1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
29 #include "workarounds.h"
31 /* Hardware control for SFC4000 (aka Falcon). */
33 static const unsigned int
34 /* "Large" EEPROM device: Atmel AT25640 or similar
35 * 8 KB, 16-bit address, 32 B write block */
36 large_eeprom_type
= ((13 << SPI_DEV_TYPE_SIZE_LBN
)
37 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
38 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
)),
39 /* Default flash device: Atmel AT25F1024
40 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
41 default_flash_type
= ((17 << SPI_DEV_TYPE_SIZE_LBN
)
42 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
43 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN
)
44 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN
)
45 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
));
47 /**************************************************************************
49 * I2C bus - this is a bit-bashing interface using GPIO pins
50 * Note that it uses the output enables to tristate the outputs
51 * SDA is the data pin and SCL is the clock
53 **************************************************************************
55 static void falcon_setsda(void *data
, int state
)
57 struct efx_nic
*efx
= (struct efx_nic
*)data
;
60 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
61 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO3_OEN
, !state
);
62 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
65 static void falcon_setscl(void *data
, int state
)
67 struct efx_nic
*efx
= (struct efx_nic
*)data
;
70 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
71 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO0_OEN
, !state
);
72 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
75 static int falcon_getsda(void *data
)
77 struct efx_nic
*efx
= (struct efx_nic
*)data
;
80 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
81 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO3_IN
);
84 static int falcon_getscl(void *data
)
86 struct efx_nic
*efx
= (struct efx_nic
*)data
;
89 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
90 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO0_IN
);
93 static struct i2c_algo_bit_data falcon_i2c_bit_operations
= {
94 .setsda
= falcon_setsda
,
95 .setscl
= falcon_setscl
,
96 .getsda
= falcon_getsda
,
97 .getscl
= falcon_getscl
,
99 /* Wait up to 50 ms for slave to let us pull SCL high */
100 .timeout
= DIV_ROUND_UP(HZ
, 20),
103 static void falcon_push_irq_moderation(struct efx_channel
*channel
)
105 efx_dword_t timer_cmd
;
106 struct efx_nic
*efx
= channel
->efx
;
108 /* Set timer register */
109 if (channel
->irq_moderation
) {
110 EFX_POPULATE_DWORD_2(timer_cmd
,
111 FRF_AB_TC_TIMER_MODE
,
112 FFE_BB_TIMER_MODE_INT_HLDOFF
,
114 channel
->irq_moderation
- 1);
116 EFX_POPULATE_DWORD_2(timer_cmd
,
117 FRF_AB_TC_TIMER_MODE
,
118 FFE_BB_TIMER_MODE_DIS
,
119 FRF_AB_TC_TIMER_VAL
, 0);
121 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER
!= FR_BZ_TIMER_COMMAND_P0
);
122 efx_writed_page_locked(efx
, &timer_cmd
, FR_BZ_TIMER_COMMAND_P0
,
126 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
);
128 static void falcon_prepare_flush(struct efx_nic
*efx
)
130 falcon_deconfigure_mac_wrapper(efx
);
132 /* Wait for the tx and rx fifo's to get to the next packet boundary
133 * (~1ms without back-pressure), then to drain the remainder of the
134 * fifo's at data path speeds (negligible), with a healthy margin. */
138 /* Acknowledge a legacy interrupt from Falcon
140 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
143 * BIU. Interrupt acknowledge is read sensitive so must write instead
144 * (then read to ensure the BIU collector is flushed)
146 * NB most hardware supports MSI interrupts
148 inline void falcon_irq_ack_a1(struct efx_nic
*efx
)
152 EFX_POPULATE_DWORD_1(reg
, FRF_AA_INT_ACK_KER_FIELD
, 0xb7eb7e);
153 efx_writed(efx
, ®
, FR_AA_INT_ACK_KER
);
154 efx_readd(efx
, ®
, FR_AA_WORK_AROUND_BROKEN_PCI_READS
);
158 irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
160 struct efx_nic
*efx
= dev_id
;
161 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
162 struct efx_channel
*channel
;
166 /* Check to see if this is our interrupt. If it isn't, we
167 * exit without having touched the hardware.
169 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker
))) {
170 EFX_TRACE(efx
, "IRQ %d on CPU %d not for me\n", irq
,
171 raw_smp_processor_id());
174 efx
->last_irq_cpu
= raw_smp_processor_id();
175 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
176 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
178 /* Determine interrupting queues, clear interrupt status
179 * register and acknowledge the device interrupt.
181 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH
> EFX_MAX_CHANNELS
);
182 queues
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_INT_Q
);
184 /* Check to see if we have a serious error condition */
185 if (queues
& (1U << efx
->fatal_irq_level
)) {
186 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
187 if (unlikely(syserr
))
188 return efx_nic_fatal_interrupt(efx
);
191 EFX_ZERO_OWORD(*int_ker
);
192 wmb(); /* Ensure the vector is cleared before interrupt ack */
193 falcon_irq_ack_a1(efx
);
195 /* Schedule processing of any interrupting queues */
196 channel
= &efx
->channel
[0];
199 efx_schedule_channel(channel
);
206 /**************************************************************************
210 **************************************************************************
213 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
215 static int falcon_spi_poll(struct efx_nic
*efx
)
218 efx_reado(efx
, ®
, FR_AB_EE_SPI_HCMD
);
219 return EFX_OWORD_FIELD(reg
, FRF_AB_EE_SPI_HCMD_CMD_EN
) ? -EBUSY
: 0;
222 /* Wait for SPI command completion */
223 static int falcon_spi_wait(struct efx_nic
*efx
)
225 /* Most commands will finish quickly, so we start polling at
226 * very short intervals. Sometimes the command may have to
227 * wait for VPD or expansion ROM access outside of our
228 * control, so we allow up to 100 ms. */
229 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 10);
232 for (i
= 0; i
< 10; i
++) {
233 if (!falcon_spi_poll(efx
))
239 if (!falcon_spi_poll(efx
))
241 if (time_after_eq(jiffies
, timeout
)) {
242 EFX_ERR(efx
, "timed out waiting for SPI\n");
245 schedule_timeout_uninterruptible(1);
249 int falcon_spi_cmd(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
250 unsigned int command
, int address
,
251 const void *in
, void *out
, size_t len
)
253 bool addressed
= (address
>= 0);
254 bool reading
= (out
!= NULL
);
258 /* Input validation */
259 if (len
> FALCON_SPI_MAX_LEN
)
261 BUG_ON(!mutex_is_locked(&efx
->spi_lock
));
263 /* Check that previous command is not still running */
264 rc
= falcon_spi_poll(efx
);
268 /* Program address register, if we have an address */
270 EFX_POPULATE_OWORD_1(reg
, FRF_AB_EE_SPI_HADR_ADR
, address
);
271 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HADR
);
274 /* Program data register, if we have data */
276 memcpy(®
, in
, len
);
277 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HDATA
);
280 /* Issue read/write command */
281 EFX_POPULATE_OWORD_7(reg
,
282 FRF_AB_EE_SPI_HCMD_CMD_EN
, 1,
283 FRF_AB_EE_SPI_HCMD_SF_SEL
, spi
->device_id
,
284 FRF_AB_EE_SPI_HCMD_DABCNT
