KVM: PPC: Book3S HV: Flush link stack on guest exit to host kernel
[linux/fpc-iii.git] / tools / perf / util / env.c
blob3baca06786fb73494cd6e4b7d410b046dba63e6f
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include <linux/ctype.h>
6 #include <linux/zalloc.h>
7 #include "bpf-event.h"
8 #include <errno.h>
9 #include <sys/utsname.h>
10 #include <bpf/libbpf.h>
11 #include <stdlib.h>
12 #include <string.h>
14 struct perf_env perf_env;
16 void perf_env__insert_bpf_prog_info(struct perf_env *env,
17 struct bpf_prog_info_node *info_node)
19 __u32 prog_id = info_node->info_linear->info.id;
20 struct bpf_prog_info_node *node;
21 struct rb_node *parent = NULL;
22 struct rb_node **p;
24 down_write(&env->bpf_progs.lock);
25 p = &env->bpf_progs.infos.rb_node;
27 while (*p != NULL) {
28 parent = *p;
29 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
30 if (prog_id < node->info_linear->info.id) {
31 p = &(*p)->rb_left;
32 } else if (prog_id > node->info_linear->info.id) {
33 p = &(*p)->rb_right;
34 } else {
35 pr_debug("duplicated bpf prog info %u\n", prog_id);
36 goto out;
40 rb_link_node(&info_node->rb_node, parent, p);
41 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
42 env->bpf_progs.infos_cnt++;
43 out:
44 up_write(&env->bpf_progs.lock);
47 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
48 __u32 prog_id)
50 struct bpf_prog_info_node *node = NULL;
51 struct rb_node *n;
53 down_read(&env->bpf_progs.lock);
54 n = env->bpf_progs.infos.rb_node;
56 while (n) {
57 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
58 if (prog_id < node->info_linear->info.id)
59 n = n->rb_left;
60 else if (prog_id > node->info_linear->info.id)
61 n = n->rb_right;
62 else
63 goto out;
65 node = NULL;
67 out:
68 up_read(&env->bpf_progs.lock);
69 return node;
72 void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
74 struct rb_node *parent = NULL;
75 __u32 btf_id = btf_node->id;
76 struct btf_node *node;
77 struct rb_node **p;
79 down_write(&env->bpf_progs.lock);
80 p = &env->bpf_progs.btfs.rb_node;
82 while (*p != NULL) {
83 parent = *p;
84 node = rb_entry(parent, struct btf_node, rb_node);
85 if (btf_id < node->id) {
86 p = &(*p)->rb_left;
87 } else if (btf_id > node->id) {
88 p = &(*p)->rb_right;
89 } else {
90 pr_debug("duplicated btf %u\n", btf_id);
91 goto out;
95 rb_link_node(&btf_node->rb_node, parent, p);
96 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
97 env->bpf_progs.btfs_cnt++;
98 out:
99 up_write(&env->bpf_progs.lock);
102 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
104 struct btf_node *node = NULL;
105 struct rb_node *n;
107 down_read(&env->bpf_progs.lock);
108 n = env->bpf_progs.btfs.rb_node;
110 while (n) {
111 node = rb_entry(n, struct btf_node, rb_node);
112 if (btf_id < node->id)
113 n = n->rb_left;
114 else if (btf_id > node->id)
115 n = n->rb_right;
116 else
117 goto out;
119 node = NULL;
121 out:
122 up_read(&env->bpf_progs.lock);
123 return node;
126 /* purge data in bpf_progs.infos tree */
127 static void perf_env__purge_bpf(struct perf_env *env)
129 struct rb_root *root;
130 struct rb_node *next;
132 down_write(&env->bpf_progs.lock);
134 root = &env->bpf_progs.infos;
135 next = rb_first(root);
137 while (next) {
138 struct bpf_prog_info_node *node;
140 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
141 next = rb_next(&node->rb_node);
142 rb_erase(&node->rb_node, root);
143 free(node);
146 env->bpf_progs.infos_cnt = 0;
148 root = &env->bpf_progs.btfs;
149 next = rb_first(root);
151 while (next) {
152 struct btf_node *node;
154 node = rb_entry(next, struct btf_node, rb_node);
155 next = rb_next(&node->rb_node);
156 rb_erase(&node->rb_node, root);
157 free(node);
160 env->bpf_progs.btfs_cnt = 0;
162 up_write(&env->bpf_progs.lock);
165 void perf_env__exit(struct perf_env *env)
167 int i;
169 perf_env__purge_bpf(env);
170 zfree(&env->hostname);
171 zfree(&env->os_release);
