1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include "net_driver.h"
30 #include "workarounds.h"
32 /**************************************************************************
36 **************************************************************************
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max
= LOOPBACK_MAX
;
41 const char *efx_loopback_mode_names
[] = {
42 [LOOPBACK_NONE
] = "NONE",
43 [LOOPBACK_DATA
] = "DATAPATH",
44 [LOOPBACK_GMAC
] = "GMAC",
45 [LOOPBACK_XGMII
] = "XGMII",
46 [LOOPBACK_XGXS
] = "XGXS",
47 [LOOPBACK_XAUI
] = "XAUI",
48 [LOOPBACK_GMII
] = "GMII",
49 [LOOPBACK_SGMII
] = "SGMII",
50 [LOOPBACK_XGBR
] = "XGBR",
51 [LOOPBACK_XFI
] = "XFI",
52 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
56 [LOOPBACK_GPHY
] = "GPHY",
57 [LOOPBACK_PHYXS
] = "PHYXS",
58 [LOOPBACK_PCS
] = "PCS",
59 [LOOPBACK_PMAPMD
] = "PMA/PMD",
60 [LOOPBACK_XPORT
] = "XPORT",
61 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS
] = "GMII_WS",
66 [LOOPBACK_XFI_WS
] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
71 /* Interrupt mode names (see INT_MODE())) */
72 const unsigned int efx_interrupt_mode_max
= EFX_INT_MODE_MAX
;
73 const char *efx_interrupt_mode_names
[] = {
74 [EFX_INT_MODE_MSIX
] = "MSI-X",
75 [EFX_INT_MODE_MSI
] = "MSI",
76 [EFX_INT_MODE_LEGACY
] = "legacy",
79 const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
80 const char *efx_reset_type_names
[] = {
81 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
82 [RESET_TYPE_ALL
] = "ALL",
83 [RESET_TYPE_WORLD
] = "WORLD",
84 [RESET_TYPE_DISABLE
] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH
] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH
] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
91 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
94 #define EFX_MAX_MTU (9 * 1024)
96 /* RX slow fill workqueue. If memory allocation fails in the fast path,
97 * a work item is pushed onto this work queue to retry the allocation later,
98 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
99 * workqueue, there is nothing to be gained in making it per NIC
101 static struct workqueue_struct
*refill_workqueue
;
103 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
104 * queued onto this work queue. This is not a per-nic work queue, because
105 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
107 static struct workqueue_struct
*reset_workqueue
;
109 /**************************************************************************
111 * Configurable values
113 *************************************************************************/
116 * Use separate channels for TX and RX events
118 * Set this to 1 to use separate channels for TX and RX. It allows us
119 * to control interrupt affinity separately for TX and RX.
121 * This is only used in MSI-X interrupt mode
123 static unsigned int separate_tx_channels
;
124 module_param(separate_tx_channels
, uint
, 0644);
125 MODULE_PARM_DESC(separate_tx_channels
,
126 "Use separate channels for TX and RX");
128 /* This is the weight assigned to each of the (per-channel) virtual
131 static int napi_weight
= 64;
133 /* This is the time (in jiffies) between invocations of the hardware
134 * monitor, which checks for known hardware bugs and resets the
135 * hardware and driver as necessary.
137 unsigned int efx_monitor_interval
= 1 * HZ
;
139 /* This controls whether or not the driver will initialise devices
140 * with invalid MAC addresses stored in the EEPROM or flash. If true,
141 * such devices will be initialised with a random locally-generated
142 * MAC address. This allows for loading the sfc_mtd driver to
143 * reprogram the flash, even if the flash contents (including the MAC
144 * address) have previously been erased.
146 static unsigned int allow_bad_hwaddr
;
148 /* Initial interrupt moderation settings. They can be modified after
149 * module load with ethtool.
151 * The default for RX should strike a balance between increasing the
152 * round-trip latency and reducing overhead.
154 static unsigned int rx_irq_mod_usec
= 60;
156 /* Initial interrupt moderation settings. They can be modified after
157 * module load with ethtool.
159 * This default is chosen to ensure that a 10G link does not go idle
160 * while a TX queue is stopped after it has become full. A queue is
161 * restarted when it drops below half full. The time this takes (assuming
162 * worst case 3 descriptors per packet and 1024 descriptors) is
163 * 512 / 3 * 1.2 = 205 usec.
165 static unsigned int tx_irq_mod_usec
= 150;
167 /* This is the first interrupt mode to try out of:
172 static unsigned int interrupt_mode
;
174 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
175 * i.e. the number of CPUs among which we may distribute simultaneous
176 * interrupt handling.
178 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
179 * The default (0) means to assign an interrupt to each package (level II cache)
181 static unsigned int rss_cpus
;
182 module_param(rss_cpus
, uint
, 0444);
183 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
185 static int phy_flash_cfg
;
186 module_param(phy_flash_cfg
, int, 0644);
187 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
189 static unsigned irq_adapt_low_thresh
= 10000;
190 module_param(irq_adapt_low_thresh
, uint
, 0644);
191 MODULE_PARM_DESC(irq_adapt_low_thresh
,
192 "Threshold score for reducing IRQ moderation");
194 static unsigned irq_adapt_high_thresh
= 20000;
195 module_param(irq_adapt_high_thresh
, uint
, 0644);
196 MODULE_PARM_DESC(irq_adapt_high_thresh
,
197 "Threshold score for increasing IRQ moderation");
199 /**************************************************************************
201 * Utility functions and prototypes
203 *************************************************************************/
204 static void efx_remove_channel(struct efx_channel
*channel
);
205 static void efx_remove_port(struct efx_nic
*efx
);
206 static void efx_fini_napi(struct efx_nic
*efx
);
207 static void efx_fini_channels(struct efx_nic
*efx
);
209 #define EFX_ASSERT_RESET_SERIALISED(efx) \
211 if ((efx->state == STATE_RUNNING) || \
212 (efx->state == STATE_DISABLED)) \
216 /**************************************************************************
218 * Event queue processing
220 *************************************************************************/
222 /* Process channel's event queue
224 * This function is responsible for processing the event queue of a
225 * single channel. The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
229 static int efx_process_channel(struct efx_channel
*channel
, int budget
)
231 struct efx_nic
*efx
= channel
->efx
;
234 if (unlikely(efx
->reset_pending
!= RESET_TYPE_NONE
||
238 spent
= efx_nic_process_eventq(channel
, budget
);
242 /* Deliver last RX packet. */
243 if (channel
->rx_pkt
) {
244 __efx_rx_packet(channel
, channel
->rx_pkt
,
245 channel
->rx_pkt_csummed
);
246 channel
->rx_pkt
= NULL
;
249 efx_rx_strategy(channel
);
251 efx_fast_push_rx_descriptors(&efx
->rx_queue
[channel
->channel
]);
256 /* Mark channel as finished processing
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
262 static inline void efx_channel_processed(struct efx_channel
*channel
)
264 /* The interrupt handler for this channel may set work_pending
265 * as soon as we acknowledge the events we've seen. Make sure
266 * it's cleared before then. */
267 channel
->work_pending
= false;
270 efx_nic_eventq_read_ack(channel
);
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
278 static int efx_poll(struct napi_struct
*napi
, int budget
)
280 struct efx_channel
*channel
=
281 container_of(napi
, struct efx_channel
, napi_str
);
284 EFX_TRACE(channel
->efx
, "channel %d NAPI poll executing on CPU %d\n",
285 channel
->channel
, raw_smp_processor_id());
287 spent
= efx_process_channel(channel
, budget
);
289 if (spent
< budget
) {
290 struct efx_nic
*efx
= channel
->efx
;
292 if (channel
->channel
< efx
->n_rx_channels
&&
293 efx
->irq_rx_adaptive
&&
294 unlikely(++channel
->irq_count
== 1000)) {
295 if (unlikely(channel
->irq_mod_score
<
296 irq_adapt_low_thresh
)) {
297 if (channel
->irq_moderation
> 1) {
298 channel
->irq_moderation
-= 1;
299 efx
->type
->push_irq_moderation(channel
);
301 } else if (unlikely(channel
->irq_mod_score
>
302 irq_adapt_high_thresh
)) {
303 if (channel
->irq_moderation
<
304 efx
->irq_rx_moderation
) {
305 channel
->irq_moderation
+= 1;
306 efx
->type
->push_irq_moderation(channel
);
309 channel
->irq_count
= 0;
310 channel
->irq_mod_score
= 0;
313 /* There is no race here; although napi_disable() will
314 * only wait for napi_complete(), this isn't a problem
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
319 efx_channel_processed(channel
);
325 /* Process the eventq of the specified channel immediately on this CPU
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
331 * Since we are touching interrupts the caller should hold the suspend lock
333 void efx_process_channel_now(struct efx_channel
*channel
)
335 struct efx_nic
*efx
= channel
->efx
;
337 BUG_ON(!channel
->enabled
);
339 /* Disable interrupts and wait for ISRs to complete */
340 efx_nic_disable_interrupts(efx
);
342 synchronize_irq(efx
->legacy_irq
);
344 synchronize_irq(channel
->irq
);
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel
->napi_str
);
349 /* Poll the channel */
350 efx_process_channel(channel
, EFX_EVQ_SIZE
);
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel
);
356 napi_enable(&channel
->napi_str
);
357 efx_nic_enable_interrupts(efx
);
360 /* Create event queue
361 * Event queue memory allocations are done only once. If the channel
362 * is reset, the memory buffer will be reused; this guards against
363 * errors during channel reset and also simplifies interrupt handling.
