1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid1.c : Multiple Devices driver for Linux
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
9 * RAID-1 management functions.
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
33 #include <trace/events/block.h>
37 #include "md-bitmap.h"
39 #define UNSUPPORTED_MDDEV_FLAGS \
40 ((1L << MD_HAS_JOURNAL) | \
41 (1L << MD_JOURNAL_CLEAN) | \
42 (1L << MD_HAS_PPL) | \
43 (1L << MD_HAS_MULTIPLE_PPLS))
45 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
);
46 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
);
48 #define raid1_log(md, fmt, args...) \
49 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
53 static int check_and_add_wb(struct md_rdev
*rdev
, sector_t lo
, sector_t hi
)
55 struct wb_info
*wi
, *temp_wi
;
58 struct mddev
*mddev
= rdev
->mddev
;
60 wi
= mempool_alloc(mddev
->wb_info_pool
, GFP_NOIO
);
62 spin_lock_irqsave(&rdev
->wb_list_lock
, flags
);
63 list_for_each_entry(temp_wi
, &rdev
->wb_list
, list
) {
64 /* collision happened */
65 if (hi
> temp_wi
->lo
&& lo
< temp_wi
->hi
) {
74 list_add(&wi
->list
, &rdev
->wb_list
);
76 mempool_free(wi
, mddev
->wb_info_pool
);
77 spin_unlock_irqrestore(&rdev
->wb_list_lock
, flags
);
82 static void remove_wb(struct md_rdev
*rdev
, sector_t lo
, sector_t hi
)
87 struct mddev
*mddev
= rdev
->mddev
;
89 spin_lock_irqsave(&rdev
->wb_list_lock
, flags
);
90 list_for_each_entry(wi
, &rdev
->wb_list
, list
)
91 if (hi
== wi
->hi
&& lo
== wi
->lo
) {
93 mempool_free(wi
, mddev
->wb_info_pool
);
99 WARN(1, "The write behind IO is not recorded\n");
100 spin_unlock_irqrestore(&rdev
->wb_list_lock
, flags
);
101 wake_up(&rdev
->wb_io_wait
);
105 * for resync bio, r1bio pointer can be retrieved from the per-bio
106 * 'struct resync_pages'.
108 static inline struct r1bio
*get_resync_r1bio(struct bio
*bio
)
110 return get_resync_pages(bio
)->raid_bio
;
113 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
115 struct pool_info
*pi
= data
;
116 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
118 /* allocate a r1bio with room for raid_disks entries in the bios array */
119 return kzalloc(size
, gfp_flags
);
122 #define RESYNC_DEPTH 32
123 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
124 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
125 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
126 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
127 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
129 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
131 struct pool_info
*pi
= data
;
132 struct r1bio
*r1_bio
;
136 struct resync_pages
*rps
;
138 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
142 rps
= kmalloc_array(pi
->raid_disks
, sizeof(struct resync_pages
),
148 * Allocate bios : 1 for reading, n-1 for writing
150 for (j
= pi
->raid_disks
; j
-- ; ) {
151 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
154 r1_bio
->bios
[j
] = bio
;
157 * Allocate RESYNC_PAGES data pages and attach them to
159 * If this is a user-requested check/repair, allocate
160 * RESYNC_PAGES for each bio.
162 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
163 need_pages
= pi
->raid_disks
;
166 for (j
= 0; j
< pi
->raid_disks
; j
++) {
167 struct resync_pages
*rp
= &rps
[j
];
169 bio
= r1_bio
->bios
[j
];
171 if (j
< need_pages
) {
172 if (resync_alloc_pages(rp
, gfp_flags
))
175 memcpy(rp
, &rps
[0], sizeof(*rp
));
176 resync_get_all_pages(rp
);
179 rp
->raid_bio
= r1_bio
;
180 bio
->bi_private
= rp
;
183 r1_bio
->master_bio
= NULL
;
189 resync_free_pages(&rps
[j
]);
192 while (++j
< pi
->raid_disks
)
193 bio_put(r1_bio
->bios
[j
]);
197 rbio_pool_free(r1_bio
, data
);
201 static void r1buf_pool_free(void *__r1_bio
, void *data
)
203 struct pool_info
*pi
= data
;
205 struct r1bio
*r1bio
= __r1_bio
;
206 struct resync_pages
*rp
= NULL
;
208 for (i
= pi
->raid_disks
; i
--; ) {
209 rp
= get_resync_pages(r1bio
->bios
[i
]);
210 resync_free_pages(rp
);
211 bio_put(r1bio
->bios
[i
]);
214 /* resync pages array stored in the 1st bio's .bi_private */
217 rbio_pool_free(r1bio
, data
);
220 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
224 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
225 struct bio
**bio
= r1_bio
->bios
+ i
;
226 if (!BIO_SPECIAL(*bio
))
232 static void free_r1bio(struct r1bio
*r1_bio
)
234 struct r1conf
*conf
= r1_bio
->mddev
->private;
236 put_all_bios(conf
, r1_bio
);
237 mempool_free(r1_bio
, &conf
->r1bio_pool
);
240 static void put_buf(struct r1bio
*r1_bio
)
242 struct r1conf
*conf
= r1_bio
->mddev
->private;
243 sector_t sect
= r1_bio
->sector
;
246 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
247 struct bio
*bio
= r1_bio
->bios
[i
];
249 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
252 mempool_free(r1_bio
, &conf
->r1buf_pool
);
254 lower_barrier(conf
, sect
);
257 static void reschedule_retry(struct r1bio
*r1_bio
)
260 struct mddev
*mddev
= r1_bio
->mddev
;
261 struct r1conf
*conf
= mddev
->private;
264 idx
= sector_to_idx(r1_bio
->sector
);
265 spin_lock_irqsave(&conf
->device_lock
, flags
);
266 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
267 atomic_inc(&conf
->nr_queued
[idx
]);
268 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
270 wake_up(&conf
->wait_barrier
);
271 md_wakeup_thread(mddev
->thread
);
275 * raid_end_bio_io() is called when we have finished servicing a mirrored
276 * operation and are ready to return a success/failure code to the buffer
279 static void call_bio_endio(struct r1bio
*r1_bio
)
281 struct bio
*bio
= r1_bio
->master_bio
;
282 struct r1conf
*conf
= r1_bio
->mddev
->private;
284 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
285 bio
->bi_status
= BLK_STS_IOERR
;
289 * Wake up any possible resync thread that waits for the device
292 allow_barrier(conf
, r1_bio
->sector
);
295 static void raid_end_bio_io(struct r1bio
*r1_bio
)
297 struct bio
*bio
= r1_bio
->master_bio
;
299 /* if nobody has done the final endio yet, do it now */
300 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
301 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
302 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
303 (unsigned long long) bio
->bi_iter
.bi_sector
,
304 (unsigned long long) bio_end_sector(bio
) - 1);
306 call_bio_endio(r1_bio
);
312 * Update disk head position estimator based on IRQ completion info.
314 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
316 struct r1conf
*conf
= r1_bio
->mddev
->private;
318 conf
->mirrors
[disk
].head_position
=
319 r1_bio
->sector
+ (r1_bio
->sectors
);
323 * Find the disk number which triggered given bio
325 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
328 struct r1conf
*conf
= r1_bio
->mddev
->private;
329 int raid_disks
= conf
->raid_disks
;
331 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
332 if (r1_bio
->bios
[mirror
] == bio
)
335 BUG_ON(mirror
== raid_disks
* 2);
336 update_head_pos(mirror
, r1_bio
);
341 static void raid1_end_read_request(struct bio
*bio
)
343 int uptodate
= !bio
->bi_status
;
344 struct r1bio
*r1_bio
= bio
->bi_private
;
345 struct r1conf
*conf
= r1_bio
->mddev
->private;
346 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
349 * this branch is our 'one mirror IO has finished' event handler:
351 update_head_pos(r1_bio
->read_disk
, r1_bio
);
354 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
355 else if (test_bit(FailFast
, &rdev
->flags
) &&
356 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
357 /* This was a fail-fast read so we definitely
361 /* If all other devices have failed, we want to return
362 * the error upwards rather than fail the last device.
363 * Here we redefine "uptodate" to mean "Don't want to retry"
366 spin_lock_irqsave(&conf
->device_lock
, flags
);
367 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
368 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
369 test_bit(In_sync
, &rdev
->flags
)))
371 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
375 raid_end_bio_io(r1_bio
);
376 rdev_dec_pending(rdev
, conf
->mddev
);
381 char b
[BDEVNAME_SIZE
];
382 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
384 bdevname(rdev
->bdev
, b
),
385 (unsigned long long)r1_bio
->sector
);
386 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
387 reschedule_retry(r1_bio
);
388 /* don't drop the reference on read_disk yet */
392 static void close_write(struct r1bio
*r1_bio
)
394 /* it really is the end of this request */
395 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
396 bio_free_pages(r1_bio
->behind_master_bio
);
397 bio_put(r1_bio
->behind_master_bio
);
398 r1_bio
->behind_master_bio
= NULL
;
400 /* clear the bitmap if all writes complete successfully */
401 md_bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
403 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
404 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
405 md_write_end(r1_bio
->mddev
);
408 static void r1_bio_write_done(struct r1bio
*r1_bio
)
410 if (!atomic_dec_and_test(&r1_bio
->remaining
))
413 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
414 reschedule_retry(r1_bio
);
417 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
418 reschedule_retry(r1_bio
);
420 raid_end_bio_io(r1_bio
);
424 static void raid1_end_write_request(struct bio
*bio
)
426 struct r1bio
*r1_bio
= bio
->bi_private
;
427 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
428 struct r1conf
*conf
= r1_bio
->mddev
->private;
429 struct bio
*to_put
= NULL
;
430 int mirror
= find_bio_disk(r1_bio
, bio
);
431 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
434 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
437 * 'one mirror IO has finished' event handler:
439 if (bio
->bi_status
&& !discard_error
) {
440 set_bit(WriteErrorSeen
, &rdev
->flags
);
441 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
442 set_bit(MD_RECOVERY_NEEDED
, &
443 conf
->mddev
->recovery
);
445 if (test_bit(FailFast
, &rdev
->flags
) &&
446 (bio
->bi_opf
& MD_FAILFAST
) &&
447 /* We never try FailFast to WriteMostly devices */
448 !test_bit(WriteMostly
, &rdev
->flags
)) {
449 md_error(r1_bio
->mddev
, rdev
);
453 * When the device is faulty, it is not necessary to
454 * handle write error.
455 * For failfast, this is the only remaining device,
456 * We need to retry the write without FailFast.
458 if (!test_bit(Faulty
, &rdev
->flags
))
459 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
461 /* Finished with this branch */
462 r1_bio
->bios
[mirror
] = NULL
;
467 * Set R1BIO_Uptodate in our master bio, so that we
468 * will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer
472 * The 'master' represents the composite IO operation
473 * to user-side. So if something waits for IO, then it
474 * will wait for the 'master' bio.
