sfc: Workaround flush failures on Falcon B0
[linux/fpc-iii.git] / drivers / net / sfc / efx.c
blobd1a1d32e73ee24ac237cac9c46968ae77ba471ad
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include "net_driver.h"
25 #include "efx.h"
26 #include "mdio_10g.h"
27 #include "nic.h"
29 #include "mcdi.h"
30 #include "workarounds.h"
32 /**************************************************************************
34 * Type name strings
36 **************************************************************************
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41 const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
43 [LOOPBACK_DATA] = "DATAPATH",
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
71 /* Interrupt mode names (see INT_MODE())) */
72 const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73 const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
79 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80 const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
94 #define EFX_MAX_MTU (9 * 1024)
96 /* RX slow fill workqueue. If memory allocation fails in the fast path,
97 * a work item is pushed onto this work queue to retry the allocation later,
98 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
99 * workqueue, there is nothing to be gained in making it per NIC
101 static struct workqueue_struct *refill_workqueue;
103 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
104 * queued onto this work queue. This is not a per-nic work queue, because
105 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
107 static struct workqueue_struct *reset_workqueue;
109 /**************************************************************************
111 * Configurable values
113 *************************************************************************/
116 * Use separate channels for TX and RX events
118 * Set this to 1 to use separate channels for TX and RX. It allows us
119 * to control interrupt affinity separately for TX and RX.
121 * This is only used in MSI-X interrupt mode
123 static unsigned int separate_tx_channels;
124 module_param(separate_tx_channels, uint, 0644);
125 MODULE_PARM_DESC(separate_tx_channels,
126 "Use separate channels for TX and RX");
128 /* This is the weight assigned to each of the (per-channel) virtual
129 * NAPI devices.
131 static int napi_weight = 64;
133 /* This is the time (in jiffies) between invocations of the hardware
134 * monitor, which checks for known hardware bugs and resets the
135 * hardware and driver as necessary.
137 unsigned int efx_monitor_interval = 1 * HZ;
139 /* This controls whether or not the driver will initialise devices
140 * with invalid MAC addresses stored in the EEPROM or flash. If true,
141 * such devices will be initialised with a random locally-generated
142 * MAC address. This allows for loading the sfc_mtd driver to
143 * reprogram the flash, even if the flash contents (including the MAC
144 * address) have previously been erased.
146 static unsigned int allow_bad_hwaddr;
148 /* Initial interrupt moderation settings. They can be modified after
149 * module load with ethtool.
151 * The default for RX should strike a balance between increasing the
152 * round-trip latency and reducing overhead.
154 static unsigned int rx_irq_mod_usec = 60;
156 /* Initial interrupt moderation settings. They can be modified after
157 * module load with ethtool.
159 * This default is chosen to ensure that a 10G link does not go idle
160 * while a TX queue is stopped after it has become full. A queue is
161 * restarted when it drops below half full. The time this takes (assuming
162 * worst case 3 descriptors per packet and 1024 descriptors) is
163 * 512 / 3 * 1.2 = 205 usec.
165 static unsigned int tx_irq_mod_usec = 150;
167 /* This is the first interrupt mode to try out of:
168 * 0 => MSI-X
169 * 1 => MSI
170 * 2 => legacy
172 static unsigned int interrupt_mode;
174 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
175 * i.e. the number of CPUs among which we may distribute simultaneous
176 * interrupt handling.
178 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
179 * The default (0) means to assign an interrupt to each package (level II cache)
181 static unsigned int rss_cpus;
182 module_param(rss_cpus, uint, 0444);
183 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
185 static int phy_flash_cfg;
186 module_param(phy_flash_cfg, int, 0644);
187 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
189 static unsigned irq_adapt_low_thresh = 10000;
190 module_param(irq_adapt_low_thresh, uint, 0644);
191 MODULE_PARM_DESC(irq_adapt_low_thresh,
192 "Threshold score for reducing IRQ moderation");
194 static unsigned irq_adapt_high_thresh = 20000;
195 module_param(irq_adapt_high_thresh, uint, 0644);
196 MODULE_PARM_DESC(irq_adapt_high_thresh,
197 "Threshold score for increasing IRQ moderation");
199 /**************************************************************************
201 * Utility functions and prototypes
203 *************************************************************************/
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_port(struct efx_nic *efx);
206 static void efx_fini_napi(struct efx_nic *efx);
207 static void efx_fini_channels(struct efx_nic *efx);
209 #define EFX_ASSERT_RESET_SERIALISED(efx) \
210 do { \
211 if ((efx->state == STATE_RUNNING) || \
212 (efx->state == STATE_DISABLED)) \
213 ASSERT_RTNL(); \
214 } while (0)
216 /**************************************************************************
218 * Event queue processing
220 *************************************************************************/
222 /* Process channel's event queue
224 * This function is responsible for processing the event queue of a
225 * single channel. The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
229 static int efx_process_channel(struct efx_channel *channel, int budget)
231 struct efx_nic *efx = channel->efx;
232 int spent;
234 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
235 !channel->enabled))
236 return 0;
238 spent = efx_nic_process_eventq(channel, budget);
239 if (spent == 0)
240 return 0;
242 /* Deliver last RX packet. */
243 if (channel->rx_pkt) {
244 __efx_rx_packet(channel, channel->rx_pkt,
245 channel->rx_pkt_csummed);
246 channel->rx_pkt = NULL;
249 efx_rx_strategy(channel);
251 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
253 return spent;
256 /* Mark channel as finished processing
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
262 static inline void efx_channel_processed(struct efx_channel *channel)
264 /* The interrupt handler for this channel may set work_pending
265 * as soon as we acknowledge the events we've seen. Make sure
266 * it's cleared before then. */
267 channel->work_pending = false;
268 smp_wmb();
270 efx_nic_eventq_read_ack(channel);
273 /* NAPI poll handler
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
278 static int efx_poll(struct napi_struct *napi, int budget)
280 struct efx_channel *channel =
281 container_of(napi, struct efx_channel, napi_str);
282 int spent;
284 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
285 channel->channel, raw_smp_processor_id());
287 spent = efx_process_channel(channel, budget);
289 if (spent < budget) {
290 struct efx_nic *efx = channel->efx;
292 if (channel->channel < efx->n_rx_channels &&
293 efx->irq_rx_adaptive &&
294 unlikely(++channel->irq_count == 1000)) {
295 if (unlikely(channel->irq_mod_score <
296 irq_adapt_low_thresh)) {
297 if (channel->irq_moderation > 1) {
298 channel->irq_moderation -= 1;
299 efx->type->push_irq_moderation(channel);
301 } else if (unlikely(channel->irq_mod_score >
302 irq_adapt_high_thresh)) {
303 if (channel->irq_moderation <
304 efx->irq_rx_moderation) {
305 channel->irq_moderation += 1;
306 efx->type->push_irq_moderation(channel);
309 channel->irq_count = 0;
310 channel->irq_mod_score = 0;
313 /* There is no race here; although napi_disable() will
314 * only wait for napi_complete(), this isn't a problem
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
318 napi_complete(napi);
319 efx_channel_processed(channel);
322 return spent;
325 /* Process the eventq of the specified channel immediately on this CPU
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
331 * Since we are touching interrupts the caller should hold the suspend lock
333 void efx_process_channel_now(struct efx_channel *channel)
335 struct efx_nic *efx = channel->efx;
337 BUG_ON(!channel->enabled);
339 /* Disable interrupts and wait for ISRs to complete */
340 efx_nic_disable_interrupts(efx);
341 if (efx->legacy_irq)
342 synchronize_irq(efx->legacy_irq);
343 if (channel->irq)
344 synchronize_irq(channel->irq);
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel->napi_str);
349 /* Poll the channel */
350 efx_process_channel(channel, EFX_EVQ_SIZE);
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel);
356 napi_enable(&channel->napi_str);
357 efx_nic_enable_interrupts(efx);
360 /* Create event queue
361 * Event queue memory allocations are done only once. If the channel
362 * is reset, the memory buffer will be reused; this guards against
363 * errors during channel reset and also simplifies interrupt handling.
