (atomic_dec_and_test(&cache
->nr_allocated_migrations
))
572 wake_up(&cache
->migration_wait
);
574 mempool_free(mg
, &cache
->migration_pool
);
577 /*----------------------------------------------------------------*/
579 static inline dm_oblock_t
oblock_succ(dm_oblock_t b
)
581 return to_oblock(from_oblock(b
) + 1ull);
584 static void build_key(dm_oblock_t begin
, dm_oblock_t end
, struct dm_cell_key_v2
*key
)
588 key
->block_begin
= from_oblock(begin
);
589 key
->block_end
= from_oblock(end
);
593 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
594 * level 1 which prevents *both* READs and WRITEs.
596 #define WRITE_LOCK_LEVEL 0
597 #define READ_WRITE_LOCK_LEVEL 1
599 static unsigned lock_level(struct bio
*bio
)
601 return bio_data_dir(bio
) == WRITE
?
603 READ_WRITE_LOCK_LEVEL
;
606 /*----------------------------------------------------------------
608 *--------------------------------------------------------------*/
610 static struct per_bio_data
*get_per_bio_data(struct bio
*bio
)
612 struct per_bio_data
*pb
= dm_per_bio_data(bio
, sizeof(struct per_bio_data
));
617 static struct per_bio_data
*init_per_bio_data(struct bio
*bio
)
619 struct per_bio_data
*pb
= get_per_bio_data(bio
);
622 pb
->req_nr
= dm_bio_get_target_bio_nr(bio
);
629 /*----------------------------------------------------------------*/
631 static void defer_bio(struct cache
*cache
, struct bio
*bio
)
635 spin_lock_irqsave(&cache
->lock
, flags
);
636 bio_list_add(&cache
->deferred_bios
, bio
);
637 spin_unlock_irqrestore(&cache
->lock
, flags
);
639 wake_deferred_bio_worker(cache
);
642 static void defer_bios(struct cache
*cache
, struct bio_list
*bios
)
646 spin_lock_irqsave(&cache
->lock
, flags
);
647 bio_list_merge(&cache
->deferred_bios
, bios
);
649 spin_unlock_irqrestore(&cache
->lock
, flags
);
651 wake_deferred_bio_worker(cache
);
654 /*----------------------------------------------------------------*/
656 static bool bio_detain_shared(struct cache
*cache
, dm_oblock_t oblock
, struct bio
*bio
)
659 struct per_bio_data
*pb
;
660 struct dm_cell_key_v2 key
;
661 dm_oblock_t end
= to_oblock(from_oblock(oblock
) + 1ULL);
662 struct dm_bio_prison_cell_v2
*cell_prealloc
, *cell
;
664 cell_prealloc
= alloc_prison_cell(cache
); /* FIXME: allow wait if calling from worker */
666 build_key(oblock
, end
, &key
);
667 r
= dm_cell_get_v2(cache
->prison
, &key
, lock_level(bio
), bio
, cell_prealloc
, &cell
);
670 * Failed to get the lock.
672 free_prison_cell(cache
, cell_prealloc
);
676 if (cell
!= cell_prealloc
)
677 free_prison_cell(cache
, cell_prealloc
);
679 pb
= get_per_bio_data(bio
);
685 /*----------------------------------------------------------------*/
687 static bool is_dirty(struct cache
*cache
, dm_cblock_t b
)
689 return test_bit(from_cblock(b
), cache
->dirty_bitset
);
692 static void set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
694 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
695 atomic_inc(&cache
->nr_dirty
);
696 policy_set_dirty(cache
->policy
, cblock
);
701 * These two are called when setting after migrations to force the policy
702 * and dirty bitset to be in sync.
704 static void force_set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
706 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
))
707 atomic_inc(&cache
->nr_dirty
);
708 policy_set_dirty(cache
->policy
, cblock
);
711 static void force_clear_dirty(struct cache
*cache
, dm_cblock_t cblock
)
713 if (test_and_clear_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
714 if (atomic_dec_return(&cache
->nr_dirty
) == 0)
715 dm_table_event(cache
->ti
->table
);
718 policy_clear_dirty(cache
->policy
, cblock
);
721 /*----------------------------------------------------------------*/
723 static bool block_size_is_power_of_two(struct cache
*cache
)
725 return cache
->sectors_per_block_shift
>= 0;
728 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
729 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
732 static dm_block_t
block_div(dm_block_t b
, uint32_t n
)
739 static dm_block_t
oblocks_per_dblock(struct cache
*cache
)
741 dm_block_t oblocks
= cache
->discard_block_size
;
743 if (block_size_is_power_of_two(cache
))
744 oblocks
>>= cache
->sectors_per_block_shift
;
746 oblocks
= block_div(oblocks
, cache
->sectors_per_block
);
751 static dm_dblock_t
oblock_to_dblock(struct cache
*cache
, dm_oblock_t oblock
)
753 return to_dblock(block_div(from_oblock(oblock
),
754 oblocks_per_dblock(cache
)));
757 static void set_discard(struct cache
*cache
, dm_dblock_t b
)
761 BUG_ON(from_dblock(b
) >= from_dblock(cache
->discard_nr_blocks
));
762 atomic_inc(&cache
->stats
.discard_count
);
764 spin_lock_irqsave(&cache
->lock
, flags
);
765 set_bit(from_dblock(b
), cache
->discard_bitset
);
766 spin_unlock_irqrestore(&cache
->lock
, flags
);
769 static void clear_discard(struct cache
*cache
, dm_dblock_t b
)
773 spin_lock_irqsave(&cache
->lock
, flags
);
774 clear_bit(from_dblock(b
), cache
->discard_bitset
);
775 spin_unlock_irqrestore(&cache
->lock
, flags
);
778 static bool is_discarded(struct cache
*cache
, dm_dblock_t b
)
783 spin_lock_irqsave(&cache
->lock
, flags
);
784 r
= test_bit(from_dblock(b
), cache
->discard_bitset
);
785 spin_unlock_irqrestore(&cache
->lock
, flags
);
790 static bool is_discarded_oblock(struct cache
*cache
, dm_oblock_t b
)
795 spin_lock_irqsave(&cache
->lock
, flags
);
796 r
= test_bit(from_dblock(oblock_to_dblock(cache
, b
)),
797 cache
->discard_bitset
);
798 spin_unlock_irqrestore(&cache
->lock
, flags
);
803 /*----------------------------------------------------------------
805 *--------------------------------------------------------------*/
806 static void remap_to_origin(struct cache
*cache
, struct bio
*bio
)
808 bio_set_dev(bio
, cache
->origin_dev
->bdev
);
811 static void remap_to_cache(struct cache
*cache
, struct bio
*bio
,
814 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
815 sector_t block
= from_cblock(cblock
);
817 bio_set_dev(bio
, cache
->cache_dev
->bdev
);
818 if (!block_size_is_power_of_two(cache
))
819 bio
->bi_iter
.bi_sector
=
820 (block
* cache
->sectors_per_block
) +
821 sector_div(bi_sector
, cache
->sectors_per_block
);
823 bio
->bi_iter
.bi_sector
=
824 (block
<< cache
->sectors_per_block_shift
) |
825 (bi_sector
& (cache
->sectors_per_block
- 1));
828 static void check_if_tick_bio_needed(struct cache
*cache
, struct bio
*bio
)
831 struct per_bio_data
*pb
;
833 spin_lock_irqsave(&cache
->lock
, flags
);
834 if (cache
->need_tick_bio
&& !op_is_flush(bio
->bi_opf
) &&
835 bio_op(bio
) != REQ_OP_DISCARD
) {
836 pb
= get_per_bio_data(bio
);
838 cache
->need_tick_bio
= false;
840 spin_unlock_irqrestore(&cache
->lock
, flags
);
843 static void __remap_to_origin_clear_discard(struct cache
*cache
, struct bio
*bio
,
844 dm_oblock_t oblock
, bool bio_has_pbd
)
847 check_if_tick_bio_needed(cache
, bio
);
848 remap_to_origin(cache
, bio
);
849 if (bio_data_dir(bio
) == WRITE
)
850 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
853 static void remap_to_origin_clear_discard(struct cache
*cache
, struct bio
*bio
,
856 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
857 __remap_to_origin_clear_discard(cache
, bio
, oblock
, true);
860 static void remap_to_cache_dirty(struct cache
*cache
, struct bio
*bio
,
861 dm_oblock_t oblock
, dm_cblock_t cblock
)
863 check_if_tick_bio_needed(cache
, bio
);
864 remap_to_cache(cache
, bio
, cblock
);
865 if (bio_data_dir(bio
) == WRITE
) {
866 set_dirty(cache
, cblock
);
867 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
871 static dm_oblock_t
get_bio_block(struct cache
*cache
, struct bio
*bio
)
873 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
875 if (!block_size_is_power_of_two(cache
))
876 (void) sector_div(block_nr
, cache
->sectors_per_block
);
878 block_nr
>>= cache
->sectors_per_block_shift
;
880 return to_oblock(block_nr
);
883 static bool accountable_bio(struct cache
*cache
, struct bio
*bio
)
885 return bio_op(bio
) != REQ_OP_DISCARD
;
888 static void accounted_begin(struct cache
*cache
, struct bio
*bio
)
890 struct per_bio_data
*pb
;
892 if (accountable_bio(cache
, bio
)) {
893 pb
= get_per_bio_data(bio
);
894 pb
->len
= bio_sectors(bio
);
895 iot_io_begin(&cache
->tracker
, pb
->len
);
899 static void accounted_complete(struct cache
*cache
, struct bio
*bio
)
901 struct per_bio_data
*pb
= get_per_bio_data(bio
);
903 iot_io_end(&cache
->tracker
, pb
->len
);
906 static void accounted_request(struct cache
*cache
, struct bio
*bio
)
908 accounted_begin(cache
, bio
);
909 generic_make_request(bio
);
912 static void issue_op(struct bio
*bio
, void *context
)
914 struct cache
*cache
= context
;
915 accounted_request(cache
, bio
);
919 * When running in writethrough mode we need to send writes to clean blocks
920 * to both the cache and origin devices. Clone the bio and send them in parallel.
