mtd: cfi_cmdset_0002: use swap() in cfi_cmdset_0002()
[linux/fpc-iii.git] / net / sched / sch_hhf.c
blob86b04e31e60b76027214b85ee0c4c0e0de1b04c4
1 /* net/sched/sch_hhf.c Heavy-Hitter Filter (HHF)
3 * Copyright (C) 2013 Terry Lam <vtlam@google.com>
4 * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
5 */
7 #include <linux/jhash.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/skbuff.h>
11 #include <linux/vmalloc.h>
12 #include <net/pkt_sched.h>
13 #include <net/sock.h>
15 /* Heavy-Hitter Filter (HHF)
17 * Principles :
18 * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
19 * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
20 * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
21 * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
22 * in which the heavy-hitter bucket is served with less weight.
23 * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
24 * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
25 * higher share of bandwidth.
27 * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
28 * following paper:
29 * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
30 * Accounting", in ACM SIGCOMM, 2002.
32 * Conceptually, a multi-stage filter comprises k independent hash functions
33 * and k counter arrays. Packets are indexed into k counter arrays by k hash
34 * functions, respectively. The counters are then increased by the packet sizes.
35 * Therefore,
36 * - For a heavy-hitter flow: *all* of its k array counters must be large.
37 * - For a non-heavy-hitter flow: some of its k array counters can be large
38 * due to hash collision with other small flows; however, with high
39 * probability, not *all* k counters are large.
41 * By the design of the multi-stage filter algorithm, the false negative rate
42 * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
43 * susceptible to false positives (non-heavy-hitters mistakenly classified as
44 * heavy-hitters).
45 * Therefore, we also implement the following optimizations to reduce false
46 * positives by avoiding unnecessary increment of the counter values:
47 * - Optimization O1: once a heavy-hitter is identified, its bytes are not
48 * accounted in the array counters. This technique is called "shielding"
49 * in Section 3.3.1 of [EV02].
50 * - Optimization O2: conservative update of counters
51 * (Section 3.3.2 of [EV02]),
52 * New counter value = max {old counter value,
53 * smallest counter value + packet bytes}
55 * Finally, we refresh the counters periodically since otherwise the counter
56 * values will keep accumulating.
58 * Once a flow is classified as heavy-hitter, we also save its per-flow state
59 * in an exact-matching flow table so that its subsequent packets can be
60 * dispatched to the heavy-hitter bucket accordingly.
63 * At a high level, this qdisc works as follows:
64 * Given a packet p:
65 * - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
66 * heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
67 * bucket.
68 * - Otherwise, forward p to the multi-stage filter, denoted filter F
69 * + If F decides that p belongs to a non-heavy-hitter flow, then send p
70 * to the non-heavy-hitter bucket.
71 * + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
72 * then set up a new flow entry for the flow-id of p in the table T and
73 * send p to the heavy-hitter bucket.
75 * In this implementation:
76 * - T is a fixed-size hash-table with 1024 entries. Hash collision is
77 * resolved by linked-list chaining.
78 * - F has four counter arrays, each array containing 1024 32-bit counters.
79 * That means 4 * 1024 * 32 bits = 16KB of memory.
80 * - Since each array in F contains 1024 counters, 10 bits are sufficient to
81 * index into each array.
82 * Hence, instead of having four hash functions, we chop the 32-bit
83 * skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
84 * computed as XOR sum of those three chunks.
85 * - We need to clear the counter arrays periodically; however, directly
86 * memsetting 16KB of memory can lead to cache eviction and unwanted delay.
87 * So by representing each counter by a valid bit, we only need to reset
88 * 4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
89 * - The Deficit Round Robin engine is taken from fq_codel implementation
90 * (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
91 * fq_codel_flow in fq_codel implementation.