, len
,
285 FRF_AB_EE_SPI_HCMD_READ
, reading
,
286 FRF_AB_EE_SPI_HCMD_DUBCNT
, 0,
287 FRF_AB_EE_SPI_HCMD_ADBCNT
,
288 (addressed
? spi
->addr_len
: 0),
289 FRF_AB_EE_SPI_HCMD_ENC
, command
);
290 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HCMD
);
292 /* Wait for read/write to complete */
293 rc
= falcon_spi_wait(efx
);
299 efx_reado(efx
, ®
, FR_AB_EE_SPI_HDATA
);
300 memcpy(out
, ®
, len
);
307 falcon_spi_write_limit(const struct efx_spi_device
*spi
, size_t start
)
309 return min(FALCON_SPI_MAX_LEN
,
310 (spi
->block_size
- (start
& (spi
->block_size
- 1))));
314 efx_spi_munge_command(const struct efx_spi_device
*spi
,
315 const u8 command
, const unsigned int address
)
317 return command
| (((address
>> 8) & spi
->munge_address
) << 3);
320 /* Wait up to 10 ms for buffered write completion */
322 falcon_spi_wait_write(struct efx_nic
*efx
, const struct efx_spi_device
*spi
)
324 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 100);
329 rc
= falcon_spi_cmd(efx
, spi
, SPI_RDSR
, -1, NULL
,
330 &status
, sizeof(status
));
333 if (!(status
& SPI_STATUS_NRDY
))
335 if (time_after_eq(jiffies
, timeout
)) {
336 EFX_ERR(efx
, "SPI write timeout on device %d"
337 " last status=0x%02x\n",
338 spi
->device_id
, status
);
341 schedule_timeout_uninterruptible(1);
345 int falcon_spi_read(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
346 loff_t start
, size_t len
, size_t *retlen
, u8
*buffer
)
348 size_t block_len
, pos
= 0;
349 unsigned int command
;
353 block_len
= min(len
- pos
, FALCON_SPI_MAX_LEN
);
355 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
356 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
, NULL
,
357 buffer
+ pos
, block_len
);
362 /* Avoid locking up the system */
364 if (signal_pending(current
)) {
376 falcon_spi_write(struct efx_nic
*efx
, const struct efx_spi_device
*spi
,
377 loff_t start
, size_t len
, size_t *retlen
, const u8
*buffer
)
379 u8 verify_buffer
[FALCON_SPI_MAX_LEN
];
380 size_t block_len
, pos
= 0;
381 unsigned int command
;
385 rc
= falcon_spi_cmd(efx
, spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
389 block_len
= min(len
- pos
,
390 falcon_spi_write_limit(spi
, start
+ pos
));
391 command
= efx_spi_munge_command(spi
, SPI_WRITE
, start
+ pos
);
392 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
393 buffer
+ pos
, NULL
, block_len
);
397 rc
= falcon_spi_wait_write(efx
, spi
);
401 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
402 rc
= falcon_spi_cmd(efx
, spi
, command
, start
+ pos
,
403 NULL
, verify_buffer
, block_len
);
404 if (memcmp(verify_buffer
, buffer
+ pos
, block_len
)) {
411 /* Avoid locking up the system */
413 if (signal_pending(current
)) {
424 /**************************************************************************
428 **************************************************************************
431 static void falcon_push_multicast_hash(struct efx_nic
*efx
)
433 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
435 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
437 efx_writeo(efx
, &mc_hash
->oword
[0], FR_AB_MAC_MC_HASH_REG0
);
438 efx_writeo(efx
, &mc_hash
->oword
[1], FR_AB_MAC_MC_HASH_REG1
);
441 static void falcon_reset_macs(struct efx_nic
*efx
)
443 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
444 efx_oword_t reg
, mac_ctrl
;
447 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
448 /* It's not safe to use GLB_CTL_REG to reset the
449 * macs, so instead use the internal MAC resets
451 if (!EFX_IS10G(efx
)) {
452 EFX_POPULATE_OWORD_1(reg
, FRF_AB_GM_SW_RST
, 1);
453 efx_writeo(efx
, ®
, FR_AB_GM_CFG1
);
456 EFX_POPULATE_OWORD_1(reg
, FRF_AB_GM_SW_RST
, 0);
457 efx_writeo(efx
, ®
, FR_AB_GM_CFG1
);
461 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XM_CORE_RST
, 1);
462 efx_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
464 for (count
= 0; count
< 10000; count
++) {
465 efx_reado(efx
, ®
, FR_AB_XM_GLB_CFG
);
466 if (EFX_OWORD_FIELD(reg
, FRF_AB_XM_CORE_RST
) ==
472 EFX_ERR(efx
, "timed out waiting for XMAC core reset\n");
476 /* Mac stats will fail whist the TX fifo is draining */
477 WARN_ON(nic_data
->stats_disable_count
== 0);
479 efx_reado(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
480 EFX_SET_OWORD_FIELD(mac_ctrl
, FRF_BB_TXFIFO_DRAIN_EN
, 1);
481 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
483 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
484 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
, 1);
485 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
, 1);
486 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_EM
, 1);
487 efx_writeo(efx
, ®
, FR_AB_GLB_CTL
);
491 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
492 if (!EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
) &&
493 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
) &&
494 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_EM
)) {
495 EFX_LOG(efx
, "Completed MAC reset after %d loops\n",
500 EFX_ERR(efx
, "MAC reset failed\n");
507 /* Ensure the correct MAC is selected before statistics
508 * are re-enabled by the caller */
509 efx_writeo(efx
, &mac_ctrl
, FR_AB_MAC_CTRL
);
511 /* This can run even when the GMAC is selected */
512 falcon_setup_xaui(efx
);
515 void falcon_drain_tx_fifo(struct efx_nic
*efx
)
519 if ((efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) ||
520 (efx
->loopback_mode
!= LOOPBACK_NONE
))
523 efx_reado(efx
, ®
, FR_AB_MAC_CTRL
);
524 /* There is no point in draining more than once */
525 if (EFX_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
))
528 falcon_reset_macs(efx
);
531 static void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
)
535 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
538 /* Isolate the MAC -> RX */
539 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
540 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 0);
541 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
543 /* Isolate TX -> MAC */
544 falcon_drain_tx_fifo(efx
);
547 void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
)
549 struct efx_link_state
*link_state
= &efx
->link_state
;
551 int link_speed
, isolate
;
553 isolate
= (efx
->reset_pending
!= RESET_TYPE_NONE
);
555 switch (link_state
->speed
) {
556 case 10000: link_speed
= 3; break;
557 case 1000: link_speed
= 2; break;
558 case 100: link_speed
= 1; break;
559 default: link_speed
= 0; break;
561 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
562 * as advertised. Disable to ensure packets are not
563 * indefinitely held and TX queue can be flushed at any point
564 * while the link is down. */
565 EFX_POPULATE_OWORD_5(reg
,
566 FRF_AB_MAC_XOFF_VAL
, 0xffff /* max pause time */,
567 FRF_AB_MAC_BCAD_ACPT
, 1,
568 FRF_AB_MAC_UC_PROM
, efx
->promiscuous
,
569 FRF_AB_MAC_LINK_STATUS
, 1, /* always set */
570 FRF_AB_MAC_SPEED
, link_speed
);
571 /* On B0, MAC backpressure can be disabled and packets get
573 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
574 EFX_SET_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
,
575 !link_state
->up
|| isolate
);
578 efx_writeo(efx
, ®
, FR_AB_MAC_CTRL
);
580 /* Restore the multicast hash registers. */
581 falcon_push_multicast_hash(efx
);
583 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
584 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