922 static void remap_to_origin_and_cache(struct cache
*cache
, struct bio
*bio
,
923 dm_oblock_t oblock
, dm_cblock_t cblock
)
925 struct bio
*origin_bio
= bio_clone_fast(bio
, GFP_NOIO
, &cache
->bs
);
929 bio_chain(origin_bio
, bio
);
931 * Passing false to __remap_to_origin_clear_discard() skips
932 * all code that might use per_bio_data (since clone doesn't have it)
934 __remap_to_origin_clear_discard(cache
, origin_bio
, oblock
, false);
935 submit_bio(origin_bio
);
937 remap_to_cache(cache
, bio
, cblock
);
940 /*----------------------------------------------------------------
942 *--------------------------------------------------------------*/
943 static enum cache_metadata_mode
get_cache_mode(struct cache
*cache
)
945 return cache
->features
.mode
;
948 static const char *cache_device_name(struct cache
*cache
)
950 return dm_device_name(dm_table_get_md(cache
->ti
->table
));
953 static void notify_mode_switch(struct cache
*cache
, enum cache_metadata_mode mode
)
955 const char *descs
[] = {
961 dm_table_event(cache
->ti
->table
);
962 DMINFO("%s: switching cache to %s mode",
963 cache_device_name(cache
), descs
[(int)mode
]);
966 static void set_cache_mode(struct cache
*cache
, enum cache_metadata_mode new_mode
)
969 enum cache_metadata_mode old_mode
= get_cache_mode(cache
);
971 if (dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
)) {
972 DMERR("%s: unable to read needs_check flag, setting failure mode.",
973 cache_device_name(cache
));
977 if (new_mode
== CM_WRITE
&& needs_check
) {
978 DMERR("%s: unable to switch cache to write mode until repaired.",
979 cache_device_name(cache
));
980 if (old_mode
!= new_mode
)
983 new_mode
= CM_READ_ONLY
;
986 /* Never move out of fail mode */
987 if (old_mode
== CM_FAIL
)
993 dm_cache_metadata_set_read_only(cache
->cmd
);
997 dm_cache_metadata_set_read_write(cache
->cmd
);
1001 cache
->features
.mode
= new_mode
;
1003 if (new_mode
!= old_mode
)
1004 notify_mode_switch(cache
, new_mode
);
1007 static void abort_transaction(struct cache
*cache
)
1009 const char *dev_name
= cache_device_name(cache
);
1011 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1014 if (dm_cache_metadata_set_needs_check(cache
->cmd
)) {
1015 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
1016 set_cache_mode(cache
, CM_FAIL
);
1019 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
1020 if (dm_cache_metadata_abort(cache
->cmd
)) {
1021 DMERR("%s: failed to abort metadata transaction", dev_name
);
1022 set_cache_mode(cache
, CM_FAIL
);
1026 static void metadata_operation_failed(struct cache
*cache
, const char *op
, int r
)
1028 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1029 cache_device_name(cache
), op
, r
);
1030 abort_transaction(cache
);
1031 set_cache_mode(cache
, CM_READ_ONLY
);
1034 /*----------------------------------------------------------------*/
1036 static void load_stats(struct cache
*cache
)
1038 struct dm_cache_statistics stats
;
1040 dm_cache_metadata_get_stats(cache
->cmd
, &stats
);
1041 atomic_set(&cache
->stats
.read_hit
, stats
.read_hits
);
1042 atomic_set(&cache
->stats
.read_miss
, stats
.read_misses
);
1043 atomic_set(&cache
->stats
.write_hit
, stats
.write_hits
);
1044 atomic_set(&cache
->stats
.write_miss
, stats
.write_misses
);
1047 static void save_stats(struct cache
*cache
)
1049 struct dm_cache_statistics stats
;
1051 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1054 stats
.read_hits
= atomic_read(&cache
->stats
.read_hit
);
1055 stats
.read_misses
= atomic_read(&cache
->stats
.read_miss
);
1056 stats
.write_hits
= atomic_read(&cache
->stats
.write_hit
);
1057 stats
.write_misses
= atomic_read(&cache
->stats
.write_miss
);
1059 dm_cache_metadata_set_stats(cache
->cmd
, &stats
);
1062 static void update_stats(struct cache_stats
*stats
, enum policy_operation op
)
1065 case POLICY_PROMOTE
:
1066 atomic_inc(&stats
->promotion
);
1070 atomic_inc(&stats
->demotion
);
1073 case POLICY_WRITEBACK
:
1074 atomic_inc(&stats
->writeback
);
1079 /*----------------------------------------------------------------
1080 * Migration processing
1082 * Migration covers moving data from the origin device to the cache, or
1084 *--------------------------------------------------------------*/
1086 static void inc_io_migrations(struct cache
*cache
)
1088 atomic_inc(&cache
->nr_io_migrations
);
1091 static void dec_io_migrations(struct cache
*cache
)
1093 atomic_dec(&cache
->nr_io_migrations
);
1096 static bool discard_or_flush(struct bio
*bio
)
1098 return bio_op(bio
) == REQ_OP_DISCARD
|| op_is_flush(bio
->bi_opf
);
1101 static void calc_discard_block_range(struct cache
*cache
, struct bio
*bio
,
1102 dm_dblock_t
*b
, dm_dblock_t
*e
)
1104 sector_t sb
= bio
->bi_iter
.bi_sector
;
1105 sector_t se
= bio_end_sector(bio
);
1107 *b
= to_dblock(dm_sector_div_up(sb
, cache
->discard_block_size
));
1109 if (se
- sb
< cache
->discard_block_size
)
1112 *e
= to_dblock(block_div(se
, cache
->discard_block_size
));
1115 /*----------------------------------------------------------------*/
1117 static void prevent_background_work(struct cache
*cache
)
1120 down_write(&cache
->background_work_lock
);
1124 static void allow_background_work(struct cache
*cache
)
1127 up_write(&cache
->background_work_lock
);
1131 static bool background_work_begin(struct cache
*cache
)
1136 r
= down_read_trylock(&cache
->background_work_lock
);
1142 static void background_work_end(struct cache
*cache
)
1145 up_read(&cache
->background_work_lock
);
1149 /*----------------------------------------------------------------*/
1151 static bool bio_writes_complete_block(struct cache
*cache
, struct bio
*bio
)
1153 return (bio_data_dir(bio
) == WRITE
) &&
1154 (bio
->bi_iter
.bi_size
== (cache
->sectors_per_block
<< SECTOR_SHIFT
));
1157 static bool optimisable_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
)
1159 return writeback_mode(cache
) &&
1160 (is_discarded_oblock(cache
, block
) || bio_writes_complete_block(cache
, bio
));
1163 static void quiesce(struct dm_cache_migration
*mg
,
1164 void (*continuation
)(struct work_struct
*))
1166 init_continuation(&mg
->k
, continuation
);
1167 dm_cell_quiesce_v2(mg
->cache
->prison
, mg
->cell
, &mg
->k
.ws
);
1170 static struct dm_cache_migration
*ws_to_mg(struct work_struct
*ws
)
1172 struct continuation
*k
= container_of(ws
, struct continuation
, ws
);
1173 return container_of(k
, struct dm_cache_migration
, k
);
1176 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
1178 struct dm_cache_migration
*mg
= container_of(context
, struct dm_cache_migration
, k
);
1180 if (read_err
|| write_err
)
1181 mg
->k
.input
= BLK_STS_IOERR
;
1183 queue_continuation(mg
->cache
->wq
, &mg
->k
);
1186 static void copy(struct dm_cache_migration
*mg
, bool promote
)
1188 struct dm_io_region o_region
, c_region
;
1189 struct cache
*cache
= mg
->cache
;
1191 o_region
.bdev
= cache
->origin_dev
->bdev
;
1192 o_region
.sector
= from_oblock(mg
->op
->oblock
) * cache
->sectors_per_block
;
1193 o_region
.count
= cache
->sectors_per_block
;
1195 c_region
.bdev
= cache
->cache_dev
->bdev
;
1196 c_region
.sector
= from_cblock(mg
->op
->cblock
) * cache
->sectors_per_block
;
1197 c_region
.count
= cache
->sectors_per_block
;
1200 dm_kcopyd_copy(cache
->copier
, &o_region
, 1, &c_region
, 0, copy_complete
, &mg
->k
);
1202 dm_kcopyd_copy(cache
->copier
, &c_region
, 1, &o_region
, 0, copy_complete
, &mg
->k
);
1205 static void bio_drop_shared_lock(struct cache
*cache
, struct bio
*bio
)
1207 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1209 if (pb
->cell
&& dm_cell_put_v2(cache
->prison
, pb
->cell
))
1210 free_prison_cell(cache
, pb
->cell
);
1214 static void overwrite_endio(struct bio
*bio
)
1216 struct dm_cache_migration
*mg
= bio
->bi_private
;
1217 struct cache
*cache
= mg
->cache
;
1218 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1220 dm_unhook_bio(&pb
->hook_info
, bio
);
1223 mg
->k
.input
= bio
->bi_status
;
1225 queue_continuation(cache
->wq
, &mg
->k
);
1228 static void overwrite(struct dm_cache_migration
*mg
,
1229 void (*continuation
)(struct work_struct
*))
1231 struct bio
*bio
= mg
->overwrite_bio
;
1232 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1234 dm_hook_bio(&pb
->hook_info
, bio
, overwrite_endio
, mg
);
1237 * The overwrite bio is part of the copy operation, as such it does
1238 * not set/clear discard or dirty flags.