95 /* Non-configurable parameters */
96 #define HH_FLOWS_CNT 1024 /* number of entries in exact-matching table T */
97 #define HHF_ARRAYS_CNT 4 /* number of arrays in multi-stage filter F */
98 #define HHF_ARRAYS_LEN 1024 /* number of counters in each array of F */
99 #define HHF_BIT_MASK_LEN 10 /* masking 10 bits */
100 #define HHF_BIT_MASK 0x3FF /* bitmask of 10 bits */
102 #define WDRR_BUCKET_CNT 2 /* two buckets for Weighted DRR */
103 enum wdrr_bucket_idx {
104 WDRR_BUCKET_FOR_HH = 0, /* bucket id for heavy-hitters */
105 WDRR_BUCKET_FOR_NON_HH = 1 /* bucket id for non-heavy-hitters */
108 #define hhf_time_before(a, b) \
109 (typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
111 /* Heavy-hitter per-flow state */
112 struct hh_flow_state {
113 u32 hash_id; /* hash of flow-id (e.g. TCP 5-tuple) */
114 u32 hit_timestamp; /* last time heavy-hitter was seen */
115 struct list_head flowchain; /* chaining under hash collision */
118 /* Weighted Deficit Round Robin (WDRR) scheduler */
119 struct wdrr_bucket {
120 struct sk_buff *head;
121 struct sk_buff *tail;
122 struct list_head bucketchain;
123 int deficit;
126 struct hhf_sched_data {
127 struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
128 u32 perturbation; /* hash perturbation */
129 u32 quantum; /* psched_mtu(qdisc_dev(sch)); */
130 u32 drop_overlimit; /* number of times max qdisc packet
131 * limit was hit
133 struct list_head *hh_flows; /* table T (currently active HHs) */
134 u32 hh_flows_limit; /* max active HH allocs */
135 u32 hh_flows_overlimit; /* num of disallowed HH allocs */
136 u32 hh_flows_total_cnt; /* total admitted HHs */
137 u32 hh_flows_current_cnt; /* total current HHs */
138 u32 *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
139 u32 hhf_arrays_reset_timestamp; /* last time hhf_arrays
140 * was reset
142 unsigned long *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
143 * of hhf_arrays
145 /* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
146 struct list_head new_buckets; /* list of new buckets */
147 struct list_head old_buckets; /* list of old buckets */
149 /* Configurable HHF parameters */
150 u32 hhf_reset_timeout; /* interval to reset counter
151 * arrays in filter F
152 * (default 40ms)
154 u32 hhf_admit_bytes; /* counter thresh to classify as
155 * HH (default 128KB).
156 * With these default values,
157 * 128KB / 40ms = 25 Mbps
158 * i.e., we expect to capture HHs
159 * sending > 25 Mbps.
161 u32 hhf_evict_timeout; /* aging threshold to evict idle
162 * HHs out of table T. This should
163 * be large enough to avoid
164 * reordering during HH eviction.
165 * (default 1s)
167 u32 hhf_non_hh_weight; /* WDRR weight for non-HHs
168 * (default 2,
169 * i.e., non-HH : HH = 2 : 1)
173 static u32 hhf_time_stamp(void)
175 return jiffies;
178 /* Looks up a heavy-hitter flow in a chaining list of table T. */
179 static struct hh_flow_state *seek_list(const u32 hash,
180 struct list_head *head,
181 struct hhf_sched_data *q)
183 struct hh_flow_state *flow, *next;
184 u32 now = hhf_time_stamp();
186 if (list_empty(head))
187 return NULL;
189 list_for_each_entry_safe(flow, next, head, flowchain) {
190 u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
192 if (hhf_time_before(prev, now)) {
193 /* Delete expired heavy-hitters, but preserve one entry
194 * to avoid kzalloc() when next time this slot is hit.
196 if (list_is_last(&flow->flowchain, head))
197 return NULL;
198 list_del(&flow->flowchain);
199 kfree(flow);
200 q->hh_flows_current_cnt--;
201 } else if (flow->hash_id == hash) {
202 return flow;
205 return NULL;
208 /* Returns a flow state entry for a new heavy-hitter. Either reuses an expired
209 * entry or dynamically alloc a new entry.