365 static int efx_probe_eventq(struct efx_channel
*channel
)
367 EFX_LOG(channel
->efx
, "chan %d create event queue\n", channel
->channel
);
369 return efx_nic_probe_eventq(channel
);
372 /* Prepare channel's event queue */
373 static void efx_init_eventq(struct efx_channel
*channel
)
375 EFX_LOG(channel
->efx
, "chan %d init event queue\n", channel
->channel
);
377 channel
->eventq_read_ptr
= 0;
379 efx_nic_init_eventq(channel
);
382 static void efx_fini_eventq(struct efx_channel
*channel
)
384 EFX_LOG(channel
->efx
, "chan %d fini event queue\n", channel
->channel
);
386 efx_nic_fini_eventq(channel
);
389 static void efx_remove_eventq(struct efx_channel
*channel
)
391 EFX_LOG(channel
->efx
, "chan %d remove event queue\n", channel
->channel
);
393 efx_nic_remove_eventq(channel
);
396 /**************************************************************************
400 *************************************************************************/
402 static int efx_probe_channel(struct efx_channel
*channel
)
404 struct efx_tx_queue
*tx_queue
;
405 struct efx_rx_queue
*rx_queue
;
408 EFX_LOG(channel
->efx
, "creating channel %d\n", channel
->channel
);
410 rc
= efx_probe_eventq(channel
);
414 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
415 rc
= efx_probe_tx_queue(tx_queue
);
420 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
421 rc
= efx_probe_rx_queue(rx_queue
);
426 channel
->n_rx_frm_trunc
= 0;
431 efx_for_each_channel_rx_queue(rx_queue
, channel
)
432 efx_remove_rx_queue(rx_queue
);
434 efx_for_each_channel_tx_queue(tx_queue
, channel
)
435 efx_remove_tx_queue(tx_queue
);
441 static void efx_set_channel_names(struct efx_nic
*efx
)
443 struct efx_channel
*channel
;
444 const char *type
= "";
447 efx_for_each_channel(channel
, efx
) {
448 number
= channel
->channel
;
449 if (efx
->n_channels
> efx
->n_rx_channels
) {
450 if (channel
->channel
< efx
->n_rx_channels
) {
454 number
-= efx
->n_rx_channels
;
457 snprintf(channel
->name
, sizeof(channel
->name
),
458 "%s%s-%d", efx
->name
, type
, number
);
462 /* Channels are shutdown and reinitialised whilst the NIC is running
463 * to propagate configuration changes (mtu, checksum offload), or
464 * to clear hardware error conditions
466 static void efx_init_channels(struct efx_nic
*efx
)
468 struct efx_tx_queue
*tx_queue
;
469 struct efx_rx_queue
*rx_queue
;
470 struct efx_channel
*channel
;
472 /* Calculate the rx buffer allocation parameters required to
473 * support the current MTU, including padding for header
474 * alignment and overruns.
476 efx
->rx_buffer_len
= (max(EFX_PAGE_IP_ALIGN
, NET_IP_ALIGN
) +
477 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
478 efx
->type
->rx_buffer_padding
);
479 efx
->rx_buffer_order
= get_order(efx
->rx_buffer_len
);
481 /* Initialise the channels */
482 efx_for_each_channel(channel
, efx
) {
483 EFX_LOG(channel
->efx
, "init chan %d\n", channel
->channel
);
485 efx_init_eventq(channel
);
487 efx_for_each_channel_tx_queue(tx_queue
, channel
)
488 efx_init_tx_queue(tx_queue
);
490 /* The rx buffer allocation strategy is MTU dependent */
491 efx_rx_strategy(channel
);
493 efx_for_each_channel_rx_queue(rx_queue
, channel
)
494 efx_init_rx_queue(rx_queue
);
496 WARN_ON(channel
->rx_pkt
!= NULL
);
497 efx_rx_strategy(channel
);
501 /* This enables event queue processing and packet transmission.
503 * Note that this function is not allowed to fail, since that would
504 * introduce too much complexity into the suspend/resume path.
506 static void efx_start_channel(struct efx_channel
*channel
)
508 struct efx_rx_queue
*rx_queue
;
510 EFX_LOG(channel
->efx
, "starting chan %d\n", channel
->channel
);
512 /* The interrupt handler for this channel may set work_pending
513 * as soon as we enable it. Make sure it's cleared before
514 * then. Similarly, make sure it sees the enabled flag set. */
515 channel
->work_pending
= false;
516 channel
->enabled
= true;
519 napi_enable(&channel
->napi_str
);
521 /* Load up RX descriptors */
522 efx_for_each_channel_rx_queue(rx_queue
, channel
)
523 efx_fast_push_rx_descriptors(rx_queue
);
526 /* This disables event queue processing and packet transmission.
527 * This function does not guarantee that all queue processing
528 * (e.g. RX refill) is complete.
530 static void efx_stop_channel(struct efx_channel
*channel
)
532 struct efx_rx_queue
*rx_queue
;
534 if (!channel
->enabled
)
537 EFX_LOG(channel
->efx
, "stop chan %d\n", channel
->channel
);
539 channel
->enabled
= false;
540 napi_disable(&channel
->napi_str
);
542 /* Ensure that any worker threads have exited or will be no-ops */
543 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
544 spin_lock_bh(&rx_queue
->add_lock
);
545 spin_unlock_bh(&rx_queue
->add_lock
);
549 static void efx_fini_channels(struct efx_nic
*efx
)
551 struct efx_channel
*channel
;
552 struct efx_tx_queue
*tx_queue
;
553 struct efx_rx_queue
*rx_queue
;
556 EFX_ASSERT_RESET_SERIALISED(efx
);
557 BUG_ON(efx
->port_enabled
);
559 rc
= efx_nic_flush_queues(efx
);
560 if (rc
&& EFX_WORKAROUND_7803(efx
)) {
561 /* Schedule a reset to recover from the flush failure. The
562 * descriptor caches reference memory we're about to free,
563 * but falcon_reconfigure_mac_wrapper() won't reconnect
564 * the MACs because of the pending reset. */
565 EFX_ERR(efx
, "Resetting to recover from flush failure\n");
566 efx_schedule_reset(efx
, RESET_TYPE_ALL
);
568 EFX_ERR(efx
, "failed to flush queues\n");
570 EFX_LOG(efx
, "successfully flushed all queues\n");
573 efx_for_each_channel(channel
, efx
) {
574 EFX_LOG(channel
->efx
, "shut down chan %d\n", channel
->channel
);
576 efx_for_each_channel_rx_queue(rx_queue
, channel
)
577 efx_fini_rx_queue(rx_queue
);
578 efx_for_each_channel_tx_queue(tx_queue
, channel
)
579 efx_fini_tx_queue(tx_queue
);
580 efx_fini_eventq(channel
);
584 static void efx_remove_channel(struct efx_channel
*channel
)
586 struct efx_tx_queue
*tx_queue
;
587 struct efx_rx_queue
*rx_queue
;
589 EFX_LOG(channel
->efx
, "destroy chan %d\n", channel
->channel
);
591 efx_for_each_channel_rx_queue(rx_queue
, channel
)
592 efx_remove_rx_queue(rx_queue
);
593 efx_for_each_channel_tx_queue(tx_queue
, channel
)
594 efx_remove_tx_queue(tx_queue
);
595 efx_remove_eventq(channel
);
598 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
, int delay
)
600 queue_delayed_work(refill_workqueue
, &rx_queue
->work
, delay
);
603 /**************************************************************************
607 **************************************************************************/
609 /* This ensures that the kernel is kept informed (via
610 * netif_carrier_on/off) of the link status, and also maintains the
611 * link status's stop on the port's TX queue.