1240 if (mg
->op
->op
== POLICY_PROMOTE
)
1241 remap_to_cache(mg
->cache
, bio
, mg
->op
->cblock
);
1243 remap_to_origin(mg
->cache
, bio
);
1245 init_continuation(&mg
->k
, continuation
);
1246 accounted_request(mg
->cache
, bio
);
1252 * 1) exclusive lock preventing WRITEs
1254 * 3) copy or issue overwrite bio
1255 * 4) upgrade to exclusive lock preventing READs and WRITEs
1257 * 6) update metadata and commit
1260 static void mg_complete(struct dm_cache_migration
*mg
, bool success
)
1262 struct bio_list bios
;
1263 struct cache
*cache
= mg
->cache
;
1264 struct policy_work
*op
= mg
->op
;
1265 dm_cblock_t cblock
= op
->cblock
;
1268 update_stats(&cache
->stats
, op
->op
);
1271 case POLICY_PROMOTE
:
1272 clear_discard(cache
, oblock_to_dblock(cache
, op
->oblock
));
1273 policy_complete_background_work(cache
->policy
, op
, success
);
1275 if (mg
->overwrite_bio
) {
1277 force_set_dirty(cache
, cblock
);
1278 else if (mg
->k
.input
)
1279 mg
->overwrite_bio
->bi_status
= mg
->k
.input
;
1281 mg
->overwrite_bio
->bi_status
= BLK_STS_IOERR
;
1282 bio_endio(mg
->overwrite_bio
);
1285 force_clear_dirty(cache
, cblock
);
1286 dec_io_migrations(cache
);
1292 * We clear dirty here to update the nr_dirty counter.
1295 force_clear_dirty(cache
, cblock
);
1296 policy_complete_background_work(cache
->policy
, op
, success
);
1297 dec_io_migrations(cache
);
1300 case POLICY_WRITEBACK
:
1302 force_clear_dirty(cache
, cblock
);
1303 policy_complete_background_work(cache
->policy
, op
, success
);
1304 dec_io_migrations(cache
);
1308 bio_list_init(&bios
);
1310 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1311 free_prison_cell(cache
, mg
->cell
);
1315 defer_bios(cache
, &bios
);
1316 wake_migration_worker(cache
);
1318 background_work_end(cache
);
1321 static void mg_success(struct work_struct
*ws
)
1323 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1324 mg_complete(mg
, mg
->k
.input
== 0);
1327 static void mg_update_metadata(struct work_struct
*ws
)
1330 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1331 struct cache
*cache
= mg
->cache
;
1332 struct policy_work
*op
= mg
->op
;
1335 case POLICY_PROMOTE
:
1336 r
= dm_cache_insert_mapping(cache
->cmd
, op
->cblock
, op
->oblock
);
1338 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1339 cache_device_name(cache
));
1340 metadata_operation_failed(cache
, "dm_cache_insert_mapping", r
);
1342 mg_complete(mg
, false);
1345 mg_complete(mg
, true);
1349 r
= dm_cache_remove_mapping(cache
->cmd
, op
->cblock
);
1351 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1352 cache_device_name(cache
));
1353 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1355 mg_complete(mg
, false);
1360 * It would be nice if we only had to commit when a REQ_FLUSH
1361 * comes through. But there's one scenario that we have to
1364 * - vblock x in a cache block
1366 * - cache block gets reallocated and over written
1369 * When we recover, because there was no commit the cache will
1370 * rollback to having the data for vblock x in the cache block.
1371 * But the cache block has since been overwritten, so it'll end
1372 * up pointing to data that was never in 'x' during the history
1375 * To avoid this issue we require a commit as part of the
1376 * demotion operation.
1378 init_continuation(&mg
->k
, mg_success
);
1379 continue_after_commit(&cache
->committer
, &mg
->k
);
1380 schedule_commit(&cache
->committer
);
1383 case POLICY_WRITEBACK
:
1384 mg_complete(mg
, true);
1389 static void mg_update_metadata_after_copy(struct work_struct
*ws
)
1391 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1394 * Did the copy succeed?
1397 mg_complete(mg
, false);
1399 mg_update_metadata(ws
);
1402 static void mg_upgrade_lock(struct work_struct
*ws
)
1405 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1408 * Did the copy succeed?
1411 mg_complete(mg
, false);
1415 * Now we want the lock to prevent both reads and writes.
1417 r
= dm_cell_lock_promote_v2(mg
->cache
->prison
, mg
->cell
,
1418 READ_WRITE_LOCK_LEVEL
);
1420 mg_complete(mg
, false);
1423 quiesce(mg
, mg_update_metadata
);
1426 mg_update_metadata(ws
);
1430 static void mg_full_copy(struct work_struct
*ws
)
1432 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1433 struct cache
*cache
= mg
->cache
;
1434 struct policy_work
*op
= mg
->op
;
1435 bool is_policy_promote
= (op
->op
== POLICY_PROMOTE
);
1437 if ((!is_policy_promote
&& !is_dirty(cache
, op
->cblock
)) ||
1438 is_discarded_oblock(cache
, op
->oblock
)) {
1439 mg_upgrade_lock(ws
);
1443 init_continuation(&mg
->k
, mg_upgrade_lock
);
1444 copy(mg
, is_policy_promote
);
1447 static void mg_copy(struct work_struct
*ws
)
1449 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1451 if (mg
->overwrite_bio
) {
1453 * No exclusive lock was held when we last checked if the bio
1454 * was optimisable. So we have to check again in case things
1455 * have changed (eg, the block may no longer be discarded).
1457 if (!optimisable_bio(mg
->cache
, mg
->overwrite_bio
, mg
->op
->oblock
)) {
1459 * Fallback to a real full copy after doing some tidying up.
1461 bool rb
= bio_detain_shared(mg
->cache
, mg
->op
->oblock
, mg
->overwrite_bio
);
1462 BUG_ON(rb
); /* An exclussive lock must _not_ be held for this block */
1463 mg
->overwrite_bio
= NULL
;
1464 inc_io_migrations(mg
->cache
);
1470 * It's safe to do this here, even though it's new data
1471 * because all IO has been locked out of the block.
1473 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1474 * so _not_ using mg_upgrade_lock() as continutation.
1476 overwrite(mg
, mg_update_metadata_after_copy
);
1482 static int mg_lock_writes(struct dm_cache_migration
*mg
)
1485 struct dm_cell_key_v2 key
;
1486 struct cache
*cache
= mg
->cache
;
1487 struct dm_bio_prison_cell_v2
*prealloc
;
1489 prealloc
= alloc_prison_cell(cache
);
1492 * Prevent writes to the block, but allow reads to continue.
1493 * Unless we're using an overwrite bio, in which case we lock
1496 build_key(mg
->op
->oblock
, oblock_succ(mg
->op
->oblock
), &key
);
1497 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1498 mg
->overwrite_bio
? READ_WRITE_LOCK_LEVEL
: WRITE_LOCK_LEVEL
,
1499 prealloc
, &mg
->cell
);
1501 free_prison_cell(cache
, prealloc
);
1502 mg_complete(mg
, false);
1506 if (mg
->cell
!= prealloc
)
1507 free_prison_cell(cache
, prealloc
);
1512 quiesce(mg
, mg_copy
);
1517 static int mg_start(struct cache
*cache
, struct policy_work
*op
, struct bio
*bio
)
1519 struct dm_cache_migration
*mg
;
1521 if (!background_work_begin(cache
)) {
1522 policy_complete_background_work(cache
->policy
, op
, false);
1526 mg
= alloc_migration(cache
);
1529 mg
->overwrite_bio
= bio
;
1532 inc_io_migrations(cache
);
1534 return mg_lock_writes(mg
);
1537 /*----------------------------------------------------------------
1538 * invalidation processing
1539 *--------------------------------------------------------------*/
1541 static void invalidate_complete(struct dm_cache_migration
*mg
, bool success
)
1543 struct bio_list bios
;
1544 struct cache
*cache
= mg
->cache
;
1546 bio_list_init(&bios
);
1547 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1548 free_prison_cell(cache
, mg
->cell
);
1550 if (!success
&& mg
->overwrite_bio
)
1551 bio_io_error(mg
->overwrite_bio
);
1554 defer_bios(cache
, &bios
);
1556 background_work_end(cache
);
1559 static void invalidate_completed(struct work_struct
*ws
)
1561 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1562 invalidate_complete(mg
, !mg
->k
.input
);
1565 static int invalidate_cblock(struct cache
*cache
, dm_cblock_t cblock
)
1567 int r
= policy_invalidate_mapping(cache
->policy
, cblock
);
1569 r
= dm_cache_remove_mapping(cache
->cmd
, cblock
);
1571 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1572 cache_device_name(cache
));
1573 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1576 } else if (r
== -ENODATA
) {
1578 * Harmless, already unmapped.
1583 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache
));
1588 static void invalidate_remove(struct work_struct
*ws
)
1591 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1592 struct cache
*cache
= mg
->cache
;
1594 r
= invalidate_cblock(cache
, mg
->invalidate_cblock
);
1596 invalidate_complete(mg
, false);
1600 init_continuation(&mg
->k
, invalidate_completed
);
1601 continue_after_commit(&cache
->committer
, &mg
->k
);
1602 remap_to_origin_clear_discard(cache
, mg
->overwrite_bio
, mg
->invalidate_oblock
);
1603 mg
->overwrite_bio
= NULL
;
1604 schedule_commit(&cache
->committer
);
1607 static int invalidate_lock(struct dm_cache_migration
*mg
)
1610 struct dm_cell_key_v2 key
;
1611 struct cache
*cache
= mg
->cache
;
1612 struct dm_bio_prison_cell_v2
*prealloc
;
1614 prealloc
= alloc_prison_cell(cache
);
1616 build_key(mg
->invalidate_oblock
, oblock_succ(mg
->invalidate_oblock
), &key
);
1617 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1618 READ_WRITE_LOCK_LEVEL
, prealloc
, &mg
->cell
);
1620 free_prison_cell(cache
, prealloc
);
1621 invalidate_complete(mg
, false);
1625 if (mg
->cell
!= prealloc
)
1626 free_prison_cell(cache
, prealloc
);
1629 quiesce(mg
, invalidate_remove
);
1633 * We can't call invalidate_remove() directly here because we
1634 * might still be in request context.
