1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
26 #include <linux/iomap.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
54 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
55 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
56 enum rw_hint hint
, struct writeback_control
*wbc
);
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 inline void touch_buffer(struct buffer_head
*bh
)
62 trace_block_touch_buffer(bh
);
63 mark_page_accessed(bh
->b_page
);
65 EXPORT_SYMBOL(touch_buffer
);
67 void __lock_buffer(struct buffer_head
*bh
)
69 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
71 EXPORT_SYMBOL(__lock_buffer
);
73 void unlock_buffer(struct buffer_head
*bh
)
75 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh
->b_state
, BH_Lock
);
79 EXPORT_SYMBOL(unlock_buffer
);
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
86 void buffer_check_dirty_writeback(struct page
*page
,
87 bool *dirty
, bool *writeback
)
89 struct buffer_head
*head
, *bh
;
93 BUG_ON(!PageLocked(page
));
95 if (!page_has_buffers(page
))
98 if (PageWriteback(page
))
101 head
= page_buffers(page
);
104 if (buffer_locked(bh
))
107 if (buffer_dirty(bh
))
110 bh
= bh
->b_this_page
;
111 } while (bh
!= head
);
113 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
120 void __wait_on_buffer(struct buffer_head
* bh
)
122 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
124 EXPORT_SYMBOL(__wait_on_buffer
);
127 __clear_page_buffers(struct page
*page
)
129 ClearPagePrivate(page
);
130 set_page_private(page
, 0);
134 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
136 if (!test_bit(BH_Quiet
, &bh
->b_state
))
137 printk_ratelimited(KERN_ERR
138 "Buffer I/O error on dev %pg, logical block %llu%s\n",
139 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
143 * End-of-IO handler helper function which does not touch the bh after
145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146 * a race there is benign: unlock_buffer() only use the bh's address for
147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
150 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
153 set_buffer_uptodate(bh
);
155 /* This happens, due to failed read-ahead attempts. */
156 clear_buffer_uptodate(bh
);
162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
163 * unlock the buffer. This is what ll_rw_block uses too.
165 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
167 __end_buffer_read_notouch(bh
, uptodate
);
170 EXPORT_SYMBOL(end_buffer_read_sync
);
172 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
175 set_buffer_uptodate(bh
);
177 buffer_io_error(bh
, ", lost sync page write");
178 mark_buffer_write_io_error(bh
);
179 clear_buffer_uptodate(bh
);
184 EXPORT_SYMBOL(end_buffer_write_sync
);
187 * Various filesystems appear to want __find_get_block to be non-blocking.
188 * But it's the page lock which protects the buffers. To get around this,
189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
192 * Hack idea: for the blockdev mapping, private_lock contention
193 * may be quite high. This code could TryLock the page, and if that
194 * succeeds, there is no need to take private_lock.
196 static struct buffer_head
*
197 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
199 struct inode
*bd_inode
= bdev
->bd_inode
;
200 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
201 struct buffer_head
*ret
= NULL
;
203 struct buffer_head
*bh
;
204 struct buffer_head
*head
;
207 static DEFINE_RATELIMIT_STATE(last_warned
, HZ
, 1);
209 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
210 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
214 spin_lock(&bd_mapping
->private_lock
);
215 if (!page_has_buffers(page
))
217 head
= page_buffers(page
);
220 if (!buffer_mapped(bh
))
222 else if (bh
->b_blocknr
== block
) {
227 bh
= bh
->b_this_page
;
228 } while (bh
!= head
);
230 /* we might be here because some of the buffers on this page are
231 * not mapped. This is due to various races between
232 * file io on the block device and getblk. It gets dealt with
233 * elsewhere, don't buffer_error if we had some unmapped buffers
235 ratelimit_set_flags(&last_warned
, RATELIMIT_MSG_ON_RELEASE
);
236 if (all_mapped
&& __ratelimit(&last_warned
)) {
237 printk("__find_get_block_slow() failed. block=%llu, "
238 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239 "device %pg blocksize: %d\n",
240 (unsigned long long)block
,
241 (unsigned long long)bh
->b_blocknr
,
242 bh
->b_state
, bh
->b_size
, bdev
,
243 1 << bd_inode
->i_blkbits
);
246 spin_unlock(&bd_mapping
->private_lock
);
252 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
255 struct buffer_head
*first
;
256 struct buffer_head
*tmp
;
258 int page_uptodate
= 1;
260 BUG_ON(!buffer_async_read(bh
));
264 set_buffer_uptodate(bh
);
266 clear_buffer_uptodate(bh
);
267 buffer_io_error(bh
, ", async page read");
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
276 first
= page_buffers(page
);
277 local_irq_save(flags
);
278 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
279 clear_buffer_async_read(bh
);
283 if (!buffer_uptodate(tmp
))
285 if (buffer_async_read(tmp
)) {
286 BUG_ON(!buffer_locked(tmp
));
289 tmp
= tmp
->b_this_page
;
291 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
292 local_irq_restore(flags
);
295 * If none of the buffers had errors and they are all
296 * uptodate then we can set the page uptodate.
298 if (page_uptodate
&& !PageError(page
))
299 SetPageUptodate(page
);
304 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
305 local_irq_restore(flags
);
309 struct decrypt_bh_ctx
{
310 struct work_struct work
;
311 struct buffer_head
*bh
;
314 static void decrypt_bh(struct work_struct
*work
)
316 struct decrypt_bh_ctx
*ctx
=
317 container_of(work
, struct decrypt_bh_ctx
, work
);
318 struct buffer_head
*bh
= ctx
->bh
;
321 err
= fscrypt_decrypt_pagecache_blocks(bh
->b_page
, bh
->b_size
,
323 end_buffer_async_read(bh
, err
== 0);
328 * I/O completion handler for block_read_full_page() - pages
329 * which come unlocked at the end of I/O.