585 * initialisation but it may read back as 0) */
586 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
587 /* Unisolate the MAC -> RX */
588 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
589 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, !isolate
);
590 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
593 static void falcon_stats_request(struct efx_nic
*efx
)
595 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
598 WARN_ON(nic_data
->stats_pending
);
599 WARN_ON(nic_data
->stats_disable_count
);
601 if (nic_data
->stats_dma_done
== NULL
)
602 return; /* no mac selected */
604 *nic_data
->stats_dma_done
= FALCON_STATS_NOT_DONE
;
605 nic_data
->stats_pending
= true;
606 wmb(); /* ensure done flag is clear */
608 /* Initiate DMA transfer of stats */
609 EFX_POPULATE_OWORD_2(reg
,
610 FRF_AB_MAC_STAT_DMA_CMD
, 1,
611 FRF_AB_MAC_STAT_DMA_ADR
,
612 efx
->stats_buffer
.dma_addr
);
613 efx_writeo(efx
, ®
, FR_AB_MAC_STAT_DMA
);
615 mod_timer(&nic_data
->stats_timer
, round_jiffies_up(jiffies
+ HZ
/ 2));
618 static void falcon_stats_complete(struct efx_nic
*efx
)
620 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
622 if (!nic_data
->stats_pending
)
625 nic_data
->stats_pending
= 0;
626 if (*nic_data
->stats_dma_done
== FALCON_STATS_DONE
) {
627 rmb(); /* read the done flag before the stats */
628 efx
->mac_op
->update_stats(efx
);
630 EFX_ERR(efx
, "timed out waiting for statistics\n");
634 static void falcon_stats_timer_func(unsigned long context
)
636 struct efx_nic
*efx
= (struct efx_nic
*)context
;
637 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
639 spin_lock(&efx
->stats_lock
);
641 falcon_stats_complete(efx
);
642 if (nic_data
->stats_disable_count
== 0)
643 falcon_stats_request(efx
);
645 spin_unlock(&efx
->stats_lock
);
648 static void falcon_switch_mac(struct efx_nic
*efx
);
650 static bool falcon_loopback_link_poll(struct efx_nic
*efx
)
652 struct efx_link_state old_state
= efx
->link_state
;
654 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
655 WARN_ON(!LOOPBACK_INTERNAL(efx
));
657 efx
->link_state
.fd
= true;
658 efx
->link_state
.fc
= efx
->wanted_fc
;
659 efx
->link_state
.up
= true;
661 if (efx
->loopback_mode
== LOOPBACK_GMAC
)
662 efx
->link_state
.speed
= 1000;
664 efx
->link_state
.speed
= 10000;
666 return !efx_link_state_equal(&efx
->link_state
, &old_state
);
669 static int falcon_reconfigure_port(struct efx_nic
*efx
)
673 WARN_ON(efx_nic_rev(efx
) > EFX_REV_FALCON_B0
);
675 /* Poll the PHY link state *before* reconfiguring it. This means we
676 * will pick up the correct speed (in loopback) to select the correct
679 if (LOOPBACK_INTERNAL(efx
))
680 falcon_loopback_link_poll(efx
);
682 efx
->phy_op
->poll(efx
);
684 falcon_stop_nic_stats(efx
);
685 falcon_deconfigure_mac_wrapper(efx
);
687 falcon_switch_mac(efx
);
689 efx
->phy_op
->reconfigure(efx
);
690 rc
= efx
->mac_op
->reconfigure(efx
);
693 falcon_start_nic_stats(efx
);
695 /* Synchronise efx->link_state with the kernel */
696 efx_link_status_changed(efx
);
701 /**************************************************************************
703 * PHY access via GMII
705 **************************************************************************
708 /* Wait for GMII access to complete */
709 static int falcon_gmii_wait(struct efx_nic
*efx
)
714 /* wait upto 50ms - taken max from datasheet */
715 for (count
= 0; count
< 5000; count
++) {
716 efx_reado(efx
, &md_stat
, FR_AB_MD_STAT
);
717 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSY
) == 0) {
718 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_LNFL
) != 0 ||
719 EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSERR
) != 0) {
720 EFX_ERR(efx
, "error from GMII access "
722 EFX_OWORD_VAL(md_stat
));
729 EFX_ERR(efx
, "timed out waiting for GMII\n");
733 /* Write an MDIO register of a PHY connected to Falcon. */
734 static int falcon_mdio_write(struct net_device
*net_dev
,
735 int prtad
, int devad
, u16 addr
, u16 value
)
737 struct efx_nic
*efx
= netdev_priv(net_dev
);
741 EFX_REGDUMP(efx
, "writing MDIO %d register %d.%d with 0x%04x\n",
742 prtad
, devad
, addr
, value
);
744 mutex_lock(&efx
->mdio_lock
);
746 /* Check MDIO not currently being accessed */
747 rc
= falcon_gmii_wait(efx
);
751 /* Write the address/ID register */
752 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
753 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
755 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
756 FRF_AB_MD_DEV_ADR
, devad
);
757 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
760 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_TXD
, value
);
761 efx_writeo(efx
, ®
, FR_AB_MD_TXD
);
763 EFX_POPULATE_OWORD_2(reg
,
766 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
768 /* Wait for data to be written */
769 rc
= falcon_gmii_wait(efx
);
771 /* Abort the write operation */
772 EFX_POPULATE_OWORD_2(reg
,
775 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
780 mutex_unlock(&efx
->mdio_lock
);
784 /* Read an MDIO register of a PHY connected to Falcon. */
785 static int falcon_mdio_read(struct net_device
*net_dev
,
786 int prtad
, int devad
, u16 addr
)
788 struct efx_nic
*efx
= netdev_priv(net_dev
);
792 mutex_lock(&efx
->mdio_lock
);
794 /* Check MDIO not currently being accessed */
795 rc
= falcon_gmii_wait(efx
);
799 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
800 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
802 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
803 FRF_AB_MD_DEV_ADR
, devad
);
804 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
806 /* Request data to be read */
807 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_RDC
, 1, FRF_AB_MD_GC
, 0);
808 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
810 /* Wait for data to become available */
811 rc
= falcon_gmii_wait(efx
);
813 efx_reado(efx
, ®
, FR_AB_MD_RXD
);
814 rc
= EFX_OWORD_FIELD(reg
, FRF_AB_MD_RXD
);
815 EFX_REGDUMP(efx
, "read from MDIO %d register %d.%d, got %04x\n",
816 prtad
, devad
, addr
, rc
);
818 /* Abort the read operation */
819 EFX_POPULATE_OWORD_2(reg
,
822 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
824 EFX_LOG(efx
, "read from MDIO %d register %d.%d, got error %d\n",
825 prtad
, devad
, addr
, rc
);
829 mutex_unlock(&efx
->mdio_lock
);
833 static void falcon_clock_mac(struct efx_nic
*efx
)
836 efx_oword_t nic_stat
;
838 /* Configure the NIC generated MAC clock correctly */
839 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
840 strap_val
= EFX_IS10G(efx
) ? 5 : 3;
841 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
842 EFX_SET_OWORD_FIELD(nic_stat
, FRF_BB_EE_STRAP_EN
, 1);
843 EFX_SET_OWORD_FIELD(nic_stat
, FRF_BB_EE_STRAP
, strap_val
);
844 efx_writeo(efx
, &nic_stat
, FR_AB_NIC_STAT
);
846 /* Falcon A1 does not support 1G/10G speed switching
847 * and must not be used with a PHY that does. */
848 BUG_ON(EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_PINS
) !=
853 static void falcon_switch_mac(struct efx_nic
*efx
)
855 struct efx_mac_operations
*old_mac_op
= efx
->mac_op
;
856 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
857 unsigned int stats_done_offset
;
859 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
860 WARN_ON(nic_data
->stats_disable_count
== 0);
862 efx
->mac_op
= (EFX_IS10G(efx
) ?