211 static struct hh_flow_state *alloc_new_hh(struct list_head *head,
212 struct hhf_sched_data *q)
214 struct hh_flow_state *flow;
215 u32 now = hhf_time_stamp();
217 if (!list_empty(head)) {
218 /* Find an expired heavy-hitter flow entry. */
219 list_for_each_entry(flow, head, flowchain) {
220 u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
222 if (hhf_time_before(prev, now))
223 return flow;
227 if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
228 q->hh_flows_overlimit++;
229 return NULL;
231 /* Create new entry. */
232 flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
233 if (!flow)
234 return NULL;
236 q->hh_flows_current_cnt++;
237 INIT_LIST_HEAD(&flow->flowchain);
238 list_add_tail(&flow->flowchain, head);
240 return flow;
243 /* Assigns packets to WDRR buckets. Implements a multi-stage filter to
244 * classify heavy-hitters.
246 static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
248 struct hhf_sched_data *q = qdisc_priv(sch);
249 u32 tmp_hash, hash;
250 u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
251 struct hh_flow_state *flow;
252 u32 pkt_len, min_hhf_val;
253 int i;
254 u32 prev;
255 u32 now = hhf_time_stamp();
257 /* Reset the HHF counter arrays if this is the right time. */
258 prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
259 if (hhf_time_before(prev, now)) {
260 for (i = 0; i < HHF_ARRAYS_CNT; i++)
261 bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
262 q->hhf_arrays_reset_timestamp = now;
265 /* Get hashed flow-id of the skb. */
266 hash = skb_get_hash_perturb(skb, q->perturbation);
268 /* Check if this packet belongs to an already established HH flow. */
269 flow_pos = hash & HHF_BIT_MASK;
270 flow = seek_list(hash, &q->hh_flows[flow_pos], q);
271 if (flow) { /* found its HH flow */
272 flow->hit_timestamp = now;
273 return WDRR_BUCKET_FOR_HH;
276 /* Now pass the packet through the multi-stage filter. */
277 tmp_hash = hash;
278 xorsum = 0;
279 for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
280 /* Split the skb_hash into three 10-bit chunks. */
281 filter_pos[i] = tmp_hash & HHF_BIT_MASK;
282 xorsum ^= filter_pos[i];
283 tmp_hash >>= HHF_BIT_MASK_LEN;
285 /* The last chunk is computed as XOR sum of other chunks. */
286 filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
288 pkt_len = qdisc_pkt_len(skb);
289 min_hhf_val = ~0U;
290 for (i = 0; i < HHF_ARRAYS_CNT; i++) {
291 u32 val;
293 if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
294 q->hhf_arrays[i][filter_pos[i]] = 0;
295 __set_bit(filter_pos[i], q->hhf_valid_bits[i]);
298 val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
299 if (min_hhf_val > val)
300 min_hhf_val = val;
303 /* Found a new HH iff all counter values > HH admit threshold. */
304 if (min_hhf_val > q->hhf_admit_bytes) {
305 /* Just captured a new heavy-hitter. */
306 flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
307 if (!flow) /* memory alloc problem */
308 return WDRR_BUCKET_FOR_NON_HH;
309 flow->hash_id = hash;
310 flow->hit_timestamp = now;
311 q->hh_flows_total_cnt++;
313 /* By returning without updating counters in q->hhf_arrays,
314 * we implicitly implement "shielding" (see Optimization O1).