1636 init_continuation(&mg
->k
, invalidate_remove
);
1637 queue_work(cache
->wq
, &mg
->k
.ws
);
1643 static int invalidate_start(struct cache
*cache
, dm_cblock_t cblock
,
1644 dm_oblock_t oblock
, struct bio
*bio
)
1646 struct dm_cache_migration
*mg
;
1648 if (!background_work_begin(cache
))
1651 mg
= alloc_migration(cache
);
1653 mg
->overwrite_bio
= bio
;
1654 mg
->invalidate_cblock
= cblock
;
1655 mg
->invalidate_oblock
= oblock
;
1657 return invalidate_lock(mg
);
1660 /*----------------------------------------------------------------
1662 *--------------------------------------------------------------*/
1669 static enum busy
spare_migration_bandwidth(struct cache
*cache
)
1671 bool idle
= iot_idle_for(&cache
->tracker
, HZ
);
1672 sector_t current_volume
= (atomic_read(&cache
->nr_io_migrations
) + 1) *
1673 cache
->sectors_per_block
;
1675 if (idle
&& current_volume
<= cache
->migration_threshold
)
1681 static void inc_hit_counter(struct cache
*cache
, struct bio
*bio
)
1683 atomic_inc(bio_data_dir(bio
) == READ
?
1684 &cache
->stats
.read_hit
: &cache
->stats
.write_hit
);
1687 static void inc_miss_counter(struct cache
*cache
, struct bio
*bio
)
1689 atomic_inc(bio_data_dir(bio
) == READ
?
1690 &cache
->stats
.read_miss
: &cache
->stats
.write_miss
);
1693 /*----------------------------------------------------------------*/
1695 static int map_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
,
1696 bool *commit_needed
)
1699 bool rb
, background_queued
;
1702 *commit_needed
= false;
1704 rb
= bio_detain_shared(cache
, block
, bio
);
1707 * An exclusive lock is held for this block, so we have to
1708 * wait. We set the commit_needed flag so the current
1709 * transaction will be committed asap, allowing this lock
1712 *commit_needed
= true;
1713 return DM_MAPIO_SUBMITTED
;
1716 data_dir
= bio_data_dir(bio
);
1718 if (optimisable_bio(cache
, bio
, block
)) {
1719 struct policy_work
*op
= NULL
;
1721 r
= policy_lookup_with_work(cache
->policy
, block
, &cblock
, data_dir
, true, &op
);
1722 if (unlikely(r
&& r
!= -ENOENT
)) {
1723 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1724 cache_device_name(cache
), r
);
1726 return DM_MAPIO_SUBMITTED
;
1729 if (r
== -ENOENT
&& op
) {
1730 bio_drop_shared_lock(cache
, bio
);
1731 BUG_ON(op
->op
!= POLICY_PROMOTE
);
1732 mg_start(cache
, op
, bio
);
1733 return DM_MAPIO_SUBMITTED
;
1736 r
= policy_lookup(cache
->policy
, block
, &cblock
, data_dir
, false, &background_queued
);
1737 if (unlikely(r
&& r
!= -ENOENT
)) {
1738 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1739 cache_device_name(cache
), r
);
1741 return DM_MAPIO_SUBMITTED
;
1744 if (background_queued
)
1745 wake_migration_worker(cache
);
1749 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1754 inc_miss_counter(cache
, bio
);
1755 if (pb
->req_nr
== 0) {
1756 accounted_begin(cache
, bio
);
1757 remap_to_origin_clear_discard(cache
, bio
, block
);
1760 * This is a duplicate writethrough io that is no
1761 * longer needed because the block has been demoted.
1764 return DM_MAPIO_SUBMITTED
;
1770 inc_hit_counter(cache
, bio
);
1773 * Passthrough always maps to the origin, invalidating any
1774 * cache blocks that are written to.
1776 if (passthrough_mode(cache
)) {
1777 if (bio_data_dir(bio
) == WRITE
) {
1778 bio_drop_shared_lock(cache
, bio
);
1779 atomic_inc(&cache
->stats
.demotion
);
1780 invalidate_start(cache
, cblock
, block
, bio
);
1782 remap_to_origin_clear_discard(cache
, bio
, block
);
1784 if (bio_data_dir(bio
) == WRITE
&& writethrough_mode(cache
) &&
1785 !is_dirty(cache
, cblock
)) {
1786 remap_to_origin_and_cache(cache
, bio
, block
, cblock
);
1787 accounted_begin(cache
, bio
);
1789 remap_to_cache_dirty(cache
, bio
, block
, cblock
);
1794 * dm core turns FUA requests into a separate payload and FLUSH req.
1796 if (bio
->bi_opf
& REQ_FUA
) {
1798 * issue_after_commit will call accounted_begin a second time. So
1799 * we call accounted_complete() to avoid double accounting.
1801 accounted_complete(cache
, bio
);
1802 issue_after_commit(&cache
->committer
, bio
);
1803 *commit_needed
= true;
1804 return DM_MAPIO_SUBMITTED
;
1807 return DM_MAPIO_REMAPPED
;
1810 static bool process_bio(struct cache
*cache
, struct bio
*bio
)
1814 if (map_bio(cache
, bio
, get_bio_block(cache
, bio
), &commit_needed
) == DM_MAPIO_REMAPPED
)
1815 generic_make_request(bio
);
1817 return commit_needed
;
1821 * A non-zero return indicates read_only or fail_io mode.
1823 static int commit(struct cache
*cache
, bool clean_shutdown
)
1827 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1830 atomic_inc(&cache
->stats
.commit_count
);
1831 r
= dm_cache_commit(cache
->cmd
, clean_shutdown
);
1833 metadata_operation_failed(cache
, "dm_cache_commit", r
);
1839 * Used by the batcher.
1841 static blk_status_t
commit_op(void *context
)
1843 struct cache
*cache
= context
;
1845 if (dm_cache_changed_this_transaction(cache
->cmd
))
1846 return errno_to_blk_status(commit(cache
, false));
1851 /*----------------------------------------------------------------*/
1853 static bool process_flush_bio(struct cache
*cache
, struct bio
*bio
)
1855 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1858 remap_to_origin(cache
, bio
);
1860 remap_to_cache(cache
, bio
, 0);
1862 issue_after_commit(&cache
->committer
, bio
);
1866 static bool process_discard_bio(struct cache
*cache
, struct bio
*bio
)
1870 // FIXME: do we need to lock the region? Or can we just assume the
1871 // user wont be so foolish as to issue discard concurrently with
1873 calc_discard_block_range(cache
, bio
, &b
, &e
);
1875 set_discard(cache
, b
);
1876 b
= to_dblock(from_dblock(b
) + 1);
1879 if (cache
->features
.discard_passdown
) {
1880 remap_to_origin(cache
, bio
);
1881 generic_make_request(bio
);
1888 static void process_deferred_bios(struct work_struct
*ws
)
1890 struct cache
*cache
= container_of(ws
, struct cache
, deferred_bio_worker
);
1892 unsigned long flags
;
1893 bool commit_needed
= false;
1894 struct bio_list bios
;
1897 bio_list_init(&bios
);
1899 spin_lock_irqsave(&cache
->lock
, flags
);
1900 bio_list_merge(&bios
, &cache
->deferred_bios
);
1901 bio_list_init(&cache
->deferred_bios
);
1902 spin_unlock_irqrestore(&cache
->lock
, flags
);
1904 while ((bio
= bio_list_pop(&bios
))) {
1905 if (bio
->bi_opf
& REQ_PREFLUSH
)
1906 commit_needed
= process_flush_bio(cache
, bio
) || commit_needed
;
1908 else if (bio_op(bio
) == REQ_OP_DISCARD
)
1909 commit_needed
= process_discard_bio(cache
, bio
) || commit_needed
;
1912 commit_needed
= process_bio(cache
, bio
) || commit_needed
;
1916 schedule_commit(&cache
->committer
);
1919 /*----------------------------------------------------------------
1921 *--------------------------------------------------------------*/
1923 static void requeue_deferred_bios(struct cache
*cache
)
1926 struct bio_list bios
;
1928 bio_list_init(&bios
);
1929 bio_list_merge(&bios
, &cache
->deferred_bios
);
1930 bio_list_init(&cache
->deferred_bios
);
1932 while ((bio
= bio_list_pop(&bios
))) {
1933 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
1939 * We want to commit periodically so that not too much
1940 * unwritten metadata builds up.
1942 static void do_waker(struct work_struct
*ws
)
1944 struct cache
*cache
= container_of(to_delayed_work(ws
), struct cache
, waker
);
1946 policy_tick(cache
->policy
, true);
1947 wake_migration_worker(cache
);
1948 schedule_commit(&cache
->committer
);
1949 queue_delayed_work(cache
->wq
, &cache
->waker
, COMMIT_PERIOD
);
1952 static void check_migrations(struct work_struct
*ws
)
1955 struct policy_work
*op
;
1956 struct cache
*cache
= container_of(ws
, struct cache
, migration_worker
);
1960 b
= spare_migration_bandwidth(cache
);
1962 r
= policy_get_background_work(cache
->policy
, b
== IDLE
, &op
);
1967 DMERR_LIMIT("%s: policy_background_work failed",
1968 cache_device_name(cache
));
1972 r
= mg_start(cache
, op
, NULL
);
1978 /*----------------------------------------------------------------
1980 *--------------------------------------------------------------*/
1983 * This function gets called on the error paths of the constructor, so we
1984 * have to cope with a partially initialised struct.
1986 static void destroy(struct cache
*cache
)
1990 mempool_exit(&cache
->migration_pool
);
1993 dm_bio_prison_destroy_v2(cache
->prison
);
1996 destroy_workqueue(cache
->wq
);
1998 if (cache
->dirty_bitset
)
1999 free_bitset(cache
->dirty_bitset
);
2001 if (cache
->discard_bitset
)
2002 free_bitset(cache
->discard_bitset
);
2005 dm_kcopyd_client_destroy(cache
->copier
);
2008 dm_cache_metadata_close(cache
->cmd
);
2010 if (cache
->metadata_dev
)
2011 dm_put_device(cache
->ti
, cache
->metadata_dev
);
2013 if (cache
->origin_dev
)
2014 dm_put_device(cache
->ti
, cache
->origin_dev
);
2016 if (cache
->cache_dev
)
2017 dm_put_device(cache
->ti
, cache
->cache_dev
);
2020 dm_cache_policy_destroy(cache
->policy
);
2022 for (i
= 0; i
< cache
->nr_ctr_args
; i
++)
2023 kfree(cache
->ctr_args
[i
]);
2024 kfree(cache
->ctr_args
);
2026 bioset_exit(&cache
->bs
);
2031 static void cache_dtr(struct dm_target
*ti
)
2033 struct cache
*cache
= ti
->private;
2038 static sector_t
get_dev_size(struct dm_dev
*dev
)
2040 return i_size_read(dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
2043 /*----------------------------------------------------------------*/
2046 * Construct a cache device mapping.