331 static void end_buffer_async_read_io(struct buffer_head
*bh
, int uptodate
)
333 /* Decrypt if needed */
334 if (uptodate
&& IS_ENABLED(CONFIG_FS_ENCRYPTION
) &&
335 IS_ENCRYPTED(bh
->b_page
->mapping
->host
) &&
336 S_ISREG(bh
->b_page
->mapping
->host
->i_mode
)) {
337 struct decrypt_bh_ctx
*ctx
= kmalloc(sizeof(*ctx
), GFP_ATOMIC
);
340 INIT_WORK(&ctx
->work
, decrypt_bh
);
342 fscrypt_enqueue_decrypt_work(&ctx
->work
);
347 end_buffer_async_read(bh
, uptodate
);
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
354 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
357 struct buffer_head
*first
;
358 struct buffer_head
*tmp
;
361 BUG_ON(!buffer_async_write(bh
));
365 set_buffer_uptodate(bh
);
367 buffer_io_error(bh
, ", lost async page write");
368 mark_buffer_write_io_error(bh
);
369 clear_buffer_uptodate(bh
);
373 first
= page_buffers(page
);
374 local_irq_save(flags
);
375 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
377 clear_buffer_async_write(bh
);
379 tmp
= bh
->b_this_page
;
381 if (buffer_async_write(tmp
)) {
382 BUG_ON(!buffer_locked(tmp
));
385 tmp
= tmp
->b_this_page
;
387 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
388 local_irq_restore(flags
);
389 end_page_writeback(page
);
393 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
394 local_irq_restore(flags
);
397 EXPORT_SYMBOL(end_buffer_async_write
);
400 * If a page's buffers are under async readin (end_buffer_async_read
401 * completion) then there is a possibility that another thread of
402 * control could lock one of the buffers after it has completed
403 * but while some of the other buffers have not completed. This
404 * locked buffer would confuse end_buffer_async_read() into not unlocking
405 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
406 * that this buffer is not under async I/O.
408 * The page comes unlocked when it has no locked buffer_async buffers
411 * PageLocked prevents anyone starting new async I/O reads any of
414 * PageWriteback is used to prevent simultaneous writeout of the same
417 * PageLocked prevents anyone from starting writeback of a page which is
418 * under read I/O (PageWriteback is only ever set against a locked page).
420 static void mark_buffer_async_read(struct buffer_head
*bh
)
422 bh
->b_end_io
= end_buffer_async_read_io
;
423 set_buffer_async_read(bh
);
426 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
427 bh_end_io_t
*handler
)
429 bh
->b_end_io
= handler
;
430 set_buffer_async_write(bh
);
433 void mark_buffer_async_write(struct buffer_head
*bh
)
435 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
437 EXPORT_SYMBOL(mark_buffer_async_write
);
441 * fs/buffer.c contains helper functions for buffer-backed address space's
442 * fsync functions. A common requirement for buffer-based filesystems is
443 * that certain data from the backing blockdev needs to be written out for
444 * a successful fsync(). For example, ext2 indirect blocks need to be
445 * written back and waited upon before fsync() returns.
447 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
448 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
449 * management of a list of dependent buffers at ->i_mapping->private_list.
451 * Locking is a little subtle: try_to_free_buffers() will remove buffers
452 * from their controlling inode's queue when they are being freed. But
453 * try_to_free_buffers() will be operating against the *blockdev* mapping
454 * at the time, not against the S_ISREG file which depends on those buffers.
455 * So the locking for private_list is via the private_lock in the address_space
456 * which backs the buffers. Which is different from the address_space
457 * against which the buffers are listed. So for a particular address_space,
458 * mapping->private_lock does *not* protect mapping->private_list! In fact,
459 * mapping->private_list will always be protected by the backing blockdev's
462 * Which introduces a requirement: all buffers on an address_space's
463 * ->private_list must be from the same address_space: the blockdev's.
465 * address_spaces which do not place buffers at ->private_list via these
466 * utility functions are free to use private_lock and private_list for
467 * whatever they want. The only requirement is that list_empty(private_list)
468 * be true at clear_inode() time.
470 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
471 * filesystems should do that. invalidate_inode_buffers() should just go
472 * BUG_ON(!list_empty).
474 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
475 * take an address_space, not an inode. And it should be called
476 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
479 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
480 * list if it is already on a list. Because if the buffer is on a list,
481 * it *must* already be on the right one. If not, the filesystem is being
482 * silly. This will save a ton of locking. But first we have to ensure
483 * that buffers are taken *off* the old inode's list when they are freed
484 * (presumably in truncate). That requires careful auditing of all
485 * filesystems (do it inside bforget()). It could also be done by bringing
490 * The buffer's backing address_space's private_lock must be held
492 static void __remove_assoc_queue(struct buffer_head
*bh
)
494 list_del_init(&bh
->b_assoc_buffers
);
495 WARN_ON(!bh
->b_assoc_map
);
496 bh
->b_assoc_map
= NULL
;
499 int inode_has_buffers(struct inode
*inode
)
501 return !list_empty(&inode
->i_data
.private_list
);
505 * osync is designed to support O_SYNC io. It waits synchronously for
506 * all already-submitted IO to complete, but does not queue any new
507 * writes to the disk.
509 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
510 * you dirty the buffers, and then use osync_inode_buffers to wait for
511 * completion. Any other dirty buffers which are not yet queued for
512 * write will not be flushed to disk by the osync.
514 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
516 struct buffer_head
*bh
;
522 list_for_each_prev(p
, list
) {
524 if (buffer_locked(bh
)) {
528 if (!buffer_uptodate(bh
))
539 void emergency_thaw_bdev(struct super_block
*sb
)
541 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
542 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547 * @mapping: the mapping which wants those buffers written
549 * Starts I/O against the buffers at mapping->private_list, and waits upon
552 * Basically, this is a convenience function for fsync().
