2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
38 #include <linux/kernel.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
60 int sysctl_memory_failure_early_kill __read_mostly
= 0;
62 int sysctl_memory_failure_recovery __read_mostly
= 1;
64 atomic_long_t num_poisoned_pages __read_mostly
= ATOMIC_LONG_INIT(0);
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68 u32 hwpoison_filter_enable
= 0;
69 u32 hwpoison_filter_dev_major
= ~0U;
70 u32 hwpoison_filter_dev_minor
= ~0U;
71 u64 hwpoison_filter_flags_mask
;
72 u64 hwpoison_filter_flags_value
;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable
);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major
);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor
);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask
);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value
);
79 static int hwpoison_filter_dev(struct page
*p
)
81 struct address_space
*mapping
;
84 if (hwpoison_filter_dev_major
== ~0U &&
85 hwpoison_filter_dev_minor
== ~0U)
89 * page_mapping() does not accept slab pages.
94 mapping
= page_mapping(p
);
95 if (mapping
== NULL
|| mapping
->host
== NULL
)
98 dev
= mapping
->host
->i_sb
->s_dev
;
99 if (hwpoison_filter_dev_major
!= ~0U &&
100 hwpoison_filter_dev_major
!= MAJOR(dev
))
102 if (hwpoison_filter_dev_minor
!= ~0U &&
103 hwpoison_filter_dev_minor
!= MINOR(dev
))
109 static int hwpoison_filter_flags(struct page
*p
)
111 if (!hwpoison_filter_flags_mask
)
114 if ((stable_page_flags(p
) & hwpoison_filter_flags_mask
) ==
115 hwpoison_filter_flags_value
)
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg
;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg
);
134 static int hwpoison_filter_task(struct page
*p
)
136 struct mem_cgroup
*mem
;
137 struct cgroup_subsys_state
*css
;
140 if (!hwpoison_filter_memcg
)
143 mem
= try_get_mem_cgroup_from_page(p
);
147 css
= mem_cgroup_css(mem
);
148 ino
= cgroup_ino(css
->cgroup
);
151 if (ino
!= hwpoison_filter_memcg
)
157 static int hwpoison_filter_task(struct page
*p
) { return 0; }
160 int hwpoison_filter(struct page
*p
)
162 if (!hwpoison_filter_enable
)
165 if (hwpoison_filter_dev(p
))
168 if (hwpoison_filter_flags(p
))
171 if (hwpoison_filter_task(p
))
177 int hwpoison_filter(struct page
*p
)
183 EXPORT_SYMBOL_GPL(hwpoison_filter
);
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
190 static int kill_proc(struct task_struct
*t
, unsigned long addr
, int trapno
,
191 unsigned long pfn
, struct page
*page
, int flags
)
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn
, t
->comm
, t
->pid
);
199 si
.si_signo
= SIGBUS
;
201 si
.si_addr
= (void *)addr
;
202 #ifdef __ARCH_SI_TRAPNO
203 si
.si_trapno
= trapno
;
205 si
.si_addr_lsb
= compound_order(compound_head(page
)) + PAGE_SHIFT
;
207 if ((flags
& MF_ACTION_REQUIRED
) && t
->mm
== current
->mm
) {
208 si
.si_code
= BUS_MCEERR_AR
;
209 ret
= force_sig_info(SIGBUS
, &si
, current
);
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
217 si
.si_code
= BUS_MCEERR_AO
;
218 ret
= send_sig_info(SIGBUS
, &si
, t
); /* synchronous? */
221 printk(KERN_INFO
"MCE: Error sending signal to %s:%d: %d\n",
222 t
->comm
, t
->pid
, ret
);
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
230 void shake_page(struct page
*p
, int access
)
236 drain_all_pages(page_zone(p
));
237 if (PageLRU(p
) || is_free_buddy_page(p
))
242 * Only call shrink_node_slabs here (which would also shrink
243 * other caches) if access is not potentially fatal.
246 drop_slab_node(page_to_nid(p
));
248 EXPORT_SYMBOL_GPL(shake_page
);
251 * Kill all processes that have a poisoned page mapped and then isolate
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
274 struct task_struct
*tsk
;
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do. We just print a message and ignore otherwise.
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
289 static void add_to_kill(struct task_struct
*tsk
, struct page
*p
,
290 struct vm_area_struct
*vma
,
291 struct list_head
*to_kill
,
292 struct to_kill
**tkc
)
300 tk
= kmalloc(sizeof(struct to_kill
), GFP_ATOMIC
);
303 "MCE: Out of memory while machine check handling\n");
307 tk
->addr
= page_address_in_vma(p
, vma
);
311 * In theory we don't have to kill when the page was
312 * munmaped. But it could be also a mremap. Since that's
313 * likely very rare kill anyways just out of paranoia, but use
314 * a SIGKILL because the error is not contained anymore.
316 if (tk
->addr
== -EFAULT
) {
317 pr_info("MCE: Unable to find user space address %lx in %s\n",
318 page_to_pfn(p
), tsk
->comm
);
321 get_task_struct(tsk
);
323 list_add_tail(&tk
->nd
, to_kill
);
327 * Kill the processes that have been collected earlier.
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
334 static void kill_procs(struct list_head
*to_kill
, int forcekill
, int trapno
,
335 int fail
, struct page
*page
, unsigned long pfn
,
338 struct to_kill
*tk
, *next
;
340 list_for_each_entry_safe (tk
, next
, to_kill
, nd
) {
343 * In case something went wrong with munmapping
344 * make sure the process doesn't catch the
345 * signal and then access the memory. Just kill it.