479 r1_bio
->bios
[mirror
] = NULL
;
482 * Do not set R1BIO_Uptodate if the current device is
483 * rebuilding or Faulty. This is because we cannot use
484 * such device for properly reading the data back (we could
485 * potentially use it, if the current write would have felt
486 * before rdev->recovery_offset, but for simplicity we don't
489 if (test_bit(In_sync
, &rdev
->flags
) &&
490 !test_bit(Faulty
, &rdev
->flags
))
491 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
493 /* Maybe we can clear some bad blocks. */
494 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
495 &first_bad
, &bad_sectors
) && !discard_error
) {
496 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
497 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
502 if (test_bit(WBCollisionCheck
, &rdev
->flags
)) {
503 sector_t lo
= r1_bio
->sector
;
504 sector_t hi
= r1_bio
->sector
+ r1_bio
->sectors
;
506 remove_wb(rdev
, lo
, hi
);
508 if (test_bit(WriteMostly
, &rdev
->flags
))
509 atomic_dec(&r1_bio
->behind_remaining
);
512 * In behind mode, we ACK the master bio once the I/O
513 * has safely reached all non-writemostly
514 * disks. Setting the Returned bit ensures that this
515 * gets done only once -- we don't ever want to return
516 * -EIO here, instead we'll wait
518 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
519 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
520 /* Maybe we can return now */
521 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
522 struct bio
*mbio
= r1_bio
->master_bio
;
523 pr_debug("raid1: behind end write sectors"
525 (unsigned long long) mbio
->bi_iter
.bi_sector
,
526 (unsigned long long) bio_end_sector(mbio
) - 1);
527 call_bio_endio(r1_bio
);
531 if (r1_bio
->bios
[mirror
] == NULL
)
532 rdev_dec_pending(rdev
, conf
->mddev
);
535 * Let's see if all mirrored write operations have finished
538 r1_bio_write_done(r1_bio
);
544 static sector_t
align_to_barrier_unit_end(sector_t start_sector
,
549 WARN_ON(sectors
== 0);
551 * len is the number of sectors from start_sector to end of the
552 * barrier unit which start_sector belongs to.
554 len
= round_up(start_sector
+ 1, BARRIER_UNIT_SECTOR_SIZE
) -
564 * This routine returns the disk from which the requested read should
565 * be done. There is a per-array 'next expected sequential IO' sector
566 * number - if this matches on the next IO then we use the last disk.
567 * There is also a per-disk 'last know head position' sector that is
568 * maintained from IRQ contexts, both the normal and the resync IO
569 * completion handlers update this position correctly. If there is no
570 * perfect sequential match then we pick the disk whose head is closest.
572 * If there are 2 mirrors in the same 2 devices, performance degrades
573 * because position is mirror, not device based.
575 * The rdev for the device selected will have nr_pending incremented.
577 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
579 const sector_t this_sector
= r1_bio
->sector
;
581 int best_good_sectors
;
582 int best_disk
, best_dist_disk
, best_pending_disk
;
586 unsigned int min_pending
;
587 struct md_rdev
*rdev
;
589 int choose_next_idle
;
593 * Check if we can balance. We can balance on the whole
594 * device if no resync is going on, or below the resync window.
595 * We take the first readable disk when above the resync window.
598 sectors
= r1_bio
->sectors
;
601 best_dist
= MaxSector
;
602 best_pending_disk
= -1;
603 min_pending
= UINT_MAX
;
604 best_good_sectors
= 0;
606 choose_next_idle
= 0;
607 clear_bit(R1BIO_FailFast
, &r1_bio
->state
);
609 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
610 (mddev_is_clustered(conf
->mddev
) &&
611 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
612 this_sector
+ sectors
)))
617 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
621 unsigned int pending
;
624 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
625 if (r1_bio
->bios
[disk
] == IO_BLOCKED
627 || test_bit(Faulty
, &rdev
->flags
))
629 if (!test_bit(In_sync
, &rdev
->flags
) &&
630 rdev
->recovery_offset
< this_sector
+ sectors
)
632 if (test_bit(WriteMostly
, &rdev
->flags
)) {
633 /* Don't balance among write-mostly, just
634 * use the first as a last resort */
635 if (best_dist_disk
< 0) {
636 if (is_badblock(rdev
, this_sector
, sectors
,
637 &first_bad
, &bad_sectors
)) {
638 if (first_bad
<= this_sector
)
639 /* Cannot use this */
641 best_good_sectors
= first_bad
- this_sector
;
643 best_good_sectors
= sectors
;
644 best_dist_disk
= disk
;
645 best_pending_disk
= disk
;
649 /* This is a reasonable device to use. It might
652 if (is_badblock(rdev
, this_sector
, sectors
,
653 &first_bad
, &bad_sectors
)) {
654 if (best_dist
< MaxSector
)
655 /* already have a better device */
657 if (first_bad
<= this_sector
) {
658 /* cannot read here. If this is the 'primary'
659 * device, then we must not read beyond
660 * bad_sectors from another device..
662 bad_sectors
-= (this_sector
- first_bad
);
663 if (choose_first
&& sectors
> bad_sectors
)
664 sectors
= bad_sectors
;
665 if (best_good_sectors
> sectors
)
666 best_good_sectors
= sectors
;
669 sector_t good_sectors
= first_bad
- this_sector
;
670 if (good_sectors
> best_good_sectors
) {
671 best_good_sectors
= good_sectors
;
679 if ((sectors
> best_good_sectors
) && (best_disk
>= 0))
681 best_good_sectors
= sectors
;
685 /* At least two disks to choose from so failfast is OK */
686 set_bit(R1BIO_FailFast
, &r1_bio
->state
);
688 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
689 has_nonrot_disk
|= nonrot
;
690 pending
= atomic_read(&rdev
->nr_pending
);
691 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
696 /* Don't change to another disk for sequential reads */
697 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
699 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
700 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
704 * If buffered sequential IO size exceeds optimal
705 * iosize, check if there is idle disk. If yes, choose
706 * the idle disk. read_balance could already choose an
707 * idle disk before noticing it's a sequential IO in
708 * this disk. This doesn't matter because this disk
709 * will idle, next time it will be utilized after the
710 * first disk has IO size exceeds optimal iosize. In
711 * this way, iosize of the first disk will be optimal
712 * iosize at least. iosize of the second disk might be
713 * small, but not a big deal since when the second disk
714 * starts IO, the first disk is likely still busy.
716 if (nonrot
&& opt_iosize
> 0 &&
717 mirror
->seq_start
!= MaxSector
&&
718 mirror
->next_seq_sect
> opt_iosize
&&
719 mirror
->next_seq_sect
- opt_iosize
>=
721 choose_next_idle
= 1;
727 if (choose_next_idle
)
730 if (min_pending
> pending
) {
731 min_pending
= pending
;
732 best_pending_disk
= disk
;
735 if (dist
< best_dist
) {
737 best_dist_disk
= disk
;
742 * If all disks are rotational, choose the closest disk. If any disk is
743 * non-rotational, choose the disk with less pending request even the
744 * disk is rotational, which might/might not be optimal for raids with
745 * mixed ratation/non-rotational disks depending on workload.
747 if (best_disk
== -1) {
748 if (has_nonrot_disk
|| min_pending
== 0)
749 best_disk
= best_pending_disk
;
751 best_disk
= best_dist_disk
;
754 if (best_disk
>= 0) {
755 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
758 atomic_inc(&rdev
->nr_pending
);
759 sectors
= best_good_sectors
;
761 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
762 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
764 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
767 *max_sectors
= sectors
;
772 static int raid1_congested(struct mddev
*mddev
, int bits
)
774 struct r1conf
*conf
= mddev
->private;
777 if ((bits
& (1 << WB_async_congested
)) &&
778 conf
->pending_count
>= max_queued_requests
)
782 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
783 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
784 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
785 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
789 /* Note the '|| 1' - when read_balance prefers
790 * non-congested targets, it can be removed
792 if ((bits
& (1 << WB_async_congested
)) || 1)
793 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
795 ret
&= bdi_congested(q
->backing_dev_info
, bits
);
802 static void flush_bio_list(struct r1conf
*conf
, struct bio
*bio
)
804 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
805 md_bitmap_unplug(conf
->mddev
->bitmap
);
806 wake_up(&conf
->wait_barrier
);
808 while (bio
) { /* submit pending writes */
809 struct bio
*next
= bio
->bi_next
;
810 struct md_rdev
*rdev
= (void *)bio
->bi_disk
;
812 bio_set_dev(bio
, rdev
->bdev
);
813 if (test_bit(Faulty
, &rdev
->flags
)) {
815 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
816 !blk_queue_discard(bio
->bi_disk
->queue
)))
820 generic_make_request(bio
);
825 static void flush_pending_writes(struct r1conf
*conf
)
827 /* Any writes that have been queued but are awaiting
828 * bitmap updates get flushed here.
830 spin_lock_irq(&conf
->device_lock
);
832 if (conf
->pending_bio_list
.head
) {
833 struct blk_plug plug
;
836 bio
= bio_list_get(&conf
->pending_bio_list
);
837 conf
->pending_count
= 0;
838 spin_unlock_irq(&conf
->device_lock
);
841 * As this is called in a wait_event() loop (see freeze_array),
842 * current->state might be TASK_UNINTERRUPTIBLE which will
843 * cause a warning when we prepare to wait again. As it is
844 * rare that this path is taken, it is perfectly safe to force
845 * us to go around the wait_event() loop again, so the warning
846 * is a false-positive. Silence the warning by resetting
849 __set_current_state(TASK_RUNNING
);
850 blk_start_plug(&plug
);
851 flush_bio_list(conf
, bio
);
852 blk_finish_plug(&plug
);
854 spin_unlock_irq(&conf
->device_lock
);
858 * Sometimes we need to suspend IO while we do something else,
859 * either some resync/recovery, or reconfigure the array.
860 * To do this we raise a 'barrier'.
861 * The 'barrier' is a counter that can be raised multiple times
862 * to count how many activities are happening which preclude
864 * We can only raise the barrier if there is no pending IO.
865 * i.e. if nr_pending == 0.
866 * We choose only to raise the barrier if no-one is waiting for the
867 * barrier to go down. This means that as soon as an IO request
868 * is ready, no other operations which require a barrier will start
869 * until the IO request has had a chance.
871 * So: regular IO calls 'wait_barrier'. When that returns there
872 * is no backgroup IO happening, It must arrange to call
873 * allow_barrier when it has finished its IO.
874 * backgroup IO calls must call raise_barrier. Once that returns
875 * there is no normal IO happeing. It must arrange to call
876 * lower_barrier when the particular background IO completes.
878 * If resync/recovery is interrupted, returns -EINTR;
879 * Otherwise, returns 0.
881 static int raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
883 int idx
= sector_to_idx(sector_nr
);
885 spin_lock_irq(&conf
->resync_lock
);
887 /* Wait until no block IO is waiting */
888 wait_event_lock_irq(conf
->wait_barrier
,
889 !atomic_read(&conf
->nr_waiting
[idx
]),
892 /* block any new IO from starting */
893 atomic_inc(&conf
->barrier
[idx
]);
895 * In raise_barrier() we firstly increase conf->barrier[idx] then
896 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
897 * increase conf->nr_pending[idx] then check conf->barrier[idx].
