Linux 5.0.21
[linux/fpc-iii.git] / crypto / lrw.c
blobcc5c8924619369cb3cb011852572b5f0a484beab
1 /* LRW: as defined by Cyril Guyot in
2 * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
6 * Based on ecb.c
7 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
14 /* This implementation is checked against the test vectors in the above
15 * document and by a test vector provided by Ken Buchanan at
16 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
18 * The test vectors are included in the testing module tcrypt.[ch] */
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
32 #define LRW_BLOCK_SIZE 16
34 struct priv {
35 struct crypto_skcipher *child;
38 * optimizes multiplying a random (non incrementing, as at the
39 * start of a new sector) value with key2, we could also have
40 * used 4k optimization tables or no optimization at all. In the
41 * latter case we would have to store key2 here
43 struct gf128mul_64k *table;
46 * stores:
47 * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
48 * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
49 * key2*{ 0,0,...1,1,1,1,1 }, etc
50 * needed for optimized multiplication of incrementing values
51 * with key2
53 be128 mulinc[128];
56 struct rctx {
57 be128 t;
58 struct skcipher_request subreq;
61 static inline void setbit128_bbe(void *b, int bit)
63 __set_bit(bit ^ (0x80 -
64 #ifdef __BIG_ENDIAN
65 BITS_PER_LONG
66 #else
67 BITS_PER_BYTE
68 #endif
69 ), b);
72 static int setkey(struct crypto_skcipher *parent, const u8 *key,
73 unsigned int keylen)
75 struct priv *ctx = crypto_skcipher_ctx(parent);
76 struct crypto_skcipher *child = ctx->child;
77 int err, bsize = LRW_BLOCK_SIZE;
78 const u8 *tweak = key + keylen - bsize;
79 be128 tmp = { 0 };
80 int i;
82 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
83 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
84 CRYPTO_TFM_REQ_MASK);
85 err = crypto_skcipher_setkey(child, key, keylen - bsize);
86 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
87 CRYPTO_TFM_RES_MASK);
88 if (err)
89 return err;
91 if (ctx->table)
92 gf128mul_free_64k(ctx->table);
94 /* initialize multiplication table for Key2 */
95 ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
96 if (!ctx->table)
97 return -ENOMEM;
99 /* initialize optimization table */
100 for (i = 0; i < 128; i++) {
101 setbit128_bbe(&tmp, i);
102 ctx->mulinc[i] = tmp;
103 gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
106 return 0;
110 * Returns the number of trailing '1' bits in the words of the counter, which is
111 * represented by 4 32-bit words, arranged from least to most significant.
112 * At the same time, increments the counter by one.
114 * For example:
116 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
117 * int i = next_index(&counter);
118 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
120 static int next_index(u32 *counter)
122 int i, res = 0;
124 for (i = 0; i < 4; i++) {
125 if (counter[i] + 1 != 0)
126 return res + ffz(counter[i]++);
128 counter[i] = 0;
129 res += 32;
133 * If we get here, then x == 128 and we are incrementing the counter
134 * from all ones to all zeros. This means we must return index 127, i.e.
135 * the one corresponding to key2*{ 1,...,1 }.
137 return 127;
141 * We compute the tweak masks twice (both before and after the ECB encryption or
142 * decryption) to avoid having to allocate a temporary buffer and/or make
143 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
144 * just doing the next_index() calls again.