365 static int efx_probe_eventq(struct efx_channel *channel)
367 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
369 return efx_nic_probe_eventq(channel);
372 /* Prepare channel's event queue */
373 static void efx_init_eventq(struct efx_channel *channel)
375 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
377 channel->eventq_read_ptr = 0;
379 efx_nic_init_eventq(channel);
382 static void efx_fini_eventq(struct efx_channel *channel)
384 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
386 efx_nic_fini_eventq(channel);
389 static void efx_remove_eventq(struct efx_channel *channel)
391 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
393 efx_nic_remove_eventq(channel);
396 /**************************************************************************
398 * Channel handling
400 *************************************************************************/
402 static int efx_probe_channel(struct efx_channel *channel)
404 struct efx_tx_queue *tx_queue;
405 struct efx_rx_queue *rx_queue;
406 int rc;
408 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
410 rc = efx_probe_eventq(channel);
411 if (rc)
412 goto fail1;
414 efx_for_each_channel_tx_queue(tx_queue, channel) {
415 rc = efx_probe_tx_queue(tx_queue);
416 if (rc)
417 goto fail2;
420 efx_for_each_channel_rx_queue(rx_queue, channel) {
421 rc = efx_probe_rx_queue(rx_queue);
422 if (rc)
423 goto fail3;
426 channel->n_rx_frm_trunc = 0;
428 return 0;
430 fail3:
431 efx_for_each_channel_rx_queue(rx_queue, channel)
432 efx_remove_rx_queue(rx_queue);
433 fail2:
434 efx_for_each_channel_tx_queue(tx_queue, channel)
435 efx_remove_tx_queue(tx_queue);
436 fail1:
437 return rc;
441 static void efx_set_channel_names(struct efx_nic *efx)
443 struct efx_channel *channel;
444 const char *type = "";
445 int number;
447 efx_for_each_channel(channel, efx) {
448 number = channel->channel;
449 if (efx->n_channels > efx->n_rx_channels) {
450 if (channel->channel < efx->n_rx_channels) {
451 type = "-rx";
452 } else {
453 type = "-tx";
454 number -= efx->n_rx_channels;
457 snprintf(channel->name, sizeof(channel->name),
458 "%s%s-%d", efx->name, type, number);
462 /* Channels are shutdown and reinitialised whilst the NIC is running
463 * to propagate configuration changes (mtu, checksum offload), or
464 * to clear hardware error conditions
466 static void efx_init_channels(struct efx_nic *efx)
468 struct efx_tx_queue *tx_queue;
469 struct efx_rx_queue *rx_queue;
470 struct efx_channel *channel;
472 /* Calculate the rx buffer allocation parameters required to
473 * support the current MTU, including padding for header
474 * alignment and overruns.
476 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
477 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
478 efx->type->rx_buffer_padding);
479 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
481 /* Initialise the channels */
482 efx_for_each_channel(channel, efx) {
483 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
485 efx_init_eventq(channel);
487 efx_for_each_channel_tx_queue(tx_queue, channel)
488 efx_init_tx_queue(tx_queue);
490 /* The rx buffer allocation strategy is MTU dependent */
491 efx_rx_strategy(channel);
493 efx_for_each_channel_rx_queue(rx_queue, channel)
494 efx_init_rx_queue(rx_queue);
496 WARN_ON(channel->rx_pkt != NULL);
497 efx_rx_strategy(channel);
501 /* This enables event queue processing and packet transmission.
503 * Note that this function is not allowed to fail, since that would
504 * introduce too much complexity into the suspend/resume path.
506 static void efx_start_channel(struct efx_channel *channel)
508 struct efx_rx_queue *rx_queue;
510 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
512 /* The interrupt handler for this channel may set work_pending
513 * as soon as we enable it. Make sure it's cleared before
514 * then. Similarly, make sure it sees the enabled flag set. */
515 channel->work_pending = false;
516 channel->enabled = true;
517 smp_wmb();
519 napi_enable(&channel->napi_str);
521 /* Load up RX descriptors */
522 efx_for_each_channel_rx_queue(rx_queue, channel)
523 efx_fast_push_rx_descriptors(rx_queue);
526 /* This disables event queue processing and packet transmission.
527 * This function does not guarantee that all queue processing
528 * (e.g. RX refill) is complete.
530 static void efx_stop_channel(struct efx_channel *channel)
532 struct efx_rx_queue *rx_queue;
534 if (!channel->enabled)
535 return;
537 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
539 channel->enabled = false;
540 napi_disable(&channel->napi_str);
542 /* Ensure that any worker threads have exited or will be no-ops */
543 efx_for_each_channel_rx_queue(rx_queue, channel) {
544 spin_lock_bh(&rx_queue->add_lock);
545 spin_unlock_bh(&rx_queue->add_lock);
549 static void efx_fini_channels(struct efx_nic *efx)
551 struct efx_channel *channel;
552 struct efx_tx_queue *tx_queue;
553 struct efx_rx_queue *rx_queue;
554 int rc;
556 EFX_ASSERT_RESET_SERIALISED(efx);
557 BUG_ON(efx->port_enabled);
559 rc = efx_nic_flush_queues(efx);
560 if (rc && EFX_WORKAROUND_7803(efx)) {
561 /* Schedule a reset to recover from the flush failure. The
562 * descriptor caches reference memory we're about to free,
563 * but falcon_reconfigure_mac_wrapper() won't reconnect
564 * the MACs because of the pending reset. */
565 EFX_ERR(efx, "Resetting to recover from flush failure\n");
566 efx_schedule_reset(efx, RESET_TYPE_ALL);
567 } else if (rc) {
568 EFX_ERR(efx, "failed to flush queues\n");
569 } else {
570 EFX_LOG(efx, "successfully flushed all queues\n");
573 efx_for_each_channel(channel, efx) {
574 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
576 efx_for_each_channel_rx_queue(rx_queue, channel)
577 efx_fini_rx_queue(rx_queue);
578 efx_for_each_channel_tx_queue(tx_queue, channel)
579 efx_fini_tx_queue(tx_queue);
580 efx_fini_eventq(channel);
584 static void efx_remove_channel(struct efx_channel *channel)
586 struct efx_tx_queue *tx_queue;
587 struct efx_rx_queue *rx_queue;
589 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
591 efx_for_each_channel_rx_queue(rx_queue, channel)
592 efx_remove_rx_queue(rx_queue);
593 efx_for_each_channel_tx_queue(tx_queue, channel)
594 efx_remove_tx_queue(tx_queue);
595 efx_remove_eventq(channel);
598 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
600 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
603 /**************************************************************************
605 * Port handling
607 **************************************************************************/
609 /* This ensures that the kernel is kept informed (via
610 * netif_carrier_on/off) of the link status, and also maintains the
611 * link status's stop on the port's TX queue.
613 void efx_link_status_changed(struct efx_nic *efx)
615 struct efx_link_state *link_state = &efx->link_state;
617 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
618 * that no events are triggered between unregister_netdev() and the
619 * driver unloading. A more general condition is that NETDEV_CHANGE
620 * can only be generated between NETDEV_UP and NETDEV_DOWN */
621 if (!netif_running(efx->net_dev))
622 return;
624 if (efx->port_inhibited) {
625 netif_carrier_off(efx->net_dev);
626 return;
629 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
630 efx->n_link_state_changes++;
632 if (link_state->up)
633 netif_carrier_on(efx->net_dev);
634 else
635 netif_carrier_off(efx->net_dev);
638 /* Status message for kernel log */
639 if (link_state->up) {
640 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
641 link_state->speed, link_state->fd ? "full" : "half",
642 efx->net_dev->mtu,
643 (efx->promiscuous ? " [PROMISC]" : ""));
644 } else {
645 EFX_INFO(efx, "link down\n");
650 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
652 efx->link_advertising = advertising;
653 if (advertising) {
654 if (advertising & ADVERTISED_Pause)
655 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
656 else
657 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
658 if (advertising & ADVERTISED_Asym_Pause)
659 efx->wanted_fc ^= EFX_FC_TX;
663 void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
665 efx->wanted_fc = wanted_fc;
666 if (efx->link_advertising) {
667 if (wanted_fc & EFX_FC_RX)
668 efx->link_advertising |= (ADVERTISED_Pause |
669 ADVERTISED_Asym_Pause);
670 else
671 efx->link_advertising &= ~(ADVERTISED_Pause |
672 ADVERTISED_Asym_Pause);
673 if (wanted_fc & EFX_FC_TX)
674 efx->link_advertising ^= ADVERTISED_Asym_Pause;
678 static void efx_fini_port(struct efx_nic *efx);
680 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
681 * the MAC appropriately. All other PHY configuration changes are pushed
682 * through phy_op->set_settings(), and pushed asynchronously to the MAC
683 * through efx_monitor().