2048 * cache <metadata dev> <cache dev> <origin dev> <block size>
2049 * <#feature args> [<feature arg>]*
2050 * <policy> <#policy args> [<policy arg>]*
2052 * metadata dev : fast device holding the persistent metadata
2053 * cache dev : fast device holding cached data blocks
2054 * origin dev : slow device holding original data blocks
2055 * block size : cache unit size in sectors
2057 * #feature args : number of feature arguments passed
2058 * feature args : writethrough. (The default is writeback.)
2060 * policy : the replacement policy to use
2061 * #policy args : an even number of policy arguments corresponding
2062 * to key/value pairs passed to the policy
2063 * policy args : key/value pairs passed to the policy
2064 * E.g. 'sequential_threshold 1024'
2065 * See cache-policies.txt for details.
2067 * Optional feature arguments are:
2068 * writethrough : write through caching that prohibits cache block
2069 * content from being different from origin block content.
2070 * Without this argument, the default behaviour is to write
2071 * back cache block contents later for performance reasons,
2072 * so they may differ from the corresponding origin blocks.
2075 struct dm_target
*ti
;
2077 struct dm_dev
*metadata_dev
;
2079 struct dm_dev
*cache_dev
;
2080 sector_t cache_sectors
;
2082 struct dm_dev
*origin_dev
;
2083 sector_t origin_sectors
;
2085 uint32_t block_size
;
2087 const char *policy_name
;
2089 const char **policy_argv
;
2091 struct cache_features features
;
2094 static void destroy_cache_args(struct cache_args
*ca
)
2096 if (ca
->metadata_dev
)
2097 dm_put_device(ca
->ti
, ca
->metadata_dev
);
2100 dm_put_device(ca
->ti
, ca
->cache_dev
);
2103 dm_put_device(ca
->ti
, ca
->origin_dev
);
2108 static bool at_least_one_arg(struct dm_arg_set
*as
, char **error
)
2111 *error
= "Insufficient args";
2118 static int parse_metadata_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2122 sector_t metadata_dev_size
;
2123 char b
[BDEVNAME_SIZE
];
2125 if (!at_least_one_arg(as
, error
))
2128 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
), FMODE_READ
| FMODE_WRITE
,
2131 *error
= "Error opening metadata device";
2135 metadata_dev_size
= get_dev_size(ca
->metadata_dev
);
2136 if (metadata_dev_size
> DM_CACHE_METADATA_MAX_SECTORS_WARNING
)
2137 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2138 bdevname(ca
->metadata_dev
->bdev
, b
), THIN_METADATA_MAX_SECTORS
);
2143 static int parse_cache_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2148 if (!at_least_one_arg(as
, error
))
2151 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
), FMODE_READ
| FMODE_WRITE
,
2154 *error
= "Error opening cache device";
2157 ca
->cache_sectors
= get_dev_size(ca
->cache_dev
);
2162 static int parse_origin_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2167 if (!at_least_one_arg(as
, error
))
2170 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
), FMODE_READ
| FMODE_WRITE
,
2173 *error
= "Error opening origin device";
2177 ca
->origin_sectors
= get_dev_size(ca
->origin_dev
);
2178 if (ca
->ti
->len
> ca
->origin_sectors
) {
2179 *error
= "Device size larger than cached device";
2186 static int parse_block_size(struct cache_args
*ca
, struct dm_arg_set
*as
,
2189 unsigned long block_size
;
2191 if (!at_least_one_arg(as
, error
))
2194 if (kstrtoul(dm_shift_arg(as
), 10, &block_size
) || !block_size
||
2195 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2196 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2197 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2198 *error
= "Invalid data block size";
2202 if (block_size
> ca
->cache_sectors
) {
2203 *error
= "Data block size is larger than the cache device";
2207 ca
->block_size
= block_size
;
2212 static void init_features(struct cache_features
*cf
)
2214 cf
->mode
= CM_WRITE
;
2215 cf
->io_mode
= CM_IO_WRITEBACK
;
2216 cf
->metadata_version
= 1;
2217 cf
->discard_passdown
= true;
2220 static int parse_features(struct cache_args
*ca
, struct dm_arg_set
*as
,
2223 static const struct dm_arg _args
[] = {
2224 {0, 3, "Invalid number of cache feature arguments"},
2227 int r
, mode_ctr
= 0;
2230 struct cache_features
*cf
= &ca
->features
;
2234 r
= dm_read_arg_group(_args
, as
, &argc
, error
);
2239 arg
= dm_shift_arg(as
);
2241 if (!strcasecmp(arg
, "writeback")) {
2242 cf
->io_mode
= CM_IO_WRITEBACK
;
2246 else if (!strcasecmp(arg
, "writethrough")) {
2247 cf
->io_mode
= CM_IO_WRITETHROUGH
;
2251 else if (!strcasecmp(arg
, "passthrough")) {
2252 cf
->io_mode
= CM_IO_PASSTHROUGH
;
2256 else if (!strcasecmp(arg
, "metadata2"))
2257 cf
->metadata_version
= 2;
2259 else if (!strcasecmp(arg
, "no_discard_passdown"))
2260 cf
->discard_passdown
= false;
2263 *error
= "Unrecognised cache feature requested";
2269 *error
= "Duplicate cache io_mode features requested";
2276 static int parse_policy(struct cache_args
*ca
, struct dm_arg_set
*as
,
2279 static const struct dm_arg _args
[] = {
2280 {0, 1024, "Invalid number of policy arguments"},
2285 if (!at_least_one_arg(as
, error
))
2288 ca
->policy_name
= dm_shift_arg(as
);
2290 r
= dm_read_arg_group(_args
, as
, &ca
->policy_argc
, error
);
2294 ca
->policy_argv
= (const char **)as
->argv
;
2295 dm_consume_args(as
, ca
->policy_argc
);
2300 static int parse_cache_args(struct cache_args
*ca
, int argc
, char **argv
,
2304 struct dm_arg_set as
;
2309 r
= parse_metadata_dev(ca
, &as
, error
);
2313 r
= parse_cache_dev(ca
, &as
, error
);
2317 r
= parse_origin_dev(ca
, &as
, error
);
2321 r
= parse_block_size(ca
, &as
, error
);
2325 r
= parse_features(ca
, &as
, error
);
2329 r
= parse_policy(ca
, &as
, error
);
2336 /*----------------------------------------------------------------*/
2338 static struct kmem_cache
*migration_cache
;
2340 #define NOT_CORE_OPTION 1
2342 static int process_config_option(struct cache
*cache
, const char *key
, const char *value
)
2346 if (!strcasecmp(key
, "migration_threshold")) {
2347 if (kstrtoul(value
, 10, &tmp
))
2350 cache
->migration_threshold
= tmp
;
2354 return NOT_CORE_OPTION
;
2357 static int set_config_value(struct cache
*cache
, const char *key
, const char *value
)
2359 int r
= process_config_option(cache
, key
, value
);
2361 if (r
== NOT_CORE_OPTION
)
2362 r
= policy_set_config_value(cache
->policy
, key
, value
);
2365 DMWARN("bad config value for %s: %s", key
, value
);
2370 static int set_config_values(struct cache
*cache
, int argc
, const char **argv
)
2375 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2380 r
= set_config_value(cache
, argv
[0], argv
[1]);
2391 static int create_cache_policy(struct cache
*cache
, struct cache_args
*ca
,
2394 struct dm_cache_policy
*p
= dm_cache_policy_create(ca
->policy_name
,
2396 cache
->origin_sectors
,
2397 cache
->sectors_per_block
);
2399 *error
= "Error creating cache's policy";
2403 BUG_ON(!cache
->policy
);
2409 * We want the discard block size to be at least the size of the cache
2410 * block size and have no more than 2^14 discard blocks across the origin.