553 * @mapping is a file or directory which needs those buffers to be written for
554 * a successful fsync().
556 int sync_mapping_buffers(struct address_space
*mapping
)
558 struct address_space
*buffer_mapping
= mapping
->private_data
;
560 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
563 return fsync_buffers_list(&buffer_mapping
->private_lock
,
564 &mapping
->private_list
);
566 EXPORT_SYMBOL(sync_mapping_buffers
);
569 * Called when we've recently written block `bblock', and it is known that
570 * `bblock' was for a buffer_boundary() buffer. This means that the block at
571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
572 * dirty, schedule it for IO. So that indirects merge nicely with their data.
574 void write_boundary_block(struct block_device
*bdev
,
575 sector_t bblock
, unsigned blocksize
)
577 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
579 if (buffer_dirty(bh
))
580 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
585 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
587 struct address_space
*mapping
= inode
->i_mapping
;
588 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
590 mark_buffer_dirty(bh
);
591 if (!mapping
->private_data
) {
592 mapping
->private_data
= buffer_mapping
;
594 BUG_ON(mapping
->private_data
!= buffer_mapping
);
596 if (!bh
->b_assoc_map
) {
597 spin_lock(&buffer_mapping
->private_lock
);
598 list_move_tail(&bh
->b_assoc_buffers
,
599 &mapping
->private_list
);
600 bh
->b_assoc_map
= mapping
;
601 spin_unlock(&buffer_mapping
->private_lock
);
604 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
607 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
610 * If warn is true, then emit a warning if the page is not uptodate and has
611 * not been truncated.
613 * The caller must hold lock_page_memcg().
615 void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
620 xa_lock_irqsave(&mapping
->i_pages
, flags
);
621 if (page
->mapping
) { /* Race with truncate? */
622 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
623 account_page_dirtied(page
, mapping
);
624 __xa_set_mark(&mapping
->i_pages
, page_index(page
),
625 PAGECACHE_TAG_DIRTY
);
627 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
629 EXPORT_SYMBOL_GPL(__set_page_dirty
);
632 * Add a page to the dirty page list.
634 * It is a sad fact of life that this function is called from several places
635 * deeply under spinlocking. It may not sleep.
637 * If the page has buffers, the uptodate buffers are set dirty, to preserve
638 * dirty-state coherency between the page and the buffers. It the page does
639 * not have buffers then when they are later attached they will all be set
642 * The buffers are dirtied before the page is dirtied. There's a small race
643 * window in which a writepage caller may see the page cleanness but not the
644 * buffer dirtiness. That's fine. If this code were to set the page dirty
645 * before the buffers, a concurrent writepage caller could clear the page dirty
646 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
647 * page on the dirty page list.
649 * We use private_lock to lock against try_to_free_buffers while using the
650 * page's buffer list. Also use this to protect against clean buffers being
651 * added to the page after it was set dirty.
653 * FIXME: may need to call ->reservepage here as well. That's rather up to the
654 * address_space though.
656 int __set_page_dirty_buffers(struct page
*page
)
659 struct address_space
*mapping
= page_mapping(page
);
661 if (unlikely(!mapping
))
662 return !TestSetPageDirty(page
);
664 spin_lock(&mapping
->private_lock
);
665 if (page_has_buffers(page
)) {
666 struct buffer_head
*head
= page_buffers(page
);
667 struct buffer_head
*bh
= head
;
670 set_buffer_dirty(bh
);
671 bh
= bh
->b_this_page
;
672 } while (bh
!= head
);
675 * Lock out page->mem_cgroup migration to keep PageDirty
676 * synchronized with per-memcg dirty page counters.
678 lock_page_memcg(page
);
679 newly_dirty
= !TestSetPageDirty(page
);
680 spin_unlock(&mapping
->private_lock
);
683 __set_page_dirty(page
, mapping
, 1);
685 unlock_page_memcg(page
);
688 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
692 EXPORT_SYMBOL(__set_page_dirty_buffers
);
695 * Write out and wait upon a list of buffers.
697 * We have conflicting pressures: we want to make sure that all
698 * initially dirty buffers get waited on, but that any subsequently
699 * dirtied buffers don't. After all, we don't want fsync to last
700 * forever if somebody is actively writing to the file.
702 * Do this in two main stages: first we copy dirty buffers to a
703 * temporary inode list, queueing the writes as we go. Then we clean
704 * up, waiting for those writes to complete.
706 * During this second stage, any subsequent updates to the file may end
707 * up refiling the buffer on the original inode's dirty list again, so
708 * there is a chance we will end up with a buffer queued for write but
709 * not yet completed on that list. So, as a final cleanup we go through
710 * the osync code to catch these locked, dirty buffers without requeuing
711 * any newly dirty buffers for write.
713 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
715 struct buffer_head
*bh
;
716 struct list_head tmp
;
717 struct address_space
*mapping
;
719 struct blk_plug plug
;
721 INIT_LIST_HEAD(&tmp
);
722 blk_start_plug(&plug
);
725 while (!list_empty(list
)) {
726 bh
= BH_ENTRY(list
->next
);
727 mapping
= bh
->b_assoc_map
;
728 __remove_assoc_queue(bh
);
729 /* Avoid race with mark_buffer_dirty_inode() which does
730 * a lockless check and we rely on seeing the dirty bit */
732 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
733 list_add(&bh
->b_assoc_buffers
, &tmp
);
734 bh
->b_assoc_map
= mapping
;
735 if (buffer_dirty(bh
)) {
739 * Ensure any pending I/O completes so that
740 * write_dirty_buffer() actually writes the
741 * current contents - it is a noop if I/O is
742 * still in flight on potentially older
745 write_dirty_buffer(bh
, REQ_SYNC
);
748 * Kick off IO for the previous mapping. Note
749 * that we will not run the very last mapping,
750 * wait_on_buffer() will do that for us
751 * through sync_buffer().