685 * Callers must hold the mac_lock
687 int __efx_reconfigure_port(struct efx_nic *efx)
689 enum efx_phy_mode phy_mode;
690 int rc;
692 WARN_ON(!mutex_is_locked(&efx->mac_lock));
694 /* Serialise the promiscuous flag with efx_set_multicast_list. */
695 if (efx_dev_registered(efx)) {
696 netif_addr_lock_bh(efx->net_dev);
697 netif_addr_unlock_bh(efx->net_dev);
700 /* Disable PHY transmit in mac level loopbacks */
701 phy_mode = efx->phy_mode;
702 if (LOOPBACK_INTERNAL(efx))
703 efx->phy_mode |= PHY_MODE_TX_DISABLED;
704 else
705 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
707 rc = efx->type->reconfigure_port(efx);
709 if (rc)
710 efx->phy_mode = phy_mode;
712 return rc;
715 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
716 * disabled. */
717 int efx_reconfigure_port(struct efx_nic *efx)
719 int rc;
721 EFX_ASSERT_RESET_SERIALISED(efx);
723 mutex_lock(&efx->mac_lock);
724 rc = __efx_reconfigure_port(efx);
725 mutex_unlock(&efx->mac_lock);
727 return rc;
730 /* Asynchronous work item for changing MAC promiscuity and multicast
731 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
732 * MAC directly. */
733 static void efx_mac_work(struct work_struct *data)
735 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
737 mutex_lock(&efx->mac_lock);
738 if (efx->port_enabled) {
739 efx->type->push_multicast_hash(efx);
740 efx->mac_op->reconfigure(efx);
742 mutex_unlock(&efx->mac_lock);
745 static int efx_probe_port(struct efx_nic *efx)
747 int rc;
749 EFX_LOG(efx, "create port\n");
751 if (phy_flash_cfg)
752 efx->phy_mode = PHY_MODE_SPECIAL;
754 /* Connect up MAC/PHY operations table */
755 rc = efx->type->probe_port(efx);
756 if (rc)
757 goto err;
759 /* Sanity check MAC address */
760 if (is_valid_ether_addr(efx->mac_address)) {
761 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
762 } else {
763 EFX_ERR(efx, "invalid MAC address %pM\n",
764 efx->mac_address);
765 if (!allow_bad_hwaddr) {
766 rc = -EINVAL;
767 goto err;
769 random_ether_addr(efx->net_dev->dev_addr);
770 EFX_INFO(efx, "using locally-generated MAC %pM\n",
771 efx->net_dev->dev_addr);
774 return 0;
776 err:
777 efx_remove_port(efx);
778 return rc;
781 static int efx_init_port(struct efx_nic *efx)
783 int rc;
785 EFX_LOG(efx, "init port\n");
787 mutex_lock(&efx->mac_lock);
789 rc = efx->phy_op->init(efx);
790 if (rc)
791 goto fail1;
793 efx->port_initialized = true;
795 /* Reconfigure the MAC before creating dma queues (required for
796 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
797 efx->mac_op->reconfigure(efx);
799 /* Ensure the PHY advertises the correct flow control settings */
800 rc = efx->phy_op->reconfigure(efx);
801 if (rc)
802 goto fail2;
804 mutex_unlock(&efx->mac_lock);
805 return 0;
807 fail2:
808 efx->phy_op->fini(efx);
809 fail1:
810 mutex_unlock(&efx->mac_lock);
811 return rc;
814 static void efx_start_port(struct efx_nic *efx)
816 EFX_LOG(efx, "start port\n");
817 BUG_ON(efx->port_enabled);
819 mutex_lock(&efx->mac_lock);
820 efx->port_enabled = true;
822 /* efx_mac_work() might have been scheduled after efx_stop_port(),
823 * and then cancelled by efx_flush_all() */
824 efx->type->push_multicast_hash(efx);
825 efx->mac_op->reconfigure(efx);
827 mutex_unlock(&efx->mac_lock);
830 /* Prevent efx_mac_work() and efx_monitor() from working */
831 static void efx_stop_port(struct efx_nic *efx)
833 EFX_LOG(efx, "stop port\n");
835 mutex_lock(&efx->mac_lock);
836 efx->port_enabled = false;
837 mutex_unlock(&efx->mac_lock);
839 /* Serialise against efx_set_multicast_list() */
840 if (efx_dev_registered(efx)) {
841 netif_addr_lock_bh(efx->net_dev);
842 netif_addr_unlock_bh(efx->net_dev);
846 static void efx_fini_port(struct efx_nic *efx)
848 EFX_LOG(efx, "shut down port\n");
850 if (!efx->port_initialized)
851 return;
853 efx->phy_op->fini(efx);
854 efx->port_initialized = false;
856 efx->link_state.up = false;
857 efx_link_status_changed(efx);
860 static void efx_remove_port(struct efx_nic *efx)
862 EFX_LOG(efx, "destroying port\n");
864 efx->type->remove_port(efx);
867 /**************************************************************************
869 * NIC handling
871 **************************************************************************/
873 /* This configures the PCI device to enable I/O and DMA. */
874 static int efx_init_io(struct efx_nic *efx)
876 struct pci_dev *pci_dev = efx->pci_dev;
877 dma_addr_t dma_mask = efx->type->max_dma_mask;
878 int rc;
880 EFX_LOG(efx, "initialising I/O\n");
882 rc = pci_enable_device(pci_dev);
883 if (rc) {
884 EFX_ERR(efx, "failed to enable PCI device\n");
885 goto fail1;
888 pci_set_master(pci_dev);
890 /* Set the PCI DMA mask. Try all possibilities from our
891 * genuine mask down to 32 bits, because some architectures
892 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
893 * masks event though they reject 46 bit masks.
895 while (dma_mask > 0x7fffffffUL) {
896 if (pci_dma_supported(pci_dev, dma_mask) &&
897 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
898 break;
899 dma_mask >>= 1;
901 if (rc) {
902 EFX_ERR(efx, "could not find a suitable DMA mask\n");
903 goto fail2;
905 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
906 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
907 if (rc) {
908 /* pci_set_consistent_dma_mask() is not *allowed* to
909 * fail with a mask that pci_set_dma_mask() accepted,
910 * but just in case...
912 EFX_ERR(efx, "failed to set consistent DMA mask\n");
913 goto fail2;
916 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
917 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
918 if (rc) {
919 EFX_ERR(efx, "request for memory BAR failed\n");
920 rc = -EIO;
921 goto fail3;
923 efx->membase = ioremap_nocache(efx->membase_phys,
924 efx->type->mem_map_size);
925 if (!efx->membase) {
926 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
927 (unsigned long long)efx->membase_phys,
928 efx->type->mem_map_size);
929 rc = -ENOMEM;
930 goto fail4;
932 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
933 (unsigned long long)efx->membase_phys,
934 efx->type->mem_map_size, efx->membase);
936 return 0;
938 fail4:
939 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
940 fail3:
941 efx->membase_phys = 0;
942 fail2:
943 pci_disable_device(efx->pci_dev);
944 fail1:
945 return rc;
948 static void efx_fini_io(struct efx_nic *efx)
950 EFX_LOG(efx, "shutting down I/O\n");
952 if (efx->membase) {
953 iounmap(efx->membase);
954 efx->membase = NULL;
957 if (efx->membase_phys) {
958 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
959 efx->membase_phys = 0;
962 pci_disable_device(efx->pci_dev);
965 /* Get number of channels wanted. Each channel will have its own IRQ,
966 * 1 RX queue and/or 2 TX queues. */
967 static int efx_wanted_channels(void)
969 cpumask_var_t core_mask;
970 int count;
971 int cpu;
973 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
974 printk(KERN_WARNING
975 "sfc: RSS disabled due to allocation failure\n");
976 return 1;
979 count = 0;
980 for_each_online_cpu(cpu) {
981 if (!cpumask_test_cpu(cpu, core_mask)) {
982 ++count;
983 cpumask_or(core_mask, core_mask,
984 topology_core_cpumask(cpu));
988 free_cpumask_var(core_mask);
989 return count;
992 /* Probe the number and type of interrupts we are able to obtain, and
993 * the resulting numbers of channels and RX queues.