2412 #define MAX_DISCARD_BLOCKS (1 << 14)
2414 static bool too_many_discard_blocks(sector_t discard_block_size
,
2415 sector_t origin_size
)
2417 (void) sector_div(origin_size
, discard_block_size
);
2419 return origin_size
> MAX_DISCARD_BLOCKS
;
2422 static sector_t
calculate_discard_block_size(sector_t cache_block_size
,
2423 sector_t origin_size
)
2425 sector_t discard_block_size
= cache_block_size
;
2428 while (too_many_discard_blocks(discard_block_size
, origin_size
))
2429 discard_block_size
*= 2;
2431 return discard_block_size
;
2434 static void set_cache_size(struct cache
*cache
, dm_cblock_t size
)
2436 dm_block_t nr_blocks
= from_cblock(size
);
2438 if (nr_blocks
> (1 << 20) && cache
->cache_size
!= size
)
2439 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2440 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2441 "Please consider increasing the cache block size to reduce the overall cache block count.",
2442 (unsigned long long) nr_blocks
);
2444 cache
->cache_size
= size
;
2447 static int is_congested(struct dm_dev
*dev
, int bdi_bits
)
2449 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
2450 return bdi_congested(q
->backing_dev_info
, bdi_bits
);
2453 static int cache_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2455 struct cache
*cache
= container_of(cb
, struct cache
, callbacks
);
2457 return is_congested(cache
->origin_dev
, bdi_bits
) ||
2458 is_congested(cache
->cache_dev
, bdi_bits
);
2461 #define DEFAULT_MIGRATION_THRESHOLD 2048
2463 static int cache_create(struct cache_args
*ca
, struct cache
**result
)
2466 char **error
= &ca
->ti
->error
;
2467 struct cache
*cache
;
2468 struct dm_target
*ti
= ca
->ti
;
2469 dm_block_t origin_blocks
;
2470 struct dm_cache_metadata
*cmd
;
2471 bool may_format
= ca
->features
.mode
== CM_WRITE
;
2473 cache
= kzalloc(sizeof(*cache
), GFP_KERNEL
);
2478 ti
->private = cache
;
2479 ti
->num_flush_bios
= 2;
2480 ti
->flush_supported
= true;
2482 ti
->num_discard_bios
= 1;
2483 ti
->discards_supported
= true;
2485 ti
->per_io_data_size
= sizeof(struct per_bio_data
);
2487 cache
->features
= ca
->features
;
2488 if (writethrough_mode(cache
)) {
2489 /* Create bioset for writethrough bios issued to origin */
2490 r
= bioset_init(&cache
->bs
, BIO_POOL_SIZE
, 0, 0);
2495 cache
->callbacks
.congested_fn
= cache_is_congested
;
2496 dm_table_add_target_callbacks(ti
->table
, &cache
->callbacks
);
2498 cache
->metadata_dev
= ca
->metadata_dev
;
2499 cache
->origin_dev
= ca
->origin_dev
;
2500 cache
->cache_dev
= ca
->cache_dev
;
2502 ca
->metadata_dev
= ca
->origin_dev
= ca
->cache_dev
= NULL
;
2504 origin_blocks
= cache
->origin_sectors
= ca
->origin_sectors
;
2505 origin_blocks
= block_div(origin_blocks
, ca
->block_size
);
2506 cache
->origin_blocks
= to_oblock(origin_blocks
);
2508 cache
->sectors_per_block
= ca
->block_size
;
2509 if (dm_set_target_max_io_len(ti
, cache
->sectors_per_block
)) {
2514 if (ca
->block_size
& (ca
->block_size
- 1)) {
2515 dm_block_t cache_size
= ca
->cache_sectors
;
2517 cache
->sectors_per_block_shift
= -1;
2518 cache_size
= block_div(cache_size
, ca
->block_size
);
2519 set_cache_size(cache
, to_cblock(cache_size
));
2521 cache
->sectors_per_block_shift
= __ffs(ca
->block_size
);
2522 set_cache_size(cache
, to_cblock(ca
->cache_sectors
>> cache
->sectors_per_block_shift
));
2525 r
= create_cache_policy(cache
, ca
, error
);
2529 cache
->policy_nr_args
= ca
->policy_argc
;
2530 cache
->migration_threshold
= DEFAULT_MIGRATION_THRESHOLD
;
2532 r
= set_config_values(cache
, ca
->policy_argc
, ca
->policy_argv
);
2534 *error
= "Error setting cache policy's config values";
2538 cmd
= dm_cache_metadata_open(cache
->metadata_dev
->bdev
,
2539 ca
->block_size
, may_format
,
2540 dm_cache_policy_get_hint_size(cache
->policy
),
2541 ca
->features
.metadata_version
);
2543 *error
= "Error creating metadata object";
2548 set_cache_mode(cache
, CM_WRITE
);
2549 if (get_cache_mode(cache
) != CM_WRITE
) {
2550 *error
= "Unable to get write access to metadata, please check/repair metadata.";
2555 if (passthrough_mode(cache
)) {
2558 r
= dm_cache_metadata_all_clean(cache
->cmd
, &all_clean
);
2560 *error
= "dm_cache_metadata_all_clean() failed";
2565 *error
= "Cannot enter passthrough mode unless all blocks are clean";
2570 policy_allow_migrations(cache
->policy
, false);
2573 spin_lock_init(&cache
->lock
);
2574 bio_list_init(&cache
->deferred_bios
);
2575 atomic_set(&cache
->nr_allocated_migrations
, 0);
2576 atomic_set(&cache
->nr_io_migrations
, 0);
2577 init_waitqueue_head(&cache
->migration_wait
);
2580 atomic_set(&cache
->nr_dirty
, 0);
2581 cache
->dirty_bitset
= alloc_bitset(from_cblock(cache
->cache_size
));
2582 if (!cache
->dirty_bitset
) {
2583 *error
= "could not allocate dirty bitset";
2586 clear_bitset(cache
->dirty_bitset
, from_cblock(cache
->cache_size
));
2588 cache
->discard_block_size
=
2589 calculate_discard_block_size(cache
->sectors_per_block
,
2590 cache
->origin_sectors
);
2591 cache
->discard_nr_blocks
= to_dblock(dm_sector_div_up(cache
->origin_sectors
,
2592 cache
->discard_block_size
));
2593 cache
->discard_bitset
= alloc_bitset(from_dblock(cache
->discard_nr_blocks
));
2594 if (!cache
->discard_bitset
) {
2595 *error
= "could not allocate discard bitset";
2598 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
2600 cache
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2601 if (IS_ERR(cache
->copier
)) {
2602 *error
= "could not create kcopyd client";
2603 r
= PTR_ERR(cache
->copier
);
2607 cache
->wq
= alloc_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
, 0);
2609 *error
= "could not create workqueue for metadata object";
2612 INIT_WORK(&cache
->deferred_bio_worker
, process_deferred_bios
);
2613 INIT_WORK(&cache
->migration_worker
, check_migrations
);
2614 INIT_DELAYED_WORK(&cache
->waker
, do_waker
);
2616 cache
->prison
= dm_bio_prison_create_v2(cache
->wq
);
2617 if (!cache
->prison
) {
2618 *error
= "could not create bio prison";
2622 r
= mempool_init_slab_pool(&cache
->migration_pool
, MIGRATION_POOL_SIZE
,
2625 *error
= "Error creating cache's migration mempool";
2629 cache
->need_tick_bio
= true;
2630 cache
->sized
= false;
2631 cache
->invalidate
= false;
2632 cache
->commit_requested
= false;
2633 cache
->loaded_mappings
= false;
2634 cache
->loaded_discards
= false;
2638 atomic_set(&cache
->stats
.demotion
, 0);
2639 atomic_set(&cache
->stats
.promotion
, 0);
2640 atomic_set(&cache
->stats
.copies_avoided
, 0);
2641 atomic_set(&cache
->stats
.cache_cell_clash
, 0);
2642 atomic_set(&cache
->stats
.commit_count
, 0);
2643 atomic_set(&cache
->stats
.discard_count
, 0);
2645 spin_lock_init(&cache
->invalidation_lock
);
2646 INIT_LIST_HEAD(&cache
->invalidation_requests
);
2648 batcher_init(&cache
->committer
, commit_op
, cache
,
2649 issue_op
, cache
, cache
->wq
);
2650 iot_init(&cache
->tracker
);
2652 init_rwsem(&cache
->background_work_lock
);
2653 prevent_background_work(cache
);
2662 static int copy_ctr_args(struct cache
*cache
, int argc
, const char **argv
)
2667 copy
= kcalloc(argc
, sizeof(*copy
), GFP_KERNEL
);
2670 for (i
= 0; i
< argc
; i
++) {
2671 copy
[i
] = kstrdup(argv
[i
], GFP_KERNEL
);
2680 cache
->nr_ctr_args
= argc
;
2681 cache
->ctr_args
= copy
;
2686 static int cache_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2689 struct cache_args
*ca
;
2690 struct cache
*cache
= NULL
;
2692 ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
2694 ti
->error
= "Error allocating memory for cache";
2699 r
= parse_cache_args(ca
, argc
, argv
, &ti
->error
);
2703 r
= cache_create(ca
, &cache
);
2707 r
= copy_ctr_args(cache
, argc
- 3, (const char **)argv
+ 3);
2713 ti
->private = cache
;
2715 destroy_cache_args(ca
);
2719 /*----------------------------------------------------------------*/
2721 static int cache_map(struct dm_target
*ti
, struct bio
*bio
)
2723 struct cache
*cache
= ti
->private;
2727 dm_oblock_t block
= get_bio_block(cache
, bio
);
2729 init_per_bio_data(bio
);
2730 if (unlikely(from_oblock(block
) >= from_oblock(cache
->origin_blocks
))) {
2732 * This can only occur if the io goes to a partial block at
2733 * the end of the origin device. We don't cache these.
2734 * Just remap to the origin and carry on.
2736 remap_to_origin(cache
, bio
);
2737 accounted_begin(cache
, bio
);
2738 return DM_MAPIO_REMAPPED
;
2741 if (discard_or_flush(bio
)) {
2742 defer_bio(cache
, bio
);
2743 return DM_MAPIO_SUBMITTED
;
2746 r
= map_bio(cache
, bio
, block
, &commit_needed
);
2748 schedule_commit(&cache
->committer
);
2753 static int cache_end_io(struct dm_target
*ti
, struct bio
*bio
, blk_status_t
*error
)
2755 struct cache
*cache
= ti
->private;
2756 unsigned long flags
;
2757 struct per_bio_data
*pb
= get_per_bio_data(bio
);
2760 policy_tick(cache
->policy
, false);
2762 spin_lock_irqsave(&cache
->lock
, flags
);
2763 cache
->need_tick_bio
= true;
2764 spin_unlock_irqrestore(&cache
->lock
, flags
);
2767 bio_drop_shared_lock(cache
, bio
);
2768 accounted_complete(cache
, bio
);
2770 return DM_ENDIO_DONE
;
2773 static int write_dirty_bitset(struct cache
*cache
)
2777 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2780 r
= dm_cache_set_dirty_bits(cache
->cmd
, from_cblock(cache
->cache_size
), cache
->dirty_bitset
);
2782 metadata_operation_failed(cache
, "dm_cache_set_dirty_bits", r
);
2787 static int write_discard_bitset(struct cache
*cache
)
2791 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2794 r
= dm_cache_discard_bitset_resize(cache
->cmd
, cache
->discard_block_size
,
2795 cache
->discard_nr_blocks
);
2797 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache
));
2798 metadata_operation_failed(cache
, "dm_cache_discard_bitset_resize", r
);
2802 for (i
= 0; i
< from_dblock(cache
->discard_nr_blocks
); i
++) {
2803 r
= dm_cache_set_discard(cache
->cmd
, to_dblock(i
),
2804 is_discarded(cache
, to_dblock(i
)));
2806 metadata_operation_failed(cache
, "dm_cache_set_discard", r
);
2814 static int write_hints(struct cache
*cache
)
2818 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2821 r
= dm_cache_write_hints(cache
->cmd
, cache
->policy
);
2823 metadata_operation_failed(cache
, "dm_cache_write_hints", r
);
2831 * returns true on success
2833 static bool sync_metadata(struct cache
*cache
)
2837 r1
= write_dirty_bitset(cache
);
2839 DMERR("%s: could not write dirty bitset", cache_device_name(cache
));
2841 r2
= write_discard_bitset(cache
);
2843 DMERR("%s: could not write discard bitset", cache_device_name(cache
));
2847 r3
= write_hints(cache
);
2849 DMERR("%s: could not write hints", cache_device_name(cache
));
2852 * If writing the above metadata failed, we still commit, but don't
2853 * set the clean shutdown flag. This will effectively force every
2854 * dirty bit to be set on reload.