863 &falcon_xmac_operations
: &falcon_gmac_operations
);
866 stats_done_offset
= XgDmaDone_offset
;
868 stats_done_offset
= GDmaDone_offset
;
869 nic_data
->stats_dma_done
= efx
->stats_buffer
.addr
+ stats_done_offset
;
871 if (old_mac_op
== efx
->mac_op
)
874 falcon_clock_mac(efx
);
876 EFX_LOG(efx
, "selected %cMAC\n", EFX_IS10G(efx
) ? 'X' : 'G');
877 /* Not all macs support a mac-level link state */
878 efx
->xmac_poll_required
= false;
879 falcon_reset_macs(efx
);
882 /* This call is responsible for hooking in the MAC and PHY operations */
883 static int falcon_probe_port(struct efx_nic
*efx
)
887 switch (efx
->phy_type
) {
888 case PHY_TYPE_SFX7101
:
889 efx
->phy_op
= &falcon_sfx7101_phy_ops
;
891 case PHY_TYPE_SFT9001A
:
892 case PHY_TYPE_SFT9001B
:
893 efx
->phy_op
= &falcon_sft9001_phy_ops
;
895 case PHY_TYPE_QT2022C2
:
896 case PHY_TYPE_QT2025C
:
897 efx
->phy_op
= &falcon_qt202x_phy_ops
;
900 EFX_ERR(efx
, "Unknown PHY type %d\n",
905 /* Fill out MDIO structure and loopback modes */
906 efx
->mdio
.mdio_read
= falcon_mdio_read
;
907 efx
->mdio
.mdio_write
= falcon_mdio_write
;
908 rc
= efx
->phy_op
->probe(efx
);
912 /* Initial assumption */
913 efx
->link_state
.speed
= 10000;
914 efx
->link_state
.fd
= true;
916 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
917 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
918 efx
->wanted_fc
= EFX_FC_RX
| EFX_FC_TX
;
920 efx
->wanted_fc
= EFX_FC_RX
;
921 if (efx
->mdio
.mmds
& MDIO_DEVS_AN
)
922 efx
->wanted_fc
|= EFX_FC_AUTO
;
924 /* Allocate buffer for stats */
925 rc
= efx_nic_alloc_buffer(efx
, &efx
->stats_buffer
,
926 FALCON_MAC_STATS_SIZE
);
929 EFX_LOG(efx
, "stats buffer at %llx (virt %p phys %llx)\n",
930 (u64
)efx
->stats_buffer
.dma_addr
,
931 efx
->stats_buffer
.addr
,
932 (u64
)virt_to_phys(efx
->stats_buffer
.addr
));
937 static void falcon_remove_port(struct efx_nic
*efx
)
939 efx
->phy_op
->remove(efx
);
940 efx_nic_free_buffer(efx
, &efx
->stats_buffer
);
943 /**************************************************************************
947 **************************************************************************/
950 falcon_read_nvram(struct efx_nic
*efx
, struct falcon_nvconfig
*nvconfig_out
)
952 struct falcon_nvconfig
*nvconfig
;
953 struct efx_spi_device
*spi
;
955 int rc
, magic_num
, struct_ver
;
956 __le16
*word
, *limit
;
959 spi
= efx
->spi_flash
? efx
->spi_flash
: efx
->spi_eeprom
;
963 region
= kmalloc(FALCON_NVCONFIG_END
, GFP_KERNEL
);
966 nvconfig
= region
+ FALCON_NVCONFIG_OFFSET
;
968 mutex_lock(&efx
->spi_lock
);
969 rc
= falcon_spi_read(efx
, spi
, 0, FALCON_NVCONFIG_END
, NULL
, region
);
970 mutex_unlock(&efx
->spi_lock
);
972 EFX_ERR(efx
, "Failed to read %s\n",
973 efx
->spi_flash
? "flash" : "EEPROM");
978 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
979 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
982 if (magic_num
!= FALCON_NVCONFIG_BOARD_MAGIC_NUM
) {
983 EFX_ERR(efx
, "NVRAM bad magic 0x%x\n", magic_num
);
986 if (struct_ver
< 2) {
987 EFX_ERR(efx
, "NVRAM has ancient version 0x%x\n", struct_ver
);
989 } else if (struct_ver
< 4) {
990 word
= &nvconfig
->board_magic_num
;
991 limit
= (__le16
*) (nvconfig
+ 1);
994 limit
= region
+ FALCON_NVCONFIG_END
;
996 for (csum
= 0; word
< limit
; ++word
)
997 csum
+= le16_to_cpu(*word
);
999 if (~csum
& 0xffff) {
1000 EFX_ERR(efx
, "NVRAM has incorrect checksum\n");
1006 memcpy(nvconfig_out
, nvconfig
, sizeof(*nvconfig
));
1013 static int falcon_test_nvram(struct efx_nic
*efx
)
1015 return falcon_read_nvram(efx
, NULL
);
1018 static const struct efx_nic_register_test falcon_b0_register_tests
[] = {
1020 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1022 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1024 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1025 { FR_AZ_TX_RESERVED
,
1026 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1028 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1029 { FR_AZ_SRM_TX_DC_CFG
,
1030 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1032 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1033 { FR_AZ_RX_DC_PF_WM
,
1034 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1036 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1038 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1040 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1042 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1044 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1046 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1047 { FR_AB_XM_RX_PARAM
,
1048 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1050 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1052 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1054 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1057 static int falcon_b0_test_registers(struct efx_nic
*efx
)
1059 return efx_nic_test_registers(efx
, falcon_b0_register_tests
,
1060 ARRAY_SIZE(falcon_b0_register_tests
));
1063 /**************************************************************************
1067 **************************************************************************
1070 /* Resets NIC to known state. This routine must be called in process
1071 * context and is allowed to sleep. */