898 * A memory barrier here to make sure conf->nr_pending[idx] won't
899 * be fetched before conf->barrier[idx] is increased. Otherwise
900 * there will be a race between raise_barrier() and _wait_barrier().
902 smp_mb__after_atomic();
904 /* For these conditions we must wait:
905 * A: while the array is in frozen state
906 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
907 * existing in corresponding I/O barrier bucket.
908 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
909 * max resync count which allowed on current I/O barrier bucket.
911 wait_event_lock_irq(conf
->wait_barrier
,
912 (!conf
->array_frozen
&&
913 !atomic_read(&conf
->nr_pending
[idx
]) &&
914 atomic_read(&conf
->barrier
[idx
]) < RESYNC_DEPTH
) ||
915 test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
),
918 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
919 atomic_dec(&conf
->barrier
[idx
]);
920 spin_unlock_irq(&conf
->resync_lock
);
921 wake_up(&conf
->wait_barrier
);
925 atomic_inc(&conf
->nr_sync_pending
);
926 spin_unlock_irq(&conf
->resync_lock
);
931 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
)
933 int idx
= sector_to_idx(sector_nr
);
935 BUG_ON(atomic_read(&conf
->barrier
[idx
]) <= 0);
937 atomic_dec(&conf
->barrier
[idx
]);
938 atomic_dec(&conf
->nr_sync_pending
);
939 wake_up(&conf
->wait_barrier
);
942 static void _wait_barrier(struct r1conf
*conf
, int idx
)
945 * We need to increase conf->nr_pending[idx] very early here,
946 * then raise_barrier() can be blocked when it waits for
947 * conf->nr_pending[idx] to be 0. Then we can avoid holding
948 * conf->resync_lock when there is no barrier raised in same
949 * barrier unit bucket. Also if the array is frozen, I/O
950 * should be blocked until array is unfrozen.
952 atomic_inc(&conf
->nr_pending
[idx
]);
954 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
955 * check conf->barrier[idx]. In raise_barrier() we firstly increase
956 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
957 * barrier is necessary here to make sure conf->barrier[idx] won't be
958 * fetched before conf->nr_pending[idx] is increased. Otherwise there
959 * will be a race between _wait_barrier() and raise_barrier().
961 smp_mb__after_atomic();
964 * Don't worry about checking two atomic_t variables at same time
965 * here. If during we check conf->barrier[idx], the array is
966 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
967 * 0, it is safe to return and make the I/O continue. Because the
968 * array is frozen, all I/O returned here will eventually complete
969 * or be queued, no race will happen. See code comment in
972 if (!READ_ONCE(conf
->array_frozen
) &&
973 !atomic_read(&conf
->barrier
[idx
]))
977 * After holding conf->resync_lock, conf->nr_pending[idx]
978 * should be decreased before waiting for barrier to drop.
979 * Otherwise, we may encounter a race condition because
980 * raise_barrer() might be waiting for conf->nr_pending[idx]
981 * to be 0 at same time.
983 spin_lock_irq(&conf
->resync_lock
);
984 atomic_inc(&conf
->nr_waiting
[idx
]);
985 atomic_dec(&conf
->nr_pending
[idx
]);
987 * In case freeze_array() is waiting for
988 * get_unqueued_pending() == extra
990 wake_up(&conf
->wait_barrier
);
991 /* Wait for the barrier in same barrier unit bucket to drop. */
992 wait_event_lock_irq(conf
->wait_barrier
,
993 !conf
->array_frozen
&&
994 !atomic_read(&conf
->barrier
[idx
]),
996 atomic_inc(&conf
->nr_pending
[idx
]);
997 atomic_dec(&conf
->nr_waiting
[idx
]);
998 spin_unlock_irq(&conf
->resync_lock
);
1001 static void wait_read_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1003 int idx
= sector_to_idx(sector_nr
);
1006 * Very similar to _wait_barrier(). The difference is, for read
1007 * I/O we don't need wait for sync I/O, but if the whole array
1008 * is frozen, the read I/O still has to wait until the array is
1009 * unfrozen. Since there is no ordering requirement with
1010 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1012 atomic_inc(&conf
->nr_pending
[idx
]);
1014 if (!READ_ONCE(conf
->array_frozen
))
1017 spin_lock_irq(&conf
->resync_lock
);
1018 atomic_inc(&conf
->nr_waiting
[idx
]);
1019 atomic_dec(&conf
->nr_pending
[idx
]);
1021 * In case freeze_array() is waiting for
1022 * get_unqueued_pending() == extra
1024 wake_up(&conf
->wait_barrier
);
1025 /* Wait for array to be unfrozen */
1026 wait_event_lock_irq(conf
->wait_barrier
,
1027 !conf
->array_frozen
,
1029 atomic_inc(&conf
->nr_pending
[idx
]);
1030 atomic_dec(&conf
->nr_waiting
[idx
]);
1031 spin_unlock_irq(&conf
->resync_lock
);
1034 static void wait_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1036 int idx
= sector_to_idx(sector_nr
);
1038 _wait_barrier(conf
, idx
);
1041 static void _allow_barrier(struct r1conf
*conf
, int idx
)
1043 atomic_dec(&conf
->nr_pending
[idx
]);
1044 wake_up(&conf
->wait_barrier
);
1047 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1049 int idx
= sector_to_idx(sector_nr
);
1051 _allow_barrier(conf
, idx
);
1054 /* conf->resync_lock should be held */
1055 static int get_unqueued_pending(struct r1conf
*conf
)
1059 ret
= atomic_read(&conf
->nr_sync_pending
);
1060 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1061 ret
+= atomic_read(&conf
->nr_pending
[idx
]) -
1062 atomic_read(&conf
->nr_queued
[idx
]);
1067 static void freeze_array(struct r1conf
*conf
, int extra
)
1069 /* Stop sync I/O and normal I/O and wait for everything to
1071 * This is called in two situations:
1072 * 1) management command handlers (reshape, remove disk, quiesce).
1073 * 2) one normal I/O request failed.
1075 * After array_frozen is set to 1, new sync IO will be blocked at
1076 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1077 * or wait_read_barrier(). The flying I/Os will either complete or be
1078 * queued. When everything goes quite, there are only queued I/Os left.
1080 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1081 * barrier bucket index which this I/O request hits. When all sync and
1082 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1083 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1084 * in handle_read_error(), we may call freeze_array() before trying to
1085 * fix the read error. In this case, the error read I/O is not queued,
1086 * so get_unqueued_pending() == 1.
1088 * Therefore before this function returns, we need to wait until
1089 * get_unqueued_pendings(conf) gets equal to extra. For
1090 * normal I/O context, extra is 1, in rested situations extra is 0.
1092 spin_lock_irq(&conf
->resync_lock
);
1093 conf
->array_frozen
= 1;
1094 raid1_log(conf
->mddev
, "wait freeze");
1095 wait_event_lock_irq_cmd(
1097 get_unqueued_pending(conf
) == extra
,
1099 flush_pending_writes(conf
));
1100 spin_unlock_irq(&conf
->resync_lock
);
1102 static void unfreeze_array(struct r1conf
*conf
)
1104 /* reverse the effect of the freeze */
1105 spin_lock_irq(&conf
->resync_lock
);
1106 conf
->array_frozen
= 0;
1107 spin_unlock_irq(&conf
->resync_lock
);
1108 wake_up(&conf
->wait_barrier
);
1111 static void alloc_behind_master_bio(struct r1bio
*r1_bio
,
1114 int size
= bio
->bi_iter
.bi_size
;
1115 unsigned vcnt
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1117 struct bio
*behind_bio
= NULL
;
1119 behind_bio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, r1_bio
->mddev
);
1123 /* discard op, we don't support writezero/writesame yet */
1124 if (!bio_has_data(bio
)) {
1125 behind_bio
->bi_iter
.bi_size
= size
;
1129 behind_bio
->bi_write_hint
= bio
->bi_write_hint
;
1131 while (i
< vcnt
&& size
) {
1133 int len
= min_t(int, PAGE_SIZE
, size
);
1135 page
= alloc_page(GFP_NOIO
);
1136 if (unlikely(!page
))
1139 bio_add_page(behind_bio
, page
, len
, 0);
1145 bio_copy_data(behind_bio
, bio
);
1147 r1_bio
->behind_master_bio
= behind_bio
;
1148 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1153 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1154 bio
->bi_iter
.bi_size
);
1155 bio_free_pages(behind_bio
);
1156 bio_put(behind_bio
);
1159 struct raid1_plug_cb
{
1160 struct blk_plug_cb cb
;
1161 struct bio_list pending
;
1165 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1167 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1169 struct mddev
*mddev
= plug
->cb
.data
;
1170 struct r1conf
*conf
= mddev
->private;
1173 if (from_schedule
|| current
->bio_list
) {
1174 spin_lock_irq(&conf
->device_lock
);
1175 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1176 conf
->pending_count
+= plug
->pending_cnt
;
1177 spin_unlock_irq(&conf
->device_lock
);
1178 wake_up(&conf
->wait_barrier
);
1179 md_wakeup_thread(mddev
->thread
);
1184 /* we aren't scheduling, so we can do the write-out directly. */
1185 bio
= bio_list_get(&plug
->pending
);
1186 flush_bio_list(conf
, bio
);
1190 static void init_r1bio(struct r1bio
*r1_bio
, struct mddev
*mddev
, struct bio
*bio
)
1192 r1_bio
->master_bio
= bio
;
1193 r1_bio
->sectors
= bio_sectors(bio
);
1195 r1_bio
->mddev
= mddev
;
1196 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1199 static inline struct r1bio
*
1200 alloc_r1bio(struct mddev
*mddev
, struct bio
*bio
)
1202 struct r1conf
*conf
= mddev
->private;
1203 struct r1bio
*r1_bio
;
1205 r1_bio
= mempool_alloc(&conf
->r1bio_pool
, GFP_NOIO
);
1206 /* Ensure no bio records IO_BLOCKED */
1207 memset(r1_bio
->bios
, 0, conf
->raid_disks
* sizeof(r1_bio
->bios
[0]));
1208 init_r1bio(r1_bio
, mddev
, bio
);
1212 static void raid1_read_request(struct mddev
*mddev
, struct bio
*bio
,
1213 int max_read_sectors
, struct r1bio
*r1_bio
)
1215 struct r1conf
*conf
= mddev
->private;
1216 struct raid1_info
*mirror
;
1217 struct bio
*read_bio
;
1218 struct bitmap
*bitmap
= mddev
->bitmap
;
1219 const int op
= bio_op(bio
);
1220 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1223 bool print_msg
= !!r1_bio
;
1224 char b
[BDEVNAME_SIZE
];
1227 * If r1_bio is set, we are blocking the raid1d thread
1228 * so there is a tiny risk of deadlock. So ask for
1229 * emergency memory if needed.