347 if (fail
|| tk
->addr_valid
== 0) {
349 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
350 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
351 force_sig(SIGKILL
, tk
->tsk
);
355 * In theory the process could have mapped
356 * something else on the address in-between. We could
357 * check for that, but we need to tell the
360 else if (kill_proc(tk
->tsk
, tk
->addr
, trapno
,
361 pfn
, page
, flags
) < 0)
363 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
364 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
366 put_task_struct(tk
->tsk
);
372 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
373 * on behalf of the thread group. Return task_struct of the (first found)
374 * dedicated thread if found, and return NULL otherwise.
376 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
377 * have to call rcu_read_lock/unlock() in this function.
379 static struct task_struct
*find_early_kill_thread(struct task_struct
*tsk
)
381 struct task_struct
*t
;
383 for_each_thread(tsk
, t
)
384 if ((t
->flags
& PF_MCE_PROCESS
) && (t
->flags
& PF_MCE_EARLY
))
390 * Determine whether a given process is "early kill" process which expects
391 * to be signaled when some page under the process is hwpoisoned.
392 * Return task_struct of the dedicated thread (main thread unless explicitly
393 * specified) if the process is "early kill," and otherwise returns NULL.
395 static struct task_struct
*task_early_kill(struct task_struct
*tsk
,
398 struct task_struct
*t
;
403 t
= find_early_kill_thread(tsk
);
406 if (sysctl_memory_failure_early_kill
)
412 * Collect processes when the error hit an anonymous page.
414 static void collect_procs_anon(struct page
*page
, struct list_head
*to_kill
,
415 struct to_kill
**tkc
, int force_early
)
417 struct vm_area_struct
*vma
;
418 struct task_struct
*tsk
;
422 av
= page_lock_anon_vma_read(page
);
423 if (av
== NULL
) /* Not actually mapped anymore */
426 pgoff
= page_to_pgoff(page
);
427 read_lock(&tasklist_lock
);
428 for_each_process (tsk
) {
429 struct anon_vma_chain
*vmac
;
430 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
434 anon_vma_interval_tree_foreach(vmac
, &av
->rb_root
,
437 if (!page_mapped_in_vma(page
, vma
))
439 if (vma
->vm_mm
== t
->mm
)
440 add_to_kill(t
, page
, vma
, to_kill
, tkc
);
443 read_unlock(&tasklist_lock
);
444 page_unlock_anon_vma_read(av
);
448 * Collect processes when the error hit a file mapped page.
450 static void collect_procs_file(struct page
*page
, struct list_head
*to_kill
,
451 struct to_kill
**tkc
, int force_early
)
453 struct vm_area_struct
*vma
;
454 struct task_struct
*tsk
;
455 struct address_space
*mapping
= page
->mapping
;
457 i_mmap_lock_read(mapping
);
458 read_lock(&tasklist_lock
);
459 for_each_process(tsk
) {
460 pgoff_t pgoff
= page_to_pgoff(page
);
461 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
465 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
,
468 * Send early kill signal to tasks where a vma covers
469 * the page but the corrupted page is not necessarily
470 * mapped it in its pte.
471 * Assume applications who requested early kill want
472 * to be informed of all such data corruptions.
474 if (vma
->vm_mm
== t
->mm
)
475 add_to_kill(t
, page
, vma
, to_kill
, tkc
);
478 read_unlock(&tasklist_lock
);
479 i_mmap_unlock_read(mapping
);
483 * Collect the processes who have the corrupted page mapped to kill.
484 * This is done in two steps for locking reasons.
485 * First preallocate one tokill structure outside the spin locks,
486 * so that we can kill at least one process reasonably reliable.
488 static void collect_procs(struct page
*page
, struct list_head
*tokill
,
496 tk
= kmalloc(sizeof(struct to_kill
), GFP_NOIO
);
500 collect_procs_anon(page
, tokill
, &tk
, force_early
);
502 collect_procs_file(page
, tokill
, &tk
, force_early
);
507 * Error handlers for various types of pages.
511 IGNORED
, /* Error: cannot be handled */
512 FAILED
, /* Error: handling failed */
513 DELAYED
, /* Will be handled later */
514 RECOVERED
, /* Successfully recovered */
517 static const char *action_name
[] = {
518 [IGNORED
] = "Ignored",
520 [DELAYED
] = "Delayed",
521 [RECOVERED
] = "Recovered",
524 enum action_page_type
{
526 MSG_KERNEL_HIGH_ORDER
,
528 MSG_DIFFERENT_COMPOUND
,
535 MSG_DIRTY_MLOCKED_LRU
,
536 MSG_CLEAN_MLOCKED_LRU
,
537 MSG_DIRTY_UNEVICTABLE_LRU
,
538 MSG_CLEAN_UNEVICTABLE_LRU
,
547 static const char * const action_page_types
[] = {
548 [MSG_KERNEL
] = "reserved kernel page",
549 [MSG_KERNEL_HIGH_ORDER
] = "high-order kernel page",
550 [MSG_SLAB
] = "kernel slab page",
551 [MSG_DIFFERENT_COMPOUND
] = "different compound page after locking",
552 [MSG_POISONED_HUGE
] = "huge page already hardware poisoned",
553 [MSG_HUGE
] = "huge page",
554 [MSG_FREE_HUGE
] = "free huge page",
555 [MSG_UNMAP_FAILED
] = "unmapping failed page",
556 [MSG_DIRTY_SWAPCACHE
] = "dirty swapcache page",
557 [MSG_CLEAN_SWAPCACHE
] = "clean swapcache page",
558 [MSG_DIRTY_MLOCKED_LRU
] = "dirty mlocked LRU page",
559 [MSG_CLEAN_MLOCKED_LRU
] = "clean mlocked LRU page",
560 [MSG_DIRTY_UNEVICTABLE_LRU
] = "dirty unevictable LRU page",
561 [MSG_CLEAN_UNEVICTABLE_LRU
] = "clean unevictable LRU page",
562 [MSG_DIRTY_LRU
] = "dirty LRU page",
563 [MSG_CLEAN_LRU
] = "clean LRU page",
564 [MSG_TRUNCATED_LRU
] = "already truncated LRU page",
565 [MSG_BUDDY
] = "free buddy page",
566 [MSG_BUDDY_2ND
] = "free buddy page (2nd try)",
567 [MSG_UNKNOWN
] = "unknown page",
571 * XXX: It is possible that a page is isolated from LRU cache,
572 * and then kept in swap cache or failed to remove from page cache.