316 return WDRR_BUCKET_FOR_HH;
319 /* Conservative update of HHF arrays (see Optimization O2). */
320 for (i = 0; i < HHF_ARRAYS_CNT; i++) {
321 if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
322 q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
324 return WDRR_BUCKET_FOR_NON_HH;
327 /* Removes one skb from head of bucket. */
328 static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
330 struct sk_buff *skb = bucket->head;
332 bucket->head = skb->next;
333 skb->next = NULL;
334 return skb;
337 /* Tail-adds skb to bucket. */
338 static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
340 if (bucket->head == NULL)
341 bucket->head = skb;
342 else
343 bucket->tail->next = skb;
344 bucket->tail = skb;
345 skb->next = NULL;
348 static unsigned int hhf_drop(struct Qdisc *sch)
350 struct hhf_sched_data *q = qdisc_priv(sch);
351 struct wdrr_bucket *bucket;
353 /* Always try to drop from heavy-hitters first. */
354 bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
355 if (!bucket->head)
356 bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
358 if (bucket->head) {
359 struct sk_buff *skb = dequeue_head(bucket);
361 sch->q.qlen--;
362 qdisc_qstats_drop(sch);
363 qdisc_qstats_backlog_dec(sch, skb);
364 kfree_skb(skb);
367 /* Return id of the bucket from which the packet was dropped. */
368 return bucket - q->buckets;
371 static unsigned int hhf_qdisc_drop(struct Qdisc *sch)
373 unsigned int prev_backlog;
375 prev_backlog = sch->qstats.backlog;
376 hhf_drop(sch);
377 return prev_backlog - sch->qstats.backlog;
380 static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
382 struct hhf_sched_data *q = qdisc_priv(sch);
383 enum wdrr_bucket_idx idx;
384 struct wdrr_bucket *bucket;
386 idx = hhf_classify(skb, sch);
388 bucket = &q->buckets[idx];
389 bucket_add(bucket, skb);
390 qdisc_qstats_backlog_inc(sch, skb);
392 if (list_empty(&bucket->bucketchain)) {
393 unsigned int weight;
395 /* The logic of new_buckets vs. old_buckets is the same as
396 * new_flows vs. old_flows in the implementation of fq_codel,
397 * i.e., short bursts of non-HHs should have strict priority.
399 if (idx == WDRR_BUCKET_FOR_HH) {
400 /* Always move heavy-hitters to old bucket. */
401 weight = 1;
402 list_add_tail(&bucket->bucketchain, &q->old_buckets);
403 } else {
404 weight = q->hhf_non_hh_weight;
405 list_add_tail(&bucket->bucketchain, &q->new_buckets);
407 bucket->deficit = weight * q->quantum;
409 if (++sch->q.qlen <= sch->limit)
410 return NET_XMIT_SUCCESS;
412 q->drop_overlimit++;
413 /* Return Congestion Notification only if we dropped a packet from this
414 * bucket.
416 if (hhf_drop(sch) == idx)
417 return NET_XMIT_CN;
419 /* As we dropped a packet, better let upper stack know this. */
420 qdisc_tree_decrease_qlen(sch, 1);
421 return NET_XMIT_SUCCESS;
424 static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
426 struct hhf_sched_data *q = qdisc_priv(sch);
427 struct sk_buff *skb = NULL;
428 struct wdrr_bucket *bucket;
429 struct list_head *head;
431 begin:
432 head = &q->new_buckets;
433 if (list_empty(head)) {
434 head = &q->old_buckets;
435 if (list_empty(head))
436 return NULL;
438 bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
440 if (bucket->deficit <= 0) {
441 int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
442 1 : q->hhf_non_hh_weight;
444 bucket->deficit += weight * q->quantum;
445 list_move_tail(&bucket->bucketchain, &q->old_buckets);
446 goto begin;
449 if (bucket->head) {
450 skb = dequeue_head(bucket);
451 sch->q.qlen--;