1231 gfp_t gfp
= r1_bio
? (GFP_NOIO
| __GFP_HIGH
) : GFP_NOIO
;
1234 /* Need to get the block device name carefully */
1235 struct md_rdev
*rdev
;
1237 rdev
= rcu_dereference(conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1239 bdevname(rdev
->bdev
, b
);
1246 * Still need barrier for READ in case that whole
1249 wait_read_barrier(conf
, bio
->bi_iter
.bi_sector
);
1252 r1_bio
= alloc_r1bio(mddev
, bio
);
1254 init_r1bio(r1_bio
, mddev
, bio
);
1255 r1_bio
->sectors
= max_read_sectors
;
1258 * make_request() can abort the operation when read-ahead is being
1259 * used and no empty request is available.
1261 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1264 /* couldn't find anywhere to read from */
1266 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1269 (unsigned long long)r1_bio
->sector
);
1271 raid_end_bio_io(r1_bio
);
1274 mirror
= conf
->mirrors
+ rdisk
;
1277 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1279 (unsigned long long)r1_bio
->sector
,
1280 bdevname(mirror
->rdev
->bdev
, b
));
1282 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1285 * Reading from a write-mostly device must take care not to
1286 * over-take any writes that are 'behind'
1288 raid1_log(mddev
, "wait behind writes");
1289 wait_event(bitmap
->behind_wait
,
1290 atomic_read(&bitmap
->behind_writes
) == 0);
1293 if (max_sectors
< bio_sectors(bio
)) {
1294 struct bio
*split
= bio_split(bio
, max_sectors
,
1295 gfp
, &conf
->bio_split
);
1296 bio_chain(split
, bio
);
1297 generic_make_request(bio
);
1299 r1_bio
->master_bio
= bio
;
1300 r1_bio
->sectors
= max_sectors
;
1303 r1_bio
->read_disk
= rdisk
;
1305 read_bio
= bio_clone_fast(bio
, gfp
, &mddev
->bio_set
);
1307 r1_bio
->bios
[rdisk
] = read_bio
;
1309 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1310 mirror
->rdev
->data_offset
;
1311 bio_set_dev(read_bio
, mirror
->rdev
->bdev
);
1312 read_bio
->bi_end_io
= raid1_end_read_request
;
1313 bio_set_op_attrs(read_bio
, op
, do_sync
);
1314 if (test_bit(FailFast
, &mirror
->rdev
->flags
) &&
1315 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
1316 read_bio
->bi_opf
|= MD_FAILFAST
;
1317 read_bio
->bi_private
= r1_bio
;
1320 trace_block_bio_remap(read_bio
->bi_disk
->queue
, read_bio
,
1321 disk_devt(mddev
->gendisk
), r1_bio
->sector
);
1323 generic_make_request(read_bio
);
1326 static void raid1_write_request(struct mddev
*mddev
, struct bio
*bio
,
1327 int max_write_sectors
)
1329 struct r1conf
*conf
= mddev
->private;
1330 struct r1bio
*r1_bio
;
1332 struct bitmap
*bitmap
= mddev
->bitmap
;
1333 unsigned long flags
;
1334 struct md_rdev
*blocked_rdev
;
1335 struct blk_plug_cb
*cb
;
1336 struct raid1_plug_cb
*plug
= NULL
;
1340 if (mddev_is_clustered(mddev
) &&
1341 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1342 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))) {
1346 prepare_to_wait(&conf
->wait_barrier
,
1348 if (!md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1349 bio
->bi_iter
.bi_sector
,
1350 bio_end_sector(bio
)))
1354 finish_wait(&conf
->wait_barrier
, &w
);
1358 * Register the new request and wait if the reconstruction
1359 * thread has put up a bar for new requests.
1360 * Continue immediately if no resync is active currently.
1362 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1364 r1_bio
= alloc_r1bio(mddev
, bio
);
1365 r1_bio
->sectors
= max_write_sectors
;
1367 if (conf
->pending_count
>= max_queued_requests
) {
1368 md_wakeup_thread(mddev
->thread
);
1369 raid1_log(mddev
, "wait queued");
1370 wait_event(conf
->wait_barrier
,
1371 conf
->pending_count
< max_queued_requests
);
1373 /* first select target devices under rcu_lock and
1374 * inc refcount on their rdev. Record them by setting
1376 * If there are known/acknowledged bad blocks on any device on
1377 * which we have seen a write error, we want to avoid writing those
1379 * This potentially requires several writes to write around
1380 * the bad blocks. Each set of writes gets it's own r1bio
1381 * with a set of bios attached.
1384 disks
= conf
->raid_disks
* 2;
1386 blocked_rdev
= NULL
;
1388 max_sectors
= r1_bio
->sectors
;
1389 for (i
= 0; i
< disks
; i
++) {
1390 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1391 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1392 atomic_inc(&rdev
->nr_pending
);
1393 blocked_rdev
= rdev
;
1396 r1_bio
->bios
[i
] = NULL
;
1397 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1398 if (i
< conf
->raid_disks
)
1399 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1403 atomic_inc(&rdev
->nr_pending
);
1404 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1409 is_bad
= is_badblock(rdev
, r1_bio
->sector
, max_sectors
,
1410 &first_bad
, &bad_sectors
);
1412 /* mustn't write here until the bad block is
1414 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1415 blocked_rdev
= rdev
;
1418 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1419 /* Cannot write here at all */
1420 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1421 if (bad_sectors
< max_sectors
)
1422 /* mustn't write more than bad_sectors
1423 * to other devices yet
1425 max_sectors
= bad_sectors
;
1426 rdev_dec_pending(rdev
, mddev
);
1427 /* We don't set R1BIO_Degraded as that
1428 * only applies if the disk is
1429 * missing, so it might be re-added,
1430 * and we want to know to recover this
1432 * In this case the device is here,
1433 * and the fact that this chunk is not
1434 * in-sync is recorded in the bad
1440 int good_sectors
= first_bad
- r1_bio
->sector
;
1441 if (good_sectors
< max_sectors
)
1442 max_sectors
= good_sectors
;
1445 r1_bio
->bios
[i
] = bio
;
1449 if (unlikely(blocked_rdev
)) {
1450 /* Wait for this device to become unblocked */
1453 for (j
= 0; j
< i
; j
++)
1454 if (r1_bio
->bios
[j
])
1455 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1457 allow_barrier(conf
, bio
->bi_iter
.bi_sector
);
1458 raid1_log(mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1459 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1460 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1464 if (max_sectors
< bio_sectors(bio
)) {
1465 struct bio
*split
= bio_split(bio
, max_sectors
,
1466 GFP_NOIO
, &conf
->bio_split
);
1467 bio_chain(split
, bio
);
1468 generic_make_request(bio
);
1470 r1_bio
->master_bio
= bio
;
1471 r1_bio
->sectors
= max_sectors
;
1474 atomic_set(&r1_bio
->remaining
, 1);
1475 atomic_set(&r1_bio
->behind_remaining
, 0);
1479 for (i
= 0; i
< disks
; i
++) {
1480 struct bio
*mbio
= NULL
;
1481 if (!r1_bio
->bios
[i
])
1486 * Not if there are too many, or cannot
1487 * allocate memory, or a reader on WriteMostly
1488 * is waiting for behind writes to flush */
1490 (atomic_read(&bitmap
->behind_writes
)
1491 < mddev
->bitmap_info
.max_write_behind
) &&
1492 !waitqueue_active(&bitmap
->behind_wait
)) {
1493 alloc_behind_master_bio(r1_bio
, bio
);
1496 md_bitmap_startwrite(bitmap
, r1_bio
->sector
, r1_bio
->sectors
,
1497 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
1501 if (r1_bio
->behind_master_bio
)
1502 mbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
1503 GFP_NOIO
, &mddev
->bio_set
);
1505 mbio
= bio_clone_fast(bio
, GFP_NOIO
, &mddev
->bio_set
);
1507 if (r1_bio
->behind_master_bio
) {
1508 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1510 if (test_bit(WBCollisionCheck
, &rdev
->flags
)) {
1511 sector_t lo
= r1_bio
->sector
;
1512 sector_t hi
= r1_bio
->sector
+ r1_bio
->sectors
;
1514 wait_event(rdev
->wb_io_wait
,
1515 check_and_add_wb(rdev
, lo
, hi
) == 0);
1517 if (test_bit(WriteMostly
, &rdev
->flags
))
1518 atomic_inc(&r1_bio
->behind_remaining
);
1521 r1_bio
->bios
[i
] = mbio
;
1523 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1524 conf
->mirrors
[i
].rdev
->data_offset
);
1525 bio_set_dev(mbio
, conf
->mirrors
[i
].rdev
->bdev
);
1526 mbio
->bi_end_io
= raid1_end_write_request
;
1527 mbio
->bi_opf
= bio_op(bio
) | (bio
->bi_opf
& (REQ_SYNC
| REQ_FUA
));
1528 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
) &&
1529 !test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
) &&
1530 conf
->raid_disks
- mddev
->degraded
> 1)
1531 mbio
->bi_opf
|= MD_FAILFAST
;
1532 mbio
->bi_private
= r1_bio
;
1534 atomic_inc(&r1_bio
->remaining
);
1537 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1538 mbio
, disk_devt(mddev
->gendisk
),
1540 /* flush_pending_writes() needs access to the rdev so...*/
1541 mbio
->bi_disk
= (void *)conf
->mirrors
[i
].rdev
;
1543 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1545 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1549 bio_list_add(&plug
->pending
, mbio
);
1550 plug
->pending_cnt
++;
1552 spin_lock_irqsave(&conf
->device_lock
, flags
);
1553 bio_list_add(&conf
->pending_bio_list
, mbio
);
1554 conf
->pending_count
++;
1555 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1556 md_wakeup_thread(mddev
->thread
);
1560 r1_bio_write_done(r1_bio
);
1562 /* In case raid1d snuck in to freeze_array */
1563 wake_up(&conf
->wait_barrier
);
1566 static bool raid1_make_request(struct mddev
*mddev
, struct bio
*bio
)
1570 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1571 md_flush_request(mddev
, bio
);
1576 * There is a limit to the maximum size, but
1577 * the read/write handler might find a lower limit
1578 * due to bad blocks. To avoid multiple splits,
1579 * we pass the maximum number of sectors down
1580 * and let the lower level perform the split.
1582 sectors
= align_to_barrier_unit_end(
1583 bio
->bi_iter
.bi_sector
, bio_sectors(bio
));
1585 if (bio_data_dir(bio
) == READ
)
1586 raid1_read_request(mddev
, bio
, sectors
, NULL
);
1588 if (!md_write_start(mddev
,bio
))
1590 raid1_write_request(mddev
, bio
, sectors
);
1595 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1597 struct r1conf
*conf
= mddev
->private;
1600 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1601 conf
->raid_disks
- mddev
->degraded
);
1603 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1604 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1605 seq_printf(seq
, "%s",
1606 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1609 seq_printf(seq
, "]");
1612 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1614 char b
[BDEVNAME_SIZE
];
1615 struct r1conf
*conf
= mddev
->private;
1616 unsigned long flags
;
1619 * If it is not operational, then we have already marked it as dead
1620 * else if it is the last working disks with "fail_last_dev == false",
1621 * ignore the error, let the next level up know.