146 static int xor_tweak(struct skcipher_request *req, bool second_pass)
148 const int bs = LRW_BLOCK_SIZE;
149 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
150 struct priv *ctx = crypto_skcipher_ctx(tfm);
151 struct rctx *rctx = skcipher_request_ctx(req);
152 be128 t = rctx->t;
153 struct skcipher_walk w;
154 __be32 *iv;
155 u32 counter[4];
156 int err;
158 if (second_pass) {
159 req = &rctx->subreq;
160 /* set to our TFM to enforce correct alignment: */
161 skcipher_request_set_tfm(req, tfm);
164 err = skcipher_walk_virt(&w, req, false);
165 if (err)
166 return err;
168 iv = (__be32 *)w.iv;
169 counter[0] = be32_to_cpu(iv[3]);
170 counter[1] = be32_to_cpu(iv[2]);
171 counter[2] = be32_to_cpu(iv[1]);
172 counter[3] = be32_to_cpu(iv[0]);
174 while (w.nbytes) {
175 unsigned int avail = w.nbytes;
176 be128 *wsrc;
177 be128 *wdst;
179 wsrc = w.src.virt.addr;
180 wdst = w.dst.virt.addr;
182 do {
183 be128_xor(wdst++, &t, wsrc++);
185 /* T <- I*Key2, using the optimization
186 * discussed in the specification */
187 be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]);
188 } while ((avail -= bs) >= bs);
190 if (second_pass && w.nbytes == w.total) {
191 iv[0] = cpu_to_be32(counter[3]);
192 iv[1] = cpu_to_be32(counter[2]);
193 iv[2] = cpu_to_be32(counter[1]);
194 iv[3] = cpu_to_be32(counter[0]);
197 err = skcipher_walk_done(&w, avail);
200 return err;
203 static int xor_tweak_pre(struct skcipher_request *req)
205 return xor_tweak(req, false);
208 static int xor_tweak_post(struct skcipher_request *req)
210 return xor_tweak(req, true);
213 static void crypt_done(struct crypto_async_request *areq, int err)
215 struct skcipher_request *req = areq->data;
217 if (!err) {
218 struct rctx *rctx = skcipher_request_ctx(req);
220 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
221 err = xor_tweak_post(req);
224 skcipher_request_complete(req, err);
227 static void init_crypt(struct skcipher_request *req)
229 struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
230 struct rctx *rctx = skcipher_request_ctx(req);
231 struct skcipher_request *subreq = &rctx->subreq;
233 skcipher_request_set_tfm(subreq, ctx->child);
234 skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req);
235 /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
236 skcipher_request_set_crypt(subreq, req->dst, req->dst,
237 req->cryptlen, req->iv);
239 /* calculate first value of T */
240 memcpy(&rctx->t, req->iv, sizeof(rctx->t));
242 /* T <- I*Key2 */
243 gf128mul_64k_bbe(&rctx->t, ctx->table);
246 static int encrypt(struct skcipher_request *req)
248 struct rctx *rctx = skcipher_request_ctx(req);
249 struct skcipher_request *subreq = &rctx->subreq;
251 init_crypt(req);
252 return xor_tweak_pre(req) ?:
253 crypto_skcipher_encrypt(subreq) ?:
254 xor_tweak_post(req);
257 static int decrypt(struct skcipher_request *req)
259 struct rctx *rctx = skcipher_request_ctx(req);
260 struct skcipher_request *subreq = &rctx->subreq;
262 init_crypt(req);
263 return xor_tweak_pre(req) ?:
264 crypto_skcipher_decrypt(subreq) ?:
265 xor_tweak_post(req);
268 static int init_tfm(struct crypto_skcipher *tfm)
270 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
271 struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
272 struct priv *ctx = crypto_skcipher_ctx(tfm);
273 struct crypto_skcipher *cipher;
275 cipher = crypto_spawn_skcipher(spawn);
276 if (IS_ERR(cipher))
277 return PTR_ERR(cipher);
279 ctx->child = cipher;
281 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
282 sizeof(struct rctx));
284 return 0;
287 static void exit_tfm(struct crypto_skcipher *tfm)
289 struct priv *ctx = crypto_skcipher_ctx(tfm);
291 if (ctx->table)
292 gf128mul_free_64k(ctx->table);