1072 static int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
1074 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1075 efx_oword_t glb_ctl_reg_ker
;
1078 EFX_LOG(efx
, "performing %s hardware reset\n", RESET_TYPE(method
));
1080 /* Initiate device reset */
1081 if (method
== RESET_TYPE_WORLD
) {
1082 rc
= pci_save_state(efx
->pci_dev
);
1084 EFX_ERR(efx
, "failed to backup PCI state of primary "
1085 "function prior to hardware reset\n");
1088 if (efx_nic_is_dual_func(efx
)) {
1089 rc
= pci_save_state(nic_data
->pci_dev2
);
1091 EFX_ERR(efx
, "failed to backup PCI state of "
1092 "secondary function prior to "
1093 "hardware reset\n");
1098 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker
,
1099 FRF_AB_EXT_PHY_RST_DUR
,
1100 FFE_AB_EXT_PHY_RST_DUR_10240US
,
1103 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker
,
1104 /* exclude PHY from "invisible" reset */
1105 FRF_AB_EXT_PHY_RST_CTL
,
1106 method
== RESET_TYPE_INVISIBLE
,
1107 /* exclude EEPROM/flash and PCIe */
1108 FRF_AB_PCIE_CORE_RST_CTL
, 1,
1109 FRF_AB_PCIE_NSTKY_RST_CTL
, 1,
1110 FRF_AB_PCIE_SD_RST_CTL
, 1,
1111 FRF_AB_EE_RST_CTL
, 1,
1112 FRF_AB_EXT_PHY_RST_DUR
,
1113 FFE_AB_EXT_PHY_RST_DUR_10240US
,
1116 efx_writeo(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
1118 EFX_LOG(efx
, "waiting for hardware reset\n");
1119 schedule_timeout_uninterruptible(HZ
/ 20);
1121 /* Restore PCI configuration if needed */
1122 if (method
== RESET_TYPE_WORLD
) {
1123 if (efx_nic_is_dual_func(efx
)) {
1124 rc
= pci_restore_state(nic_data
->pci_dev2
);
1126 EFX_ERR(efx
, "failed to restore PCI config for "
1127 "the secondary function\n");
1131 rc
= pci_restore_state(efx
->pci_dev
);
1133 EFX_ERR(efx
, "failed to restore PCI config for the "
1134 "primary function\n");
1137 EFX_LOG(efx
, "successfully restored PCI config\n");
1140 /* Assert that reset complete */
1141 efx_reado(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
1142 if (EFX_OWORD_FIELD(glb_ctl_reg_ker
, FRF_AB_SWRST
) != 0) {
1144 EFX_ERR(efx
, "timed out waiting for hardware reset\n");
1147 EFX_LOG(efx
, "hardware reset complete\n");
1151 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1154 pci_restore_state(efx
->pci_dev
);
1161 static void falcon_monitor(struct efx_nic
*efx
)
1166 BUG_ON(!mutex_is_locked(&efx
->mac_lock
));
1168 rc
= falcon_board(efx
)->type
->monitor(efx
);
1170 EFX_ERR(efx
, "Board sensor %s; shutting down PHY\n",
1171 (rc
== -ERANGE
) ? "reported fault" : "failed");
1172 efx
->phy_mode
|= PHY_MODE_LOW_POWER
;
1173 rc
= __efx_reconfigure_port(efx
);
1177 if (LOOPBACK_INTERNAL(efx
))
1178 link_changed
= falcon_loopback_link_poll(efx
);
1180 link_changed
= efx
->phy_op
->poll(efx
);
1183 falcon_stop_nic_stats(efx
);
1184 falcon_deconfigure_mac_wrapper(efx
);
1186 falcon_switch_mac(efx
);
1187 rc
= efx
->mac_op
->reconfigure(efx
);
1190 falcon_start_nic_stats(efx
);
1192 efx_link_status_changed(efx
);
1196 falcon_poll_xmac(efx
);
1199 /* Zeroes out the SRAM contents. This routine must be called in
1200 * process context and is allowed to sleep.
1202 static int falcon_reset_sram(struct efx_nic
*efx
)
1204 efx_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
1207 /* Set the SRAM wake/sleep GPIO appropriately. */
1208 efx_reado(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
1209 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OEN
, 1);
1210 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OUT
, 1);
1211 efx_writeo(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
1213 /* Initiate SRAM reset */
1214 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker
,
1215 FRF_AZ_SRM_INIT_EN
, 1,
1216 FRF_AZ_SRM_NB_SZ
, 0);
1217 efx_writeo(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
1219 /* Wait for SRAM reset to complete */
1222 EFX_LOG(efx
, "waiting for SRAM reset (attempt %d)...\n", count
);
1224 /* SRAM reset is slow; expect around 16ms */
1225 schedule_timeout_uninterruptible(HZ
/ 50);
1227 /* Check for reset complete */
1228 efx_reado(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
1229 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker
, FRF_AZ_SRM_INIT_EN
)) {
1230 EFX_LOG(efx
, "SRAM reset complete\n");
1234 } while (++count
< 20); /* wait upto 0.4 sec */
1236 EFX_ERR(efx
, "timed out waiting for SRAM reset\n");
1240 static int falcon_spi_device_init(struct efx_nic
*efx
,
1241 struct efx_spi_device
**spi_device_ret
,
1242 unsigned int device_id
, u32 device_type
)
1244 struct efx_spi_device
*spi_device
;
1246 if (device_type
!= 0) {
1247 spi_device
= kzalloc(sizeof(*spi_device
), GFP_KERNEL
);
1250 spi_device
->device_id
= device_id
;
1252 1 << SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_SIZE
);
1253 spi_device
->addr_len
=
1254 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ADDR_LEN
);
1255 spi_device
->munge_address
= (spi_device
->size
== 1 << 9 &&
1256 spi_device
->addr_len
== 1);
1257 spi_device
->erase_command
=
1258 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ERASE_CMD
);
1259 spi_device
->erase_size
=
1260 1 << SPI_DEV_TYPE_FIELD(device_type
,
1261 SPI_DEV_TYPE_ERASE_SIZE
);
1262 spi_device
->block_size
=
1263 1 << SPI_DEV_TYPE_FIELD(device_type
,
1264 SPI_DEV_TYPE_BLOCK_SIZE
);