452 qdisc_qstats_backlog_dec(sch, skb);
455 if (!skb) {
456 /* Force a pass through old_buckets to prevent starvation. */
457 if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
458 list_move_tail(&bucket->bucketchain, &q->old_buckets);
459 else
460 list_del_init(&bucket->bucketchain);
461 goto begin;
463 qdisc_bstats_update(sch, skb);
464 bucket->deficit -= qdisc_pkt_len(skb);
466 return skb;
469 static void hhf_reset(struct Qdisc *sch)
471 struct sk_buff *skb;
473 while ((skb = hhf_dequeue(sch)) != NULL)
474 kfree_skb(skb);
477 static void *hhf_zalloc(size_t sz)
479 void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
481 if (!ptr)
482 ptr = vzalloc(sz);
484 return ptr;
487 static void hhf_free(void *addr)
489 kvfree(addr);
492 static void hhf_destroy(struct Qdisc *sch)
494 int i;
495 struct hhf_sched_data *q = qdisc_priv(sch);
497 for (i = 0; i < HHF_ARRAYS_CNT; i++) {
498 hhf_free(q->hhf_arrays[i]);
499 hhf_free(q->hhf_valid_bits[i]);
502 for (i = 0; i < HH_FLOWS_CNT; i++) {
503 struct hh_flow_state *flow, *next;
504 struct list_head *head = &q->hh_flows[i];
506 if (list_empty(head))
507 continue;
508 list_for_each_entry_safe(flow, next, head, flowchain) {
509 list_del(&flow->flowchain);
510 kfree(flow);
513 hhf_free(q->hh_flows);
516 static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
517 [TCA_HHF_BACKLOG_LIMIT] = { .type = NLA_U32 },
518 [TCA_HHF_QUANTUM] = { .type = NLA_U32 },
519 [TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
520 [TCA_HHF_RESET_TIMEOUT] = { .type = NLA_U32 },
521 [TCA_HHF_ADMIT_BYTES] = { .type = NLA_U32 },
522 [TCA_HHF_EVICT_TIMEOUT] = { .type = NLA_U32 },
523 [TCA_HHF_NON_HH_WEIGHT] = { .type = NLA_U32 },
526 static int hhf_change(struct Qdisc *sch, struct nlattr *opt)
528 struct hhf_sched_data *q = qdisc_priv(sch);
529 struct nlattr *tb[TCA_HHF_MAX + 1];
530 unsigned int qlen;
531 int err;
532 u64 non_hh_quantum;
533 u32 new_quantum = q->quantum;
534 u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
536 if (!opt)
537 return -EINVAL;
539 err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy);
540 if (err < 0)
541 return err;
543 if (tb[TCA_HHF_QUANTUM])
544 new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
546 if (tb[TCA_HHF_NON_HH_WEIGHT])
547 new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
549 non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
550 if (non_hh_quantum > INT_MAX)
551 return -EINVAL;
553 sch_tree_lock(sch);
555 if (tb[TCA_HHF_BACKLOG_LIMIT])
556 sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
558 q->quantum = new_quantum;
559 q->hhf_non_hh_weight = new_hhf_non_hh_weight;
561 if (tb[TCA_HHF_HH_FLOWS_LIMIT])
562 q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
564 if (tb[TCA_HHF_RESET_TIMEOUT]) {
565 u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
567 q->hhf_reset_timeout = usecs_to_jiffies(us);
570 if (tb[TCA_HHF_ADMIT_BYTES])
571 q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
573 if (tb[TCA_HHF_EVICT_TIMEOUT]) {
574 u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
576 q->hhf_evict_timeout = usecs_to_jiffies(us);
579 qlen = sch->q.qlen;
580 while (sch->q.qlen > sch->limit) {
581 struct sk_buff *skb = hhf_dequeue(sch);
583 kfree_skb(skb);
585 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
587 sch_tree_unlock(sch);
588 return 0;
591 static int hhf_init(struct Qdisc *sch, struct nlattr *opt)
593 struct hhf_sched_data *q = qdisc_priv(sch);
594 int i;
596 sch->limit = 1000;
597 q->quantum = psched_mtu(qdisc_dev(sch));
598 q->perturbation = prandom_u32();