573 * The page count will stop it from being freed by unpoison.
574 * Stress tests should be aware of this memory leak problem.
576 static int delete_from_lru_cache(struct page
*p
)
578 if (!isolate_lru_page(p
)) {
580 * Clear sensible page flags, so that the buddy system won't
581 * complain when the page is unpoison-and-freed.
584 ClearPageUnevictable(p
);
586 * drop the page count elevated by isolate_lru_page()
588 page_cache_release(p
);
595 * Error hit kernel page.
596 * Do nothing, try to be lucky and not touch this instead. For a few cases we
597 * could be more sophisticated.
599 static int me_kernel(struct page
*p
, unsigned long pfn
)
605 * Page in unknown state. Do nothing.
607 static int me_unknown(struct page
*p
, unsigned long pfn
)
609 printk(KERN_ERR
"MCE %#lx: Unknown page state\n", pfn
);
614 * Clean (or cleaned) page cache page.
616 static int me_pagecache_clean(struct page
*p
, unsigned long pfn
)
620 struct address_space
*mapping
;
622 delete_from_lru_cache(p
);
625 * For anonymous pages we're done the only reference left
626 * should be the one m_f() holds.
632 * Now truncate the page in the page cache. This is really
633 * more like a "temporary hole punch"
634 * Don't do this for block devices when someone else
635 * has a reference, because it could be file system metadata
636 * and that's not safe to truncate.
638 mapping
= page_mapping(p
);
641 * Page has been teared down in the meanwhile
647 * Truncation is a bit tricky. Enable it per file system for now.
649 * Open: to take i_mutex or not for this? Right now we don't.
651 if (mapping
->a_ops
->error_remove_page
) {
652 err
= mapping
->a_ops
->error_remove_page(mapping
, p
);
654 printk(KERN_INFO
"MCE %#lx: Failed to punch page: %d\n",
656 } else if (page_has_private(p
) &&
657 !try_to_release_page(p
, GFP_NOIO
)) {
658 pr_info("MCE %#lx: failed to release buffers\n", pfn
);
664 * If the file system doesn't support it just invalidate
665 * This fails on dirty or anything with private pages
667 if (invalidate_inode_page(p
))
670 printk(KERN_INFO
"MCE %#lx: Failed to invalidate\n",
677 * Dirty pagecache page
678 * Issues: when the error hit a hole page the error is not properly
681 static int me_pagecache_dirty(struct page
*p
, unsigned long pfn
)
683 struct address_space
*mapping
= page_mapping(p
);
686 /* TBD: print more information about the file. */
689 * IO error will be reported by write(), fsync(), etc.
690 * who check the mapping.
691 * This way the application knows that something went
692 * wrong with its dirty file data.
694 * There's one open issue:
696 * The EIO will be only reported on the next IO
697 * operation and then cleared through the IO map.
698 * Normally Linux has two mechanisms to pass IO error
699 * first through the AS_EIO flag in the address space
700 * and then through the PageError flag in the page.
701 * Since we drop pages on memory failure handling the
702 * only mechanism open to use is through AS_AIO.
704 * This has the disadvantage that it gets cleared on
705 * the first operation that returns an error, while
706 * the PageError bit is more sticky and only cleared
707 * when the page is reread or dropped. If an
708 * application assumes it will always get error on
709 * fsync, but does other operations on the fd before
710 * and the page is dropped between then the error
711 * will not be properly reported.
713 * This can already happen even without hwpoisoned
714 * pages: first on metadata IO errors (which only
715 * report through AS_EIO) or when the page is dropped
718 * So right now we assume that the application DTRT on
719 * the first EIO, but we're not worse than other parts
722 mapping_set_error(mapping
, EIO
);
725 return me_pagecache_clean(p
, pfn
);
729 * Clean and dirty swap cache.
731 * Dirty swap cache page is tricky to handle. The page could live both in page
732 * cache and swap cache(ie. page is freshly swapped in). So it could be
733 * referenced concurrently by 2 types of PTEs:
734 * normal PTEs and swap PTEs. We try to handle them consistently by calling
735 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
737 * - clear dirty bit to prevent IO
739 * - but keep in the swap cache, so that when we return to it on
740 * a later page fault, we know the application is accessing
741 * corrupted data and shall be killed (we installed simple
742 * interception code in do_swap_page to catch it).
744 * Clean swap cache pages can be directly isolated. A later page fault will
745 * bring in the known good data from disk.
747 static int me_swapcache_dirty(struct page
*p
, unsigned long pfn
)
750 /* Trigger EIO in shmem: */
751 ClearPageUptodate(p
);
753 if (!delete_from_lru_cache(p
))
759 static int me_swapcache_clean(struct page
*p
, unsigned long pfn
)
761 delete_from_swap_cache(p
);
763 if (!delete_from_lru_cache(p
))
770 * Huge pages. Needs work.
772 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
773 * To narrow down kill region to one page, we need to break up pmd.
775 static int me_huge_page(struct page
*p
, unsigned long pfn
)
778 struct page
*hpage
= compound_head(p
);
780 * We can safely recover from error on free or reserved (i.e.
781 * not in-use) hugepage by dequeuing it from freelist.