995 static void efx_probe_interrupts(struct efx_nic *efx)
997 int max_channels =
998 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
999 int rc, i;
1001 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1002 struct msix_entry xentries[EFX_MAX_CHANNELS];
1003 int n_channels;
1005 n_channels = efx_wanted_channels();
1006 if (separate_tx_channels)
1007 n_channels *= 2;
1008 n_channels = min(n_channels, max_channels);
1010 for (i = 0; i < n_channels; i++)
1011 xentries[i].entry = i;
1012 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1013 if (rc > 0) {
1014 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
1015 " available (%d < %d).\n", rc, n_channels);
1016 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
1017 EFX_BUG_ON_PARANOID(rc >= n_channels);
1018 n_channels = rc;
1019 rc = pci_enable_msix(efx->pci_dev, xentries,
1020 n_channels);
1023 if (rc == 0) {
1024 efx->n_channels = n_channels;
1025 if (separate_tx_channels) {
1026 efx->n_tx_channels =
1027 max(efx->n_channels / 2, 1U);
1028 efx->n_rx_channels =
1029 max(efx->n_channels -
1030 efx->n_tx_channels, 1U);
1031 } else {
1032 efx->n_tx_channels = efx->n_channels;
1033 efx->n_rx_channels = efx->n_channels;
1035 for (i = 0; i < n_channels; i++)
1036 efx->channel[i].irq = xentries[i].vector;
1037 } else {
1038 /* Fall back to single channel MSI */
1039 efx->interrupt_mode = EFX_INT_MODE_MSI;
1040 EFX_ERR(efx, "could not enable MSI-X\n");
1044 /* Try single interrupt MSI */
1045 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1046 efx->n_channels = 1;
1047 efx->n_rx_channels = 1;
1048 efx->n_tx_channels = 1;
1049 rc = pci_enable_msi(efx->pci_dev);
1050 if (rc == 0) {
1051 efx->channel[0].irq = efx->pci_dev->irq;
1052 } else {
1053 EFX_ERR(efx, "could not enable MSI\n");
1054 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1058 /* Assume legacy interrupts */
1059 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1060 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1061 efx->n_rx_channels = 1;
1062 efx->n_tx_channels = 1;
1063 efx->legacy_irq = efx->pci_dev->irq;
1067 static void efx_remove_interrupts(struct efx_nic *efx)
1069 struct efx_channel *channel;
1071 /* Remove MSI/MSI-X interrupts */
1072 efx_for_each_channel(channel, efx)
1073 channel->irq = 0;
1074 pci_disable_msi(efx->pci_dev);
1075 pci_disable_msix(efx->pci_dev);
1077 /* Remove legacy interrupt */
1078 efx->legacy_irq = 0;
1081 static void efx_set_channels(struct efx_nic *efx)
1083 struct efx_channel *channel;
1084 struct efx_tx_queue *tx_queue;
1085 struct efx_rx_queue *rx_queue;
1086 unsigned tx_channel_offset =
1087 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1089 efx_for_each_channel(channel, efx) {
1090 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1091 channel->tx_queue = &efx->tx_queue[
1092 (channel->channel - tx_channel_offset) *
1093 EFX_TXQ_TYPES];
1094 efx_for_each_channel_tx_queue(tx_queue, channel)
1095 tx_queue->channel = channel;
1099 efx_for_each_rx_queue(rx_queue, efx)
1100 rx_queue->channel = &efx->channel[rx_queue->queue];
1103 static int efx_probe_nic(struct efx_nic *efx)
1105 int rc;
1107 EFX_LOG(efx, "creating NIC\n");
1109 /* Carry out hardware-type specific initialisation */
1110 rc = efx->type->probe(efx);
1111 if (rc)
1112 return rc;
1114 /* Determine the number of channels and queues by trying to hook
1115 * in MSI-X interrupts. */
1116 efx_probe_interrupts(efx);
1118 efx_set_channels(efx);
1119 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
1121 /* Initialise the interrupt moderation settings */
1122 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1124 return 0;
1127 static void efx_remove_nic(struct efx_nic *efx)
1129 EFX_LOG(efx, "destroying NIC\n");
1131 efx_remove_interrupts(efx);
1132 efx->type->remove(efx);
1135 /**************************************************************************
1137 * NIC startup/shutdown
1139 *************************************************************************/
1141 static int efx_probe_all(struct efx_nic *efx)
1143 struct efx_channel *channel;
1144 int rc;
1146 /* Create NIC */
1147 rc = efx_probe_nic(efx);
1148 if (rc) {
1149 EFX_ERR(efx, "failed to create NIC\n");
1150 goto fail1;
1153 /* Create port */
1154 rc = efx_probe_port(efx);
1155 if (rc) {
1156 EFX_ERR(efx, "failed to create port\n");
1157 goto fail2;
1160 /* Create channels */
1161 efx_for_each_channel(channel, efx) {
1162 rc = efx_probe_channel(channel);
1163 if (rc) {
1164 EFX_ERR(efx, "failed to create channel %d\n",
1165 channel->channel);
1166 goto fail3;
1169 efx_set_channel_names(efx);
1171 return 0;
1173 fail3:
1174 efx_for_each_channel(channel, efx)
1175 efx_remove_channel(channel);
1176 efx_remove_port(efx);
1177 fail2:
1178 efx_remove_nic(efx);
1179 fail1:
1180 return rc;
1183 /* Called after previous invocation(s) of efx_stop_all, restarts the
1184 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1185 * and ensures that the port is scheduled to be reconfigured.
1186 * This function is safe to call multiple times when the NIC is in any
1187 * state. */
1188 static void efx_start_all(struct efx_nic *efx)
1190 struct efx_channel *channel;
1192 EFX_ASSERT_RESET_SERIALISED(efx);
1194 /* Check that it is appropriate to restart the interface. All
1195 * of these flags are safe to read under just the rtnl lock */
1196 if (efx->port_enabled)
1197 return;
1198 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1199 return;
1200 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1201 return;
1203 /* Mark the port as enabled so port reconfigurations can start, then
1204 * restart the transmit interface early so the watchdog timer stops */
1205 efx_start_port(efx);
1207 efx_for_each_channel(channel, efx) {
1208 if (efx_dev_registered(efx))
1209 efx_wake_queue(channel);
1210 efx_start_channel(channel);
1213 efx_nic_enable_interrupts(efx);
1215 /* Switch to event based MCDI completions after enabling interrupts.
1216 * If a reset has been scheduled, then we need to stay in polled mode.
1217 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1218 * reset_pending [modified from an atomic context], we instead guarantee
1219 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1220 efx_mcdi_mode_event(efx);
1221 if (efx->reset_pending != RESET_TYPE_NONE)
1222 efx_mcdi_mode_poll(efx);
1224 /* Start the hardware monitor if there is one. Otherwise (we're link
1225 * event driven), we have to poll the PHY because after an event queue
1226 * flush, we could have a missed a link state change */
1227 if (efx->type->monitor != NULL) {
1228 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1229 efx_monitor_interval);
1230 } else {
1231 mutex_lock(&efx->mac_lock);
1232 if (efx->phy_op->poll(efx))
1233 efx_link_status_changed(efx);
1234 mutex_unlock(&efx->mac_lock);
1237 efx->type->start_stats(efx);
1240 /* Flush all delayed work. Should only be called when no more delayed work
1241 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1242 * since we're holding the rtnl_lock at this point. */
1243 static void efx_flush_all(struct efx_nic *efx)
1245 struct efx_rx_queue *rx_queue;
1247 /* Make sure the hardware monitor is stopped */
1248 cancel_delayed_work_sync(&efx->monitor_work);
1250 /* Ensure that all RX slow refills are complete. */
1251 efx_for_each_rx_queue(rx_queue, efx)
1252 cancel_delayed_work_sync(&rx_queue->work);
1254 /* Stop scheduled port reconfigurations */
1255 cancel_work_sync(&efx->mac_work);
1258 /* Quiesce hardware and software without bringing the link down.