1622 * else mark the drive as failed
1624 spin_lock_irqsave(&conf
->device_lock
, flags
);
1625 if (test_bit(In_sync
, &rdev
->flags
) && !mddev
->fail_last_dev
1626 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1628 * Don't fail the drive, act as though we were just a
1629 * normal single drive.
1630 * However don't try a recovery from this drive as
1631 * it is very likely to fail.
1633 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1634 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1637 set_bit(Blocked
, &rdev
->flags
);
1638 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1640 set_bit(Faulty
, &rdev
->flags
);
1641 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1643 * if recovery is running, make sure it aborts.
1645 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1646 set_mask_bits(&mddev
->sb_flags
, 0,
1647 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1648 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1649 "md/raid1:%s: Operation continuing on %d devices.\n",
1650 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1651 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1654 static void print_conf(struct r1conf
*conf
)
1658 pr_debug("RAID1 conf printout:\n");
1660 pr_debug("(!conf)\n");
1663 pr_debug(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1667 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1668 char b
[BDEVNAME_SIZE
];
1669 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1671 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1672 i
, !test_bit(In_sync
, &rdev
->flags
),
1673 !test_bit(Faulty
, &rdev
->flags
),
1674 bdevname(rdev
->bdev
,b
));
1679 static void close_sync(struct r1conf
*conf
)
1683 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++) {
1684 _wait_barrier(conf
, idx
);
1685 _allow_barrier(conf
, idx
);
1688 mempool_exit(&conf
->r1buf_pool
);
1691 static int raid1_spare_active(struct mddev
*mddev
)
1694 struct r1conf
*conf
= mddev
->private;
1696 unsigned long flags
;
1699 * Find all failed disks within the RAID1 configuration
1700 * and mark them readable.
1701 * Called under mddev lock, so rcu protection not needed.
1702 * device_lock used to avoid races with raid1_end_read_request
1703 * which expects 'In_sync' flags and ->degraded to be consistent.
1705 spin_lock_irqsave(&conf
->device_lock
, flags
);
1706 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1707 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1708 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1710 && !test_bit(Candidate
, &repl
->flags
)
1711 && repl
->recovery_offset
== MaxSector
1712 && !test_bit(Faulty
, &repl
->flags
)
1713 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1714 /* replacement has just become active */
1716 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1719 /* Replaced device not technically
1720 * faulty, but we need to be sure
1721 * it gets removed and never re-added
1723 set_bit(Faulty
, &rdev
->flags
);
1724 sysfs_notify_dirent_safe(
1729 && rdev
->recovery_offset
== MaxSector
1730 && !test_bit(Faulty
, &rdev
->flags
)
1731 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1733 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1736 mddev
->degraded
-= count
;
1737 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1743 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1745 struct r1conf
*conf
= mddev
->private;
1748 struct raid1_info
*p
;
1750 int last
= conf
->raid_disks
- 1;
1752 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1755 if (md_integrity_add_rdev(rdev
, mddev
))
1758 if (rdev
->raid_disk
>= 0)
1759 first
= last
= rdev
->raid_disk
;
1762 * find the disk ... but prefer rdev->saved_raid_disk
1765 if (rdev
->saved_raid_disk
>= 0 &&
1766 rdev
->saved_raid_disk
>= first
&&
1767 rdev
->saved_raid_disk
< conf
->raid_disks
&&
1768 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1769 first
= last
= rdev
->saved_raid_disk
;
1771 for (mirror
= first
; mirror
<= last
; mirror
++) {
1772 p
= conf
->mirrors
+ mirror
;
1775 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1776 rdev
->data_offset
<< 9);
1778 p
->head_position
= 0;
1779 rdev
->raid_disk
= mirror
;
1781 /* As all devices are equivalent, we don't need a full recovery
1782 * if this was recently any drive of the array
1784 if (rdev
->saved_raid_disk
< 0)
1786 rcu_assign_pointer(p
->rdev
, rdev
);
1789 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1790 p
[conf
->raid_disks
].rdev
== NULL
) {
1791 /* Add this device as a replacement */
1792 clear_bit(In_sync
, &rdev
->flags
);
1793 set_bit(Replacement
, &rdev
->flags
);
1794 rdev
->raid_disk
= mirror
;
1797 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1801 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1802 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1807 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1809 struct r1conf
*conf
= mddev
->private;
1811 int number
= rdev
->raid_disk
;
1812 struct raid1_info
*p
= conf
->mirrors
+ number
;
1814 if (rdev
!= p
->rdev
)
1815 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1818 if (rdev
== p
->rdev
) {
1819 if (test_bit(In_sync
, &rdev
->flags
) ||
1820 atomic_read(&rdev
->nr_pending
)) {
1824 /* Only remove non-faulty devices if recovery
1827 if (!test_bit(Faulty
, &rdev
->flags
) &&
1828 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1829 mddev
->degraded
< conf
->raid_disks
) {
1834 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1836 if (atomic_read(&rdev
->nr_pending
)) {
1837 /* lost the race, try later */
1843 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1844 /* We just removed a device that is being replaced.
1845 * Move down the replacement. We drain all IO before
1846 * doing this to avoid confusion.
1848 struct md_rdev
*repl
=
1849 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1850 freeze_array(conf
, 0);
1851 if (atomic_read(&repl
->nr_pending
)) {
1852 /* It means that some queued IO of retry_list
1853 * hold repl. Thus, we cannot set replacement
1854 * as NULL, avoiding rdev NULL pointer
1855 * dereference in sync_request_write and
1856 * handle_write_finished.
1859 unfreeze_array(conf
);
1862 clear_bit(Replacement
, &repl
->flags
);
1864 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1865 unfreeze_array(conf
);
1868 clear_bit(WantReplacement
, &rdev
->flags
);
1869 err
= md_integrity_register(mddev
);
1877 static void end_sync_read(struct bio
*bio
)
1879 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1881 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1884 * we have read a block, now it needs to be re-written,
1885 * or re-read if the read failed.
1886 * We don't do much here, just schedule handling by raid1d
1888 if (!bio
->bi_status
)
1889 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1891 if (atomic_dec_and_test(&r1_bio
->remaining
))
1892 reschedule_retry(r1_bio
);
1895 static void abort_sync_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1897 sector_t sync_blocks
= 0;
1898 sector_t s
= r1_bio
->sector
;
1899 long sectors_to_go
= r1_bio
->sectors
;
1901 /* make sure these bits don't get cleared. */
1903 md_bitmap_end_sync(mddev
->bitmap
, s
, &sync_blocks
, 1);
1905 sectors_to_go
-= sync_blocks
;
1906 } while (sectors_to_go
> 0);
1909 static void put_sync_write_buf(struct r1bio
*r1_bio
, int uptodate
)
1911 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1912 struct mddev
*mddev
= r1_bio
->mddev
;
1913 int s
= r1_bio
->sectors
;
1915 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1916 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1917 reschedule_retry(r1_bio
);
1920 md_done_sync(mddev
, s
, uptodate
);
1925 static void end_sync_write(struct bio
*bio
)
1927 int uptodate
= !bio
->bi_status
;
1928 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1929 struct mddev
*mddev
= r1_bio
->mddev
;
1930 struct r1conf
*conf
= mddev
->private;
1933 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1936 abort_sync_write(mddev
, r1_bio
);
1937 set_bit(WriteErrorSeen
, &rdev
->flags
);
1938 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1939 set_bit(MD_RECOVERY_NEEDED
, &
1941 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1942 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1943 &first_bad
, &bad_sectors
) &&
1944 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1947 &first_bad
, &bad_sectors
)
1949 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1951 put_sync_write_buf(r1_bio
, uptodate
);
1954 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1955 int sectors
, struct page
*page
, int rw
)
1957 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1961 set_bit(WriteErrorSeen
, &rdev
->flags
);
1962 if (!test_and_set_bit(WantReplacement
,
1964 set_bit(MD_RECOVERY_NEEDED
, &
1965 rdev
->mddev
->recovery
);
1967 /* need to record an error - either for the block or the device */
1968 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1969 md_error(rdev
->mddev
, rdev
);
1973 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1975 /* Try some synchronous reads of other devices to get
1976 * good data, much like with normal read errors. Only
1977 * read into the pages we already have so we don't
1978 * need to re-issue the read request.
1979 * We don't need to freeze the array, because being in an
1980 * active sync request, there is no normal IO, and
1981 * no overlapping syncs.
1982 * We don't need to check is_badblock() again as we
1983 * made sure that anything with a bad block in range
1984 * will have bi_end_io clear.
1986 struct mddev
*mddev
= r1_bio
->mddev
;
1987 struct r1conf
*conf
= mddev
->private;
1988 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1989 struct page
**pages
= get_resync_pages(bio
)->pages
;
1990 sector_t sect
= r1_bio
->sector
;
1991 int sectors
= r1_bio
->sectors
;
1993 struct md_rdev
*rdev
;
1995 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
1996 if (test_bit(FailFast
, &rdev
->flags
)) {
1997 /* Don't try recovering from here - just fail it
1998 * ... unless it is the last working device of course */
1999 md_error(mddev
, rdev
);
2000 if (test_bit(Faulty
, &rdev
->flags
))
2001 /* Don't try to read from here, but make sure
2002 * put_buf does it's thing
2004 bio
->bi_end_io
= end_sync_write
;
2009 int d
= r1_bio
->read_disk
;
2013 if (s
> (PAGE_SIZE
>>9))
2016 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
2017 /* No rcu protection needed here devices
2018 * can only be removed when no resync is
2019 * active, and resync is currently active
2021 rdev
= conf
->mirrors
[d
].rdev
;
2022 if (sync_page_io(rdev
, sect
, s
<<9,
2024 REQ_OP_READ
, 0, false)) {
2030 if (d
== conf
->raid_disks
* 2)
2032 } while (!success
&& d
!= r1_bio
->read_disk
);
2035 char b
[BDEVNAME_SIZE
];
2037 /* Cannot read from anywhere, this block is lost.
2038 * Record a bad block on each device. If that doesn't
2039 * work just disable and interrupt the recovery.
2040 * Don't fail devices as that won't really help.
2042 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2043 mdname(mddev
), bio_devname(bio
, b
),
2044 (unsigned long long)r1_bio
->sector
);
2045 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
2046 rdev
= conf
->mirrors
[d
].rdev
;
2047 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
2049 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2053 conf
->recovery_disabled
=
2054 mddev
->recovery_disabled
;
2055 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2056 md_done_sync(mddev
, r1_bio
->sectors
, 0);
2068 /* write it back and re-read */
2069 while (d
!= r1_bio
->read_disk
) {
2071 d
= conf
->raid_disks
* 2;
2073 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2075 rdev
= conf
->mirrors
[d
].rdev
;
2076 if (r1_sync_page_io(rdev
, sect
, s
,
2079 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
2080 rdev_dec_pending(rdev
, mddev
);
2084 while (d
!= r1_bio
->read_disk
) {
2086 d
= conf
->raid_disks
* 2;
2088 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2090 rdev
= conf
->mirrors
[d
].rdev
;
2091 if (r1_sync_page_io(rdev
, sect
, s
,
2094 atomic_add(s
, &rdev
->corrected_errors
);
2100 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
2105 static void process_checks(struct r1bio
*r1_bio
)
2107 /* We have read all readable devices. If we haven't
2108 * got the block, then there is no hope left.