2856 r4
= commit(cache
, !r1
&& !r2
&& !r3
);
2858 DMERR("%s: could not write cache metadata", cache_device_name(cache
));
2860 return !r1
&& !r2
&& !r3
&& !r4
;
2863 static void cache_postsuspend(struct dm_target
*ti
)
2865 struct cache
*cache
= ti
->private;
2867 prevent_background_work(cache
);
2868 BUG_ON(atomic_read(&cache
->nr_io_migrations
));
2870 cancel_delayed_work(&cache
->waker
);
2871 flush_workqueue(cache
->wq
);
2872 WARN_ON(cache
->tracker
.in_flight
);
2875 * If it's a flush suspend there won't be any deferred bios, so this
2878 requeue_deferred_bios(cache
);
2880 if (get_cache_mode(cache
) == CM_WRITE
)
2881 (void) sync_metadata(cache
);
2884 static int load_mapping(void *context
, dm_oblock_t oblock
, dm_cblock_t cblock
,
2885 bool dirty
, uint32_t hint
, bool hint_valid
)
2888 struct cache
*cache
= context
;
2891 set_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2892 atomic_inc(&cache
->nr_dirty
);
2894 clear_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2896 r
= policy_load_mapping(cache
->policy
, oblock
, cblock
, dirty
, hint
, hint_valid
);
2904 * The discard block size in the on disk metadata is not
2905 * neccessarily the same as we're currently using. So we have to
2906 * be careful to only set the discarded attribute if we know it
2907 * covers a complete block of the new size.
2909 struct discard_load_info
{
2910 struct cache
*cache
;
2913 * These blocks are sized using the on disk dblock size, rather
2914 * than the current one.
2916 dm_block_t block_size
;
2917 dm_block_t discard_begin
, discard_end
;
2920 static void discard_load_info_init(struct cache
*cache
,
2921 struct discard_load_info
*li
)
2924 li
->discard_begin
= li
->discard_end
= 0;
2927 static void set_discard_range(struct discard_load_info
*li
)
2931 if (li
->discard_begin
== li
->discard_end
)
2935 * Convert to sectors.
2937 b
= li
->discard_begin
* li
->block_size
;
2938 e
= li
->discard_end
* li
->block_size
;
2941 * Then convert back to the current dblock size.
2943 b
= dm_sector_div_up(b
, li
->cache
->discard_block_size
);
2944 sector_div(e
, li
->cache
->discard_block_size
);
2947 * The origin may have shrunk, so we need to check we're still in
2950 if (e
> from_dblock(li
->cache
->discard_nr_blocks
))
2951 e
= from_dblock(li
->cache
->discard_nr_blocks
);
2954 set_discard(li
->cache
, to_dblock(b
));
2957 static int load_discard(void *context
, sector_t discard_block_size
,
2958 dm_dblock_t dblock
, bool discard
)
2960 struct discard_load_info
*li
= context
;
2962 li
->block_size
= discard_block_size
;
2965 if (from_dblock(dblock
) == li
->discard_end
)
2967 * We're already in a discard range, just extend it.
2969 li
->discard_end
= li
->discard_end
+ 1ULL;
2973 * Emit the old range and start a new one.
2975 set_discard_range(li
);
2976 li
->discard_begin
= from_dblock(dblock
);
2977 li
->discard_end
= li
->discard_begin
+ 1ULL;
2980 set_discard_range(li
);
2981 li
->discard_begin
= li
->discard_end
= 0;
2987 static dm_cblock_t
get_cache_dev_size(struct cache
*cache
)
2989 sector_t size
= get_dev_size(cache
->cache_dev
);
2990 (void) sector_div(size
, cache
->sectors_per_block
);
2991 return to_cblock(size
);
2994 static bool can_resize(struct cache
*cache
, dm_cblock_t new_size
)
2996 if (from_cblock(new_size
) > from_cblock(cache
->cache_size
)) {
2998 DMERR("%s: unable to extend cache due to missing cache table reload",
2999 cache_device_name(cache
));
3005 * We can't drop a dirty block when shrinking the cache.
3007 while (from_cblock(new_size
) < from_cblock(cache
->cache_size
)) {
3008 new_size
= to_cblock(from_cblock(new_size
) + 1);
3009 if (is_dirty(cache
, new_size
)) {
3010 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3011 cache_device_name(cache
),
3012 (unsigned long long) from_cblock(new_size
));
3020 static int resize_cache_dev(struct cache
*cache
, dm_cblock_t new_size
)
3024 r
= dm_cache_resize(cache
->cmd
, new_size
);
3026 DMERR("%s: could not resize cache metadata", cache_device_name(cache
));
3027 metadata_operation_failed(cache
, "dm_cache_resize", r
);
3031 set_cache_size(cache
, new_size
);
3036 static int cache_preresume(struct dm_target
*ti
)
3039 struct cache
*cache
= ti
->private;
3040 dm_cblock_t csize
= get_cache_dev_size(cache
);
3043 * Check to see if the cache has resized.
3045 if (!cache
->sized
) {
3046 r
= resize_cache_dev(cache
, csize
);
3050 cache
->sized
= true;
3052 } else if (csize
!= cache
->cache_size
) {
3053 if (!can_resize(cache
, csize
))
3056 r
= resize_cache_dev(cache
, csize
);
3061 if (!cache
->loaded_mappings
) {
3062 r
= dm_cache_load_mappings(cache
->cmd
, cache
->policy
,
3063 load_mapping
, cache
);
3065 DMERR("%s: could not load cache mappings", cache_device_name(cache
));
3066 metadata_operation_failed(cache
, "dm_cache_load_mappings", r
);
3070 cache
->loaded_mappings
= true;
3073 if (!cache
->loaded_discards
) {
3074 struct discard_load_info li
;
3077 * The discard bitset could have been resized, or the
3078 * discard block size changed. To be safe we start by
3079 * setting every dblock to not discarded.
3081 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
3083 discard_load_info_init(cache
, &li
);
3084 r
= dm_cache_load_discards(cache
->cmd
, load_discard
, &li
);
3086 DMERR("%s: could not load origin discards", cache_device_name(cache
));
3087 metadata_operation_failed(cache
, "dm_cache_load_discards", r
);
3090 set_discard_range(&li
);
3092 cache
->loaded_discards
= true;
3098 static void cache_resume(struct dm_target
*ti
)
3100 struct cache
*cache
= ti
->private;
3102 cache
->need_tick_bio
= true;
3103 allow_background_work(cache
);
3104 do_waker(&cache
->waker
.work
);
3107 static void emit_flags(struct cache
*cache
, char *result
,
3108 unsigned maxlen
, ssize_t
*sz_ptr
)
3110 ssize_t sz
= *sz_ptr
;
3111 struct cache_features
*cf
= &cache
->features
;
3112 unsigned count
= (cf
->metadata_version
== 2) + !cf
->discard_passdown
+ 1;
3114 DMEMIT("%u ", count
);
3116 if (cf
->metadata_version
== 2)
3117 DMEMIT("metadata2 ");
3119 if (writethrough_mode(cache
))
3120 DMEMIT("writethrough ");
3122 else if (passthrough_mode(cache
))
3123 DMEMIT("passthrough ");
3125 else if (writeback_mode(cache
))
3126 DMEMIT("writeback ");
3130 DMERR("%s: internal error: unknown io mode: %d",
3131 cache_device_name(cache
), (int) cf
->io_mode
);
3134 if (!cf
->discard_passdown
)
3135 DMEMIT("no_discard_passdown ");
3143 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3144 * <cache block size> <#used cache blocks>/<#total cache blocks>
3145 * <#read hits> <#read misses> <#write hits> <#write misses>
3146 * <#demotions> <#promotions> <#dirty>
3147 * <#features> <features>*
3148 * <#core args> <core args>
3149 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3151 static void cache_status(struct dm_target
*ti
, status_type_t type
,
3152 unsigned status_flags
, char *result
, unsigned maxlen
)
3157 dm_block_t nr_free_blocks_metadata
= 0;
3158 dm_block_t nr_blocks_metadata
= 0;
3159 char buf
[BDEVNAME_SIZE
];
3160 struct cache
*cache
= ti
->private;
3161 dm_cblock_t residency
;
3165 case STATUSTYPE_INFO
:
3166 if (get_cache_mode(cache
) == CM_FAIL
) {
3171 /* Commit to ensure statistics aren't out-of-date */
3172 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3173 (void) commit(cache
, false);
3175 r
= dm_cache_get_free_metadata_block_count(cache
->cmd
, &nr_free_blocks_metadata
);
3177 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3178 cache_device_name(cache
), r
);
3182 r
= dm_cache_get_metadata_dev_size(cache
->cmd
, &nr_blocks_metadata
);
3184 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3185 cache_device_name(cache
), r
);
3189 residency
= policy_residency(cache
->policy
);
3191 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3192 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE
,
3193 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3194 (unsigned long long)nr_blocks_metadata
,
3195 (unsigned long long)cache
->sectors_per_block
,
3196 (unsigned long long) from_cblock(residency
),
3197 (unsigned long long) from_cblock(cache
->cache_size
),
3198 (unsigned) atomic_read(&cache
->stats
.read_hit
),
3199 (unsigned) atomic_read(&cache
->stats
.read_miss
),
3200 (unsigned) atomic_read(&cache
->stats
.write_hit
),
3201 (unsigned) atomic_read(&cache
->stats
.write_miss
),
3202 (unsigned) atomic_read(&cache
->stats
.demotion
),
3203 (unsigned) atomic_read(&cache
->stats
.promotion
),
3204 (unsigned long) atomic_read(&cache
->nr_dirty
));
3206 emit_flags(cache
, result
, maxlen
, &sz
);
3208 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache
->migration_threshold
);
3210 DMEMIT("%s ", dm_cache_policy_get_name(cache
->policy
));
3212 r
= policy_emit_config_values(cache
->policy
, result
, maxlen
, &sz
);
3214 DMERR("%s: policy_emit_config_values returned %d",
3215 cache_device_name(cache
), r
);
3218 if (get_cache_mode(cache
) == CM_READ_ONLY
)
3223 r
= dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
);
3225 if (r
|| needs_check
)
3226 DMEMIT("needs_check ");
3232 case STATUSTYPE_TABLE
:
3233 format_dev_t(buf
, cache
->metadata_dev
->bdev
->bd_dev
);
3235 format_dev_t(buf
, cache
->cache_dev
->bdev
->bd_dev
);
3237 format_dev_t(buf
, cache
->origin_dev
->bdev
->bd_dev
);
3240 for (i
= 0; i
< cache
->nr_ctr_args
- 1; i
++)
3241 DMEMIT(" %s", cache
->ctr_args
[i
]);
3242 if (cache
->nr_ctr_args
)
3243 DMEMIT(" %s", cache
->ctr_args
[cache
->nr_ctr_args
- 1]);
3253 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3254 * the one-past-the-end value.