293 crypto_free_skcipher(ctx->child);
296 static void free(struct skcipher_instance *inst)
298 crypto_drop_skcipher(skcipher_instance_ctx(inst));
299 kfree(inst);
302 static int create(struct crypto_template *tmpl, struct rtattr **tb)
304 struct crypto_skcipher_spawn *spawn;
305 struct skcipher_instance *inst;
306 struct crypto_attr_type *algt;
307 struct skcipher_alg *alg;
308 const char *cipher_name;
309 char ecb_name[CRYPTO_MAX_ALG_NAME];
310 int err;
312 algt = crypto_get_attr_type(tb);
313 if (IS_ERR(algt))
314 return PTR_ERR(algt);
316 if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
317 return -EINVAL;
319 cipher_name = crypto_attr_alg_name(tb[1]);
320 if (IS_ERR(cipher_name))
321 return PTR_ERR(cipher_name);
323 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
324 if (!inst)
325 return -ENOMEM;
327 spawn = skcipher_instance_ctx(inst);
329 crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
330 err = crypto_grab_skcipher(spawn, cipher_name, 0,
331 crypto_requires_sync(algt->type,
332 algt->mask));
333 if (err == -ENOENT) {
334 err = -ENAMETOOLONG;
335 if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
336 cipher_name) >= CRYPTO_MAX_ALG_NAME)
337 goto err_free_inst;
339 err = crypto_grab_skcipher(spawn, ecb_name, 0,
340 crypto_requires_sync(algt->type,
341 algt->mask));
344 if (err)
345 goto err_free_inst;
347 alg = crypto_skcipher_spawn_alg(spawn);
349 err = -EINVAL;
350 if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
351 goto err_drop_spawn;
353 if (crypto_skcipher_alg_ivsize(alg))
354 goto err_drop_spawn;
356 err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
357 &alg->base);
358 if (err)
359 goto err_drop_spawn;
361 err = -EINVAL;
362 cipher_name = alg->base.cra_name;
364 /* Alas we screwed up the naming so we have to mangle the
365 * cipher name.
367 if (!strncmp(cipher_name, "ecb(", 4)) {
368 unsigned len;
370 len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
371 if (len < 2 || len >= sizeof(ecb_name))
372 goto err_drop_spawn;
374 if (ecb_name[len - 1] != ')')
375 goto err_drop_spawn;
377 ecb_name[len - 1] = 0;
379 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
380 "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
381 err = -ENAMETOOLONG;
382 goto err_drop_spawn;
384 } else
385 goto err_drop_spawn;
387 inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
388 inst->alg.base.cra_priority = alg->base.cra_priority;
389 inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
390 inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
391 (__alignof__(__be32) - 1);
393 inst->alg.ivsize = LRW_BLOCK_SIZE;
394 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
395 LRW_BLOCK_SIZE;
396 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
397 LRW_BLOCK_SIZE;
399 inst->alg.base.cra_ctxsize = sizeof(struct priv);
401 inst->alg.init = init_tfm;
402 inst->alg.exit = exit_tfm;
404 inst->alg.setkey = setkey;
405 inst->alg.encrypt = encrypt;
406 inst->alg.decrypt = decrypt;
408 inst->free = free;
410 err = skcipher_register_instance(tmpl, inst);
411 if (err)
412 goto err_drop_spawn;
414 out:
415 return err;
417 err_drop_spawn:
418 crypto_drop_skcipher(spawn);
419 err_free_inst:
420 kfree(inst);
421 goto out;
424 static struct crypto_template crypto_tmpl = {
425 .name = "lrw",
426 .create = create,
427 .module = THIS_MODULE,
430 static int __init crypto_module_init(void)
432 return crypto_register_template(&crypto_tmpl);
435 static void __exit crypto_module_exit(void)
437 crypto_unregister_template(&crypto_tmpl);
440 module_init(crypto_module_init);
441 module_exit(crypto_module_exit);
443 MODULE_LICENSE("GPL");
444 MODULE_DESCRIPTION("LRW block cipher mode");
445 MODULE_ALIAS_CRYPTO("lrw");