782 * To check whether a hugepage is in-use or not, we can't use
783 * page->lru because it can be used in other hugepage operations,
784 * such as __unmap_hugepage_range() and gather_surplus_pages().
785 * So instead we use page_mapping() and PageAnon().
786 * We assume that this function is called with page lock held,
787 * so there is no race between isolation and mapping/unmapping.
789 if (!(page_mapping(hpage
) || PageAnon(hpage
))) {
790 res
= dequeue_hwpoisoned_huge_page(hpage
);
798 * Various page states we can handle.
800 * A page state is defined by its current page->flags bits.
801 * The table matches them in order and calls the right handler.
803 * This is quite tricky because we can access page at any time
804 * in its live cycle, so all accesses have to be extremely careful.
806 * This is not complete. More states could be added.
807 * For any missing state don't attempt recovery.
810 #define dirty (1UL << PG_dirty)
811 #define sc (1UL << PG_swapcache)
812 #define unevict (1UL << PG_unevictable)
813 #define mlock (1UL << PG_mlocked)
814 #define writeback (1UL << PG_writeback)
815 #define lru (1UL << PG_lru)
816 #define swapbacked (1UL << PG_swapbacked)
817 #define head (1UL << PG_head)
818 #define tail (1UL << PG_tail)
819 #define compound (1UL << PG_compound)
820 #define slab (1UL << PG_slab)
821 #define reserved (1UL << PG_reserved)
823 static struct page_state
{
826 enum action_page_type type
;
827 int (*action
)(struct page
*p
, unsigned long pfn
);
829 { reserved
, reserved
, MSG_KERNEL
, me_kernel
},
831 * free pages are specially detected outside this table:
832 * PG_buddy pages only make a small fraction of all free pages.
836 * Could in theory check if slab page is free or if we can drop
837 * currently unused objects without touching them. But just
838 * treat it as standard kernel for now.
840 { slab
, slab
, MSG_SLAB
, me_kernel
},
842 #ifdef CONFIG_PAGEFLAGS_EXTENDED
843 { head
, head
, MSG_HUGE
, me_huge_page
},
844 { tail
, tail
, MSG_HUGE
, me_huge_page
},
846 { compound
, compound
, MSG_HUGE
, me_huge_page
},
849 { sc
|dirty
, sc
|dirty
, MSG_DIRTY_SWAPCACHE
, me_swapcache_dirty
},
850 { sc
|dirty
, sc
, MSG_CLEAN_SWAPCACHE
, me_swapcache_clean
},
852 { mlock
|dirty
, mlock
|dirty
, MSG_DIRTY_MLOCKED_LRU
, me_pagecache_dirty
},
853 { mlock
|dirty
, mlock
, MSG_CLEAN_MLOCKED_LRU
, me_pagecache_clean
},
855 { unevict
|dirty
, unevict
|dirty
, MSG_DIRTY_UNEVICTABLE_LRU
, me_pagecache_dirty
},
856 { unevict
|dirty
, unevict
, MSG_CLEAN_UNEVICTABLE_LRU
, me_pagecache_clean
},
858 { lru
|dirty
, lru
|dirty
, MSG_DIRTY_LRU
, me_pagecache_dirty
},
859 { lru
|dirty
, lru
, MSG_CLEAN_LRU
, me_pagecache_clean
},
862 * Catchall entry: must be at end.
864 { 0, 0, MSG_UNKNOWN
, me_unknown
},
881 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
882 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
884 static void action_result(unsigned long pfn
, enum action_page_type type
, int result
)
886 pr_err("MCE %#lx: recovery action for %s: %s\n",
887 pfn
, action_page_types
[type
], action_name
[result
]);
890 static int page_action(struct page_state
*ps
, struct page
*p
,
896 result
= ps
->action(p
, pfn
);
898 count
= page_count(p
) - 1;
899 if (ps
->action
== me_swapcache_dirty
&& result
== DELAYED
)
903 "MCE %#lx: %s still referenced by %d users\n",
904 pfn
, action_page_types
[ps
->type
], count
);
907 action_result(pfn
, ps
->type
, result
);
909 /* Could do more checks here if page looks ok */
911 * Could adjust zone counters here to correct for the missing page.
914 return (result
== RECOVERED
|| result
== DELAYED
) ? 0 : -EBUSY
;
918 * Do all that is necessary to remove user space mappings. Unmap
919 * the pages and send SIGBUS to the processes if the data was dirty.
921 static int hwpoison_user_mappings(struct page
*p
, unsigned long pfn
,
922 int trapno
, int flags
, struct page
**hpagep
)
924 enum ttu_flags ttu
= TTU_UNMAP
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
925 struct address_space
*mapping
;
928 int kill
= 1, forcekill
;
929 struct page
*hpage
= *hpagep
;
933 * Here we are interested only in user-mapped pages, so skip any
934 * other types of pages.
936 if (PageReserved(p
) || PageSlab(p
))
938 if (!(PageLRU(hpage
) || PageHuge(p
)))
942 * This check implies we don't kill processes if their pages
943 * are in the swap cache early. Those are always late kills.
945 if (!page_mapped(hpage
))
949 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn
);
953 if (PageSwapCache(p
)) {
955 "MCE %#lx: keeping poisoned page in swap cache\n", pfn
);
956 ttu
|= TTU_IGNORE_HWPOISON
;
960 * Propagate the dirty bit from PTEs to struct page first, because we
961 * need this to decide if we should kill or just drop the page.
962 * XXX: the dirty test could be racy: set_page_dirty() may not always
963 * be called inside page lock (it's recommended but not enforced).