3256 struct cblock_range
{
3262 * A cache block range can take two forms:
3264 * i) A single cblock, eg. '3456'
3265 * ii) A begin and end cblock with a dash between, eg. 123-234
3267 static int parse_cblock_range(struct cache
*cache
, const char *str
,
3268 struct cblock_range
*result
)
3275 * Try and parse form (ii) first.
3277 r
= sscanf(str
, "%llu-%llu%c", &b
, &e
, &dummy
);
3282 result
->begin
= to_cblock(b
);
3283 result
->end
= to_cblock(e
);
3288 * That didn't work, try form (i).
3290 r
= sscanf(str
, "%llu%c", &b
, &dummy
);
3295 result
->begin
= to_cblock(b
);
3296 result
->end
= to_cblock(from_cblock(result
->begin
) + 1u);
3300 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache
), str
);
3304 static int validate_cblock_range(struct cache
*cache
, struct cblock_range
*range
)
3306 uint64_t b
= from_cblock(range
->begin
);
3307 uint64_t e
= from_cblock(range
->end
);
3308 uint64_t n
= from_cblock(cache
->cache_size
);
3311 DMERR("%s: begin cblock out of range: %llu >= %llu",
3312 cache_device_name(cache
), b
, n
);
3317 DMERR("%s: end cblock out of range: %llu > %llu",
3318 cache_device_name(cache
), e
, n
);
3323 DMERR("%s: invalid cblock range: %llu >= %llu",
3324 cache_device_name(cache
), b
, e
);
3331 static inline dm_cblock_t
cblock_succ(dm_cblock_t b
)
3333 return to_cblock(from_cblock(b
) + 1);
3336 static int request_invalidation(struct cache
*cache
, struct cblock_range
*range
)
3341 * We don't need to do any locking here because we know we're in
3342 * passthrough mode. There's is potential for a race between an
3343 * invalidation triggered by an io and an invalidation message. This
3344 * is harmless, we must not worry if the policy call fails.
3346 while (range
->begin
!= range
->end
) {
3347 r
= invalidate_cblock(cache
, range
->begin
);
3351 range
->begin
= cblock_succ(range
->begin
);
3354 cache
->commit_requested
= true;
3358 static int process_invalidate_cblocks_message(struct cache
*cache
, unsigned count
,
3359 const char **cblock_ranges
)
3363 struct cblock_range range
;
3365 if (!passthrough_mode(cache
)) {
3366 DMERR("%s: cache has to be in passthrough mode for invalidation",
3367 cache_device_name(cache
));
3371 for (i
= 0; i
< count
; i
++) {
3372 r
= parse_cblock_range(cache
, cblock_ranges
[i
], &range
);
3376 r
= validate_cblock_range(cache
, &range
);
3381 * Pass begin and end origin blocks to the worker and wake it.
3383 r
= request_invalidation(cache
, &range
);
3395 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3397 * The key migration_threshold is supported by the cache target core.
3399 static int cache_message(struct dm_target
*ti
, unsigned argc
, char **argv
,
3400 char *result
, unsigned maxlen
)
3402 struct cache
*cache
= ti
->private;
3407 if (get_cache_mode(cache
) >= CM_READ_ONLY
) {
3408 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3409 cache_device_name(cache
));
3413 if (!strcasecmp(argv
[0], "invalidate_cblocks"))
3414 return process_invalidate_cblocks_message(cache
, argc
- 1, (const char **) argv
+ 1);
3419 return set_config_value(cache
, argv
[0], argv
[1]);
3422 static int cache_iterate_devices(struct dm_target
*ti
,
3423 iterate_devices_callout_fn fn
, void *data
)
3426 struct cache
*cache
= ti
->private;
3428 r
= fn(ti
, cache
->cache_dev
, 0, get_dev_size(cache
->cache_dev
), data
);
3430 r
= fn(ti
, cache
->origin_dev
, 0, ti
->len
, data
);
3435 static bool origin_dev_supports_discard(struct block_device
*origin_bdev
)
3437 struct request_queue
*q
= bdev_get_queue(origin_bdev
);
3439 return q
&& blk_queue_discard(q
);
3443 * If discard_passdown was enabled verify that the origin device
3444 * supports discards. Disable discard_passdown if not.
3446 static void disable_passdown_if_not_supported(struct cache
*cache
)
3448 struct block_device
*origin_bdev
= cache
->origin_dev
->bdev
;
3449 struct queue_limits
*origin_limits
= &bdev_get_queue(origin_bdev
)->limits
;
3450 const char *reason
= NULL
;
3451 char buf
[BDEVNAME_SIZE
];
3453 if (!cache
->features
.discard_passdown
)
3456 if (!origin_dev_supports_discard(origin_bdev
))
3457 reason
= "discard unsupported";
3459 else if (origin_limits
->max_discard_sectors
< cache
->sectors_per_block
)
3460 reason
= "max discard sectors smaller than a block";
3463 DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3464 bdevname(origin_bdev
, buf
), reason
);
3465 cache
->features
.discard_passdown
= false;
3469 static void set_discard_limits(struct cache
*cache
, struct queue_limits
*limits
)
3471 struct block_device
*origin_bdev
= cache
->origin_dev
->bdev
;
3472 struct queue_limits
*origin_limits
= &bdev_get_queue(origin_bdev
)->limits
;
3474 if (!cache
->features
.discard_passdown
) {
3475 /* No passdown is done so setting own virtual limits */
3476 limits
->max_discard_sectors
= min_t(sector_t
, cache
->discard_block_size
* 1024,
3477 cache
->origin_sectors
);
3478 limits
->discard_granularity
= cache
->discard_block_size
<< SECTOR_SHIFT
;
3483 * cache_iterate_devices() is stacking both origin and fast device limits
3484 * but discards aren't passed to fast device, so inherit origin's limits.
3486 limits
->max_discard_sectors
= origin_limits
->max_discard_sectors
;
3487 limits
->max_hw_discard_sectors
= origin_limits
->max_hw_discard_sectors
;
3488 limits
->discard_granularity
= origin_limits
->discard_granularity
;
3489 limits
->discard_alignment
= origin_limits
->discard_alignment
;
3490 limits
->discard_misaligned
= origin_limits
->discard_misaligned
;
3493 static void cache_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3495 struct cache
*cache
= ti
->private;
3496 uint64_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3499 * If the system-determined stacked limits are compatible with the
3500 * cache's blocksize (io_opt is a factor) do not override them.
3502 if (io_opt_sectors
< cache
->sectors_per_block
||
3503 do_div(io_opt_sectors
, cache
->sectors_per_block
)) {
3504 blk_limits_io_min(limits
, cache
->sectors_per_block
<< SECTOR_SHIFT
);
3505 blk_limits_io_opt(limits
, cache
->sectors_per_block
<< SECTOR_SHIFT
);
3508 disable_passdown_if_not_supported(cache
);
3509 set_discard_limits(cache
, limits
);
3512 /*----------------------------------------------------------------*/
3514 static struct target_type cache_target
= {
3516 .version
= {2, 1, 0},
3517 .module
= THIS_MODULE
,
3521 .end_io
= cache_end_io
,
3522 .postsuspend
= cache_postsuspend
,
3523 .preresume
= cache_preresume
,
3524 .resume
= cache_resume
,
3525 .status
= cache_status
,
3526 .message
= cache_message
,
3527 .iterate_devices
= cache_iterate_devices
,
3528 .io_hints
= cache_io_hints
,
3531 static int __init
dm_cache_init(void)
3535 migration_cache
= KMEM_CACHE(dm_cache_migration
, 0);
3536 if (!migration_cache
)
3539 r
= dm_register_target(&cache_target
);
3541 DMERR("cache target registration failed: %d", r
);
3542 kmem_cache_destroy(migration_cache
);
3549 static void __exit
dm_cache_exit(void)
3551 dm_unregister_target(&cache_target
);
3552 kmem_cache_destroy(migration_cache
);
3555 module_init(dm_cache_init
);
3556 module_exit(dm_cache_exit
);
3558 MODULE_DESCRIPTION(DM_NAME
" cache target");
3559 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3560 MODULE_LICENSE("GPL");