760 blk_finish_plug(&plug
);
763 while (!list_empty(&tmp
)) {
764 bh
= BH_ENTRY(tmp
.prev
);
766 mapping
= bh
->b_assoc_map
;
767 __remove_assoc_queue(bh
);
768 /* Avoid race with mark_buffer_dirty_inode() which does
769 * a lockless check and we rely on seeing the dirty bit */
771 if (buffer_dirty(bh
)) {
772 list_add(&bh
->b_assoc_buffers
,
773 &mapping
->private_list
);
774 bh
->b_assoc_map
= mapping
;
778 if (!buffer_uptodate(bh
))
785 err2
= osync_buffers_list(lock
, list
);
793 * Invalidate any and all dirty buffers on a given inode. We are
794 * probably unmounting the fs, but that doesn't mean we have already
795 * done a sync(). Just drop the buffers from the inode list.
797 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
798 * assumes that all the buffers are against the blockdev. Not true
801 void invalidate_inode_buffers(struct inode
*inode
)
803 if (inode_has_buffers(inode
)) {
804 struct address_space
*mapping
= &inode
->i_data
;
805 struct list_head
*list
= &mapping
->private_list
;
806 struct address_space
*buffer_mapping
= mapping
->private_data
;
808 spin_lock(&buffer_mapping
->private_lock
);
809 while (!list_empty(list
))
810 __remove_assoc_queue(BH_ENTRY(list
->next
));
811 spin_unlock(&buffer_mapping
->private_lock
);
814 EXPORT_SYMBOL(invalidate_inode_buffers
);
817 * Remove any clean buffers from the inode's buffer list. This is called
818 * when we're trying to free the inode itself. Those buffers can pin it.
820 * Returns true if all buffers were removed.
822 int remove_inode_buffers(struct inode
*inode
)
826 if (inode_has_buffers(inode
)) {
827 struct address_space
*mapping
= &inode
->i_data
;
828 struct list_head
*list
= &mapping
->private_list
;
829 struct address_space
*buffer_mapping
= mapping
->private_data
;
831 spin_lock(&buffer_mapping
->private_lock
);
832 while (!list_empty(list
)) {
833 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
834 if (buffer_dirty(bh
)) {
838 __remove_assoc_queue(bh
);
840 spin_unlock(&buffer_mapping
->private_lock
);
846 * Create the appropriate buffers when given a page for data area and
847 * the size of each buffer.. Use the bh->b_this_page linked list to
848 * follow the buffers created. Return NULL if unable to create more
851 * The retry flag is used to differentiate async IO (paging, swapping)
852 * which may not fail from ordinary buffer allocations.
854 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
857 struct buffer_head
*bh
, *head
;
858 gfp_t gfp
= GFP_NOFS
| __GFP_ACCOUNT
;
860 struct mem_cgroup
*memcg
;
865 memcg
= get_mem_cgroup_from_page(page
);
866 memalloc_use_memcg(memcg
);
870 while ((offset
-= size
) >= 0) {
871 bh
= alloc_buffer_head(gfp
);
875 bh
->b_this_page
= head
;
881 /* Link the buffer to its page */
882 set_bh_page(bh
, page
, offset
);
885 memalloc_unuse_memcg();
886 mem_cgroup_put(memcg
);
889 * In case anything failed, we just free everything we got.
895 head
= head
->b_this_page
;
896 free_buffer_head(bh
);
902 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
905 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
907 struct buffer_head
*bh
, *tail
;
912 bh
= bh
->b_this_page
;
914 tail
->b_this_page
= head
;
915 attach_page_buffers(page
, head
);
918 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
920 sector_t retval
= ~((sector_t
)0);
921 loff_t sz
= i_size_read(bdev
->bd_inode
);
924 unsigned int sizebits
= blksize_bits(size
);
925 retval
= (sz
>> sizebits
);
931 * Initialise the state of a blockdev page's buffers.
934 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
935 sector_t block
, int size
)
937 struct buffer_head
*head
= page_buffers(page
);
938 struct buffer_head
*bh
= head
;
939 int uptodate
= PageUptodate(page
);
940 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
943 if (!buffer_mapped(bh
)) {
945 bh
->b_private
= NULL
;
947 bh
->b_blocknr
= block
;
949 set_buffer_uptodate(bh
);
950 if (block
< end_block
)
951 set_buffer_mapped(bh
);
954 bh
= bh
->b_this_page
;
955 } while (bh
!= head
);
958 * Caller needs to validate requested block against end of device.
964 * Create the page-cache page that contains the requested block.
966 * This is used purely for blockdev mappings.
969 grow_dev_page(struct block_device
*bdev
, sector_t block
,
970 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
972 struct inode
*inode
= bdev
->bd_inode
;
974 struct buffer_head
*bh
;
976 int ret
= 0; /* Will call free_more_memory() */
979 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
982 * XXX: __getblk_slow() can not really deal with failure and
983 * will endlessly loop on improvised global reclaim. Prefer
984 * looping in the allocator rather than here, at least that
985 * code knows what it's doing.
987 gfp_mask
|= __GFP_NOFAIL
;
989 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
991 BUG_ON(!PageLocked(page
));
993 if (page_has_buffers(page
)) {
994 bh
= page_buffers(page
);
995 if (bh
->b_size
== size
) {
996 end_block
= init_page_buffers(page
, bdev
,
997 (sector_t
)index
<< sizebits
,
1001 if (!try_to_free_buffers(page
))
1006 * Allocate some buffers for this page
1008 bh
= alloc_page_buffers(page
, size
, true);
1011 * Link the page to the buffers and initialise them. Take the
1012 * lock to be atomic wrt __find_get_block(), which does not
1013 * run under the page lock.