2109 * If we have, then we want to do a comparison
2110 * and skip the write if everything is the same.
2111 * If any blocks failed to read, then we need to
2112 * attempt an over-write
2114 struct mddev
*mddev
= r1_bio
->mddev
;
2115 struct r1conf
*conf
= mddev
->private;
2120 /* Fix variable parts of all bios */
2121 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
2122 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2123 blk_status_t status
;
2124 struct bio
*b
= r1_bio
->bios
[i
];
2125 struct resync_pages
*rp
= get_resync_pages(b
);
2126 if (b
->bi_end_io
!= end_sync_read
)
2128 /* fixup the bio for reuse, but preserve errno */
2129 status
= b
->bi_status
;
2131 b
->bi_status
= status
;
2132 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
2133 conf
->mirrors
[i
].rdev
->data_offset
;
2134 bio_set_dev(b
, conf
->mirrors
[i
].rdev
->bdev
);
2135 b
->bi_end_io
= end_sync_read
;
2136 rp
->raid_bio
= r1_bio
;
2139 /* initialize bvec table again */
2140 md_bio_reset_resync_pages(b
, rp
, r1_bio
->sectors
<< 9);
2142 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
2143 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
2144 !r1_bio
->bios
[primary
]->bi_status
) {
2145 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
2146 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2149 r1_bio
->read_disk
= primary
;
2150 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2152 struct bio
*pbio
= r1_bio
->bios
[primary
];
2153 struct bio
*sbio
= r1_bio
->bios
[i
];
2154 blk_status_t status
= sbio
->bi_status
;
2155 struct page
**ppages
= get_resync_pages(pbio
)->pages
;
2156 struct page
**spages
= get_resync_pages(sbio
)->pages
;
2158 int page_len
[RESYNC_PAGES
] = { 0 };
2159 struct bvec_iter_all iter_all
;
2161 if (sbio
->bi_end_io
!= end_sync_read
)
2163 /* Now we can 'fixup' the error value */
2164 sbio
->bi_status
= 0;
2166 bio_for_each_segment_all(bi
, sbio
, iter_all
)
2167 page_len
[j
++] = bi
->bv_len
;
2170 for (j
= vcnt
; j
-- ; ) {
2171 if (memcmp(page_address(ppages
[j
]),
2172 page_address(spages
[j
]),
2179 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2180 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2182 /* No need to write to this device. */
2183 sbio
->bi_end_io
= NULL
;
2184 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2188 bio_copy_data(sbio
, pbio
);
2192 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2194 struct r1conf
*conf
= mddev
->private;
2196 int disks
= conf
->raid_disks
* 2;
2199 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2200 /* ouch - failed to read all of that. */
2201 if (!fix_sync_read_error(r1_bio
))
2204 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2205 process_checks(r1_bio
);
2210 atomic_set(&r1_bio
->remaining
, 1);
2211 for (i
= 0; i
< disks
; i
++) {
2212 wbio
= r1_bio
->bios
[i
];
2213 if (wbio
->bi_end_io
== NULL
||
2214 (wbio
->bi_end_io
== end_sync_read
&&
2215 (i
== r1_bio
->read_disk
||
2216 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2218 if (test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
)) {
2219 abort_sync_write(mddev
, r1_bio
);
2223 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2224 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
))
2225 wbio
->bi_opf
|= MD_FAILFAST
;
2227 wbio
->bi_end_io
= end_sync_write
;
2228 atomic_inc(&r1_bio
->remaining
);
2229 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2231 generic_make_request(wbio
);
2234 put_sync_write_buf(r1_bio
, 1);
2238 * This is a kernel thread which:
2240 * 1. Retries failed read operations on working mirrors.
2241 * 2. Updates the raid superblock when problems encounter.
2242 * 3. Performs writes following reads for array synchronising.
2245 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2246 sector_t sect
, int sectors
)
2248 struct mddev
*mddev
= conf
->mddev
;
2254 struct md_rdev
*rdev
;
2256 if (s
> (PAGE_SIZE
>>9))
2264 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2266 (test_bit(In_sync
, &rdev
->flags
) ||
2267 (!test_bit(Faulty
, &rdev
->flags
) &&
2268 rdev
->recovery_offset
>= sect
+ s
)) &&
2269 is_badblock(rdev
, sect
, s
,
2270 &first_bad
, &bad_sectors
) == 0) {
2271 atomic_inc(&rdev
->nr_pending
);
2273 if (sync_page_io(rdev
, sect
, s
<<9,
2274 conf
->tmppage
, REQ_OP_READ
, 0, false))
2276 rdev_dec_pending(rdev
, mddev
);
2282 if (d
== conf
->raid_disks
* 2)
2284 } while (!success
&& d
!= read_disk
);
2287 /* Cannot read from anywhere - mark it bad */
2288 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2289 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2290 md_error(mddev
, rdev
);
2293 /* write it back and re-read */
2295 while (d
!= read_disk
) {
2297 d
= conf
->raid_disks
* 2;
2300 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2302 !test_bit(Faulty
, &rdev
->flags
)) {
2303 atomic_inc(&rdev
->nr_pending
);
2305 r1_sync_page_io(rdev
, sect
, s
,
2306 conf
->tmppage
, WRITE
);
2307 rdev_dec_pending(rdev
, mddev
);
2312 while (d
!= read_disk
) {
2313 char b
[BDEVNAME_SIZE
];
2315 d
= conf
->raid_disks
* 2;
2318 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2320 !test_bit(Faulty
, &rdev
->flags
)) {
2321 atomic_inc(&rdev
->nr_pending
);
2323 if (r1_sync_page_io(rdev
, sect
, s
,
2324 conf
->tmppage
, READ
)) {
2325 atomic_add(s
, &rdev
->corrected_errors
);
2326 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2328 (unsigned long long)(sect
+
2330 bdevname(rdev
->bdev
, b
));
2332 rdev_dec_pending(rdev
, mddev
);
2341 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2343 struct mddev
*mddev
= r1_bio
->mddev
;
2344 struct r1conf
*conf
= mddev
->private;
2345 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2347 /* bio has the data to be written to device 'i' where
2348 * we just recently had a write error.
2349 * We repeatedly clone the bio and trim down to one block,
2350 * then try the write. Where the write fails we record
2352 * It is conceivable that the bio doesn't exactly align with
2353 * blocks. We must handle this somehow.
2355 * We currently own a reference on the rdev.
2361 int sect_to_write
= r1_bio
->sectors
;
2364 if (rdev
->badblocks
.shift
< 0)
2367 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2368 bdev_logical_block_size(rdev
->bdev
) >> 9);
2369 sector
= r1_bio
->sector
;
2370 sectors
= ((sector
+ block_sectors
)
2371 & ~(sector_t
)(block_sectors
- 1))
2374 while (sect_to_write
) {
2376 if (sectors
> sect_to_write
)
2377 sectors
= sect_to_write
;
2378 /* Write at 'sector' for 'sectors'*/
2380 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2381 wbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
2385 wbio
= bio_clone_fast(r1_bio
->master_bio
, GFP_NOIO
,
2389 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2390 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2391 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2393 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2394 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2395 bio_set_dev(wbio
, rdev
->bdev
);
2397 if (submit_bio_wait(wbio
) < 0)
2399 ok
= rdev_set_badblocks(rdev
, sector
,
2404 sect_to_write
-= sectors
;
2406 sectors
= block_sectors
;
2411 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2414 int s
= r1_bio
->sectors
;
2415 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2416 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2417 struct bio
*bio
= r1_bio
->bios
[m
];
2418 if (bio
->bi_end_io
== NULL
)
2420 if (!bio
->bi_status
&&
2421 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2422 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2424 if (bio
->bi_status
&&
2425 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2426 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2427 md_error(conf
->mddev
, rdev
);
2431 md_done_sync(conf
->mddev
, s
, 1);
2434 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2439 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2440 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2441 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2442 rdev_clear_badblocks(rdev
,
2444 r1_bio
->sectors
, 0);
2445 rdev_dec_pending(rdev
, conf
->mddev
);
2446 } else if (r1_bio
->bios
[m
] != NULL
) {
2447 /* This drive got a write error. We need to
2448 * narrow down and record precise write
2452 if (!narrow_write_error(r1_bio
, m
)) {
2453 md_error(conf
->mddev
,
2454 conf
->mirrors
[m
].rdev
);
2455 /* an I/O failed, we can't clear the bitmap */
2456 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2458 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2462 spin_lock_irq(&conf
->device_lock
);
2463 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2464 idx
= sector_to_idx(r1_bio
->sector
);
2465 atomic_inc(&conf
->nr_queued
[idx
]);
2466 spin_unlock_irq(&conf
->device_lock
);
2468 * In case freeze_array() is waiting for condition
2469 * get_unqueued_pending() == extra to be true.
2471 wake_up(&conf
->wait_barrier
);
2472 md_wakeup_thread(conf
->mddev
->thread
);
2474 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2475 close_write(r1_bio
);
2476 raid_end_bio_io(r1_bio
);
2480 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2482 struct mddev
*mddev
= conf
->mddev
;
2484 struct md_rdev
*rdev
;
2486 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2487 /* we got a read error. Maybe the drive is bad. Maybe just
2488 * the block and we can fix it.
2489 * We freeze all other IO, and try reading the block from
2490 * other devices. When we find one, we re-write
2491 * and check it that fixes the read error.