172 zfree(&env->version);
173 zfree(&env->arch);
174 zfree(&env->cpu_desc);
175 zfree(&env->cpuid);
176 zfree(&env->cmdline);
177 zfree(&env->cmdline_argv);
178 zfree(&env->sibling_cores);
179 zfree(&env->sibling_threads);
180 zfree(&env->pmu_mappings);
181 zfree(&env->cpu);
183 for (i = 0; i < env->nr_numa_nodes; i++)
184 perf_cpu_map__put(env->numa_nodes[i].map);
185 zfree(&env->numa_nodes);
187 for (i = 0; i < env->caches_cnt; i++)
188 cpu_cache_level__free(&env->caches[i]);
189 zfree(&env->caches);
191 for (i = 0; i < env->nr_memory_nodes; i++)
192 zfree(&env->memory_nodes[i].set);
193 zfree(&env->memory_nodes);
196 void perf_env__init(struct perf_env *env)
198 env->bpf_progs.infos = RB_ROOT;
199 env->bpf_progs.btfs = RB_ROOT;
200 init_rwsem(&env->bpf_progs.lock);
203 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
205 int i;
207 /* do not include NULL termination */
208 env->cmdline_argv = calloc(argc, sizeof(char *));
209 if (env->cmdline_argv == NULL)
210 goto out_enomem;
213 * Must copy argv contents because it gets moved around during option
214 * parsing:
216 for (i = 0; i < argc ; i++) {
217 env->cmdline_argv[i] = argv[i];
218 if (env->cmdline_argv[i] == NULL)
219 goto out_free;
222 env->nr_cmdline = argc;
224 return 0;
225 out_free:
226 zfree(&env->cmdline_argv);
227 out_enomem:
228 return -ENOMEM;
231 int perf_env__read_cpu_topology_map(struct perf_env *env)
233 int cpu, nr_cpus;
235 if (env->cpu != NULL)
236 return 0;
238 if (env->nr_cpus_avail == 0)
239 env->nr_cpus_avail = cpu__max_present_cpu();
241 nr_cpus = env->nr_cpus_avail;
242 if (nr_cpus == -1)
243 return -EINVAL;
245 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
246 if (env->cpu == NULL)
247 return -ENOMEM;
249 for (cpu = 0; cpu < nr_cpus; ++cpu) {
250 env->cpu[cpu].core_id = cpu_map__get_core_id(cpu);
251 env->cpu[cpu].socket_id = cpu_map__get_socket_id(cpu);
252 env->cpu[cpu].die_id = cpu_map__get_die_id(cpu);
255 env->nr_cpus_avail = nr_cpus;
256 return 0;
259 static int perf_env__read_arch(struct perf_env *env)
261 struct utsname uts;
263 if (env->arch)
264 return 0;
266 if (!uname(&uts))
267 env->arch = strdup(uts.machine);
269 return env->arch ? 0 : -ENOMEM;
272 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
274 if (env->nr_cpus_avail == 0)
275 env->nr_cpus_avail = cpu__max_present_cpu();
277 return env->nr_cpus_avail ? 0 : -ENOENT;
280 const char *perf_env__raw_arch(struct perf_env *env)
282 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
285 int perf_env__nr_cpus_avail(struct perf_env *env)
287 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
290 void cpu_cache_level__free(struct cpu_cache_level *cache)
292 zfree(&cache->type);
293 zfree(&cache->map);
294 zfree(&cache->size);
298 * Return architecture name in a normalized form.
299 * The conversion logic comes from the Makefile.
301 static const char *normalize_arch(char *arch)
303 if (!strcmp(arch, "x86_64"))
304 return "x86";
305 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
306 return "x86";
307 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
308 return "sparc";
309 if (!strcmp(arch, "aarch64") || !strcmp(arch, "arm64"))
310 return "arm64";
311 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
312 return "arm";
313 if (!strncmp(arch, "s390", 4))
314 return "s390";
315 if (!strncmp(arch, "parisc", 6))
316 return "parisc";
317 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
318 return "powerpc";
319 if (!strncmp(arch, "mips", 4))
320 return "mips";
321 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
322 return "sh";
324 return arch;
327 const char *perf_env__arch(struct perf_env *env)
329 struct utsname uts;
330 char *arch_name;
332 if (!env || !env->arch) { /* Assume local operation */
333 if (uname(&uts) < 0)
334 return NULL;
335 arch_name = uts.machine;
336 } else
337 arch_name = env->arch;
339 return normalize_arch(arch_name);