965 mapping
= page_mapping(hpage
);
966 if (!(flags
& MF_MUST_KILL
) && !PageDirty(hpage
) && mapping
&&
967 mapping_cap_writeback_dirty(mapping
)) {
968 if (page_mkclean(hpage
)) {
972 ttu
|= TTU_IGNORE_HWPOISON
;
974 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
980 * ppage: poisoned page
981 * if p is regular page(4k page)
982 * ppage == real poisoned page;
983 * else p is hugetlb or THP, ppage == head page.
987 if (PageTransHuge(hpage
)) {
989 * Verify that this isn't a hugetlbfs head page, the check for
990 * PageAnon is just for avoid tripping a split_huge_page
991 * internal debug check, as split_huge_page refuses to deal with
992 * anything that isn't an anon page. PageAnon can't go away fro
993 * under us because we hold a refcount on the hpage, without a
994 * refcount on the hpage. split_huge_page can't be safely called
995 * in the first place, having a refcount on the tail isn't
996 * enough * to be safe.
998 if (!PageHuge(hpage
) && PageAnon(hpage
)) {
999 if (unlikely(split_huge_page(hpage
))) {
1001 * FIXME: if splitting THP is failed, it is
1002 * better to stop the following operation rather
1003 * than causing panic by unmapping. System might
1004 * survive if the page is freed later.
1007 "MCE %#lx: failed to split THP\n", pfn
);
1009 BUG_ON(!PageHWPoison(p
));
1013 * We pinned the head page for hwpoison handling,
1014 * now we split the thp and we are interested in
1015 * the hwpoisoned raw page, so move the refcount
1016 * to it. Similarly, page lock is shifted.
1019 if (!(flags
& MF_COUNT_INCREASED
)) {
1027 /* THP is split, so ppage should be the real poisoned page. */
1033 * First collect all the processes that have the page
1034 * mapped in dirty form. This has to be done before try_to_unmap,
1035 * because ttu takes the rmap data structures down.
1037 * Error handling: We ignore errors here because
1038 * there's nothing that can be done.
1041 collect_procs(ppage
, &tokill
, flags
& MF_ACTION_REQUIRED
);
1043 ret
= try_to_unmap(ppage
, ttu
);
1044 if (ret
!= SWAP_SUCCESS
)
1045 printk(KERN_ERR
"MCE %#lx: failed to unmap page (mapcount=%d)\n",
1046 pfn
, page_mapcount(ppage
));
1049 * Now that the dirty bit has been propagated to the
1050 * struct page and all unmaps done we can decide if
1051 * killing is needed or not. Only kill when the page
1052 * was dirty or the process is not restartable,
1053 * otherwise the tokill list is merely
1054 * freed. When there was a problem unmapping earlier
1055 * use a more force-full uncatchable kill to prevent
1056 * any accesses to the poisoned memory.
1058 forcekill
= PageDirty(ppage
) || (flags
& MF_MUST_KILL
);
1059 kill_procs(&tokill
, forcekill
, trapno
,
1060 ret
!= SWAP_SUCCESS
, p
, pfn
, flags
);
1065 static void set_page_hwpoison_huge_page(struct page
*hpage
)
1068 int nr_pages
= 1 << compound_order(hpage
);
1069 for (i
= 0; i
< nr_pages
; i
++)
1070 SetPageHWPoison(hpage
+ i
);
1073 static void clear_page_hwpoison_huge_page(struct page
*hpage
)
1076 int nr_pages
= 1 << compound_order(hpage
);
1077 for (i
= 0; i
< nr_pages
; i
++)
1078 ClearPageHWPoison(hpage
+ i
);
1082 * memory_failure - Handle memory failure of a page.
1083 * @pfn: Page Number of the corrupted page
1084 * @trapno: Trap number reported in the signal to user space.
1085 * @flags: fine tune action taken
1087 * This function is called by the low level machine check code
1088 * of an architecture when it detects hardware memory corruption
1089 * of a page. It tries its best to recover, which includes
1090 * dropping pages, killing processes etc.
1092 * The function is primarily of use for corruptions that
1093 * happen outside the current execution context (e.g. when
1094 * detected by a background scrubber)
1096 * Must run in process context (e.g. a work queue) with interrupts
1097 * enabled and no spinlocks hold.
1099 int memory_failure(unsigned long pfn
, int trapno
, int flags
)
1101 struct page_state
*ps
;
1105 unsigned int nr_pages
;
1106 unsigned long page_flags
;
1108 if (!sysctl_memory_failure_recovery
)
1109 panic("Memory failure from trap %d on page %lx", trapno
, pfn
);
1111 if (!pfn_valid(pfn
)) {
1113 "MCE %#lx: memory outside kernel control\n",
1118 p
= pfn_to_page(pfn
);
1119 hpage
= compound_head(p
);
1120 if (TestSetPageHWPoison(p
)) {
1121 printk(KERN_ERR
"MCE %#lx: already hardware poisoned\n", pfn
);
1126 * Currently errors on hugetlbfs pages are measured in hugepage units,
1127 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1128 * transparent hugepages, they are supposed to be split and error
1129 * measurement is done in normal page units. So nr_pages should be one
1133 nr_pages
= 1 << compound_order(hpage
);
1134 else /* normal page or thp */
1136 atomic_long_add(nr_pages
, &num_poisoned_pages
);
1139 * We need/can do nothing about count=0 pages.
1140 * 1) it's a free page, and therefore in safe hand:
1141 * prep_new_page() will be the gate keeper.
1142 * 2) it's a free hugepage, which is also safe:
1143 * an affected hugepage will be dequeued from hugepage freelist,
1144 * so there's no concern about reusing it ever after.
1145 * 3) it's part of a non-compound high order page.
1146 * Implies some kernel user: cannot stop them from
1147 * R/W the page; let's pray that the page has been
1148 * used and will be freed some time later.