613 void efx_link_status_changed(struct efx_nic
*efx
)
615 struct efx_link_state
*link_state
= &efx
->link_state
;
617 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
618 * that no events are triggered between unregister_netdev() and the
619 * driver unloading. A more general condition is that NETDEV_CHANGE
620 * can only be generated between NETDEV_UP and NETDEV_DOWN */
621 if (!netif_running(efx
->net_dev
))
624 if (efx
->port_inhibited
) {
625 netif_carrier_off(efx
->net_dev
);
629 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
630 efx
->n_link_state_changes
++;
633 netif_carrier_on(efx
->net_dev
);
635 netif_carrier_off(efx
->net_dev
);
638 /* Status message for kernel log */
639 if (link_state
->up
) {
640 EFX_INFO(efx
, "link up at %uMbps %s-duplex (MTU %d)%s\n",
641 link_state
->speed
, link_state
->fd
? "full" : "half",
643 (efx
->promiscuous
? " [PROMISC]" : ""));
645 EFX_INFO(efx
, "link down\n");
650 void efx_link_set_advertising(struct efx_nic
*efx
, u32 advertising
)
652 efx
->link_advertising
= advertising
;
654 if (advertising
& ADVERTISED_Pause
)
655 efx
->wanted_fc
|= (EFX_FC_TX
| EFX_FC_RX
);
657 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
658 if (advertising
& ADVERTISED_Asym_Pause
)
659 efx
->wanted_fc
^= EFX_FC_TX
;
663 void efx_link_set_wanted_fc(struct efx_nic
*efx
, enum efx_fc_type wanted_fc
)
665 efx
->wanted_fc
= wanted_fc
;
666 if (efx
->link_advertising
) {
667 if (wanted_fc
& EFX_FC_RX
)
668 efx
->link_advertising
|= (ADVERTISED_Pause
|
669 ADVERTISED_Asym_Pause
);
671 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
672 ADVERTISED_Asym_Pause
);
673 if (wanted_fc
& EFX_FC_TX
)
674 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
678 static void efx_fini_port(struct efx_nic
*efx
);
680 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
681 * the MAC appropriately. All other PHY configuration changes are pushed
682 * through phy_op->set_settings(), and pushed asynchronously to the MAC
683 * through efx_monitor().
685 * Callers must hold the mac_lock
687 int __efx_reconfigure_port(struct efx_nic
*efx
)
689 enum efx_phy_mode phy_mode
;
692 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
694 /* Serialise the promiscuous flag with efx_set_multicast_list. */
695 if (efx_dev_registered(efx
)) {
696 netif_addr_lock_bh(efx
->net_dev
);
697 netif_addr_unlock_bh(efx
->net_dev
);
700 /* Disable PHY transmit in mac level loopbacks */
701 phy_mode
= efx
->phy_mode
;
702 if (LOOPBACK_INTERNAL(efx
))
703 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
705 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
707 rc
= efx
->type
->reconfigure_port(efx
);
710 efx
->phy_mode
= phy_mode
;
715 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
717 int efx_reconfigure_port(struct efx_nic
*efx
)
721 EFX_ASSERT_RESET_SERIALISED(efx
);
723 mutex_lock(&efx
->mac_lock
);
724 rc
= __efx_reconfigure_port(efx
);
725 mutex_unlock(&efx
->mac_lock
);
730 /* Asynchronous work item for changing MAC promiscuity and multicast
731 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
733 static void efx_mac_work(struct work_struct
*data
)
735 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
737 mutex_lock(&efx
->mac_lock
);
738 if (efx
->port_enabled
) {
739 efx
->type
->push_multicast_hash(efx
);
740 efx
->mac_op
->reconfigure(efx
);
742 mutex_unlock(&efx
->mac_lock
);
745 static int efx_probe_port(struct efx_nic
*efx
)
749 EFX_LOG(efx
, "create port\n");
752 efx
->phy_mode
= PHY_MODE_SPECIAL
;
754 /* Connect up MAC/PHY operations table */
755 rc
= efx
->type
->probe_port(efx
);
759 /* Sanity check MAC address */
760 if (is_valid_ether_addr(efx
->mac_address
)) {
761 memcpy(efx
->net_dev
->dev_addr
, efx
->mac_address
, ETH_ALEN
);
763 EFX_ERR(efx
, "invalid MAC address %pM\n",
765 if (!allow_bad_hwaddr
) {
769 random_ether_addr(efx
->net_dev
->dev_addr
);
770 EFX_INFO(efx
, "using locally-generated MAC %pM\n",
771 efx
->net_dev
->dev_addr
);
777 efx_remove_port(efx
);
781 static int efx_init_port(struct efx_nic
*efx
)
785 EFX_LOG(efx
, "init port\n");
787 mutex_lock(&efx
->mac_lock
);
789 rc
= efx
->phy_op
->init(efx
);
793 efx
->port_initialized
= true;
795 /* Reconfigure the MAC before creating dma queues (required for
796 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
797 efx
->mac_op
->reconfigure(efx
);
799 /* Ensure the PHY advertises the correct flow control settings */
800 rc
= efx
->phy_op
->reconfigure(efx
);
804 mutex_unlock(&efx
->mac_lock
);
808 efx
->phy_op
->fini(efx
);
810 mutex_unlock(&efx
->mac_lock
);
814 static void efx_start_port(struct efx_nic
*efx
)
816 EFX_LOG(efx
, "start port\n");
817 BUG_ON(efx
->port_enabled
);
819 mutex_lock(&efx
->mac_lock
);
820 efx
->port_enabled
= true;
822 /* efx_mac_work() might have been scheduled after efx_stop_port(),
823 * and then cancelled by efx_flush_all() */
824 efx
->type
->push_multicast_hash(efx
);
825 efx
->mac_op
->reconfigure(efx
);
827 mutex_unlock(&efx
->mac_lock
);
830 /* Prevent efx_mac_work() and efx_monitor() from working */
831 static void efx_stop_port(struct efx_nic
*efx
)
833 EFX_LOG(efx
, "stop port\n");
835 mutex_lock(&efx
->mac_lock
);
836 efx
->port_enabled
= false;
837 mutex_unlock(&efx
->mac_lock
);
839 /* Serialise against efx_set_multicast_list() */
840 if (efx_dev_registered(efx
)) {
841 netif_addr_lock_bh(efx
->net_dev
);
842 netif_addr_unlock_bh(efx
->net_dev
);
846 static void efx_fini_port(struct efx_nic
*efx
)
848 EFX_LOG(efx
, "shut down port\n");
850 if (!efx
->port_initialized
)
853 efx
->phy_op
->fini(efx
);
854 efx
->port_initialized
= false;
856 efx
->link_state
.up
= false;
857 efx_link_status_changed(efx
);
860 static void efx_remove_port(struct efx_nic
*efx
)
862 EFX_LOG(efx
, "destroying port\n");
864 efx
->type
->remove_port(efx
);
867 /**************************************************************************
871 **************************************************************************/
873 /* This configures the PCI device to enable I/O and DMA. */
874 static int efx_init_io(struct efx_nic
*efx
)
876 struct pci_dev
*pci_dev
= efx
->pci_dev
;
877 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
880 EFX_LOG(efx
, "initialising I/O\n");
882 rc
= pci_enable_device(pci_dev
);
884 EFX_ERR(efx
, "failed to enable PCI device\n");
888 pci_set_master(pci_dev
);
890 /* Set the PCI DMA mask. Try all possibilities from our
891 * genuine mask down to 32 bits, because some architectures
892 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
893 * masks event though they reject 46 bit masks.
895 while (dma_mask
> 0x7fffffffUL
) {
896 if (pci_dma_supported(pci_dev
, dma_mask
) &&
897 ((rc
= pci_set_dma_mask(pci_dev
, dma_mask
)) == 0))
902 EFX_ERR(efx
, "could not find a suitable DMA mask\n");
905 EFX_LOG(efx
, "using DMA mask %llx\n", (unsigned long long) dma_mask
);
906 rc
= pci_set_consistent_dma_mask(pci_dev
, dma_mask
);
908 /* pci_set_consistent_dma_mask() is not *allowed* to
909 * fail with a mask that pci_set_dma_mask() accepted,
910 * but just in case...
912 EFX_ERR(efx
, "failed to set consistent DMA mask\n");
916 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, EFX_MEM_BAR
);
917 rc
= pci_request_region(pci_dev
, EFX_MEM_BAR
, "sfc");
919 EFX_ERR(efx
, "request for memory BAR failed\n");
923 efx
->membase
= ioremap_nocache(efx
->membase_phys
,
924 efx
->type
->mem_map_size
);
926 EFX_ERR(efx
, "could not map memory BAR at %llx+%x\n",
927 (unsigned long long)efx
->membase_phys
,
928 efx
->type
->mem_map_size
);
932 EFX_LOG(efx
, "memory BAR at %llx+%x (virtual %p)\n",
933 (unsigned long long)efx
->membase_phys
,
934 efx
->type
->mem_map_size
, efx
->membase
);
939 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
941 efx
->membase_phys
= 0;
943 pci_disable_device(efx
->pci_dev
);
948 static void efx_fini_io(struct efx_nic
*efx
)
950 EFX_LOG(efx
, "shutting down I/O\n");
953 iounmap(efx
->membase
);
957 if (efx
->membase_phys
) {
958 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
959 efx
->membase_phys
= 0;
962 pci_disable_device(efx
->pci_dev
);
965 /* Get number of channels wanted. Each channel will have its own IRQ,
966 * 1 RX queue and/or 2 TX queues. */
967 static int efx_wanted_channels(void)
969 cpumask_var_t core_mask
;
973 if (unlikely(!zalloc_cpumask_var(&core_mask
, GFP_KERNEL
))) {
975 "sfc: RSS disabled due to allocation failure\n");
980 for_each_online_cpu(cpu
) {
981 if (!cpumask_test_cpu(cpu
, core_mask
)) {
983 cpumask_or(core_mask
, core_mask
,
984 topology_core_cpumask(cpu
));
988 free_cpumask_var(core_mask
);
992 /* Probe the number and type of interrupts we are able to obtain, and
993 * the resulting numbers of channels and RX queues.