1269 kfree(*spi_device_ret
);
1270 *spi_device_ret
= spi_device
;
1274 static void falcon_remove_spi_devices(struct efx_nic
*efx
)
1276 kfree(efx
->spi_eeprom
);
1277 efx
->spi_eeprom
= NULL
;
1278 kfree(efx
->spi_flash
);
1279 efx
->spi_flash
= NULL
;
1282 /* Extract non-volatile configuration */
1283 static int falcon_probe_nvconfig(struct efx_nic
*efx
)
1285 struct falcon_nvconfig
*nvconfig
;
1289 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
1293 rc
= falcon_read_nvram(efx
, nvconfig
);
1294 if (rc
== -EINVAL
) {
1295 EFX_ERR(efx
, "NVRAM is invalid therefore using defaults\n");
1296 efx
->phy_type
= PHY_TYPE_NONE
;
1297 efx
->mdio
.prtad
= MDIO_PRTAD_NONE
;
1303 struct falcon_nvconfig_board_v2
*v2
= &nvconfig
->board_v2
;
1304 struct falcon_nvconfig_board_v3
*v3
= &nvconfig
->board_v3
;
1306 efx
->phy_type
= v2
->port0_phy_type
;
1307 efx
->mdio
.prtad
= v2
->port0_phy_addr
;
1308 board_rev
= le16_to_cpu(v2
->board_revision
);
1310 if (le16_to_cpu(nvconfig
->board_struct_ver
) >= 3) {
1311 rc
= falcon_spi_device_init(
1312 efx
, &efx
->spi_flash
, FFE_AB_SPI_DEVICE_FLASH
,
1313 le32_to_cpu(v3
->spi_device_type
1314 [FFE_AB_SPI_DEVICE_FLASH
]));
1317 rc
= falcon_spi_device_init(
1318 efx
, &efx
->spi_eeprom
, FFE_AB_SPI_DEVICE_EEPROM
,
1319 le32_to_cpu(v3
->spi_device_type
1320 [FFE_AB_SPI_DEVICE_EEPROM
]));
1326 /* Read the MAC addresses */
1327 memcpy(efx
->mac_address
, nvconfig
->mac_address
[0], ETH_ALEN
);
1329 EFX_LOG(efx
, "PHY is %d phy_id %d\n", efx
->phy_type
, efx
->mdio
.prtad
);
1331 rc
= falcon_probe_board(efx
, board_rev
);
1339 falcon_remove_spi_devices(efx
);
1345 /* Probe all SPI devices on the NIC */
1346 static void falcon_probe_spi_devices(struct efx_nic
*efx
)
1348 efx_oword_t nic_stat
, gpio_ctl
, ee_vpd_cfg
;
1351 efx_reado(efx
, &gpio_ctl
, FR_AB_GPIO_CTL
);
1352 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
1353 efx_reado(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
1355 if (EFX_OWORD_FIELD(gpio_ctl
, FRF_AB_GPIO3_PWRUP_VALUE
)) {
1356 boot_dev
= (EFX_OWORD_FIELD(nic_stat
, FRF_AB_SF_PRST
) ?
1357 FFE_AB_SPI_DEVICE_FLASH
: FFE_AB_SPI_DEVICE_EEPROM
);
1358 EFX_LOG(efx
, "Booted from %s\n",
1359 boot_dev
== FFE_AB_SPI_DEVICE_FLASH
? "flash" : "EEPROM");
1361 /* Disable VPD and set clock dividers to safe
1362 * values for initial programming. */
1364 EFX_LOG(efx
, "Booted from internal ASIC settings;"
1365 " setting SPI config\n");
1366 EFX_POPULATE_OWORD_3(ee_vpd_cfg
, FRF_AB_EE_VPD_EN
, 0,
1367 /* 125 MHz / 7 ~= 20 MHz */
1368 FRF_AB_EE_SF_CLOCK_DIV
, 7,
1369 /* 125 MHz / 63 ~= 2 MHz */
1370 FRF_AB_EE_EE_CLOCK_DIV
, 63);
1371 efx_writeo(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
1374 if (boot_dev
== FFE_AB_SPI_DEVICE_FLASH
)
1375 falcon_spi_device_init(efx
, &efx
->spi_flash
,
1376 FFE_AB_SPI_DEVICE_FLASH
,
1377 default_flash_type
);
1378 if (boot_dev
== FFE_AB_SPI_DEVICE_EEPROM
)
1379 falcon_spi_device_init(efx
, &efx
->spi_eeprom
,
1380 FFE_AB_SPI_DEVICE_EEPROM
,
1384 static int falcon_probe_nic(struct efx_nic
*efx
)
1386 struct falcon_nic_data
*nic_data
;
1387 struct falcon_board
*board
;
1390 /* Allocate storage for hardware specific data */
1391 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
1394 efx
->nic_data
= nic_data
;
1398 if (efx_nic_fpga_ver(efx
) != 0) {
1399 EFX_ERR(efx
, "Falcon FPGA not supported\n");
1403 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
1404 efx_oword_t nic_stat
;
1405 struct pci_dev
*dev
;
1406 u8 pci_rev
= efx
->pci_dev
->revision
;
1408 if ((pci_rev
== 0xff) || (pci_rev
== 0)) {
1409 EFX_ERR(efx
, "Falcon rev A0 not supported\n");
1412 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
1413 if (EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_10G
) == 0) {
1414 EFX_ERR(efx
, "Falcon rev A1 1G not supported\n");
1417 if (EFX_OWORD_FIELD(nic_stat
, FRF_AA_STRAP_PCIE
) == 0) {
1418 EFX_ERR(efx
, "Falcon rev A1 PCI-X not supported\n");
1422 dev
= pci_dev_get(efx
->pci_dev
);
1423 while ((dev
= pci_get_device(EFX_VENDID_SFC
, FALCON_A_S_DEVID
,
1425 if (dev
->bus
== efx
->pci_dev
->bus
&&
1426 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
1427 nic_data
->pci_dev2
= dev
;
1431 if (!nic_data
->pci_dev2
) {
1432 EFX_ERR(efx
, "failed to find secondary function\n");
1438 /* Now we can reset the NIC */
1439 rc
= falcon_reset_hw(efx
, RESET_TYPE_ALL
);
1441 EFX_ERR(efx
, "failed to reset NIC\n");
1445 /* Allocate memory for INT_KER */
1446 rc
= efx_nic_alloc_buffer(efx
, &efx
->irq_status
, sizeof(efx_oword_t
));
1449 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
1451 EFX_LOG(efx
, "INT_KER at %llx (virt %p phys %llx)\n",
1452 (u64
)efx
->irq_status
.dma_addr
,
1453 efx
->irq_status
.addr
, (u64
)virt_to_phys(efx
->irq_status
.addr
));
1455 falcon_probe_spi_devices(efx
);
1457 /* Read in the non-volatile configuration */
1458 rc
= falcon_probe_nvconfig(efx
);
1462 /* Initialise I2C adapter */
1463 board
= falcon_board(efx
);
1464 board
->i2c_adap
.owner
= THIS_MODULE
;
1465 board
->i2c_data
= falcon_i2c_bit_operations
;
1466 board
->i2c_data
.data
= efx
;
1467 board
->i2c_adap
.algo_data
= &board
->i2c_data
;
1468 board
->i2c_adap
.dev
.parent
= &efx
->pci_dev
->dev
;
1469 strlcpy(board
->i2c_adap
.name
, "SFC4000 GPIO",