1259 * Safe to call multiple times, when the nic and interface is in any
1260 * state. The caller is guaranteed to subsequently be in a position
1261 * to modify any hardware and software state they see fit without
1262 * taking locks. */
1263 static void efx_stop_all(struct efx_nic *efx)
1265 struct efx_channel *channel;
1267 EFX_ASSERT_RESET_SERIALISED(efx);
1269 /* port_enabled can be read safely under the rtnl lock */
1270 if (!efx->port_enabled)
1271 return;
1273 efx->type->stop_stats(efx);
1275 /* Switch to MCDI polling on Siena before disabling interrupts */
1276 efx_mcdi_mode_poll(efx);
1278 /* Disable interrupts and wait for ISR to complete */
1279 efx_nic_disable_interrupts(efx);
1280 if (efx->legacy_irq)
1281 synchronize_irq(efx->legacy_irq);
1282 efx_for_each_channel(channel, efx) {
1283 if (channel->irq)
1284 synchronize_irq(channel->irq);
1287 /* Stop all NAPI processing and synchronous rx refills */
1288 efx_for_each_channel(channel, efx)
1289 efx_stop_channel(channel);
1291 /* Stop all asynchronous port reconfigurations. Since all
1292 * event processing has already been stopped, there is no
1293 * window to loose phy events */
1294 efx_stop_port(efx);
1296 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1297 efx_flush_all(efx);
1299 /* Stop the kernel transmit interface late, so the watchdog
1300 * timer isn't ticking over the flush */
1301 if (efx_dev_registered(efx)) {
1302 struct efx_channel *channel;
1303 efx_for_each_channel(channel, efx)
1304 efx_stop_queue(channel);
1305 netif_tx_lock_bh(efx->net_dev);
1306 netif_tx_unlock_bh(efx->net_dev);
1310 static void efx_remove_all(struct efx_nic *efx)
1312 struct efx_channel *channel;
1314 efx_for_each_channel(channel, efx)
1315 efx_remove_channel(channel);
1316 efx_remove_port(efx);
1317 efx_remove_nic(efx);
1320 /**************************************************************************
1322 * Interrupt moderation
1324 **************************************************************************/
1326 static unsigned irq_mod_ticks(int usecs, int resolution)
1328 if (usecs <= 0)
1329 return 0; /* cannot receive interrupts ahead of time :-) */
1330 if (usecs < resolution)
1331 return 1; /* never round down to 0 */
1332 return usecs / resolution;
1335 /* Set interrupt moderation parameters */
1336 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1337 bool rx_adaptive)
1339 struct efx_tx_queue *tx_queue;
1340 struct efx_rx_queue *rx_queue;
1341 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1342 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1344 EFX_ASSERT_RESET_SERIALISED(efx);
1346 efx_for_each_tx_queue(tx_queue, efx)
1347 tx_queue->channel->irq_moderation = tx_ticks;
1349 efx->irq_rx_adaptive = rx_adaptive;
1350 efx->irq_rx_moderation = rx_ticks;
1351 efx_for_each_rx_queue(rx_queue, efx)
1352 rx_queue->channel->irq_moderation = rx_ticks;
1355 /**************************************************************************
1357 * Hardware monitor
1359 **************************************************************************/
1361 /* Run periodically off the general workqueue. Serialised against
1362 * efx_reconfigure_port via the mac_lock */
1363 static void efx_monitor(struct work_struct *data)
1365 struct efx_nic *efx = container_of(data, struct efx_nic,
1366 monitor_work.work);
1368 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1369 raw_smp_processor_id());
1370 BUG_ON(efx->type->monitor == NULL);
1372 /* If the mac_lock is already held then it is likely a port
1373 * reconfiguration is already in place, which will likely do
1374 * most of the work of check_hw() anyway. */
1375 if (!mutex_trylock(&efx->mac_lock))
1376 goto out_requeue;
1377 if (!efx->port_enabled)
1378 goto out_unlock;
1379 efx->type->monitor(efx);
1381 out_unlock:
1382 mutex_unlock(&efx->mac_lock);
1383 out_requeue:
1384 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1385 efx_monitor_interval);
1388 /**************************************************************************
1390 * ioctls
1392 *************************************************************************/
1394 /* Net device ioctl
1395 * Context: process, rtnl_lock() held.
1397 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1399 struct efx_nic *efx = netdev_priv(net_dev);
1400 struct mii_ioctl_data *data = if_mii(ifr);
1402 EFX_ASSERT_RESET_SERIALISED(efx);
1404 /* Convert phy_id from older PRTAD/DEVAD format */
1405 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1406 (data->phy_id & 0xfc00) == 0x0400)
1407 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1409 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1412 /**************************************************************************
1414 * NAPI interface
1416 **************************************************************************/
1418 static int efx_init_napi(struct efx_nic *efx)
1420 struct efx_channel *channel;
1422 efx_for_each_channel(channel, efx) {
1423 channel->napi_dev = efx->net_dev;
1424 netif_napi_add(channel->napi_dev, &channel->napi_str,
1425 efx_poll, napi_weight);
1427 return 0;
1430 static void efx_fini_napi(struct efx_nic *efx)
1432 struct efx_channel *channel;
1434 efx_for_each_channel(channel, efx) {
1435 if (channel->napi_dev)
1436 netif_napi_del(&channel->napi_str);
1437 channel->napi_dev = NULL;
1441 /**************************************************************************
1443 * Kernel netpoll interface
1445 *************************************************************************/
1447 #ifdef CONFIG_NET_POLL_CONTROLLER
1449 /* Although in the common case interrupts will be disabled, this is not
1450 * guaranteed. However, all our work happens inside the NAPI callback,
1451 * so no locking is required.
1453 static void efx_netpoll(struct net_device *net_dev)
1455 struct efx_nic *efx = netdev_priv(net_dev);
1456 struct efx_channel *channel;
1458 efx_for_each_channel(channel, efx)
1459 efx_schedule_channel(channel);
1462 #endif
1464 /**************************************************************************
1466 * Kernel net device interface
1468 *************************************************************************/
1470 /* Context: process, rtnl_lock() held. */
1471 static int efx_net_open(struct net_device *net_dev)
1473 struct efx_nic *efx = netdev_priv(net_dev);
1474 EFX_ASSERT_RESET_SERIALISED(efx);
1476 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1477 raw_smp_processor_id());
1479 if (efx->state == STATE_DISABLED)
1480 return -EIO;
1481 if (efx->phy_mode & PHY_MODE_SPECIAL)
1482 return -EBUSY;
1483 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1484 return -EIO;
1486 /* Notify the kernel of the link state polled during driver load,
1487 * before the monitor starts running */
1488 efx_link_status_changed(efx);
1490 efx_start_all(efx);
1491 return 0;
1494 /* Context: process, rtnl_lock() held.
1495 * Note that the kernel will ignore our return code; this method
1496 * should really be a void.
1498 static int efx_net_stop(struct net_device *net_dev)
1500 struct efx_nic *efx = netdev_priv(net_dev);
1502 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1503 raw_smp_processor_id());
1505 if (efx->state != STATE_DISABLED) {
1506 /* Stop the device and flush all the channels */
1507 efx_stop_all(efx);
1508 efx_fini_channels(efx);
1509 efx_init_channels(efx);
1512 return 0;
1515 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1516 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1518 struct efx_nic *efx = netdev_priv(net_dev);
1519 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1520 struct net_device_stats *stats = &net_dev->stats;
1522 spin_lock_bh(&efx->stats_lock);
1523 efx->type->update_stats(efx);
1524 spin_unlock_bh(&efx->stats_lock);
1526 stats->rx_packets = mac_stats->rx_packets;
1527 stats->tx_packets = mac_stats->tx_packets;
1528 stats->rx_bytes = mac_stats->rx_bytes;
1529 stats->tx_bytes = mac_stats->tx_bytes;
1530 stats->multicast = mac_stats->rx_multicast;
1531 stats->collisions = mac_stats->tx_collision;
1532 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1533 mac_stats->rx_length_error);
1534 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1535 stats->rx_crc_errors = mac_stats->rx_bad;
1536 stats->rx_frame_errors = mac_stats->rx_align_error;
1537 stats->rx_fifo_errors = mac_stats->rx_overflow;
1538 stats->rx_missed_errors = mac_stats->rx_missed;
1539 stats->tx_window_errors = mac_stats->tx_late_collision;
1541 stats->rx_errors = (stats->rx_length_errors +
1542 stats->rx_over_errors +
1543 stats->rx_crc_errors +
1544 stats->rx_frame_errors +
1545 stats->rx_fifo_errors +
1546 stats->rx_missed_errors +
1547 mac_stats->rx_symbol_error);
1548 stats->tx_errors = (stats->tx_window_errors +
1549 mac_stats->tx_bad);
1551 return stats;
1554 /* Context: netif_tx_lock held, BHs disabled. */
1555 static void efx_watchdog(struct net_device *net_dev)
1557 struct efx_nic *efx = netdev_priv(net_dev);
1559 EFX_ERR(efx, "TX stuck with port_enabled=%d: resetting channels\n",
1560 efx->port_enabled);
1562 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1566 /* Context: process, rtnl_lock() held. */
1567 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1569 struct efx_nic *efx = netdev_priv(net_dev);
1570 int rc = 0;
1572 EFX_ASSERT_RESET_SERIALISED(efx);
1574 if (new_mtu > EFX_MAX_MTU)
1575 return -EINVAL;
1577 efx_stop_all(efx);
1579 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1581 efx_fini_channels(efx);
1583 mutex_lock(&efx->mac_lock);
1584 /* Reconfigure the MAC before enabling the dma queues so that
1585 * the RX buffers don't overflow */
1586 net_dev->mtu = new_mtu;
1587 efx->mac_op->reconfigure(efx);
1588 mutex_unlock(&efx->mac_lock);
1590 efx_init_channels(efx);
1592 efx_start_all(efx);
1593 return rc;
1596 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1598 struct efx_nic *efx = netdev_priv(net_dev);
1599 struct sockaddr *addr = data;
1600 char *new_addr = addr->sa_data;
1602 EFX_ASSERT_RESET_SERIALISED(efx);
1604 if (!is_valid_ether_addr(new_addr)) {
1605 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1606 new_addr);
1607 return -EINVAL;
1610 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1612 /* Reconfigure the MAC */
1613 mutex_lock(&efx->mac_lock);
1614 efx->mac_op->reconfigure(efx);
1615 mutex_unlock(&efx->mac_lock);
1617 return 0;
1620 /* Context: netif_addr_lock held, BHs disabled. */
1621 static void efx_set_multicast_list(struct net_device *net_dev)
1623 struct efx_nic *efx = netdev_priv(net_dev);
1624 struct netdev_hw_addr *ha;
1625 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1626 u32 crc;
1627 int bit;
1629 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1631 /* Build multicast hash table */
1632 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1633 memset(mc_hash, 0xff, sizeof(*mc_hash));
1634 } else {
1635 memset(mc_hash, 0x00, sizeof(*mc_hash));
1636 netdev_for_each_mc_addr(ha, net_dev) {
1637 crc = ether_crc_le(ETH_ALEN, ha->addr);
1638 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1639 set_bit_le(bit, mc_hash->byte);
1642 /* Broadcast packets go through the multicast hash filter.