995 static void efx_probe_interrupts(struct efx_nic
*efx
)
998 min_t(int, efx
->type
->phys_addr_channels
, EFX_MAX_CHANNELS
);
1001 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
1002 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
1005 n_channels
= efx_wanted_channels();
1006 if (separate_tx_channels
)
1008 n_channels
= min(n_channels
, max_channels
);
1010 for (i
= 0; i
< n_channels
; i
++)
1011 xentries
[i
].entry
= i
;
1012 rc
= pci_enable_msix(efx
->pci_dev
, xentries
, n_channels
);
1014 EFX_ERR(efx
, "WARNING: Insufficient MSI-X vectors"
1015 " available (%d < %d).\n", rc
, n_channels
);
1016 EFX_ERR(efx
, "WARNING: Performance may be reduced.\n");
1017 EFX_BUG_ON_PARANOID(rc
>= n_channels
);
1019 rc
= pci_enable_msix(efx
->pci_dev
, xentries
,
1024 efx
->n_channels
= n_channels
;
1025 if (separate_tx_channels
) {
1026 efx
->n_tx_channels
=
1027 max(efx
->n_channels
/ 2, 1U);
1028 efx
->n_rx_channels
=
1029 max(efx
->n_channels
-
1030 efx
->n_tx_channels
, 1U);
1032 efx
->n_tx_channels
= efx
->n_channels
;
1033 efx
->n_rx_channels
= efx
->n_channels
;
1035 for (i
= 0; i
< n_channels
; i
++)
1036 efx
->channel
[i
].irq
= xentries
[i
].vector
;
1038 /* Fall back to single channel MSI */
1039 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
1040 EFX_ERR(efx
, "could not enable MSI-X\n");
1044 /* Try single interrupt MSI */
1045 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
1046 efx
->n_channels
= 1;
1047 efx
->n_rx_channels
= 1;
1048 efx
->n_tx_channels
= 1;
1049 rc
= pci_enable_msi(efx
->pci_dev
);
1051 efx
->channel
[0].irq
= efx
->pci_dev
->irq
;
1053 EFX_ERR(efx
, "could not enable MSI\n");
1054 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
1058 /* Assume legacy interrupts */
1059 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
1060 efx
->n_channels
= 1 + (separate_tx_channels
? 1 : 0);
1061 efx
->n_rx_channels
= 1;
1062 efx
->n_tx_channels
= 1;
1063 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1067 static void efx_remove_interrupts(struct efx_nic
*efx
)
1069 struct efx_channel
*channel
;
1071 /* Remove MSI/MSI-X interrupts */
1072 efx_for_each_channel(channel
, efx
)
1074 pci_disable_msi(efx
->pci_dev
);
1075 pci_disable_msix(efx
->pci_dev
);
1077 /* Remove legacy interrupt */
1078 efx
->legacy_irq
= 0;
1081 static void efx_set_channels(struct efx_nic
*efx
)
1083 struct efx_channel
*channel
;
1084 struct efx_tx_queue
*tx_queue
;
1085 struct efx_rx_queue
*rx_queue
;
1086 unsigned tx_channel_offset
=
1087 separate_tx_channels
? efx
->n_channels
- efx
->n_tx_channels
: 0;
1089 efx_for_each_channel(channel
, efx
) {
1090 if (channel
->channel
- tx_channel_offset
< efx
->n_tx_channels
) {
1091 channel
->tx_queue
= &efx
->tx_queue
[
1092 (channel
->channel
- tx_channel_offset
) *
1094 efx_for_each_channel_tx_queue(tx_queue
, channel
)
1095 tx_queue
->channel
= channel
;
1099 efx_for_each_rx_queue(rx_queue
, efx
)
1100 rx_queue
->channel
= &efx
->channel
[rx_queue
->queue
];
1103 static int efx_probe_nic(struct efx_nic
*efx
)
1107 EFX_LOG(efx
, "creating NIC\n");
1109 /* Carry out hardware-type specific initialisation */
1110 rc
= efx
->type
->probe(efx
);
1114 /* Determine the number of channels and queues by trying to hook
1115 * in MSI-X interrupts. */
1116 efx_probe_interrupts(efx
);
1118 efx_set_channels(efx
);
1119 efx
->net_dev
->real_num_tx_queues
= efx
->n_tx_channels
;
1121 /* Initialise the interrupt moderation settings */
1122 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true);
1127 static void efx_remove_nic(struct efx_nic
*efx
)
1129 EFX_LOG(efx
, "destroying NIC\n");
1131 efx_remove_interrupts(efx
);
1132 efx
->type
->remove(efx
);
1135 /**************************************************************************
1137 * NIC startup/shutdown
1139 *************************************************************************/
1141 static int efx_probe_all(struct efx_nic
*efx
)
1143 struct efx_channel
*channel
;
1147 rc
= efx_probe_nic(efx
);
1149 EFX_ERR(efx
, "failed to create NIC\n");
1154 rc
= efx_probe_port(efx
);
1156 EFX_ERR(efx
, "failed to create port\n");
1160 /* Create channels */
1161 efx_for_each_channel(channel
, efx
) {
1162 rc
= efx_probe_channel(channel
);
1164 EFX_ERR(efx
, "failed to create channel %d\n",
1169 efx_set_channel_names(efx
);
1174 efx_for_each_channel(channel
, efx
)
1175 efx_remove_channel(channel
);
1176 efx_remove_port(efx
);
1178 efx_remove_nic(efx
);
1183 /* Called after previous invocation(s) of efx_stop_all, restarts the
1184 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1185 * and ensures that the port is scheduled to be reconfigured.
1186 * This function is safe to call multiple times when the NIC is in any
1188 static void efx_start_all(struct efx_nic
*efx
)
1190 struct efx_channel
*channel
;
1192 EFX_ASSERT_RESET_SERIALISED(efx
);
1194 /* Check that it is appropriate to restart the interface. All
1195 * of these flags are safe to read under just the rtnl lock */
1196 if (efx
->port_enabled
)
1198 if ((efx
->state
!= STATE_RUNNING
) && (efx
->state
!= STATE_INIT
))
1200 if (efx_dev_registered(efx
) && !netif_running(efx
->net_dev
))
1203 /* Mark the port as enabled so port reconfigurations can start, then
1204 * restart the transmit interface early so the watchdog timer stops */
1205 efx_start_port(efx
);
1207 efx_for_each_channel(channel
, efx
) {
1208 if (efx_dev_registered(efx
))
1209 efx_wake_queue(channel
);
1210 efx_start_channel(channel
);
1213 efx_nic_enable_interrupts(efx
);
1215 /* Switch to event based MCDI completions after enabling interrupts.
1216 * If a reset has been scheduled, then we need to stay in polled mode.
1217 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1218 * reset_pending [modified from an atomic context], we instead guarantee
1219 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1220 efx_mcdi_mode_event(efx
);
1221 if (efx
->reset_pending
!= RESET_TYPE_NONE
)
1222 efx_mcdi_mode_poll(efx
);
1224 /* Start the hardware monitor if there is one. Otherwise (we're link
1225 * event driven), we have to poll the PHY because after an event queue
1226 * flush, we could have a missed a link state change */
1227 if (efx
->type
->monitor
!= NULL
) {
1228 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1229 efx_monitor_interval
);
1231 mutex_lock(&efx
->mac_lock
);
1232 if (efx
->phy_op
->poll(efx
))
1233 efx_link_status_changed(efx
);
1234 mutex_unlock(&efx
->mac_lock
);
1237 efx
->type
->start_stats(efx
);
1240 /* Flush all delayed work. Should only be called when no more delayed work
1241 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1242 * since we're holding the rtnl_lock at this point. */
1243 static void efx_flush_all(struct efx_nic
*efx
)
1245 struct efx_rx_queue
*rx_queue
;
1247 /* Make sure the hardware monitor is stopped */
1248 cancel_delayed_work_sync(&efx
->monitor_work
);
1250 /* Ensure that all RX slow refills are complete. */
1251 efx_for_each_rx_queue(rx_queue
, efx
)
1252 cancel_delayed_work_sync(&rx_queue
->work
);
1254 /* Stop scheduled port reconfigurations */
1255 cancel_work_sync(&efx
->mac_work
);
1258 /* Quiesce hardware and software without bringing the link down.