599 INIT_LIST_HEAD(&q->new_buckets);
600 INIT_LIST_HEAD(&q->old_buckets);
602 /* Configurable HHF parameters */
603 q->hhf_reset_timeout = HZ / 25; /* 40 ms */
604 q->hhf_admit_bytes = 131072; /* 128 KB */
605 q->hhf_evict_timeout = HZ; /* 1 sec */
606 q->hhf_non_hh_weight = 2;
608 if (opt) {
609 int err = hhf_change(sch, opt);
611 if (err)
612 return err;
615 if (!q->hh_flows) {
616 /* Initialize heavy-hitter flow table. */
617 q->hh_flows = hhf_zalloc(HH_FLOWS_CNT *
618 sizeof(struct list_head));
619 if (!q->hh_flows)
620 return -ENOMEM;
621 for (i = 0; i < HH_FLOWS_CNT; i++)
622 INIT_LIST_HEAD(&q->hh_flows[i]);
624 /* Cap max active HHs at twice len of hh_flows table. */
625 q->hh_flows_limit = 2 * HH_FLOWS_CNT;
626 q->hh_flows_overlimit = 0;
627 q->hh_flows_total_cnt = 0;
628 q->hh_flows_current_cnt = 0;
630 /* Initialize heavy-hitter filter arrays. */
631 for (i = 0; i < HHF_ARRAYS_CNT; i++) {
632 q->hhf_arrays[i] = hhf_zalloc(HHF_ARRAYS_LEN *
633 sizeof(u32));
634 if (!q->hhf_arrays[i]) {
635 hhf_destroy(sch);
636 return -ENOMEM;
639 q->hhf_arrays_reset_timestamp = hhf_time_stamp();
641 /* Initialize valid bits of heavy-hitter filter arrays. */
642 for (i = 0; i < HHF_ARRAYS_CNT; i++) {
643 q->hhf_valid_bits[i] = hhf_zalloc(HHF_ARRAYS_LEN /
644 BITS_PER_BYTE);
645 if (!q->hhf_valid_bits[i]) {
646 hhf_destroy(sch);
647 return -ENOMEM;
651 /* Initialize Weighted DRR buckets. */
652 for (i = 0; i < WDRR_BUCKET_CNT; i++) {
653 struct wdrr_bucket *bucket = q->buckets + i;
655 INIT_LIST_HEAD(&bucket->bucketchain);
659 return 0;
662 static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
664 struct hhf_sched_data *q = qdisc_priv(sch);
665 struct nlattr *opts;
667 opts = nla_nest_start(skb, TCA_OPTIONS);
668 if (opts == NULL)
669 goto nla_put_failure;
671 if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
672 nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
673 nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
674 nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
675 jiffies_to_usecs(q->hhf_reset_timeout)) ||
676 nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
677 nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
678 jiffies_to_usecs(q->hhf_evict_timeout)) ||
679 nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
680 goto nla_put_failure;
682 return nla_nest_end(skb, opts);
684 nla_put_failure:
685 return -1;
688 static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
690 struct hhf_sched_data *q = qdisc_priv(sch);
691 struct tc_hhf_xstats st = {
692 .drop_overlimit = q->drop_overlimit,
693 .hh_overlimit = q->hh_flows_overlimit,
694 .hh_tot_count = q->hh_flows_total_cnt,
695 .hh_cur_count = q->hh_flows_current_cnt,
698 return gnet_stats_copy_app(d, &st, sizeof(st));
701 static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
702 .id = "hhf",
703 .priv_size = sizeof(struct hhf_sched_data),
705 .enqueue = hhf_enqueue,
706 .dequeue = hhf_dequeue,
707 .peek = qdisc_peek_dequeued,
708 .drop = hhf_qdisc_drop,
709 .init = hhf_init,
710 .reset = hhf_reset,
711 .destroy = hhf_destroy,
712 .change = hhf_change,
713 .dump = hhf_dump,
714 .dump_stats = hhf_dump_stats,
715 .owner = THIS_MODULE,
718 static int __init hhf_module_init(void)
720 return register_qdisc(&hhf_qdisc_ops);
723 static void __exit hhf_module_exit(void)
725 unregister_qdisc(&hhf_qdisc_ops);
728 module_init(hhf_module_init)
729 module_exit(hhf_module_exit)
730 MODULE_AUTHOR("Terry Lam");
731 MODULE_AUTHOR("Nandita Dukkipati");
732 MODULE_LICENSE("GPL");