1643 * ether_crc_le() of the broadcast address is 0xbe2612ff
1644 * so we always add bit 0xff to the mask.
1646 set_bit_le(0xff, mc_hash->byte);
1649 if (efx->port_enabled)
1650 queue_work(efx->workqueue, &efx->mac_work);
1651 /* Otherwise efx_start_port() will do this */
1654 static const struct net_device_ops efx_netdev_ops = {
1655 .ndo_open = efx_net_open,
1656 .ndo_stop = efx_net_stop,
1657 .ndo_get_stats = efx_net_stats,
1658 .ndo_tx_timeout = efx_watchdog,
1659 .ndo_start_xmit = efx_hard_start_xmit,
1660 .ndo_validate_addr = eth_validate_addr,
1661 .ndo_do_ioctl = efx_ioctl,
1662 .ndo_change_mtu = efx_change_mtu,
1663 .ndo_set_mac_address = efx_set_mac_address,
1664 .ndo_set_multicast_list = efx_set_multicast_list,
1665 #ifdef CONFIG_NET_POLL_CONTROLLER
1666 .ndo_poll_controller = efx_netpoll,
1667 #endif
1670 static void efx_update_name(struct efx_nic *efx)
1672 strcpy(efx->name, efx->net_dev->name);
1673 efx_mtd_rename(efx);
1674 efx_set_channel_names(efx);
1677 static int efx_netdev_event(struct notifier_block *this,
1678 unsigned long event, void *ptr)
1680 struct net_device *net_dev = ptr;
1682 if (net_dev->netdev_ops == &efx_netdev_ops &&
1683 event == NETDEV_CHANGENAME)
1684 efx_update_name(netdev_priv(net_dev));
1686 return NOTIFY_DONE;
1689 static struct notifier_block efx_netdev_notifier = {
1690 .notifier_call = efx_netdev_event,
1693 static ssize_t
1694 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1696 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1697 return sprintf(buf, "%d\n", efx->phy_type);
1699 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1701 static int efx_register_netdev(struct efx_nic *efx)
1703 struct net_device *net_dev = efx->net_dev;
1704 int rc;
1706 net_dev->watchdog_timeo = 5 * HZ;
1707 net_dev->irq = efx->pci_dev->irq;
1708 net_dev->netdev_ops = &efx_netdev_ops;
1709 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1710 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1712 /* Clear MAC statistics */
1713 efx->mac_op->update_stats(efx);
1714 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1716 rtnl_lock();
1718 rc = dev_alloc_name(net_dev, net_dev->name);
1719 if (rc < 0)
1720 goto fail_locked;
1721 efx_update_name(efx);
1723 rc = register_netdevice(net_dev);
1724 if (rc)
1725 goto fail_locked;
1727 /* Always start with carrier off; PHY events will detect the link */
1728 netif_carrier_off(efx->net_dev);
1730 rtnl_unlock();
1732 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1733 if (rc) {
1734 EFX_ERR(efx, "failed to init net dev attributes\n");
1735 goto fail_registered;
1738 return 0;
1740 fail_locked:
1741 rtnl_unlock();
1742 EFX_ERR(efx, "could not register net dev\n");
1743 return rc;
1745 fail_registered:
1746 unregister_netdev(net_dev);
1747 return rc;
1750 static void efx_unregister_netdev(struct efx_nic *efx)
1752 struct efx_tx_queue *tx_queue;
1754 if (!efx->net_dev)
1755 return;
1757 BUG_ON(netdev_priv(efx->net_dev) != efx);
1759 /* Free up any skbs still remaining. This has to happen before
1760 * we try to unregister the netdev as running their destructors
1761 * may be needed to get the device ref. count to 0. */
1762 efx_for_each_tx_queue(tx_queue, efx)
1763 efx_release_tx_buffers(tx_queue);
1765 if (efx_dev_registered(efx)) {
1766 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1767 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1768 unregister_netdev(efx->net_dev);
1772 /**************************************************************************
1774 * Device reset and suspend
1776 **************************************************************************/
1778 /* Tears down the entire software state and most of the hardware state
1779 * before reset. */
1780 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1782 EFX_ASSERT_RESET_SERIALISED(efx);
1784 efx_stop_all(efx);
1785 mutex_lock(&efx->mac_lock);
1786 mutex_lock(&efx->spi_lock);
1788 efx_fini_channels(efx);
1789 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1790 efx->phy_op->fini(efx);
1791 efx->type->fini(efx);
1794 /* This function will always ensure that the locks acquired in
1795 * efx_reset_down() are released. A failure return code indicates
1796 * that we were unable to reinitialise the hardware, and the
1797 * driver should be disabled. If ok is false, then the rx and tx
1798 * engines are not restarted, pending a RESET_DISABLE. */
1799 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1801 int rc;
1803 EFX_ASSERT_RESET_SERIALISED(efx);
1805 rc = efx->type->init(efx);
1806 if (rc) {
1807 EFX_ERR(efx, "failed to initialise NIC\n");
1808 goto fail;
1811 if (!ok)
1812 goto fail;
1814 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1815 rc = efx->phy_op->init(efx);
1816 if (rc)
1817 goto fail;
1818 if (efx->phy_op->reconfigure(efx))
1819 EFX_ERR(efx, "could not restore PHY settings\n");
1822 efx->mac_op->reconfigure(efx);
1824 efx_init_channels(efx);
1826 mutex_unlock(&efx->spi_lock);
1827 mutex_unlock(&efx->mac_lock);
1829 efx_start_all(efx);
1831 return 0;
1833 fail:
1834 efx->port_initialized = false;
1836 mutex_unlock(&efx->spi_lock);
1837 mutex_unlock(&efx->mac_lock);
1839 return rc;
1842 /* Reset the NIC using the specified method. Note that the reset may
1843 * fail, in which case the card will be left in an unusable state.
1845 * Caller must hold the rtnl_lock.
1847 int efx_reset(struct efx_nic *efx, enum reset_type method)
1849 int rc, rc2;
1850 bool disabled;
1852 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
1854 efx_reset_down(efx, method);
1856 rc = efx->type->reset(efx, method);
1857 if (rc) {
1858 EFX_ERR(efx, "failed to reset hardware\n");
1859 goto out;
1862 /* Allow resets to be rescheduled. */
1863 efx->reset_pending = RESET_TYPE_NONE;
1865 /* Reinitialise bus-mastering, which may have been turned off before
1866 * the reset was scheduled. This is still appropriate, even in the
1867 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1868 * can respond to requests. */
1869 pci_set_master(efx->pci_dev);
1871 out:
1872 /* Leave device stopped if necessary */
1873 disabled = rc || method == RESET_TYPE_DISABLE;
1874 rc2 = efx_reset_up(efx, method, !disabled);
1875 if (rc2) {
1876 disabled = true;
1877 if (!rc)
1878 rc = rc2;
1881 if (disabled) {
1882 dev_close(efx->net_dev);
1883 EFX_ERR(efx, "has been disabled\n");
1884 efx->state = STATE_DISABLED;
1885 } else {
1886 EFX_LOG(efx, "reset complete\n");
1888 return rc;
1891 /* The worker thread exists so that code that cannot sleep can
1892 * schedule a reset for later.