1259 * Safe to call multiple times, when the nic and interface is in any
1260 * state. The caller is guaranteed to subsequently be in a position
1261 * to modify any hardware and software state they see fit without
1263 static void efx_stop_all(struct efx_nic
*efx
)
1265 struct efx_channel
*channel
;
1267 EFX_ASSERT_RESET_SERIALISED(efx
);
1269 /* port_enabled can be read safely under the rtnl lock */
1270 if (!efx
->port_enabled
)
1273 efx
->type
->stop_stats(efx
);
1275 /* Switch to MCDI polling on Siena before disabling interrupts */
1276 efx_mcdi_mode_poll(efx
);
1278 /* Disable interrupts and wait for ISR to complete */
1279 efx_nic_disable_interrupts(efx
);
1280 if (efx
->legacy_irq
)
1281 synchronize_irq(efx
->legacy_irq
);
1282 efx_for_each_channel(channel
, efx
) {
1284 synchronize_irq(channel
->irq
);
1287 /* Stop all NAPI processing and synchronous rx refills */
1288 efx_for_each_channel(channel
, efx
)
1289 efx_stop_channel(channel
);
1291 /* Stop all asynchronous port reconfigurations. Since all
1292 * event processing has already been stopped, there is no
1293 * window to loose phy events */
1296 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1299 /* Stop the kernel transmit interface late, so the watchdog
1300 * timer isn't ticking over the flush */
1301 if (efx_dev_registered(efx
)) {
1302 struct efx_channel
*channel
;
1303 efx_for_each_channel(channel
, efx
)
1304 efx_stop_queue(channel
);
1305 netif_tx_lock_bh(efx
->net_dev
);
1306 netif_tx_unlock_bh(efx
->net_dev
);
1310 static void efx_remove_all(struct efx_nic
*efx
)
1312 struct efx_channel
*channel
;
1314 efx_for_each_channel(channel
, efx
)
1315 efx_remove_channel(channel
);
1316 efx_remove_port(efx
);
1317 efx_remove_nic(efx
);
1320 /**************************************************************************
1322 * Interrupt moderation
1324 **************************************************************************/
1326 static unsigned irq_mod_ticks(int usecs
, int resolution
)
1329 return 0; /* cannot receive interrupts ahead of time :-) */
1330 if (usecs
< resolution
)
1331 return 1; /* never round down to 0 */
1332 return usecs
/ resolution
;
1335 /* Set interrupt moderation parameters */
1336 void efx_init_irq_moderation(struct efx_nic
*efx
, int tx_usecs
, int rx_usecs
,
1339 struct efx_tx_queue
*tx_queue
;
1340 struct efx_rx_queue
*rx_queue
;
1341 unsigned tx_ticks
= irq_mod_ticks(tx_usecs
, EFX_IRQ_MOD_RESOLUTION
);
1342 unsigned rx_ticks
= irq_mod_ticks(rx_usecs
, EFX_IRQ_MOD_RESOLUTION
);
1344 EFX_ASSERT_RESET_SERIALISED(efx
);
1346 efx_for_each_tx_queue(tx_queue
, efx
)
1347 tx_queue
->channel
->irq_moderation
= tx_ticks
;
1349 efx
->irq_rx_adaptive
= rx_adaptive
;
1350 efx
->irq_rx_moderation
= rx_ticks
;
1351 efx_for_each_rx_queue(rx_queue
, efx
)
1352 rx_queue
->channel
->irq_moderation
= rx_ticks
;
1355 /**************************************************************************
1359 **************************************************************************/
1361 /* Run periodically off the general workqueue. Serialised against
1362 * efx_reconfigure_port via the mac_lock */
1363 static void efx_monitor(struct work_struct
*data
)
1365 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
1368 EFX_TRACE(efx
, "hardware monitor executing on CPU %d\n",
1369 raw_smp_processor_id());
1370 BUG_ON(efx
->type
->monitor
== NULL
);
1372 /* If the mac_lock is already held then it is likely a port
1373 * reconfiguration is already in place, which will likely do
1374 * most of the work of check_hw() anyway. */
1375 if (!mutex_trylock(&efx
->mac_lock
))
1377 if (!efx
->port_enabled
)
1379 efx
->type
->monitor(efx
);
1382 mutex_unlock(&efx
->mac_lock
);
1384 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1385 efx_monitor_interval
);
1388 /**************************************************************************
1392 *************************************************************************/
1395 * Context: process, rtnl_lock() held.
1397 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1399 struct efx_nic
*efx
= netdev_priv(net_dev
);
1400 struct mii_ioctl_data
*data
= if_mii(ifr
);
1402 EFX_ASSERT_RESET_SERIALISED(efx
);
1404 /* Convert phy_id from older PRTAD/DEVAD format */
1405 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
1406 (data
->phy_id
& 0xfc00) == 0x0400)
1407 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
1409 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
1412 /**************************************************************************
1416 **************************************************************************/
1418 static int efx_init_napi(struct efx_nic
*efx
)
1420 struct efx_channel
*channel
;
1422 efx_for_each_channel(channel
, efx
) {
1423 channel
->napi_dev
= efx
->net_dev
;
1424 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
1425 efx_poll
, napi_weight
);
1430 static void efx_fini_napi(struct efx_nic
*efx
)
1432 struct efx_channel
*channel
;
1434 efx_for_each_channel(channel
, efx
) {
1435 if (channel
->napi_dev
)
1436 netif_napi_del(&channel
->napi_str
);
1437 channel
->napi_dev
= NULL
;
1441 /**************************************************************************
1443 * Kernel netpoll interface
1445 *************************************************************************/
1447 #ifdef CONFIG_NET_POLL_CONTROLLER
1449 /* Although in the common case interrupts will be disabled, this is not
1450 * guaranteed. However, all our work happens inside the NAPI callback,
1451 * so no locking is required.
1453 static void efx_netpoll(struct net_device
*net_dev
)
1455 struct efx_nic
*efx
= netdev_priv(net_dev
);
1456 struct efx_channel
*channel
;
1458 efx_for_each_channel(channel
, efx
)
1459 efx_schedule_channel(channel
);
1464 /**************************************************************************
1466 * Kernel net device interface
1468 *************************************************************************/
1470 /* Context: process, rtnl_lock() held. */
1471 static int efx_net_open(struct net_device
*net_dev
)
1473 struct efx_nic
*efx
= netdev_priv(net_dev
);
1474 EFX_ASSERT_RESET_SERIALISED(efx
);
1476 EFX_LOG(efx
, "opening device %s on CPU %d\n", net_dev
->name
,
1477 raw_smp_processor_id());
1479 if (efx
->state
== STATE_DISABLED
)
1481 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
1483 if (efx_mcdi_poll_reboot(efx
) && efx_reset(efx
, RESET_TYPE_ALL
))
1486 /* Notify the kernel of the link state polled during driver load,
1487 * before the monitor starts running */
1488 efx_link_status_changed(efx
);
1494 /* Context: process, rtnl_lock() held.
1495 * Note that the kernel will ignore our return code; this method
1496 * should really be a void.