1149 * In fact it's dangerous to directly bump up page count from 0,
1150 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1152 if (!(flags
& MF_COUNT_INCREASED
) &&
1153 !get_page_unless_zero(hpage
)) {
1154 if (is_free_buddy_page(p
)) {
1155 action_result(pfn
, MSG_BUDDY
, DELAYED
);
1157 } else if (PageHuge(hpage
)) {
1159 * Check "filter hit" and "race with other subpage."
1162 if (PageHWPoison(hpage
)) {
1163 if ((hwpoison_filter(p
) && TestClearPageHWPoison(p
))
1164 || (p
!= hpage
&& TestSetPageHWPoison(hpage
))) {
1165 atomic_long_sub(nr_pages
, &num_poisoned_pages
);
1170 set_page_hwpoison_huge_page(hpage
);
1171 res
= dequeue_hwpoisoned_huge_page(hpage
);
1172 action_result(pfn
, MSG_FREE_HUGE
,
1173 res
? IGNORED
: DELAYED
);
1177 action_result(pfn
, MSG_KERNEL_HIGH_ORDER
, IGNORED
);
1183 * We ignore non-LRU pages for good reasons.
1184 * - PG_locked is only well defined for LRU pages and a few others
1185 * - to avoid races with __set_page_locked()
1186 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1187 * The check (unnecessarily) ignores LRU pages being isolated and
1188 * walked by the page reclaim code, however that's not a big loss.
1191 if (!PageLRU(hpage
))
1192 shake_page(hpage
, 0);
1193 if (!PageLRU(hpage
)) {
1195 * shake_page could have turned it free.
1197 if (is_free_buddy_page(p
)) {
1198 if (flags
& MF_COUNT_INCREASED
)
1199 action_result(pfn
, MSG_BUDDY
, DELAYED
);
1201 action_result(pfn
, MSG_BUDDY_2ND
,
1211 * The page could have changed compound pages during the locking.
1212 * If this happens just bail out.
1214 if (compound_head(p
) != hpage
) {
1215 action_result(pfn
, MSG_DIFFERENT_COMPOUND
, IGNORED
);
1221 * We use page flags to determine what action should be taken, but
1222 * the flags can be modified by the error containment action. One
1223 * example is an mlocked page, where PG_mlocked is cleared by
1224 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1225 * correctly, we save a copy of the page flags at this time.
1227 page_flags
= p
->flags
;
1230 * unpoison always clear PG_hwpoison inside page lock
1232 if (!PageHWPoison(p
)) {
1233 printk(KERN_ERR
"MCE %#lx: just unpoisoned\n", pfn
);
1234 atomic_long_sub(nr_pages
, &num_poisoned_pages
);
1239 if (hwpoison_filter(p
)) {
1240 if (TestClearPageHWPoison(p
))
1241 atomic_long_sub(nr_pages
, &num_poisoned_pages
);
1247 if (!PageHuge(p
) && !PageTransTail(p
) && !PageLRU(p
))
1248 goto identify_page_state
;
1251 * For error on the tail page, we should set PG_hwpoison
1252 * on the head page to show that the hugepage is hwpoisoned
1254 if (PageHuge(p
) && PageTail(p
) && TestSetPageHWPoison(hpage
)) {
1255 action_result(pfn
, MSG_POISONED_HUGE
, IGNORED
);
1261 * Set PG_hwpoison on all pages in an error hugepage,
1262 * because containment is done in hugepage unit for now.
1263 * Since we have done TestSetPageHWPoison() for the head page with
1264 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1267 set_page_hwpoison_huge_page(hpage
);
1270 * It's very difficult to mess with pages currently under IO
1271 * and in many cases impossible, so we just avoid it here.
1273 wait_on_page_writeback(p
);
1276 * Now take care of user space mappings.
1277 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1279 * When the raw error page is thp tail page, hpage points to the raw
1280 * page after thp split.
1282 if (hwpoison_user_mappings(p
, pfn
, trapno
, flags
, &hpage
)
1284 action_result(pfn
, MSG_UNMAP_FAILED
, IGNORED
);
1290 * Torn down by someone else?
1292 if (PageLRU(p
) && !PageSwapCache(p
) && p
->mapping
== NULL
) {
1293 action_result(pfn
, MSG_TRUNCATED_LRU
, IGNORED
);
1298 identify_page_state
:
1301 * The first check uses the current page flags which may not have any
1302 * relevant information. The second check with the saved page flagss is
1303 * carried out only if the first check can't determine the page status.
1305 for (ps
= error_states
;; ps
++)
1306 if ((p
->flags
& ps
->mask
) == ps
->res
)
1309 page_flags
|= (p
->flags
& (1UL << PG_dirty
));
1312 for (ps
= error_states
;; ps
++)
1313 if ((page_flags
& ps
->mask
) == ps
->res
)
1315 res
= page_action(ps
, p
, pfn
);
1320 EXPORT_SYMBOL_GPL(memory_failure
);
1322 #define MEMORY_FAILURE_FIFO_ORDER 4
1323 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1325 struct memory_failure_entry
{
1331 struct memory_failure_cpu
{
1332 DECLARE_KFIFO(fifo
, struct memory_failure_entry
,
1333 MEMORY_FAILURE_FIFO_SIZE
);
1335 struct work_struct work
;
1338 static DEFINE_PER_CPU(struct memory_failure_cpu
, memory_failure_cpu
);
1341 * memory_failure_queue - Schedule handling memory failure of a page.
1342 * @pfn: Page Number of the corrupted page
1343 * @trapno: Trap number reported in the signal to user space.
1344 * @flags: Flags for memory failure handling
1346 * This function is called by the low level hardware error handler
1347 * when it detects hardware memory corruption of a page. It schedules
1348 * the recovering of error page, including dropping pages, killing
1351 * The function is primarily of use for corruptions that
1352 * happen outside the current execution context (e.g. when
1353 * detected by a background scrubber)
1355 * Can run in IRQ context.