1015 spin_lock(&inode
->i_mapping
->private_lock
);
1016 link_dev_buffers(page
, bh
);
1017 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
1019 spin_unlock(&inode
->i_mapping
->private_lock
);
1021 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1029 * Create buffers for the specified block device block's page. If
1030 * that page was dirty, the buffers are set dirty also.
1033 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1041 } while ((size
<< sizebits
) < PAGE_SIZE
);
1043 index
= block
>> sizebits
;
1046 * Check for a block which wants to lie outside our maximum possible
1047 * pagecache index. (this comparison is done using sector_t types).
1049 if (unlikely(index
!= block
>> sizebits
)) {
1050 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1052 __func__
, (unsigned long long)block
,
1057 /* Create a page with the proper size buffers.. */
1058 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1061 static struct buffer_head
*
1062 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1063 unsigned size
, gfp_t gfp
)
1065 /* Size must be multiple of hard sectorsize */
1066 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1067 (size
< 512 || size
> PAGE_SIZE
))) {
1068 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1070 printk(KERN_ERR
"logical block size: %d\n",
1071 bdev_logical_block_size(bdev
));
1078 struct buffer_head
*bh
;
1081 bh
= __find_get_block(bdev
, block
, size
);
1085 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1092 * The relationship between dirty buffers and dirty pages:
1094 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1095 * the page is tagged dirty in the page cache.
1097 * At all times, the dirtiness of the buffers represents the dirtiness of
1098 * subsections of the page. If the page has buffers, the page dirty bit is
1099 * merely a hint about the true dirty state.
1101 * When a page is set dirty in its entirety, all its buffers are marked dirty
1102 * (if the page has buffers).
1104 * When a buffer is marked dirty, its page is dirtied, but the page's other
1107 * Also. When blockdev buffers are explicitly read with bread(), they
1108 * individually become uptodate. But their backing page remains not
1109 * uptodate - even if all of its buffers are uptodate. A subsequent
1110 * block_read_full_page() against that page will discover all the uptodate
1111 * buffers, will set the page uptodate and will perform no I/O.
1115 * mark_buffer_dirty - mark a buffer_head as needing writeout
1116 * @bh: the buffer_head to mark dirty
1118 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1119 * its backing page dirty, then tag the page as dirty in the page cache
1120 * and then attach the address_space's inode to its superblock's dirty
1123 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1124 * i_pages lock and mapping->host->i_lock.
1126 void mark_buffer_dirty(struct buffer_head
*bh
)
1128 WARN_ON_ONCE(!buffer_uptodate(bh
));
1130 trace_block_dirty_buffer(bh
);
1133 * Very *carefully* optimize the it-is-already-dirty case.
1135 * Don't let the final "is it dirty" escape to before we
1136 * perhaps modified the buffer.
1138 if (buffer_dirty(bh
)) {
1140 if (buffer_dirty(bh
))
1144 if (!test_set_buffer_dirty(bh
)) {
1145 struct page
*page
= bh
->b_page
;
1146 struct address_space
*mapping
= NULL
;
1148 lock_page_memcg(page
);
1149 if (!TestSetPageDirty(page
)) {
1150 mapping
= page_mapping(page
);
1152 __set_page_dirty(page
, mapping
, 0);
1154 unlock_page_memcg(page
);
1156 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1159 EXPORT_SYMBOL(mark_buffer_dirty
);
1161 void mark_buffer_write_io_error(struct buffer_head
*bh
)
1163 set_buffer_write_io_error(bh
);
1164 /* FIXME: do we need to set this in both places? */
1165 if (bh
->b_page
&& bh
->b_page
->mapping
)
1166 mapping_set_error(bh
->b_page
->mapping
, -EIO
);
1167 if (bh
->b_assoc_map
)
1168 mapping_set_error(bh
->b_assoc_map
, -EIO
);
1170 EXPORT_SYMBOL(mark_buffer_write_io_error
);
1173 * Decrement a buffer_head's reference count. If all buffers against a page
1174 * have zero reference count, are clean and unlocked, and if the page is clean
1175 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177 * a page but it ends up not being freed, and buffers may later be reattached).
1179 void __brelse(struct buffer_head
* buf
)
1181 if (atomic_read(&buf
->b_count
)) {
1185 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1187 EXPORT_SYMBOL(__brelse
);
1190 * bforget() is like brelse(), except it discards any
1191 * potentially dirty data.
1193 void __bforget(struct buffer_head
*bh
)
1195 clear_buffer_dirty(bh
);
1196 if (bh
->b_assoc_map
) {
1197 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1199 spin_lock(&buffer_mapping
->private_lock
);
1200 list_del_init(&bh
->b_assoc_buffers
);
1201 bh
->b_assoc_map
= NULL
;
1202 spin_unlock(&buffer_mapping
->private_lock
);
1206 EXPORT_SYMBOL(__bforget
);
1208 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1211 if (buffer_uptodate(bh
)) {
1216 bh
->b_end_io
= end_buffer_read_sync
;
1217 submit_bh(REQ_OP_READ
, 0, bh
);
1219 if (buffer_uptodate(bh
))
1227 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1228 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1229 * refcount elevated by one when they're in an LRU. A buffer can only appear
1230 * once in a particular CPU's LRU. A single buffer can be present in multiple
1231 * CPU's LRUs at the same time.
1233 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1234 * sb_find_get_block().
1236 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1237 * a local interrupt disable for that.
1240 #define BH_LRU_SIZE 16
1243 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1246 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1249 #define bh_lru_lock() local_irq_disable()
1250 #define bh_lru_unlock() local_irq_enable()
1252 #define bh_lru_lock() preempt_disable()
1253 #define bh_lru_unlock() preempt_enable()
1256 static inline void check_irqs_on(void)
1258 #ifdef irqs_disabled
1259 BUG_ON(irqs_disabled());
1264 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1265 * inserted at the front, and the buffer_head at the back if any is evicted.