1498 static int efx_net_stop(struct net_device
*net_dev
)
1500 struct efx_nic
*efx
= netdev_priv(net_dev
);
1502 EFX_LOG(efx
, "closing %s on CPU %d\n", net_dev
->name
,
1503 raw_smp_processor_id());
1505 if (efx
->state
!= STATE_DISABLED
) {
1506 /* Stop the device and flush all the channels */
1508 efx_fini_channels(efx
);
1509 efx_init_channels(efx
);
1515 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1516 static struct net_device_stats
*efx_net_stats(struct net_device
*net_dev
)
1518 struct efx_nic
*efx
= netdev_priv(net_dev
);
1519 struct efx_mac_stats
*mac_stats
= &efx
->mac_stats
;
1520 struct net_device_stats
*stats
= &net_dev
->stats
;
1522 spin_lock_bh(&efx
->stats_lock
);
1523 efx
->type
->update_stats(efx
);
1524 spin_unlock_bh(&efx
->stats_lock
);
1526 stats
->rx_packets
= mac_stats
->rx_packets
;
1527 stats
->tx_packets
= mac_stats
->tx_packets
;
1528 stats
->rx_bytes
= mac_stats
->rx_bytes
;
1529 stats
->tx_bytes
= mac_stats
->tx_bytes
;
1530 stats
->multicast
= mac_stats
->rx_multicast
;
1531 stats
->collisions
= mac_stats
->tx_collision
;
1532 stats
->rx_length_errors
= (mac_stats
->rx_gtjumbo
+
1533 mac_stats
->rx_length_error
);
1534 stats
->rx_over_errors
= efx
->n_rx_nodesc_drop_cnt
;
1535 stats
->rx_crc_errors
= mac_stats
->rx_bad
;
1536 stats
->rx_frame_errors
= mac_stats
->rx_align_error
;
1537 stats
->rx_fifo_errors
= mac_stats
->rx_overflow
;
1538 stats
->rx_missed_errors
= mac_stats
->rx_missed
;
1539 stats
->tx_window_errors
= mac_stats
->tx_late_collision
;
1541 stats
->rx_errors
= (stats
->rx_length_errors
+
1542 stats
->rx_over_errors
+
1543 stats
->rx_crc_errors
+
1544 stats
->rx_frame_errors
+
1545 stats
->rx_fifo_errors
+
1546 stats
->rx_missed_errors
+
1547 mac_stats
->rx_symbol_error
);
1548 stats
->tx_errors
= (stats
->tx_window_errors
+
1554 /* Context: netif_tx_lock held, BHs disabled. */
1555 static void efx_watchdog(struct net_device
*net_dev
)
1557 struct efx_nic
*efx
= netdev_priv(net_dev
);
1559 EFX_ERR(efx
, "TX stuck with port_enabled=%d: resetting channels\n",
1562 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
1566 /* Context: process, rtnl_lock() held. */
1567 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
1569 struct efx_nic
*efx
= netdev_priv(net_dev
);
1572 EFX_ASSERT_RESET_SERIALISED(efx
);
1574 if (new_mtu
> EFX_MAX_MTU
)
1579 EFX_LOG(efx
, "changing MTU to %d\n", new_mtu
);
1581 efx_fini_channels(efx
);
1583 mutex_lock(&efx
->mac_lock
);
1584 /* Reconfigure the MAC before enabling the dma queues so that
1585 * the RX buffers don't overflow */
1586 net_dev
->mtu
= new_mtu
;
1587 efx
->mac_op
->reconfigure(efx
);
1588 mutex_unlock(&efx
->mac_lock
);
1590 efx_init_channels(efx
);
1596 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
1598 struct efx_nic
*efx
= netdev_priv(net_dev
);
1599 struct sockaddr
*addr
= data
;
1600 char *new_addr
= addr
->sa_data
;
1602 EFX_ASSERT_RESET_SERIALISED(efx
);
1604 if (!is_valid_ether_addr(new_addr
)) {
1605 EFX_ERR(efx
, "invalid ethernet MAC address requested: %pM\n",
1610 memcpy(net_dev
->dev_addr
, new_addr
, net_dev
->addr_len
);
1612 /* Reconfigure the MAC */
1613 mutex_lock(&efx
->mac_lock
);
1614 efx
->mac_op
->reconfigure(efx
);
1615 mutex_unlock(&efx
->mac_lock
);
1620 /* Context: netif_addr_lock held, BHs disabled. */
1621 static void efx_set_multicast_list(struct net_device
*net_dev
)
1623 struct efx_nic
*efx
= netdev_priv(net_dev
);
1624 struct netdev_hw_addr
*ha
;
1625 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1629 efx
->promiscuous
= !!(net_dev
->flags
& IFF_PROMISC
);
1631 /* Build multicast hash table */
1632 if (efx
->promiscuous
|| (net_dev
->flags
& IFF_ALLMULTI
)) {
1633 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
1635 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
1636 netdev_for_each_mc_addr(ha
, net_dev
) {
1637 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1638 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
1639 set_bit_le(bit
, mc_hash
->byte
);
1642 /* Broadcast packets go through the multicast hash filter.
1643 * ether_crc_le() of the broadcast address is 0xbe2612ff
1644 * so we always add bit 0xff to the mask.
1646 set_bit_le(0xff, mc_hash
->byte
);
1649 if (efx
->port_enabled
)
1650 queue_work(efx
->workqueue
, &efx
->mac_work
);
1651 /* Otherwise efx_start_port() will do this */
1654 static const struct net_device_ops efx_netdev_ops
= {
1655 .ndo_open
= efx_net_open
,
1656 .ndo_stop
= efx_net_stop
,
1657 .ndo_get_stats
= efx_net_stats
,
1658 .ndo_tx_timeout
= efx_watchdog
,
1659 .ndo_start_xmit
= efx_hard_start_xmit
,
1660 .ndo_validate_addr
= eth_validate_addr
,
1661 .ndo_do_ioctl
= efx_ioctl
,
1662 .ndo_change_mtu
= efx_change_mtu
,
1663 .ndo_set_mac_address
= efx_set_mac_address
,
1664 .ndo_set_multicast_list
= efx_set_multicast_list
,
1665 #ifdef CONFIG_NET_POLL_CONTROLLER
1666 .ndo_poll_controller
= efx_netpoll
,
1670 static void efx_update_name(struct efx_nic
*efx
)
1672 strcpy(efx
->name
, efx
->net_dev
->name
);
1673 efx_mtd_rename(efx
);
1674 efx_set_channel_names(efx
);
1677 static int efx_netdev_event(struct notifier_block
*this,
1678 unsigned long event
, void *ptr
)
1680 struct net_device
*net_dev
= ptr
;
1682 if (net_dev
->netdev_ops
== &efx_netdev_ops
&&
1683 event
== NETDEV_CHANGENAME
)
1684 efx_update_name(netdev_priv(net_dev
));
1689 static struct notifier_block efx_netdev_notifier
= {
1690 .notifier_call
= efx_netdev_event
,
1694 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1696 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
1697 return sprintf(buf
, "%d\n", efx
->phy_type
);
1699 static DEVICE_ATTR(phy_type
, 0644, show_phy_type
, NULL
);
1701 static int efx_register_netdev(struct efx_nic
*efx
)
1703 struct net_device
*net_dev
= efx
->net_dev
;
1706 net_dev
->watchdog_timeo
= 5 * HZ
;
1707 net_dev
->irq
= efx
->pci_dev
->irq
;
1708 net_dev
->netdev_ops
= &efx_netdev_ops
;
1709 SET_NETDEV_DEV(net_dev
, &efx
->pci_dev
->dev
);
1710 SET_ETHTOOL_OPS(net_dev
, &efx_ethtool_ops
);
1712 /* Clear MAC statistics */
1713 efx
->mac_op
->update_stats(efx
);
1714 memset(&efx
->mac_stats
, 0, sizeof(efx
->mac_stats
));
1718 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
1721 efx_update_name(efx
);
1723 rc
= register_netdevice(net_dev
);
1727 /* Always start with carrier off; PHY events will detect the link */
1728 netif_carrier_off(efx
->net_dev
);
1732 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
1734 EFX_ERR(efx
, "failed to init net dev attributes\n");
1735 goto fail_registered
;
1742 EFX_ERR(efx
, "could not register net dev\n");
1746 unregister_netdev(net_dev
);
1750 static void efx_unregister_netdev(struct efx_nic
*efx
)
1752 struct efx_tx_queue
*tx_queue
;
1757 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
1759 /* Free up any skbs still remaining. This has to happen before
1760 * we try to unregister the netdev as running their destructors
1761 * may be needed to get the device ref. count to 0. */
1762 efx_for_each_tx_queue(tx_queue
, efx
)
1763 efx_release_tx_buffers(tx_queue
);
1765 if (efx_dev_registered(efx
)) {
1766 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
1767 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
1768 unregister_netdev(efx
->net_dev
);
1772 /**************************************************************************
1774 * Device reset and suspend
1776 **************************************************************************/
1778 /* Tears down the entire software state and most of the hardware state
1780 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
)
1782 EFX_ASSERT_RESET_SERIALISED(efx
);
1785 mutex_lock(&efx
->mac_lock
);
1786 mutex_lock(&efx
->spi_lock
);
1788 efx_fini_channels(efx
);
1789 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
)
1790 efx
->phy_op
->fini(efx
);
1791 efx
->type
->fini(efx
);
1794 /* This function will always ensure that the locks acquired in
1795 * efx_reset_down() are released. A failure return code indicates
1796 * that we were unable to reinitialise the hardware, and the
1797 * driver should be disabled. If ok is false, then the rx and tx
1798 * engines are not restarted, pending a RESET_DISABLE. */
1799 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
1803 EFX_ASSERT_RESET_SERIALISED(efx
);
1805 rc
= efx
->type
->init(efx
);
1807 EFX_ERR(efx
, "failed to initialise NIC\n");
1814 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
) {
1815 rc
= efx
->phy_op
->init(efx
);
1818 if (efx
->phy_op
->reconfigure(efx
))
1819 EFX_ERR(efx
, "could not restore PHY settings\n");
1822 efx
->mac_op
->reconfigure(efx
);
1824 efx_init_channels(efx
);
1826 mutex_unlock(&efx
->spi_lock
);
1827 mutex_unlock(&efx
->mac_lock
);
1834 efx
->port_initialized
= false;
1836 mutex_unlock(&efx
->spi_lock
);
1837 mutex_unlock(&efx
->mac_lock
);
1842 /* Reset the NIC using the specified method. Note that the reset may
1843 * fail, in which case the card will be left in an unusable state.