2492 * This is all done synchronously while the array is
2496 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2498 r1_bio
->bios
[r1_bio
->read_disk
] = NULL
;
2500 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
2502 && !test_bit(FailFast
, &rdev
->flags
)) {
2503 freeze_array(conf
, 1);
2504 fix_read_error(conf
, r1_bio
->read_disk
,
2505 r1_bio
->sector
, r1_bio
->sectors
);
2506 unfreeze_array(conf
);
2507 } else if (mddev
->ro
== 0 && test_bit(FailFast
, &rdev
->flags
)) {
2508 md_error(mddev
, rdev
);
2510 r1_bio
->bios
[r1_bio
->read_disk
] = IO_BLOCKED
;
2513 rdev_dec_pending(rdev
, conf
->mddev
);
2514 allow_barrier(conf
, r1_bio
->sector
);
2515 bio
= r1_bio
->master_bio
;
2517 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2519 raid1_read_request(mddev
, bio
, r1_bio
->sectors
, r1_bio
);
2522 static void raid1d(struct md_thread
*thread
)
2524 struct mddev
*mddev
= thread
->mddev
;
2525 struct r1bio
*r1_bio
;
2526 unsigned long flags
;
2527 struct r1conf
*conf
= mddev
->private;
2528 struct list_head
*head
= &conf
->retry_list
;
2529 struct blk_plug plug
;
2532 md_check_recovery(mddev
);
2534 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2535 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2537 spin_lock_irqsave(&conf
->device_lock
, flags
);
2538 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
))
2539 list_splice_init(&conf
->bio_end_io_list
, &tmp
);
2540 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2541 while (!list_empty(&tmp
)) {
2542 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2544 list_del(&r1_bio
->retry_list
);
2545 idx
= sector_to_idx(r1_bio
->sector
);
2546 atomic_dec(&conf
->nr_queued
[idx
]);
2547 if (mddev
->degraded
)
2548 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2549 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2550 close_write(r1_bio
);
2551 raid_end_bio_io(r1_bio
);
2555 blk_start_plug(&plug
);
2558 flush_pending_writes(conf
);
2560 spin_lock_irqsave(&conf
->device_lock
, flags
);
2561 if (list_empty(head
)) {
2562 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2565 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2566 list_del(head
->prev
);
2567 idx
= sector_to_idx(r1_bio
->sector
);
2568 atomic_dec(&conf
->nr_queued
[idx
]);
2569 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2571 mddev
= r1_bio
->mddev
;
2572 conf
= mddev
->private;
2573 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2574 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2575 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2576 handle_sync_write_finished(conf
, r1_bio
);
2578 sync_request_write(mddev
, r1_bio
);
2579 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2580 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2581 handle_write_finished(conf
, r1_bio
);
2582 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2583 handle_read_error(conf
, r1_bio
);
2588 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2589 md_check_recovery(mddev
);
2591 blk_finish_plug(&plug
);
2594 static int init_resync(struct r1conf
*conf
)
2598 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2599 BUG_ON(mempool_initialized(&conf
->r1buf_pool
));
2601 return mempool_init(&conf
->r1buf_pool
, buffs
, r1buf_pool_alloc
,
2602 r1buf_pool_free
, conf
->poolinfo
);
2605 static struct r1bio
*raid1_alloc_init_r1buf(struct r1conf
*conf
)
2607 struct r1bio
*r1bio
= mempool_alloc(&conf
->r1buf_pool
, GFP_NOIO
);
2608 struct resync_pages
*rps
;
2612 for (i
= conf
->poolinfo
->raid_disks
; i
--; ) {
2613 bio
= r1bio
->bios
[i
];
2614 rps
= bio
->bi_private
;
2616 bio
->bi_private
= rps
;
2618 r1bio
->master_bio
= NULL
;
2623 * perform a "sync" on one "block"
2625 * We need to make sure that no normal I/O request - particularly write
2626 * requests - conflict with active sync requests.
2628 * This is achieved by tracking pending requests and a 'barrier' concept
2629 * that can be installed to exclude normal IO requests.
2632 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2635 struct r1conf
*conf
= mddev
->private;
2636 struct r1bio
*r1_bio
;
2638 sector_t max_sector
, nr_sectors
;
2642 int write_targets
= 0, read_targets
= 0;
2643 sector_t sync_blocks
;
2644 int still_degraded
= 0;
2645 int good_sectors
= RESYNC_SECTORS
;
2646 int min_bad
= 0; /* number of sectors that are bad in all devices */
2647 int idx
= sector_to_idx(sector_nr
);
2650 if (!mempool_initialized(&conf
->r1buf_pool
))
2651 if (init_resync(conf
))
2654 max_sector
= mddev
->dev_sectors
;
2655 if (sector_nr
>= max_sector
) {
2656 /* If we aborted, we need to abort the
2657 * sync on the 'current' bitmap chunk (there will
2658 * only be one in raid1 resync.
2659 * We can find the current addess in mddev->curr_resync
2661 if (mddev
->curr_resync
< max_sector
) /* aborted */
2662 md_bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2664 else /* completed sync */
2667 md_bitmap_close_sync(mddev
->bitmap
);
2670 if (mddev_is_clustered(mddev
)) {
2671 conf
->cluster_sync_low
= 0;
2672 conf
->cluster_sync_high
= 0;
2677 if (mddev
->bitmap
== NULL
&&
2678 mddev
->recovery_cp
== MaxSector
&&
2679 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2680 conf
->fullsync
== 0) {
2682 return max_sector
- sector_nr
;
2684 /* before building a request, check if we can skip these blocks..
2685 * This call the bitmap_start_sync doesn't actually record anything
2687 if (!md_bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2688 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2689 /* We can skip this block, and probably several more */
2695 * If there is non-resync activity waiting for a turn, then let it
2696 * though before starting on this new sync request.
2698 if (atomic_read(&conf
->nr_waiting
[idx
]))
2699 schedule_timeout_uninterruptible(1);
2701 /* we are incrementing sector_nr below. To be safe, we check against
2702 * sector_nr + two times RESYNC_SECTORS
2705 md_bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2706 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2709 if (raise_barrier(conf
, sector_nr
))
2712 r1_bio
= raid1_alloc_init_r1buf(conf
);
2716 * If we get a correctably read error during resync or recovery,
2717 * we might want to read from a different device. So we
2718 * flag all drives that could conceivably be read from for READ,
2719 * and any others (which will be non-In_sync devices) for WRITE.
2720 * If a read fails, we try reading from something else for which READ
2724 r1_bio
->mddev
= mddev
;
2725 r1_bio
->sector
= sector_nr
;
2727 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2728 /* make sure good_sectors won't go across barrier unit boundary */
2729 good_sectors
= align_to_barrier_unit_end(sector_nr
, good_sectors
);
2731 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2732 struct md_rdev
*rdev
;
2733 bio
= r1_bio
->bios
[i
];
2735 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2737 test_bit(Faulty
, &rdev
->flags
)) {
2738 if (i
< conf
->raid_disks
)
2740 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2741 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2742 bio
->bi_end_io
= end_sync_write
;
2745 /* may need to read from here */
2746 sector_t first_bad
= MaxSector
;
2749 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2750 &first_bad
, &bad_sectors
)) {
2751 if (first_bad
> sector_nr
)
2752 good_sectors
= first_bad
- sector_nr
;
2754 bad_sectors
-= (sector_nr
- first_bad
);
2756 min_bad
> bad_sectors
)
2757 min_bad
= bad_sectors
;
2760 if (sector_nr
< first_bad
) {
2761 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2768 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2769 bio
->bi_end_io
= end_sync_read
;
2771 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2772 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2773 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2775 * The device is suitable for reading (InSync),
2776 * but has bad block(s) here. Let's try to correct them,
2777 * if we are doing resync or repair. Otherwise, leave
2778 * this device alone for this sync request.
2780 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2781 bio
->bi_end_io
= end_sync_write
;
2785 if (bio
->bi_end_io
) {
2786 atomic_inc(&rdev
->nr_pending
);
2787 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2788 bio_set_dev(bio
, rdev
->bdev
);
2789 if (test_bit(FailFast
, &rdev
->flags
))
2790 bio
->bi_opf
|= MD_FAILFAST
;
2796 r1_bio
->read_disk
= disk
;
2798 if (read_targets
== 0 && min_bad
> 0) {
2799 /* These sectors are bad on all InSync devices, so we
2800 * need to mark them bad on all write targets
2803 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2804 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2805 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2806 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2810 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2815 /* Cannot record the badblocks, so need to
2817 * If there are multiple read targets, could just
2818 * fail the really bad ones ???
2820 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2821 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2827 if (min_bad
> 0 && min_bad
< good_sectors
) {
2828 /* only resync enough to reach the next bad->good
2830 good_sectors
= min_bad
;
2833 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2834 /* extra read targets are also write targets */
2835 write_targets
+= read_targets
-1;
2837 if (write_targets
== 0 || read_targets
== 0) {
2838 /* There is nowhere to write, so all non-sync
2839 * drives must be failed - so we are finished
2843 max_sector
= sector_nr
+ min_bad
;
2844 rv
= max_sector
- sector_nr
;
2850 if (max_sector
> mddev
->resync_max
)
2851 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2852 if (max_sector
> sector_nr
+ good_sectors
)
2853 max_sector
= sector_nr
+ good_sectors
;
2858 int len
= PAGE_SIZE
;
2859 if (sector_nr
+ (len
>>9) > max_sector
)
2860 len
= (max_sector
- sector_nr
) << 9;
2863 if (sync_blocks
== 0) {
2864 if (!md_bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2865 &sync_blocks
, still_degraded
) &&
2867 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2869 if ((len
>> 9) > sync_blocks
)
2870 len
= sync_blocks
<<9;
2873 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2874 struct resync_pages
*rp
;
2876 bio
= r1_bio
->bios
[i
];
2877 rp
= get_resync_pages(bio
);
2878 if (bio
->bi_end_io
) {
2879 page
= resync_fetch_page(rp
, page_idx
);
2882 * won't fail because the vec table is big
2883 * enough to hold all these pages
2885 bio_add_page(bio
, page
, len
, 0);
2888 nr_sectors
+= len
>>9;
2889 sector_nr
+= len
>>9;
2890 sync_blocks
-= (len
>>9);
2891 } while (++page_idx
< RESYNC_PAGES
);
2893 r1_bio
->sectors
= nr_sectors
;
2895 if (mddev_is_clustered(mddev
) &&
2896 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2897 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2898 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2899 /* Send resync message */
2900 md_cluster_ops
->resync_info_update(mddev
,
2901 conf
->cluster_sync_low
,
2902 conf
->cluster_sync_high
);
2905 /* For a user-requested sync, we read all readable devices and do a
2908 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2909 atomic_set(&r1_bio
->remaining
, read_targets
);
2910 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2911 bio
= r1_bio
->bios
[i
];
2912 if (bio
->bi_end_io
== end_sync_read
) {
2914 md_sync_acct_bio(bio
, nr_sectors
);
2915 if (read_targets
== 1)
2916 bio