1470 sizeof(board
->i2c_adap
.name
));
1471 rc
= i2c_bit_add_bus(&board
->i2c_adap
);
1475 rc
= falcon_board(efx
)->type
->init(efx
);
1477 EFX_ERR(efx
, "failed to initialise board\n");
1481 nic_data
->stats_disable_count
= 1;
1482 setup_timer(&nic_data
->stats_timer
, &falcon_stats_timer_func
,
1483 (unsigned long)efx
);
1488 BUG_ON(i2c_del_adapter(&board
->i2c_adap
));
1489 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
1491 falcon_remove_spi_devices(efx
);
1492 efx_nic_free_buffer(efx
, &efx
->irq_status
);
1495 if (nic_data
->pci_dev2
) {
1496 pci_dev_put(nic_data
->pci_dev2
);
1497 nic_data
->pci_dev2
= NULL
;
1501 kfree(efx
->nic_data
);
1505 static void falcon_init_rx_cfg(struct efx_nic
*efx
)
1507 /* Prior to Siena the RX DMA engine will split each frame at
1508 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1509 * be so large that that never happens. */
1510 const unsigned huge_buf_size
= (3 * 4096) >> 5;
1511 /* RX control FIFO thresholds (32 entries) */
1512 const unsigned ctrl_xon_thr
= 20;
1513 const unsigned ctrl_xoff_thr
= 25;
1514 /* RX data FIFO thresholds (256-byte units; size varies) */
1515 int data_xon_thr
= efx_nic_rx_xon_thresh
>> 8;
1516 int data_xoff_thr
= efx_nic_rx_xoff_thresh
>> 8;
1519 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1520 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
) {
1521 /* Data FIFO size is 5.5K */
1522 if (data_xon_thr
< 0)
1523 data_xon_thr
= 512 >> 8;
1524 if (data_xoff_thr
< 0)
1525 data_xoff_thr
= 2048 >> 8;
1526 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_DESC_PUSH_EN
, 0);
1527 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_USR_BUF_SIZE
,
1529 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_MAC_TH
, data_xon_thr
);
1530 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_MAC_TH
, data_xoff_thr
);
1531 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_TX_TH
, ctrl_xon_thr
);
1532 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
1534 /* Data FIFO size is 80K; register fields moved */
1535 if (data_xon_thr
< 0)
1536 data_xon_thr
= 27648 >> 8; /* ~3*max MTU */
1537 if (data_xoff_thr
< 0)
1538 data_xoff_thr
= 54272 >> 8; /* ~80Kb - 3*max MTU */
1539 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_DESC_PUSH_EN
, 0);
1540 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_USR_BUF_SIZE
,
1542 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_MAC_TH
, data_xon_thr
);
1543 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_MAC_TH
, data_xoff_thr
);
1544 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_TX_TH
, ctrl_xon_thr
);
1545 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
1546 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
1548 /* Always enable XOFF signal from RX FIFO. We enable
1549 * or disable transmission of pause frames at the MAC. */
1550 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, 1);
1551 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1554 /* This call performs hardware-specific global initialisation, such as
1555 * defining the descriptor cache sizes and number of RSS channels.
1556 * It does not set up any buffers, descriptor rings or event queues.
1558 static int falcon_init_nic(struct efx_nic
*efx
)
1563 /* Use on-chip SRAM */
1564 efx_reado(efx
, &temp
, FR_AB_NIC_STAT
);
1565 EFX_SET_OWORD_FIELD(temp
, FRF_AB_ONCHIP_SRAM
, 1);
1566 efx_writeo(efx
, &temp
, FR_AB_NIC_STAT
);
1568 /* Set the source of the GMAC clock */
1569 if (efx_nic_rev(efx
) == EFX_REV_FALCON_B0
) {
1570 efx_reado(efx
, &temp
, FR_AB_GPIO_CTL
);
1571 EFX_SET_OWORD_FIELD(temp
, FRF_AB_USE_NIC_CLK
, true);
1572 efx_writeo(efx
, &temp
, FR_AB_GPIO_CTL
);
1575 /* Select the correct MAC */
1576 falcon_clock_mac(efx
);
1578 rc
= falcon_reset_sram(efx
);
1582 /* Clear the parity enables on the TX data fifos as
1583 * they produce false parity errors because of timing issues
1585 if (EFX_WORKAROUND_5129(efx
)) {
1586 efx_reado(efx
, &temp
, FR_AZ_CSR_SPARE
);
1587 EFX_SET_OWORD_FIELD(temp
, FRF_AB_MEM_PERR_EN_TX_DATA
, 0);
1588 efx_writeo(efx
, &temp
, FR_AZ_CSR_SPARE
);
1591 if (EFX_WORKAROUND_7244(efx
)) {
1592 efx_reado(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
1593 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_FULL_SRCH_LIMIT
, 8);
1594 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_WILD_SRCH_LIMIT
, 8);
1595 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_FULL_SRCH_LIMIT
, 8);
1596 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_WILD_SRCH_LIMIT
, 8);
1597 efx_writeo(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
1600 /* XXX This is documented only for Falcon A0/A1 */
1601 /* Setup RX. Wait for descriptor is broken and must
1602 * be disabled. RXDP recovery shouldn't be needed, but is.
1604 efx_reado(efx
, &temp
, FR_AA_RX_SELF_RST
);
1605 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_NODESC_WAIT_DIS
, 1);
1606 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_SELF_RST_EN
, 1);
1607 if (EFX_WORKAROUND_5583(efx
))
1608 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_ISCSI_DIS
, 1);
1609 efx_writeo(efx
, &temp
, FR_AA_RX_SELF_RST
);
1611 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1612 * descriptors (which is bad).