1845 * Caller must hold the rtnl_lock.
1847 int efx_reset(struct efx_nic
*efx
, enum reset_type method
)
1852 EFX_INFO(efx
, "resetting (%s)\n", RESET_TYPE(method
));
1854 efx_reset_down(efx
, method
);
1856 rc
= efx
->type
->reset(efx
, method
);
1858 EFX_ERR(efx
, "failed to reset hardware\n");
1862 /* Allow resets to be rescheduled. */
1863 efx
->reset_pending
= RESET_TYPE_NONE
;
1865 /* Reinitialise bus-mastering, which may have been turned off before
1866 * the reset was scheduled. This is still appropriate, even in the
1867 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1868 * can respond to requests. */
1869 pci_set_master(efx
->pci_dev
);
1872 /* Leave device stopped if necessary */
1873 disabled
= rc
|| method
== RESET_TYPE_DISABLE
;
1874 rc2
= efx_reset_up(efx
, method
, !disabled
);
1882 dev_close(efx
->net_dev
);
1883 EFX_ERR(efx
, "has been disabled\n");
1884 efx
->state
= STATE_DISABLED
;
1886 EFX_LOG(efx
, "reset complete\n");
1891 /* The worker thread exists so that code that cannot sleep can
1892 * schedule a reset for later.
1894 static void efx_reset_work(struct work_struct
*data
)
1896 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
1898 if (efx
->reset_pending
== RESET_TYPE_NONE
)
1901 /* If we're not RUNNING then don't reset. Leave the reset_pending
1902 * flag set so that efx_pci_probe_main will be retried */
1903 if (efx
->state
!= STATE_RUNNING
) {
1904 EFX_INFO(efx
, "scheduled reset quenched. NIC not RUNNING\n");
1909 (void)efx_reset(efx
, efx
->reset_pending
);
1913 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
1915 enum reset_type method
;
1917 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
1918 EFX_INFO(efx
, "quenching already scheduled reset\n");
1923 case RESET_TYPE_INVISIBLE
:
1924 case RESET_TYPE_ALL
:
1925 case RESET_TYPE_WORLD
:
1926 case RESET_TYPE_DISABLE
:
1929 case RESET_TYPE_RX_RECOVERY
:
1930 case RESET_TYPE_RX_DESC_FETCH
:
1931 case RESET_TYPE_TX_DESC_FETCH
:
1932 case RESET_TYPE_TX_SKIP
:
1933 method
= RESET_TYPE_INVISIBLE
;
1935 case RESET_TYPE_MC_FAILURE
:
1937 method
= RESET_TYPE_ALL
;
1942 EFX_LOG(efx
, "scheduling %s reset for %s\n",
1943 RESET_TYPE(method
), RESET_TYPE(type
));
1945 EFX_LOG(efx
, "scheduling %s reset\n", RESET_TYPE(method
));
1947 efx
->reset_pending
= method
;
1949 /* efx_process_channel() will no longer read events once a
1950 * reset is scheduled. So switch back to poll'd MCDI completions. */
1951 efx_mcdi_mode_poll(efx
);
1953 queue_work(reset_workqueue
, &efx
->reset_work
);
1956 /**************************************************************************
1958 * List of NICs we support
1960 **************************************************************************/
1962 /* PCI device ID table */
1963 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table
) = {
1964 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_A_P_DEVID
),
1965 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
1966 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_B_P_DEVID
),
1967 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
1968 {PCI_DEVICE(EFX_VENDID_SFC
, BETHPAGE_A_P_DEVID
),
1969 .driver_data
= (unsigned long) &siena_a0_nic_type
},
1970 {PCI_DEVICE(EFX_VENDID_SFC
, SIENA_A_P_DEVID
),
1971 .driver_data
= (unsigned long) &siena_a0_nic_type
},
1972 {0} /* end of list */
1975 /**************************************************************************
1977 * Dummy PHY/MAC operations
1979 * Can be used for some unimplemented operations
1980 * Needed so all function pointers are valid and do not have to be tested
1983 **************************************************************************/
1984 int efx_port_dummy_op_int(struct efx_nic
*efx
)
1988 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
1989 void efx_port_dummy_op_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1992 bool efx_port_dummy_op_poll(struct efx_nic
*efx
)
1997 static struct efx_phy_operations efx_dummy_phy_operations
= {
1998 .init
= efx_port_dummy_op_int
,
1999 .reconfigure
= efx_port_dummy_op_int
,
2000 .poll
= efx_port_dummy_op_poll
,
2001 .fini
= efx_port_dummy_op_void
,
2004 /**************************************************************************
2008 **************************************************************************/
2010 /* This zeroes out and then fills in the invariants in a struct
2011 * efx_nic (including all sub-structures).
2013 static int efx_init_struct(struct efx_nic
*efx
, struct efx_nic_type
*type
,
2014 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2016 struct efx_channel
*channel
;
2017 struct efx_tx_queue
*tx_queue
;
2018 struct efx_rx_queue
*rx_queue
;
2021 /* Initialise common structures */
2022 memset(efx
, 0, sizeof(*efx
));
2023 spin_lock_init(&efx
->biu_lock
);
2024 mutex_init(&efx
->mdio_lock
);
2025 mutex_init(&efx
->spi_lock
);
2026 #ifdef CONFIG_SFC_MTD
2027 INIT_LIST_HEAD(&efx
->mtd_list
);
2029 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
2030 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
2031 efx
->pci_dev
= pci_dev
;
2032 efx
->state
= STATE_INIT
;
2033 efx
->reset_pending
= RESET_TYPE_NONE
;
2034 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2036 efx
->net_dev
= net_dev
;
2037 efx
->rx_checksum_enabled
= true;
2038 spin_lock_init(&efx
->stats_lock
);
2039 mutex_init(&efx
->mac_lock
);
2040 efx
->mac_op
= type
->default_mac_ops
;
2041 efx
->phy_op
= &efx_dummy_phy_operations
;
2042 efx
->mdio
.dev
= net_dev
;
2043 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
2045 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
2046 channel
= &efx
->channel
[i
];
2048 channel
->channel
= i
;
2049 channel
->work_pending
= false;
2050 spin_lock_init(&channel
->tx_stop_lock
);
2051 atomic_set(&channel
->tx_stop_count
, 1);
2053 for (i
= 0; i
< EFX_MAX_TX_QUEUES
; i
++) {
2054 tx_queue
= &efx
->tx_queue
[i
];
2055 tx_queue
->efx
= efx
;
2056 tx_queue
->queue
= i
;
2057 tx_queue
->buffer
= NULL
;
2058 tx_queue
->channel
= &efx
->channel
[0]; /* for safety */
2059 tx_queue
->tso_headers_free
= NULL
;
2061 for (i
= 0; i
< EFX_MAX_RX_QUEUES
; i
++) {
2062 rx_queue
= &efx
->rx_queue
[i
];
2063 rx_queue
->efx
= efx
;
2064 rx_queue
->queue
= i
;
2065 rx_queue
->channel
= &efx
->channel
[0]; /* for safety */
2066 rx_queue
->buffer
= NULL
;
2067 spin_lock_init(&rx_queue
->add_lock
);
2068 INIT_DELAYED_WORK(&rx_queue
->work
, efx_rx_work
);
2073 /* As close as we can get to guaranteeing that we don't overflow */
2074 BUILD_BUG_ON(EFX_EVQ_SIZE
< EFX_TXQ_SIZE
+ EFX_RXQ_SIZE
);
2076 EFX_BUG_ON_PARANOID(efx
->type
->phys_addr_channels
> EFX_MAX_CHANNELS
);
2078 /* Higher numbered interrupt modes are less capable! */
2079 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2082 /* Would be good to use the net_dev name, but we're too early */
2083 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2085 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2086 if (!efx
->workqueue
)
2092 static void efx_fini_struct(struct efx_nic
*efx
)
2094 if (efx
->workqueue
) {
2095 destroy_workqueue(efx
->workqueue
);
2096 efx
->workqueue
= NULL
;
2100 /**************************************************************************
2104 **************************************************************************/
2106 /* Main body of final NIC shutdown code
2107 * This is called only at module unload (or hotplug removal).
2109 static void efx_pci_remove_main(struct efx_nic
*efx
)
2111 efx_nic_fini_interrupt(efx
);
2112 efx_fini_channels(efx
);
2114 efx
->type
->fini(efx
);
2116 efx_remove_all(efx
);
2119 /* Final NIC shutdown
2120 * This is called only at module unload (or hotplug removal).