1894 static void efx_reset_work(struct work_struct *data)
1896 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
1898 if (efx->reset_pending == RESET_TYPE_NONE)
1899 return;
1901 /* If we're not RUNNING then don't reset. Leave the reset_pending
1902 * flag set so that efx_pci_probe_main will be retried */
1903 if (efx->state != STATE_RUNNING) {
1904 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1905 return;
1908 rtnl_lock();
1909 (void)efx_reset(efx, efx->reset_pending);
1910 rtnl_unlock();
1913 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1915 enum reset_type method;
1917 if (efx->reset_pending != RESET_TYPE_NONE) {
1918 EFX_INFO(efx, "quenching already scheduled reset\n");
1919 return;
1922 switch (type) {
1923 case RESET_TYPE_INVISIBLE:
1924 case RESET_TYPE_ALL:
1925 case RESET_TYPE_WORLD:
1926 case RESET_TYPE_DISABLE:
1927 method = type;
1928 break;
1929 case RESET_TYPE_RX_RECOVERY:
1930 case RESET_TYPE_RX_DESC_FETCH:
1931 case RESET_TYPE_TX_DESC_FETCH:
1932 case RESET_TYPE_TX_SKIP:
1933 method = RESET_TYPE_INVISIBLE;
1934 break;
1935 case RESET_TYPE_MC_FAILURE:
1936 default:
1937 method = RESET_TYPE_ALL;
1938 break;
1941 if (method != type)
1942 EFX_LOG(efx, "scheduling %s reset for %s\n",
1943 RESET_TYPE(method), RESET_TYPE(type));
1944 else
1945 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
1947 efx->reset_pending = method;
1949 /* efx_process_channel() will no longer read events once a
1950 * reset is scheduled. So switch back to poll'd MCDI completions. */
1951 efx_mcdi_mode_poll(efx);
1953 queue_work(reset_workqueue, &efx->reset_work);
1956 /**************************************************************************
1958 * List of NICs we support
1960 **************************************************************************/
1962 /* PCI device ID table */
1963 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
1964 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1965 .driver_data = (unsigned long) &falcon_a1_nic_type},
1966 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1967 .driver_data = (unsigned long) &falcon_b0_nic_type},
1968 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1969 .driver_data = (unsigned long) &siena_a0_nic_type},
1970 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1971 .driver_data = (unsigned long) &siena_a0_nic_type},
1972 {0} /* end of list */
1975 /**************************************************************************
1977 * Dummy PHY/MAC operations
1979 * Can be used for some unimplemented operations
1980 * Needed so all function pointers are valid and do not have to be tested
1981 * before use
1983 **************************************************************************/
1984 int efx_port_dummy_op_int(struct efx_nic *efx)
1986 return 0;
1988 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1989 void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1992 bool efx_port_dummy_op_poll(struct efx_nic *efx)
1994 return false;
1997 static struct efx_phy_operations efx_dummy_phy_operations = {
1998 .init = efx_port_dummy_op_int,
1999 .reconfigure = efx_port_dummy_op_int,
2000 .poll = efx_port_dummy_op_poll,
2001 .fini = efx_port_dummy_op_void,
2004 /**************************************************************************
2006 * Data housekeeping
2008 **************************************************************************/
2010 /* This zeroes out and then fills in the invariants in a struct
2011 * efx_nic (including all sub-structures).
2013 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2014 struct pci_dev *pci_dev, struct net_device *net_dev)
2016 struct efx_channel *channel;
2017 struct efx_tx_queue *tx_queue;
2018 struct efx_rx_queue *rx_queue;
2019 int i;
2021 /* Initialise common structures */
2022 memset(efx, 0, sizeof(*efx));
2023 spin_lock_init(&efx->biu_lock);
2024 mutex_init(&efx->mdio_lock);
2025 mutex_init(&efx->spi_lock);
2026 #ifdef CONFIG_SFC_MTD
2027 INIT_LIST_HEAD(&efx->mtd_list);
2028 #endif
2029 INIT_WORK(&efx->reset_work, efx_reset_work);
2030 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2031 efx->pci_dev = pci_dev;
2032 efx->state = STATE_INIT;
2033 efx->reset_pending = RESET_TYPE_NONE;
2034 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2036 efx->net_dev = net_dev;
2037 efx->rx_checksum_enabled = true;
2038 spin_lock_init(&efx->stats_lock);
2039 mutex_init(&efx->mac_lock);
2040 efx->mac_op = type->default_mac_ops;
2041 efx->phy_op = &efx_dummy_phy_operations;
2042 efx->mdio.dev = net_dev;
2043 INIT_WORK(&efx->mac_work, efx_mac_work);
2045 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2046 channel = &efx->channel[i];
2047 channel->efx = efx;
2048 channel->channel = i;
2049 channel->work_pending = false;
2050 spin_lock_init(&channel->tx_stop_lock);
2051 atomic_set(&channel->tx_stop_count, 1);
2053 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
2054 tx_queue = &efx->tx_queue[i];
2055 tx_queue->efx = efx;
2056 tx_queue->queue = i;
2057 tx_queue->buffer = NULL;
2058 tx_queue->channel = &efx->channel[0]; /* for safety */
2059 tx_queue->tso_headers_free = NULL;
2061 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2062 rx_queue = &efx->rx_queue[i];
2063 rx_queue->efx = efx;
2064 rx_queue->queue = i;
2065 rx_queue->channel = &efx->channel[0]; /* for safety */
2066 rx_queue->buffer = NULL;
2067 spin_lock_init(&rx_queue->add_lock);
2068 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
2071 efx->type = type;
2073 /* As close as we can get to guaranteeing that we don't overflow */
2074 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2076 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2078 /* Higher numbered interrupt modes are less capable! */
2079 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2080 interrupt_mode);
2082 /* Would be good to use the net_dev name, but we're too early */
2083 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2084 pci_name(pci_dev));
2085 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2086 if (!efx->workqueue)
2087 return -ENOMEM;
2089 return 0;
2092 static void efx_fini_struct(struct efx_nic *efx)
2094 if (efx->workqueue) {
2095 destroy_workqueue(efx->workqueue);
2096 efx->workqueue = NULL;
2100 /**************************************************************************
2102 * PCI interface
2104 **************************************************************************/
2106 /* Main body of final NIC shutdown code
2107 * This is called only at module unload (or hotplug removal).
2109 static void efx_pci_remove_main(struct efx_nic *efx)
2111 efx_nic_fini_interrupt(efx);
2112 efx_fini_channels(efx);
2113 efx_fini_port(efx);
2114 efx->type->fini(efx);
2115 efx_fini_napi(efx);
2116 efx_remove_all(efx);
2119 /* Final NIC shutdown
2120 * This is called only at module unload (or hotplug removal).
2122 static void efx_pci_remove(struct pci_dev *pci_dev)
2124 struct efx_nic *efx;
2126 efx = pci_get_drvdata(pci_dev);
2127 if (!efx)
2128 return;
2130 /* Mark the NIC as fini, then stop the interface */
2131 rtnl_lock();
2132 efx->state = STATE_FINI;
2133 dev_close(efx->net_dev);
2135 /* Allow any queued efx_resets() to complete */
2136 rtnl_unlock();
2138 efx_unregister_netdev(efx);
2140 efx_mtd_remove(efx);
2142 /* Wait for any scheduled resets to complete. No more will be
2143 * scheduled from this point because efx_stop_all() has been
2144 * called, we are no longer registered with driverlink, and
2145 * the net_device's have been removed. */
2146 cancel_work_sync(&efx->reset_work);
2148 efx_pci_remove_main(efx);
2150 efx_fini_io(efx);
2151 EFX_LOG(efx, "shutdown successful\n");
2153 pci_set_drvdata(pci_dev, NULL);
2154 efx_fini_struct(efx);
2155 free_netdev(efx->net_dev);
2158 /* Main body of NIC initialisation
2159 * This is called at module load (or hotplug insertion, theoretically).