1614 efx_reado(efx
, &temp
, FR_AZ_TX_CFG
);
1615 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_NO_EOP_DISC_EN
, 0);
1616 efx_writeo(efx
, &temp
, FR_AZ_TX_CFG
);
1618 falcon_init_rx_cfg(efx
);
1620 /* Set destination of both TX and RX Flush events */
1621 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1622 EFX_POPULATE_OWORD_1(temp
, FRF_BZ_FLS_EVQ_ID
, 0);
1623 efx_writeo(efx
, &temp
, FR_BZ_DP_CTRL
);
1626 efx_nic_init_common(efx
);
1631 static void falcon_remove_nic(struct efx_nic
*efx
)
1633 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1634 struct falcon_board
*board
= falcon_board(efx
);
1637 board
->type
->fini(efx
);
1639 /* Remove I2C adapter and clear it in preparation for a retry */
1640 rc
= i2c_del_adapter(&board
->i2c_adap
);
1642 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
1644 falcon_remove_spi_devices(efx
);
1645 efx_nic_free_buffer(efx
, &efx
->irq_status
);
1647 falcon_reset_hw(efx
, RESET_TYPE_ALL
);
1649 /* Release the second function after the reset */
1650 if (nic_data
->pci_dev2
) {
1651 pci_dev_put(nic_data
->pci_dev2
);
1652 nic_data
->pci_dev2
= NULL
;
1655 /* Tear down the private nic state */
1656 kfree(efx
->nic_data
);
1657 efx
->nic_data
= NULL
;
1660 static void falcon_update_nic_stats(struct efx_nic
*efx
)
1662 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1665 if (nic_data
->stats_disable_count
)
1668 efx_reado(efx
, &cnt
, FR_AZ_RX_NODESC_DROP
);
1669 efx
->n_rx_nodesc_drop_cnt
+=
1670 EFX_OWORD_FIELD(cnt
, FRF_AB_RX_NODESC_DROP_CNT
);
1672 if (nic_data
->stats_pending
&&
1673 *nic_data
->stats_dma_done
== FALCON_STATS_DONE
) {
1674 nic_data
->stats_pending
= false;
1675 rmb(); /* read the done flag before the stats */
1676 efx
->mac_op
->update_stats(efx
);
1680 void falcon_start_nic_stats(struct efx_nic
*efx
)
1682 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1684 spin_lock_bh(&efx
->stats_lock
);
1685 if (--nic_data
->stats_disable_count
== 0)
1686 falcon_stats_request(efx
);
1687 spin_unlock_bh(&efx
->stats_lock
);
1690 void falcon_stop_nic_stats(struct efx_nic
*efx
)
1692 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1697 spin_lock_bh(&efx
->stats_lock
);
1698 ++nic_data
->stats_disable_count
;
1699 spin_unlock_bh(&efx
->stats_lock
);
1701 del_timer_sync(&nic_data
->stats_timer
);
1703 /* Wait enough time for the most recent transfer to
1705 for (i
= 0; i
< 4 && nic_data
->stats_pending
; i
++) {
1706 if (*nic_data
->stats_dma_done
== FALCON_STATS_DONE
)
1711 spin_lock_bh(&efx
->stats_lock
);
1712 falcon_stats_complete(efx
);
1713 spin_unlock_bh(&efx
->stats_lock
);
1716 static void falcon_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1718 falcon_board(efx
)->type
->set_id_led(efx
, mode
);
1721 /**************************************************************************
1725 **************************************************************************
1728 static void falcon_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
1732 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1735 static int falcon_set_wol(struct efx_nic
*efx
, u32 type
)
1742 /**************************************************************************
1744 * Revision-dependent attributes used by efx.c and nic.c
1746 **************************************************************************
1749 struct efx_nic_type falcon_a1_nic_type
= {
1750 .probe
= falcon_probe_nic
,
1751 .remove
= falcon_remove_nic
,
1752 .init
= falcon_init_nic
,
1753 .fini
= efx_port_dummy_op_void
,
1754 .monitor
= falcon_monitor
,
1755 .reset
= falcon_reset_hw
,
1756 .probe_port
= falcon_probe_port
,
1757 .remove_port
= falcon_remove_port
,
1758 .prepare_flush
= falcon_prepare_flush
,
1759 .update_stats
= falcon_update_nic_stats
,
1760 .start_stats
= falcon_start_nic_stats
,
1761 .stop_stats
= falcon_stop_nic_stats
,
1762 .set_id_led
= falcon_set_id_led
,
1763 .push_irq_moderation
= falcon_push_irq_moderation
,
1764 .push_multicast_hash
= falcon_push_multicast_hash
,
1765 .reconfigure_port
= falcon_reconfigure_port
,
1766 .get_wol
= falcon_get_wol
,
1767 .set_wol
= falcon_set_wol
,
1768 .resume_wol
= efx_port_dummy_op_void
,
1769 .test_nvram
= falcon_test_nvram
,
1770 .default_mac_ops
= &falcon_xmac_operations
,
1772 .revision
= EFX_REV_FALCON_A1
,
1773 .mem_map_size
= 0x20000,
1774 .txd_ptr_tbl_base
= FR_AA_TX_DESC_PTR_TBL_KER
,
1775 .rxd_ptr_tbl_base
= FR_AA_RX_DESC_PTR_TBL_KER
,
1776 .buf_tbl_base
= FR_AA_BUF_FULL_TBL_KER
,
1777 .evq_ptr_tbl_base
= FR_AA_EVQ_PTR_TBL_KER
,
1778 .evq_rptr_tbl_base
= FR_AA_EVQ_RPTR_KER
,
1779 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
1780 .rx_buffer_padding
= 0x24,
1781 .max_interrupt_mode
= EFX_INT_MODE_MSI
,
1782 .phys_addr_channels
= 4,
1783 .tx_dc_base
= 0x130000,
1784 .rx_dc_base
= 0x100000,
1785 .offload_features
= NETIF_F_IP_CSUM
,
1786 .reset_world_flags
= ETH_RESET_IRQ
,
1789 struct efx_nic_type falcon_b0_nic_type
= {
1790 .probe
= falcon_probe_nic
,
1791 .remove
= falcon_remove_nic
,
1792 .init
= falcon_init_nic
,
1793 .fini
= efx_port_dummy_op_void
,
1794 .monitor
= falcon_monitor
,
1795 .reset
= falcon_reset_hw
,
1796 .probe_port
= falcon_probe_port
,
1797 .remove_port
= falcon_remove_port
,
1798 .prepare_flush
= falcon_prepare_flush
,
1799 .update_stats
= falcon_update_nic_stats
,
1800 .start_stats
= falcon_start_nic_stats
,
1801 .stop_stats
= falcon_stop_nic_stats
,
1802 .set_id_led
= falcon_set_id_led
,
1803 .push_irq_moderation
= falcon_push_irq_moderation
,
1804 .push_multicast_hash
= falcon_push_multicast_hash
,
1805 .reconfigure_port
= falcon_reconfigure_port
,
1806 .get_wol
= falcon_get_wol
,
1807 .set_wol
= falcon_set_wol
,
1808 .resume_wol
= efx_port_dummy_op_void
,
1809 .test_registers
= falcon_b0_test_registers
,
1810 .test_nvram
= falcon_test_nvram
,
1811 .default_mac_ops
= &falcon_xmac_operations
,
1813 .revision
= EFX_REV_FALCON_B0
,
1814 /* Map everything up to and including the RSS indirection
1815 * table. Don't map MSI-X table, MSI-X PBA since Linux
1816 * requires that they not be mapped. */
1817 .mem_map_size
= (FR_BZ_RX_INDIRECTION_TBL
+
1818 FR_BZ_RX_INDIRECTION_TBL_STEP
*
1819 FR_BZ_RX_INDIRECTION_TBL_ROWS
),
1820 .txd_ptr_tbl_base
= FR_BZ_TX_DESC_PTR_TBL
,
1821 .rxd_ptr_tbl_base
= FR_BZ_RX_DESC_PTR_TBL
,
1822 .buf_tbl_base
= FR_BZ_BUF_FULL_TBL
,
1823 .evq_ptr_tbl_base
= FR_BZ_EVQ_PTR_TBL
,
1824 .evq_rptr_tbl_base
= FR_BZ_EVQ_RPTR
,
1825 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
1826 .rx_buffer_padding
= 0,
1827 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
1828 .phys_addr_channels
= 32, /* Hardware limit is 64, but the legacy
1829 * interrupt handler only supports 32
1831 .tx_dc_base
= 0x130000,
1832 .rx_dc_base
= 0x100000,
1833 .offload_features
= NETIF_F_IP_CSUM
,
1834 .reset_world_flags
= ETH_RESET_IRQ
,