2122 static void efx_pci_remove(struct pci_dev
*pci_dev
)
2124 struct efx_nic
*efx
;
2126 efx
= pci_get_drvdata(pci_dev
);
2130 /* Mark the NIC as fini, then stop the interface */
2132 efx
->state
= STATE_FINI
;
2133 dev_close(efx
->net_dev
);
2135 /* Allow any queued efx_resets() to complete */
2138 efx_unregister_netdev(efx
);
2140 efx_mtd_remove(efx
);
2142 /* Wait for any scheduled resets to complete. No more will be
2143 * scheduled from this point because efx_stop_all() has been
2144 * called, we are no longer registered with driverlink, and
2145 * the net_device's have been removed. */
2146 cancel_work_sync(&efx
->reset_work
);
2148 efx_pci_remove_main(efx
);
2151 EFX_LOG(efx
, "shutdown successful\n");
2153 pci_set_drvdata(pci_dev
, NULL
);
2154 efx_fini_struct(efx
);
2155 free_netdev(efx
->net_dev
);
2158 /* Main body of NIC initialisation
2159 * This is called at module load (or hotplug insertion, theoretically).
2161 static int efx_pci_probe_main(struct efx_nic
*efx
)
2165 /* Do start-of-day initialisation */
2166 rc
= efx_probe_all(efx
);
2170 rc
= efx_init_napi(efx
);
2174 rc
= efx
->type
->init(efx
);
2176 EFX_ERR(efx
, "failed to initialise NIC\n");
2180 rc
= efx_init_port(efx
);
2182 EFX_ERR(efx
, "failed to initialise port\n");
2186 efx_init_channels(efx
);
2188 rc
= efx_nic_init_interrupt(efx
);
2195 efx_fini_channels(efx
);
2198 efx
->type
->fini(efx
);
2202 efx_remove_all(efx
);
2207 /* NIC initialisation
2209 * This is called at module load (or hotplug insertion,
2210 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2211 * sets up and registers the network devices with the kernel and hooks
2212 * the interrupt service routine. It does not prepare the device for
2213 * transmission; this is left to the first time one of the network
2214 * interfaces is brought up (i.e. efx_net_open).
2216 static int __devinit
efx_pci_probe(struct pci_dev
*pci_dev
,
2217 const struct pci_device_id
*entry
)
2219 struct efx_nic_type
*type
= (struct efx_nic_type
*) entry
->driver_data
;
2220 struct net_device
*net_dev
;
2221 struct efx_nic
*efx
;
2224 /* Allocate and initialise a struct net_device and struct efx_nic */
2225 net_dev
= alloc_etherdev_mq(sizeof(*efx
), EFX_MAX_CORE_TX_QUEUES
);
2228 net_dev
->features
|= (type
->offload_features
| NETIF_F_SG
|
2229 NETIF_F_HIGHDMA
| NETIF_F_TSO
|
2231 if (type
->offload_features
& NETIF_F_V6_CSUM
)
2232 net_dev
->features
|= NETIF_F_TSO6
;
2233 /* Mask for features that also apply to VLAN devices */
2234 net_dev
->vlan_features
|= (NETIF_F_ALL_CSUM
| NETIF_F_SG
|
2235 NETIF_F_HIGHDMA
| NETIF_F_TSO
);
2236 efx
= netdev_priv(net_dev
);
2237 pci_set_drvdata(pci_dev
, efx
);
2238 rc
= efx_init_struct(efx
, type
, pci_dev
, net_dev
);
2242 EFX_INFO(efx
, "Solarflare Communications NIC detected\n");
2244 /* Set up basic I/O (BAR mappings etc) */
2245 rc
= efx_init_io(efx
);
2249 /* No serialisation is required with the reset path because
2250 * we're in STATE_INIT. */
2251 for (i
= 0; i
< 5; i
++) {
2252 rc
= efx_pci_probe_main(efx
);
2254 /* Serialise against efx_reset(). No more resets will be
2255 * scheduled since efx_stop_all() has been called, and we
2256 * have not and never have been registered with either
2257 * the rtnetlink or driverlink layers. */
2258 cancel_work_sync(&efx
->reset_work
);
2261 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
2262 /* If there was a scheduled reset during
2263 * probe, the NIC is probably hosed anyway */
2264 efx_pci_remove_main(efx
);
2271 /* Retry if a recoverably reset event has been scheduled */
2272 if ((efx
->reset_pending
!= RESET_TYPE_INVISIBLE
) &&
2273 (efx
->reset_pending
!= RESET_TYPE_ALL
))
2276 efx
->reset_pending
= RESET_TYPE_NONE
;
2280 EFX_ERR(efx
, "Could not reset NIC\n");
2284 /* Switch to the running state before we expose the device to the OS,
2285 * so that dev_open()|efx_start_all() will actually start the device */
2286 efx
->state
= STATE_RUNNING
;
2288 rc
= efx_register_netdev(efx
);
2292 EFX_LOG(efx
, "initialisation successful\n");
2295 efx_mtd_probe(efx
); /* allowed to fail */
2300 efx_pci_remove_main(efx
);
2305 efx_fini_struct(efx
);
2308 EFX_LOG(efx
, "initialisation failed. rc=%d\n", rc
);
2309 free_netdev(net_dev
);
2313 static int efx_pm_freeze(struct device
*dev
)
2315 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2317 efx
->state
= STATE_FINI
;
2319 netif_device_detach(efx
->net_dev
);
2322 efx_fini_channels(efx
);
2327 static int efx_pm_thaw(struct device
*dev
)
2329 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2331 efx
->state
= STATE_INIT
;
2333 efx_init_channels(efx
);
2335 mutex_lock(&efx
->mac_lock
);
2336 efx
->phy_op
->reconfigure(efx
);
2337 mutex_unlock(&efx
->mac_lock
);
2341 netif_device_attach(efx
->net_dev
);
2343 efx
->state
= STATE_RUNNING
;
2345 efx
->type
->resume_wol(efx
);
2347 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2348 queue_work(reset_workqueue
, &efx
->reset_work
);
2353 static int efx_pm_poweroff(struct device
*dev
)
2355 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2356 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2358 efx
->type
->fini(efx
);
2360 efx
->reset_pending
= RESET_TYPE_NONE
;
2362 pci_save_state(pci_dev
);
2363 return pci_set_power_state(pci_dev
, PCI_D3hot
);
2366 /* Used for both resume and restore */
2367 static int efx_pm_resume(struct device
*dev
)
2369 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2370 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2373 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
2376 pci_restore_state(pci_dev
);
2377 rc
= pci_enable_device(pci_dev
);
2380 pci_set_master(efx
->pci_dev
);
2381 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
2384 rc
= efx
->type
->init(efx
);
2391 static int efx_pm_suspend(struct device
*dev
)
2396 rc
= efx_pm_poweroff(dev
);
2402 static struct dev_pm_ops efx_pm_ops
= {
2403 .suspend
= efx_pm_suspend
,
2404 .resume
= efx_pm_resume
,
2405 .freeze
= efx_pm_freeze
,
2406 .thaw
= efx_pm_thaw
,
2407 .poweroff
= efx_pm_poweroff
,
2408 .restore
= efx_pm_resume
,
2411 static struct pci_driver efx_pci_driver
= {
2412 .name
= EFX_DRIVER_NAME
,
2413 .id_table
= efx_pci_table
,
2414 .probe
= efx_pci_probe
,
2415 .remove
= efx_pci_remove
,
2416 .driver
.pm
= &efx_pm_ops
,
2419 /**************************************************************************
2421 * Kernel module interface
2423 *************************************************************************/
2425 module_param(interrupt_mode
, uint
, 0444);
2426 MODULE_PARM_DESC(interrupt_mode
,
2427 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2429 static int __init
efx_init_module(void)
2433 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
2435 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
2439 refill_workqueue
= create_workqueue("sfc_refill");
2440 if (!refill_workqueue
) {
2444 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
2445 if (!reset_workqueue
) {
2450 rc
= pci_register_driver(&efx_pci_driver
);
2457 destroy_workqueue(reset_workqueue
);
2459 destroy_workqueue(refill_workqueue
);
2461 unregister_netdevice_notifier(&efx_netdev_notifier
);
2466 static void __exit
efx_exit_module(void)
2468 printk(KERN_INFO
"Solarflare NET driver unloading\n");
2470 pci_unregister_driver(&efx_pci_driver
);
2471 destroy_workqueue(reset_workqueue
);
2472 destroy_workqueue(refill_workqueue
);
2473 unregister_netdevice_notifier(&efx_netdev_notifier
);
2477 module_init(efx_init_module
);
2478 module_exit(efx_exit_module
);
2480 MODULE_AUTHOR("Solarflare Communications and "
2481 "Michael Brown <mbrown@fensystems.co.uk>");
2482 MODULE_DESCRIPTION("Solarflare Communications network driver");
2483 MODULE_LICENSE("GPL");
2484 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);