1357 void memory_failure_queue(unsigned long pfn
, int trapno
, int flags
)
1359 struct memory_failure_cpu
*mf_cpu
;
1360 unsigned long proc_flags
;
1361 struct memory_failure_entry entry
= {
1367 mf_cpu
= &get_cpu_var(memory_failure_cpu
);
1368 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1369 if (kfifo_put(&mf_cpu
->fifo
, entry
))
1370 schedule_work_on(smp_processor_id(), &mf_cpu
->work
);
1372 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1374 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1375 put_cpu_var(memory_failure_cpu
);
1377 EXPORT_SYMBOL_GPL(memory_failure_queue
);
1379 static void memory_failure_work_func(struct work_struct
*work
)
1381 struct memory_failure_cpu
*mf_cpu
;
1382 struct memory_failure_entry entry
= { 0, };
1383 unsigned long proc_flags
;
1386 mf_cpu
= this_cpu_ptr(&memory_failure_cpu
);
1388 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1389 gotten
= kfifo_get(&mf_cpu
->fifo
, &entry
);
1390 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1393 if (entry
.flags
& MF_SOFT_OFFLINE
)
1394 soft_offline_page(pfn_to_page(entry
.pfn
), entry
.flags
);
1396 memory_failure(entry
.pfn
, entry
.trapno
, entry
.flags
);
1400 static int __init
memory_failure_init(void)
1402 struct memory_failure_cpu
*mf_cpu
;
1405 for_each_possible_cpu(cpu
) {
1406 mf_cpu
= &per_cpu(memory_failure_cpu
, cpu
);
1407 spin_lock_init(&mf_cpu
->lock
);
1408 INIT_KFIFO(mf_cpu
->fifo
);
1409 INIT_WORK(&mf_cpu
->work
, memory_failure_work_func
);
1414 core_initcall(memory_failure_init
);
1417 * unpoison_memory - Unpoison a previously poisoned page
1418 * @pfn: Page number of the to be unpoisoned page
1420 * Software-unpoison a page that has been poisoned by
1421 * memory_failure() earlier.
1423 * This is only done on the software-level, so it only works
1424 * for linux injected failures, not real hardware failures
1426 * Returns 0 for success, otherwise -errno.
1428 int unpoison_memory(unsigned long pfn
)
1433 unsigned int nr_pages
;
1435 if (!pfn_valid(pfn
))
1438 p
= pfn_to_page(pfn
);
1439 page
= compound_head(p
);
1441 if (!PageHWPoison(p
)) {
1442 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn
);
1447 * unpoison_memory() can encounter thp only when the thp is being
1448 * worked by memory_failure() and the page lock is not held yet.
1449 * In such case, we yield to memory_failure() and make unpoison fail.
1451 if (!PageHuge(page
) && PageTransHuge(page
)) {
1452 pr_info("MCE: Memory failure is now running on %#lx\n", pfn
);
1456 nr_pages
= 1 << compound_order(page
);
1458 if (!get_page_unless_zero(page
)) {
1460 * Since HWPoisoned hugepage should have non-zero refcount,
1461 * race between memory failure and unpoison seems to happen.
1462 * In such case unpoison fails and memory failure runs
1465 if (PageHuge(page
)) {
1466 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn
);
1469 if (TestClearPageHWPoison(p
))
1470 atomic_long_dec(&num_poisoned_pages
);
1471 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn
);
1477 * This test is racy because PG_hwpoison is set outside of page lock.
1478 * That's acceptable because that won't trigger kernel panic. Instead,
1479 * the PG_hwpoison page will be caught and isolated on the entrance to
1480 * the free buddy page pool.
1482 if (TestClearPageHWPoison(page
)) {
1483 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn
);
1484 atomic_long_sub(nr_pages
, &num_poisoned_pages
);
1487 clear_page_hwpoison_huge_page(page
);
1492 if (freeit
&& !(pfn
== my_zero_pfn(0) && page_count(p
) == 1))
1497 EXPORT_SYMBOL(unpoison_memory
);
1499 static struct page
*new_page(struct page
*p
, unsigned long private, int **x
)
1501 int nid
= page_to_nid(p
);
1503 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1506 return alloc_pages_exact_node(nid
, GFP_HIGHUSER_MOVABLE
, 0);
1510 * Safely get reference count of an arbitrary page.
1511 * Returns 0 for a free page, -EIO for a zero refcount page
1512 * that is not free, and 1 for any other page type.
1513 * For 1 the page is returned with increased page count, otherwise not.
1515 static int __get_any_page(struct page
*p
, unsigned long pfn
, int flags
)
1519 if (flags
& MF_COUNT_INCREASED
)
1523 * When the target page is a free hugepage, just remove it
1524 * from free hugepage list.
1526 if (!get_page_unless_zero(compound_head(p
))) {
1528 pr_info("%s: %#lx free huge page\n", __func__
, pfn
);
1530 } else if (is_free_buddy_page(p
)) {
1531 pr_info("%s: %#lx free buddy page\n", __func__
, pfn
);
1534 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1535 __func__
, pfn
, p
->flags
);
1539 /* Not a free page */
1545 static int get_any_page(struct page
*page
, unsigned long pfn
, int flags
)
1547 int ret
= __get_any_page(page
, pfn
, flags
);
1549 if (ret
== 1 && !PageHuge(page
) && !PageLRU(page
)) {
1554 shake_page(page
, 1);
1559 ret
= __get_any_page(page
, pfn
, 0);
1560 if (!PageLRU(page
)) {
1561 /* Drop page reference which is from __get_any_page() */
1563 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1571 static int soft_offline_huge_page(struct page
*page
, int flags
)
1574 unsigned long pfn
= page_to_pfn(page
);
1575 struct page
*hpage
= compound_head(page
);
1576 LIST_HEAD(pagelist
);
1579 * This double-check of PageHWPoison is to avoid the race with
1580 * memory_failure(). See also comment in __soft_offline_page().