2161 static int efx_pci_probe_main(struct efx_nic *efx)
2163 int rc;
2165 /* Do start-of-day initialisation */
2166 rc = efx_probe_all(efx);
2167 if (rc)
2168 goto fail1;
2170 rc = efx_init_napi(efx);
2171 if (rc)
2172 goto fail2;
2174 rc = efx->type->init(efx);
2175 if (rc) {
2176 EFX_ERR(efx, "failed to initialise NIC\n");
2177 goto fail3;
2180 rc = efx_init_port(efx);
2181 if (rc) {
2182 EFX_ERR(efx, "failed to initialise port\n");
2183 goto fail4;
2186 efx_init_channels(efx);
2188 rc = efx_nic_init_interrupt(efx);
2189 if (rc)
2190 goto fail5;
2192 return 0;
2194 fail5:
2195 efx_fini_channels(efx);
2196 efx_fini_port(efx);
2197 fail4:
2198 efx->type->fini(efx);
2199 fail3:
2200 efx_fini_napi(efx);
2201 fail2:
2202 efx_remove_all(efx);
2203 fail1:
2204 return rc;
2207 /* NIC initialisation
2209 * This is called at module load (or hotplug insertion,
2210 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2211 * sets up and registers the network devices with the kernel and hooks
2212 * the interrupt service routine. It does not prepare the device for
2213 * transmission; this is left to the first time one of the network
2214 * interfaces is brought up (i.e. efx_net_open).
2216 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2217 const struct pci_device_id *entry)
2219 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2220 struct net_device *net_dev;
2221 struct efx_nic *efx;
2222 int i, rc;
2224 /* Allocate and initialise a struct net_device and struct efx_nic */
2225 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
2226 if (!net_dev)
2227 return -ENOMEM;
2228 net_dev->features |= (type->offload_features | NETIF_F_SG |
2229 NETIF_F_HIGHDMA | NETIF_F_TSO |
2230 NETIF_F_GRO);
2231 if (type->offload_features & NETIF_F_V6_CSUM)
2232 net_dev->features |= NETIF_F_TSO6;
2233 /* Mask for features that also apply to VLAN devices */
2234 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2235 NETIF_F_HIGHDMA | NETIF_F_TSO);
2236 efx = netdev_priv(net_dev);
2237 pci_set_drvdata(pci_dev, efx);
2238 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2239 if (rc)
2240 goto fail1;
2242 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2244 /* Set up basic I/O (BAR mappings etc) */
2245 rc = efx_init_io(efx);
2246 if (rc)
2247 goto fail2;
2249 /* No serialisation is required with the reset path because
2250 * we're in STATE_INIT. */
2251 for (i = 0; i < 5; i++) {
2252 rc = efx_pci_probe_main(efx);
2254 /* Serialise against efx_reset(). No more resets will be
2255 * scheduled since efx_stop_all() has been called, and we
2256 * have not and never have been registered with either
2257 * the rtnetlink or driverlink layers. */
2258 cancel_work_sync(&efx->reset_work);
2260 if (rc == 0) {
2261 if (efx->reset_pending != RESET_TYPE_NONE) {
2262 /* If there was a scheduled reset during
2263 * probe, the NIC is probably hosed anyway */
2264 efx_pci_remove_main(efx);
2265 rc = -EIO;
2266 } else {
2267 break;
2271 /* Retry if a recoverably reset event has been scheduled */
2272 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2273 (efx->reset_pending != RESET_TYPE_ALL))
2274 goto fail3;
2276 efx->reset_pending = RESET_TYPE_NONE;
2279 if (rc) {
2280 EFX_ERR(efx, "Could not reset NIC\n");
2281 goto fail4;
2284 /* Switch to the running state before we expose the device to the OS,
2285 * so that dev_open()|efx_start_all() will actually start the device */
2286 efx->state = STATE_RUNNING;
2288 rc = efx_register_netdev(efx);
2289 if (rc)
2290 goto fail5;
2292 EFX_LOG(efx, "initialisation successful\n");
2294 rtnl_lock();
2295 efx_mtd_probe(efx); /* allowed to fail */
2296 rtnl_unlock();
2297 return 0;
2299 fail5:
2300 efx_pci_remove_main(efx);
2301 fail4:
2302 fail3:
2303 efx_fini_io(efx);
2304 fail2:
2305 efx_fini_struct(efx);
2306 fail1:
2307 WARN_ON(rc > 0);
2308 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2309 free_netdev(net_dev);
2310 return rc;
2313 static int efx_pm_freeze(struct device *dev)
2315 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2317 efx->state = STATE_FINI;
2319 netif_device_detach(efx->net_dev);
2321 efx_stop_all(efx);
2322 efx_fini_channels(efx);
2324 return 0;
2327 static int efx_pm_thaw(struct device *dev)
2329 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2331 efx->state = STATE_INIT;
2333 efx_init_channels(efx);
2335 mutex_lock(&efx->mac_lock);
2336 efx->phy_op->reconfigure(efx);
2337 mutex_unlock(&efx->mac_lock);
2339 efx_start_all(efx);
2341 netif_device_attach(efx->net_dev);
2343 efx->state = STATE_RUNNING;
2345 efx->type->resume_wol(efx);
2347 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2348 queue_work(reset_workqueue, &efx->reset_work);
2350 return 0;
2353 static int efx_pm_poweroff(struct device *dev)
2355 struct pci_dev *pci_dev = to_pci_dev(dev);
2356 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2358 efx->type->fini(efx);
2360 efx->reset_pending = RESET_TYPE_NONE;
2362 pci_save_state(pci_dev);
2363 return pci_set_power_state(pci_dev, PCI_D3hot);
2366 /* Used for both resume and restore */
2367 static int efx_pm_resume(struct device *dev)
2369 struct pci_dev *pci_dev = to_pci_dev(dev);
2370 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2371 int rc;
2373 rc = pci_set_power_state(pci_dev, PCI_D0);
2374 if (rc)
2375 return rc;
2376 pci_restore_state(pci_dev);
2377 rc = pci_enable_device(pci_dev);
2378 if (rc)
2379 return rc;
2380 pci_set_master(efx->pci_dev);
2381 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2382 if (rc)
2383 return rc;
2384 rc = efx->type->init(efx);
2385 if (rc)
2386 return rc;
2387 efx_pm_thaw(dev);
2388 return 0;
2391 static int efx_pm_suspend(struct device *dev)
2393 int rc;
2395 efx_pm_freeze(dev);
2396 rc = efx_pm_poweroff(dev);
2397 if (rc)
2398 efx_pm_resume(dev);
2399 return rc;
2402 static struct dev_pm_ops efx_pm_ops = {
2403 .suspend = efx_pm_suspend,
2404 .resume = efx_pm_resume,
2405 .freeze = efx_pm_freeze,
2406 .thaw = efx_pm_thaw,
2407 .poweroff = efx_pm_poweroff,
2408 .restore = efx_pm_resume,
2411 static struct pci_driver efx_pci_driver = {
2412 .name = EFX_DRIVER_NAME,
2413 .id_table = efx_pci_table,
2414 .probe = efx_pci_probe,
2415 .remove = efx_pci_remove,
2416 .driver.pm = &efx_pm_ops,
2419 /**************************************************************************
2421 * Kernel module interface
2423 *************************************************************************/
2425 module_param(interrupt_mode, uint, 0444);
2426 MODULE_PARM_DESC(interrupt_mode,
2427 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2429 static int __init efx_init_module(void)
2431 int rc;
2433 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2435 rc = register_netdevice_notifier(&efx_netdev_notifier);
2436 if (rc)
2437 goto err_notifier;
2439 refill_workqueue = create_workqueue("sfc_refill");
2440 if (!refill_workqueue) {
2441 rc = -ENOMEM;
2442 goto err_refill;
2444 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2445 if (!reset_workqueue) {
2446 rc = -ENOMEM;
2447 goto err_reset;
2450 rc = pci_register_driver(&efx_pci_driver);
2451 if (rc < 0)
2452 goto err_pci;
2454 return 0;
2456 err_pci:
2457 destroy_workqueue(reset_workqueue);
2458 err_reset:
2459 destroy_workqueue(refill_workqueue);
2460 err_refill:
2461 unregister_netdevice_notifier(&efx_netdev_notifier);
2462 err_notifier:
2463 return rc;
2466 static void __exit efx_exit_module(void)
2468 printk(KERN_INFO "Solarflare NET driver unloading\n");
2470 pci_unregister_driver(&efx_pci_driver);
2471 destroy_workqueue(reset_workqueue);
2472 destroy_workqueue(refill_workqueue);
2473 unregister_netdevice_notifier(&efx_netdev_notifier);
2477 module_init(efx_init_module);
2478 module_exit(efx_exit_module);
2480 MODULE_AUTHOR("Solarflare Communications and "
2481 "Michael Brown <mbrown@fensystems.co.uk>");
2482 MODULE_DESCRIPTION("Solarflare Communications network driver");
2483 MODULE_LICENSE("GPL");
2484 MODULE_DEVICE_TABLE(pci, efx_pci_table);