1266 * Or, if already in the LRU it is moved to the front.
1268 static void bh_lru_install(struct buffer_head
*bh
)
1270 struct buffer_head
*evictee
= bh
;
1277 b
= this_cpu_ptr(&bh_lrus
);
1278 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1279 swap(evictee
, b
->bhs
[i
]);
1280 if (evictee
== bh
) {
1292 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1294 static struct buffer_head
*
1295 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1297 struct buffer_head
*ret
= NULL
;
1302 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1303 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1305 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1306 bh
->b_size
== size
) {
1309 __this_cpu_write(bh_lrus
.bhs
[i
],
1310 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1313 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1325 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1326 * it in the LRU and mark it as accessed. If it is not present then return
1329 struct buffer_head
*
1330 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1332 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1335 /* __find_get_block_slow will mark the page accessed */
1336 bh
= __find_get_block_slow(bdev
, block
);
1344 EXPORT_SYMBOL(__find_get_block
);
1347 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1348 * which corresponds to the passed block_device, block and size. The
1349 * returned buffer has its reference count incremented.
1351 * __getblk_gfp() will lock up the machine if grow_dev_page's
1352 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1354 struct buffer_head
*
1355 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1356 unsigned size
, gfp_t gfp
)
1358 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1362 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1365 EXPORT_SYMBOL(__getblk_gfp
);
1368 * Do async read-ahead on a buffer..
1370 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1372 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1374 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1378 EXPORT_SYMBOL(__breadahead
);
1381 * __bread_gfp() - reads a specified block and returns the bh
1382 * @bdev: the block_device to read from
1383 * @block: number of block
1384 * @size: size (in bytes) to read
1385 * @gfp: page allocation flag
1387 * Reads a specified block, and returns buffer head that contains it.
1388 * The page cache can be allocated from non-movable area
1389 * not to prevent page migration if you set gfp to zero.
1390 * It returns NULL if the block was unreadable.
1392 struct buffer_head
*
1393 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1394 unsigned size
, gfp_t gfp
)
1396 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1398 if (likely(bh
) && !buffer_uptodate(bh
))
1399 bh
= __bread_slow(bh
);
1402 EXPORT_SYMBOL(__bread_gfp
);
1405 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1406 * This doesn't race because it runs in each cpu either in irq
1407 * or with preempt disabled.
1409 static void invalidate_bh_lru(void *arg
)
1411 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1414 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1418 put_cpu_var(bh_lrus
);
1421 static bool has_bh_in_lru(int cpu
, void *dummy
)
1423 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1426 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1434 void invalidate_bh_lrus(void)
1436 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1);
1438 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1440 void set_bh_page(struct buffer_head
*bh
,
1441 struct page
*page
, unsigned long offset
)
1444 BUG_ON(offset
>= PAGE_SIZE
);
1445 if (PageHighMem(page
))
1447 * This catches illegal uses and preserves the offset:
1449 bh
->b_data
= (char *)(0 + offset
);
1451 bh
->b_data
= page_address(page
) + offset
;
1453 EXPORT_SYMBOL(set_bh_page
);
1456 * Called when truncating a buffer on a page completely.
1459 /* Bits that are cleared during an invalidate */
1460 #define BUFFER_FLAGS_DISCARD \
1461 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1462 1 << BH_Delay | 1 << BH_Unwritten)
1464 static void discard_buffer(struct buffer_head
* bh
)
1466 unsigned long b_state
, b_state_old
;
1469 clear_buffer_dirty(bh
);
1471 b_state
= bh
->b_state
;
1473 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1474 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1475 if (b_state_old
== b_state
)
1477 b_state
= b_state_old
;
1483 * block_invalidatepage - invalidate part or all of a buffer-backed page
1485 * @page: the page which is affected
1486 * @offset: start of the range to invalidate
1487 * @length: length of the range to invalidate
1489 * block_invalidatepage() is called when all or part of the page has become
1490 * invalidated by a truncate operation.
1492 * block_invalidatepage() does not have to release all buffers, but it must
1493 * ensure that no dirty buffer is left outside @offset and that no I/O
1494 * is underway against any of the blocks which are outside the truncation
1495 * point. Because the caller is about to free (and possibly reuse) those
1498 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1499 unsigned int length
)
1501 struct buffer_head
*head
, *bh
, *next
;
1502 unsigned int curr_off
= 0;
1503 unsigned int stop
= length
+ offset
;
1505 BUG_ON(!PageLocked(page
));
1506 if (!page_has_buffers(page
))
1510 * Check for overflow
1512 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1514 head
= page_buffers(page
);
1517 unsigned int next_off
= curr_off
+ bh
->b_size
;
1518 next
= bh
->b_this_page
;
1521 * Are we still fully in range ?
1523 if (next_off
> stop
)
1527 * is this block fully invalidated?
1529 if (offset
<= curr_off
)
1531 curr_off
= next_off
;
1533 } while (bh
!= head
);
1536 * We release buffers only if the entire page is being invalidated.
1537 * The get_block cached value has been unconditionally invalidated,
1538 * so real IO is not possible anymore.
1540 if (length
== PAGE_SIZE
)
1541 try_to_release_page(page
, 0);
1545 EXPORT_SYMBOL(block_invalidatepage
);
1549 * We attach and possibly dirty the buffers atomically wrt
1550 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1551 * is already excluded via the page lock.