1583 if (PageHWPoison(hpage
)) {
1586 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn
);
1591 ret
= isolate_huge_page(hpage
, &pagelist
);
1593 * get_any_page() and isolate_huge_page() takes a refcount each,
1594 * so need to drop one here.
1598 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn
);
1602 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1603 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1605 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1606 pfn
, ret
, page
->flags
);
1608 * We know that soft_offline_huge_page() tries to migrate
1609 * only one hugepage pointed to by hpage, so we need not
1610 * run through the pagelist here.
1612 putback_active_hugepage(hpage
);
1616 /* overcommit hugetlb page will be freed to buddy */
1617 if (PageHuge(page
)) {
1618 set_page_hwpoison_huge_page(hpage
);
1619 dequeue_hwpoisoned_huge_page(hpage
);
1620 atomic_long_add(1 << compound_order(hpage
),
1621 &num_poisoned_pages
);
1623 SetPageHWPoison(page
);
1624 atomic_long_inc(&num_poisoned_pages
);
1630 static int __soft_offline_page(struct page
*page
, int flags
)
1633 unsigned long pfn
= page_to_pfn(page
);
1636 * Check PageHWPoison again inside page lock because PageHWPoison
1637 * is set by memory_failure() outside page lock. Note that
1638 * memory_failure() also double-checks PageHWPoison inside page lock,
1639 * so there's no race between soft_offline_page() and memory_failure().
1642 wait_on_page_writeback(page
);
1643 if (PageHWPoison(page
)) {
1646 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1650 * Try to invalidate first. This should work for
1651 * non dirty unmapped page cache pages.
1653 ret
= invalidate_inode_page(page
);
1656 * RED-PEN would be better to keep it isolated here, but we
1657 * would need to fix isolation locking first.
1661 pr_info("soft_offline: %#lx: invalidated\n", pfn
);
1662 SetPageHWPoison(page
);
1663 atomic_long_inc(&num_poisoned_pages
);
1668 * Simple invalidation didn't work.
1669 * Try to migrate to a new page instead. migrate.c
1670 * handles a large number of cases for us.
1672 ret
= isolate_lru_page(page
);
1674 * Drop page reference which is came from get_any_page()
1675 * successful isolate_lru_page() already took another one.
1679 LIST_HEAD(pagelist
);
1680 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1681 page_is_file_cache(page
));
1682 list_add(&page
->lru
, &pagelist
);
1683 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1684 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1686 if (!list_empty(&pagelist
)) {
1687 list_del(&page
->lru
);
1688 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1689 page_is_file_cache(page
));
1690 putback_lru_page(page
);
1693 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1694 pfn
, ret
, page
->flags
);
1699 * After page migration succeeds, the source page can
1700 * be trapped in pagevec and actual freeing is delayed.
1701 * Freeing code works differently based on PG_hwpoison,
1702 * so there's a race. We need to make sure that the
1703 * source page should be freed back to buddy before
1704 * setting PG_hwpoison.
1706 if (!is_free_buddy_page(page
))
1707 drain_all_pages(page_zone(page
));
1708 SetPageHWPoison(page
);
1709 if (!is_free_buddy_page(page
))
1710 pr_info("soft offline: %#lx: page leaked\n",
1712 atomic_long_inc(&num_poisoned_pages
);
1715 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1716 pfn
, ret
, page_count(page
), page
->flags
);
1722 * soft_offline_page - Soft offline a page.
1723 * @page: page to offline
1724 * @flags: flags. Same as memory_failure().
1726 * Returns 0 on success, otherwise negated errno.
1728 * Soft offline a page, by migration or invalidation,
1729 * without killing anything. This is for the case when
1730 * a page is not corrupted yet (so it's still valid to access),
1731 * but has had a number of corrected errors and is better taken
1734 * The actual policy on when to do that is maintained by
1737 * This should never impact any application or cause data loss,
1738 * however it might take some time.
1740 * This is not a 100% solution for all memory, but tries to be
1741 * ``good enough'' for the majority of memory.
1743 int soft_offline_page(struct page
*page
, int flags
)
1746 unsigned long pfn
= page_to_pfn(page
);
1747 struct page
*hpage
= compound_head(page
);
1749 if (PageHWPoison(page
)) {
1750 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1753 if (!PageHuge(page
) && PageTransHuge(hpage
)) {
1754 if (PageAnon(hpage
) && unlikely(split_huge_page(hpage
))) {
1755 pr_info("soft offline: %#lx: failed to split THP\n",
1764 * Isolate the page, so that it doesn't get reallocated if it
1765 * was free. This flag should be kept set until the source page
1766 * is freed and PG_hwpoison on it is set.
1768 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
1769 set_migratetype_isolate(page
, true);
1771 ret
= get_any_page(page
, pfn
, flags
);
1773 if (ret
> 0) { /* for in-use pages */
1775 ret
= soft_offline_huge_page(page
, flags
);
1777 ret
= __soft_offline_page(page
, flags
);
1778 } else if (ret
== 0) { /* for free pages */
1779 if (PageHuge(page
)) {
1780 set_page_hwpoison_huge_page(hpage
);
1781 if (!dequeue_hwpoisoned_huge_page(hpage
))
1782 atomic_long_add(1 << compound_order(hpage
),
1783 &num_poisoned_pages
);
1785 if (!TestSetPageHWPoison(page
))
1786 atomic_long_inc(&num_poisoned_pages
);
1789 unset_migratetype_isolate(page
, MIGRATE_MOVABLE
);