->bi_opf
&= ~MD_FAILFAST
;
2917 generic_make_request(bio
);
2921 atomic_set(&r1_bio
->remaining
, 1);
2922 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2923 md_sync_acct_bio(bio
, nr_sectors
);
2924 if (read_targets
== 1)
2925 bio
->bi_opf
&= ~MD_FAILFAST
;
2926 generic_make_request(bio
);
2931 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2936 return mddev
->dev_sectors
;
2939 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2941 struct r1conf
*conf
;
2943 struct raid1_info
*disk
;
2944 struct md_rdev
*rdev
;
2947 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2951 conf
->nr_pending
= kcalloc(BARRIER_BUCKETS_NR
,
2952 sizeof(atomic_t
), GFP_KERNEL
);
2953 if (!conf
->nr_pending
)
2956 conf
->nr_waiting
= kcalloc(BARRIER_BUCKETS_NR
,
2957 sizeof(atomic_t
), GFP_KERNEL
);
2958 if (!conf
->nr_waiting
)
2961 conf
->nr_queued
= kcalloc(BARRIER_BUCKETS_NR
,
2962 sizeof(atomic_t
), GFP_KERNEL
);
2963 if (!conf
->nr_queued
)
2966 conf
->barrier
= kcalloc(BARRIER_BUCKETS_NR
,
2967 sizeof(atomic_t
), GFP_KERNEL
);
2971 conf
->mirrors
= kzalloc(array3_size(sizeof(struct raid1_info
),
2972 mddev
->raid_disks
, 2),
2977 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2981 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2982 if (!conf
->poolinfo
)
2984 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2985 err
= mempool_init(&conf
->r1bio_pool
, NR_RAID_BIOS
, r1bio_pool_alloc
,
2986 rbio_pool_free
, conf
->poolinfo
);
2990 err
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
2994 conf
->poolinfo
->mddev
= mddev
;
2997 spin_lock_init(&conf
->device_lock
);
2998 rdev_for_each(rdev
, mddev
) {
2999 int disk_idx
= rdev
->raid_disk
;
3000 if (disk_idx
>= mddev
->raid_disks
3003 if (test_bit(Replacement
, &rdev
->flags
))
3004 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
3006 disk
= conf
->mirrors
+ disk_idx
;
3011 disk
->head_position
= 0;
3012 disk
->seq_start
= MaxSector
;
3014 conf
->raid_disks
= mddev
->raid_disks
;
3015 conf
->mddev
= mddev
;
3016 INIT_LIST_HEAD(&conf
->retry_list
);
3017 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3019 spin_lock_init(&conf
->resync_lock
);
3020 init_waitqueue_head(&conf
->wait_barrier
);
3022 bio_list_init(&conf
->pending_bio_list
);
3023 conf
->pending_count
= 0;
3024 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3027 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
3029 disk
= conf
->mirrors
+ i
;
3031 if (i
< conf
->raid_disks
&&
3032 disk
[conf
->raid_disks
].rdev
) {
3033 /* This slot has a replacement. */
3035 /* No original, just make the replacement
3036 * a recovering spare
3039 disk
[conf
->raid_disks
].rdev
;
3040 disk
[conf
->raid_disks
].rdev
= NULL
;
3041 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
3042 /* Original is not in_sync - bad */
3047 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3048 disk
->head_position
= 0;
3050 (disk
->rdev
->saved_raid_disk
< 0))
3056 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
3064 mempool_exit(&conf
->r1bio_pool
);
3065 kfree(conf
->mirrors
);
3066 safe_put_page(conf
->tmppage
);
3067 kfree(conf
->poolinfo
);
3068 kfree(conf
->nr_pending
);
3069 kfree(conf
->nr_waiting
);
3070 kfree(conf
->nr_queued
);
3071 kfree(conf
->barrier
);
3072 bioset_exit(&conf
->bio_split
);
3075 return ERR_PTR(err
);
3078 static void raid1_free(struct mddev
*mddev
, void *priv
);
3079 static int raid1_run(struct mddev
*mddev
)
3081 struct r1conf
*conf
;
3083 struct md_rdev
*rdev
;
3085 bool discard_supported
= false;
3087 if (mddev
->level
!= 1) {
3088 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3089 mdname(mddev
), mddev
->level
);
3092 if (mddev
->reshape_position
!= MaxSector
) {
3093 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3097 if (mddev_init_writes_pending(mddev
) < 0)
3100 * copy the already verified devices into our private RAID1
3101 * bookkeeping area. [whatever we allocate in run(),
3102 * should be freed in raid1_free()]
3104 if (mddev
->private == NULL
)
3105 conf
= setup_conf(mddev
);
3107 conf
= mddev
->private;
3110 return PTR_ERR(conf
);
3113 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3114 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3117 rdev_for_each(rdev
, mddev
) {
3118 if (!mddev
->gendisk
)
3120 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3121 rdev
->data_offset
<< 9);
3122 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3123 discard_supported
= true;
3126 mddev
->degraded
= 0;
3127 for (i
= 0; i
< conf
->raid_disks
; i
++)
3128 if (conf
->mirrors
[i
].rdev
== NULL
||
3129 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
3130 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
3133 * RAID1 needs at least one disk in active
3135 if (conf
->raid_disks
- mddev
->degraded
< 1) {
3140 if (conf
->raid_disks
- mddev
->degraded
== 1)
3141 mddev
->recovery_cp
= MaxSector
;
3143 if (mddev
->recovery_cp
!= MaxSector
)
3144 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3146 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3147 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3151 * Ok, everything is just fine now
3153 mddev
->thread
= conf
->thread
;
3154 conf
->thread
= NULL
;
3155 mddev
->private = conf
;
3156 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3158 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
3161 if (discard_supported
)
3162 blk_queue_flag_set(QUEUE_FLAG_DISCARD
,
3165 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
,
3169 ret
= md_integrity_register(mddev
);
3171 md_unregister_thread(&mddev
->thread
);
3177 raid1_free(mddev
, conf
);
3181 static void raid1_free(struct mddev
*mddev
, void *priv
)
3183 struct r1conf
*conf
= priv
;
3185 mempool_exit(&conf
->r1bio_pool
);
3186 kfree(conf
->mirrors
);
3187 safe_put_page(conf
->tmppage
);
3188 kfree(conf
->poolinfo
);
3189 kfree(conf
->nr_pending
);
3190 kfree(conf
->nr_waiting
);
3191 kfree(conf
->nr_queued
);
3192 kfree(conf
->barrier
);
3193 bioset_exit(&conf
->bio_split
);
3197 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3199 /* no resync is happening, and there is enough space
3200 * on all devices, so we can resize.
3201 * We need to make sure resync covers any new space.
3202 * If the array is shrinking we should possibly wait until
3203 * any io in the removed space completes, but it hardly seems
3206 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3207 if (mddev
->external_size
&&
3208 mddev
->array_sectors
> newsize
)
3210 if (mddev
->bitmap
) {
3211 int ret
= md_bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3215 md_set_array_sectors(mddev
, newsize
);
3216 if (sectors
> mddev
->dev_sectors
&&
3217 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3218 mddev
->recovery_cp
= mddev
->dev_sectors
;
3219 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3221 mddev
->dev_sectors
= sectors
;
3222 mddev
->resync_max_sectors
= sectors
;
3226 static int raid1_reshape(struct mddev
*mddev
)
3229 * 1/ resize the r1bio_pool
3230 * 2/ resize conf->mirrors
3232 * We allocate a new r1bio_pool if we can.
3233 * Then raise a device barrier and wait until all IO stops.
3234 * Then resize conf->mirrors and swap in the new r1bio pool.
3236 * At the same time, we "pack" the devices so that all the missing
3237 * devices have the higher raid_disk numbers.
3239 mempool_t newpool
, oldpool
;
3240 struct pool_info
*newpoolinfo
;
3241 struct raid1_info
*newmirrors
;
3242 struct r1conf
*conf
= mddev
->private;
3243 int cnt
, raid_disks
;
3244 unsigned long flags
;
3248 memset(&newpool
, 0, sizeof(newpool
));
3249 memset(&oldpool
, 0, sizeof(oldpool
));
3251 /* Cannot change chunk_size, layout, or level */
3252 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3253 mddev
->layout
!= mddev
->new_layout
||
3254 mddev
->level
!= mddev
->new_level
) {
3255 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3256 mddev
->new_layout
= mddev
->layout
;
3257 mddev
->new_level
= mddev
->level
;
3261 if (!mddev_is_clustered(mddev
))
3262 md_allow_write(mddev
);
3264 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3266 if (raid_disks
< conf
->raid_disks
) {
3268 for (d
= 0; d
< conf
->raid_disks
; d
++)
3269 if (conf
->mirrors
[d
].rdev
)
3271 if (cnt
> raid_disks
)
3275 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3278 newpoolinfo
->mddev
= mddev
;
3279 newpoolinfo
->raid_disks
= raid_disks
* 2;
3281 ret
= mempool_init(&newpool
, NR_RAID_BIOS
, r1bio_pool_alloc
,
3282 rbio_pool_free
, newpoolinfo
);
3287 newmirrors
= kzalloc(array3_size(sizeof(struct raid1_info
),
3292 mempool_exit(&newpool
);
3296 freeze_array(conf
, 0);
3298 /* ok, everything is stopped */
3299 oldpool
= conf
->r1bio_pool
;
3300 conf
->r1bio_pool
= newpool
;
3302 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3303 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3304 if (rdev
&& rdev
->raid_disk
!= d2
) {
3305 sysfs_unlink_rdev(mddev
, rdev
);
3306 rdev
->raid_disk
= d2
;
3307 sysfs_unlink_rdev(mddev
, rdev
);
3308 if (sysfs_link_rdev(mddev
, rdev
))
3309 pr_warn("md/raid1:%s: cannot register rd%d\n",
3310 mdname(mddev
), rdev
->raid_disk
);
3313 newmirrors
[d2
++].rdev
= rdev
;
3315 kfree(conf
->mirrors
);
3316 conf
->mirrors
= newmirrors
;
3317 kfree(conf
->poolinfo
);
3318 conf
->poolinfo
= newpoolinfo
;
3320 spin_lock_irqsave(&conf
->device_lock
, flags
);
3321 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3322 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3323 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3324 mddev
->delta_disks
= 0;
3326 unfreeze_array(conf
);
3328 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3329 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3330 md_wakeup_thread(mddev
->thread
);
3332 mempool_exit(&oldpool
);
3336 static void raid1_quiesce(struct mddev
*mddev
, int quiesce
)
3338 struct r1conf
*conf
= mddev
->private;
3341 freeze_array(conf
, 0);
3343 unfreeze_array(conf
);
3346 static void *raid1_takeover(struct mddev
*mddev
)
3348 /* raid1 can take over:
3349 * raid5 with 2 devices, any layout or chunk size
3351 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3352 struct r1conf
*conf
;
3353 mddev
->new_level
= 1;
3354 mddev
->new_layout
= 0;
3355 mddev
->new_chunk_sectors
= 0;
3356 conf
= setup_conf(mddev
);
3357 if (!IS_ERR(conf
)) {
3358 /* Array must appear to be quiesced */
3359 conf
->array_frozen
= 1;
3360 mddev_clear_unsupported_flags(mddev
,
3361 UNSUPPORTED_MDDEV_FLAGS
);
3365 return ERR_PTR(-EINVAL
);
3368 static struct md_personality raid1_personality
=
3372 .owner
= THIS_MODULE
,
3373 .make_request
= raid1_make_request
,
3376 .status
= raid1_status
,
3377 .error_handler
= raid1_error
,
3378 .hot_add_disk
= raid1_add_disk
,
3379 .hot_remove_disk
= raid1_remove_disk
,
3380 .spare_active
= raid1_spare_active
,
3381 .sync_request
= raid1_sync_request
,
3382 .resize
= raid1_resize
,
3384 .check_reshape
= raid1_reshape
,
3385 .quiesce
= raid1_quiesce
,
3386 .takeover
= raid1_takeover
,
3387 .congested
= raid1_congested
,
3390 static int __init
raid_init(void)
3392 return register_md_personality(&raid1_personality
);
3395 static void raid_exit(void)
3397 unregister_md_personality(&raid1_personality
);
3400 module_init(raid_init
);
3401 module_exit(raid_exit
);
3402 MODULE_LICENSE("GPL");
3403 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3404 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3405 MODULE_ALIAS("md-raid1");
3406 MODULE_ALIAS("md-level-1");
3408 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);