1553 void create_empty_buffers(struct page
*page
,
1554 unsigned long blocksize
, unsigned long b_state
)
1556 struct buffer_head
*bh
, *head
, *tail
;
1558 head
= alloc_page_buffers(page
, blocksize
, true);
1561 bh
->b_state
|= b_state
;
1563 bh
= bh
->b_this_page
;
1565 tail
->b_this_page
= head
;
1567 spin_lock(&page
->mapping
->private_lock
);
1568 if (PageUptodate(page
) || PageDirty(page
)) {
1571 if (PageDirty(page
))
1572 set_buffer_dirty(bh
);
1573 if (PageUptodate(page
))
1574 set_buffer_uptodate(bh
);
1575 bh
= bh
->b_this_page
;
1576 } while (bh
!= head
);
1578 attach_page_buffers(page
, head
);
1579 spin_unlock(&page
->mapping
->private_lock
);
1581 EXPORT_SYMBOL(create_empty_buffers
);
1584 * clean_bdev_aliases: clean a range of buffers in block device
1585 * @bdev: Block device to clean buffers in
1586 * @block: Start of a range of blocks to clean
1587 * @len: Number of blocks to clean
1589 * We are taking a range of blocks for data and we don't want writeback of any
1590 * buffer-cache aliases starting from return from this function and until the
1591 * moment when something will explicitly mark the buffer dirty (hopefully that
1592 * will not happen until we will free that block ;-) We don't even need to mark
1593 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1594 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1595 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1596 * would confuse anyone who might pick it with bread() afterwards...
1598 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1599 * writeout I/O going on against recently-freed buffers. We don't wait on that
1600 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1601 * need to. That happens here.
1603 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1605 struct inode
*bd_inode
= bdev
->bd_inode
;
1606 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
1607 struct pagevec pvec
;
1608 pgoff_t index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1611 struct buffer_head
*bh
;
1612 struct buffer_head
*head
;
1614 end
= (block
+ len
- 1) >> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1615 pagevec_init(&pvec
);
1616 while (pagevec_lookup_range(&pvec
, bd_mapping
, &index
, end
)) {
1617 count
= pagevec_count(&pvec
);
1618 for (i
= 0; i
< count
; i
++) {
1619 struct page
*page
= pvec
.pages
[i
];
1621 if (!page_has_buffers(page
))
1624 * We use page lock instead of bd_mapping->private_lock
1625 * to pin buffers here since we can afford to sleep and
1626 * it scales better than a global spinlock lock.
1629 /* Recheck when the page is locked which pins bhs */
1630 if (!page_has_buffers(page
))
1632 head
= page_buffers(page
);
1635 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1637 if (bh
->b_blocknr
>= block
+ len
)
1639 clear_buffer_dirty(bh
);
1641 clear_buffer_req(bh
);
1643 bh
= bh
->b_this_page
;
1644 } while (bh
!= head
);
1648 pagevec_release(&pvec
);
1650 /* End of range already reached? */
1651 if (index
> end
|| !index
)
1655 EXPORT_SYMBOL(clean_bdev_aliases
);
1658 * Size is a power-of-two in the range 512..PAGE_SIZE,
1659 * and the case we care about most is PAGE_SIZE.
1661 * So this *could* possibly be written with those
1662 * constraints in mind (relevant mostly if some
1663 * architecture has a slow bit-scan instruction)
1665 static inline int block_size_bits(unsigned int blocksize
)
1667 return ilog2(blocksize
);
1670 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1672 BUG_ON(!PageLocked(page
));
1674 if (!page_has_buffers(page
))
1675 create_empty_buffers(page
, 1 << READ_ONCE(inode
->i_blkbits
),
1677 return page_buffers(page
);
1681 * NOTE! All mapped/uptodate combinations are valid:
1683 * Mapped Uptodate Meaning
1685 * No No "unknown" - must do get_block()
1686 * No Yes "hole" - zero-filled
1687 * Yes No "allocated" - allocated on disk, not read in
1688 * Yes Yes "valid" - allocated and up-to-date in memory.
1690 * "Dirty" is valid only with the last case (mapped+uptodate).
1694 * While block_write_full_page is writing back the dirty buffers under
1695 * the page lock, whoever dirtied the buffers may decide to clean them
1696 * again at any time. We handle that by only looking at the buffer
1697 * state inside lock_buffer().
1699 * If block_write_full_page() is called for regular writeback
1700 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1701 * locked buffer. This only can happen if someone has written the buffer
1702 * directly, with submit_bh(). At the address_space level PageWriteback
1703 * prevents this contention from occurring.
1705 * If block_write_full_page() is called with wbc->sync_mode ==
1706 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1707 * causes the writes to be flagged as synchronous writes.
1709 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1710 get_block_t
*get_block
, struct writeback_control
*wbc
,
1711 bh_end_io_t
*handler
)
1715 sector_t last_block
;
1716 struct buffer_head
*bh
, *head
;
1717 unsigned int blocksize
, bbits
;
1718 int nr_underway
= 0;
1719 int write_flags
= wbc_to_write_flags(wbc
);
1721 head
= create_page_buffers(page
, inode
,
1722 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1725 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1726 * here, and the (potentially unmapped) buffers may become dirty at
1727 * any time. If a buffer becomes dirty here after we've inspected it
1728 * then we just miss that fact, and the page stays dirty.
1730 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1731 * handle that here by just cleaning them.
1735 blocksize
= bh
->b_size
;
1736 bbits
= block_size_bits(blocksize
);
1738 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1739 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1742 * Get all the dirty buffers mapped to disk addresses and
1743 * handle any aliases from the underlying blockdev's mapping.
1746 if (block
> last_block
) {
1748 * mapped buffers outside i_size will occur, because
1749 * this page can be outside i_size when there is a
1750 * truncate in progress.
1753 * The buffer was zeroed by block_write_full_page()
1755 clear_buffer_dirty(bh
);
1756 set_buffer_uptodate(bh
);
1757 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1759 WARN_ON(bh
->b_size
!= blocksize
);
1760 err
= get_block(inode
, block
, bh
, 1);
1763 clear_buffer_delay(bh
);
1764 if (buffer_new(bh
)) {
1765 /* blockdev mappings never come here */
1766 clear_buffer_new(bh
);
1767 clean_bdev_bh_alias(bh
);
1770 bh
= bh
->b_this_page
;
1772 } while (bh
!= head
);
1775 if (!buffer_mapped(bh
))
1778 * If it's a fully non-blocking write attempt and we cannot
1779 * lock the buffer then redirty the page. Note that this can
1780 * potentially cause a busy-wait loop from writeback threads
1781 * and kswapd activity, but those code paths have their own
1782 * higher-level throttling.
1784 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1786 } else if (!trylock_buffer(bh
)) {
1787 redirty_page_for_writepage(wbc
, page
);
1790 if (test_clear_buffer_dirty(bh
)) {
1791 mark_buffer_async_write_endio(bh
, handler
);
1795 } while ((bh
= bh
->b_this_page
) != head
);
1798 * The page and its buffers are protected by PageWriteback(), so we can
1799 * drop the bh refcounts early.
1801 BUG_ON(PageWriteback(page
));
1802 set_page_writeback(page
);
1805 struct buffer_head
*next
= bh
->b_this_page
;
1806 if (buffer_async_write(bh
)) {
1807 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1808 inode
->i_write_hint
, wbc
);
1812 } while (bh
!= head
);
1817 if (nr_underway
== 0) {
1819 * The page was marked dirty, but the buffers were
1820 * clean. Someone wrote them back by hand with
1821 * ll_rw_block/submit_bh. A rare case.
1823 end_page_writeback(page
);
1826 * The page and buffer_heads can be released at any time from
1834 * ENOSPC, or some other error. We may already have added some
1835 * blocks to the file, so we need to write these out to avoid
1836 * exposing stale data.
1837 * The page is currently locked and not marked for writeback
1840 /* Recovery: lock and submit the mapped buffers */
1842 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1843 !buffer_delay(bh
)) {
1845 mark_buffer_async_write_endio(bh
, handler
);
1848 * The buffer may have been set dirty during
1849 * attachment to a dirty page.
1851 clear_buffer_dirty(bh
);
1853 } while ((bh
= bh
->b_this_page
) != head
);
1855 BUG_ON(PageWriteback(page
));
1856 mapping_set_error(page
->mapping
, err
);
1857 set_page_writeback(page
);
1859 struct buffer_head
*next
= bh
->b_this_page
;
1860 if (buffer_async_write(bh
)) {
1861 clear_buffer_dirty(bh
);
1862 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1863 inode
->i_write_hint
, wbc
);
1867 } while (bh
!= head
);
1871 EXPORT_SYMBOL(__block_write_full_page
);
1874 * If a page has any new buffers, zero them out here, and mark them uptodate
1875 * and dirty so they'll be written out (in order to prevent uninitialised
1876 * block data from leaking). And clear the new bit.
1878 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1880 unsigned int block_start
, block_end
;
1881 struct buffer_head
*head
, *bh
;
1883 BUG_ON(!PageLocked(page
));
1884 if (!page_has_buffers(page
))
1887 bh
= head
= page_buffers(page
);
1890 block_end
= block_start
+ bh
->b_size
;
1892 if (buffer_new(bh
)) {
1893 if (block_end
> from
&& block_start
< to
) {
1894 if (!PageUptodate(page
)) {
1895 unsigned start
, size
;
1897 start
= max(from
, block_start
);
1898 size
= min(to
, block_end
) - start
;
1900 zero_user(page
, start
, size
);
1901 set_buffer_uptodate(bh
);
1904 clear_buffer_new(bh
);
1905 mark_buffer_dirty(bh
);
1909 block_start
= block_end
;
1910 bh
= bh
->b_this_page
;
1911 } while (bh
!= head
);
1913 EXPORT_SYMBOL(page_zero_new_buffers
);
1916 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1917 struct iomap
*iomap
)
1919 loff_t offset
= block
<< inode
->i_blkbits
;
1921 bh
->b_bdev
= iomap
->bdev
;
1924 * Block points to offset in file we need to map, iomap contains
1925 * the offset at which the map starts. If the map ends before the
1926 * current block, then do not map the buffer and let the caller
1929 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1931 switch (iomap
->type
) {
1934 * If the buffer is not up to date or beyond the current EOF,
1935 * we need to mark it as new to ensure sub-block zeroing is
1936 * executed if necessary.
1938 if (!buffer_uptodate(bh
) ||
1939 (offset
>= i_size_read(inode
)))
1942 case IOMAP_DELALLOC
:
1943 if (!buffer_uptodate(bh
) ||
1944 (offset
>= i_size_read(inode
)))
1946 set_buffer_uptodate(bh
);
1947 set_buffer_mapped(bh
);
1948 set_buffer_delay(bh
);
1950 case IOMAP_UNWRITTEN
:
1952 * For unwritten regions, we always need to ensure that regions
1953 * in the block we are not writing to are zeroed. Mark the
1954 * buffer as new to ensure this.
1957 set_buffer_unwritten(bh
);
1960 if ((iomap
->flags
& IOMAP_F_NEW
) ||
1961 offset
>= i_size_read(inode
))
1963 bh
->b_blocknr
= (iomap
->addr
+ offset
- iomap
->offset
) >>
1965 set_buffer_mapped(bh
);
1970 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1971 get_block_t
*get_block
, struct iomap
*iomap
)
1973 unsigned from
= pos
& (PAGE_SIZE
- 1);
1974 unsigned to
= from
+ len
;
1975 struct inode
*inode
= page
->mapping
->host
;
1976 unsigned block_start
, block_end
;
1979 unsigned blocksize
, bbits
;
1980 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1982 BUG_ON(!PageLocked(page
));
1983 BUG_ON(from
> PAGE_SIZE
);
1984 BUG_ON(to
> PAGE_SIZE
);
1987 head
= create_page_buffers(page
, inode
, 0);
1988 blocksize
= head
->b_size
;
1989 bbits
= block_size_bits(blocksize
);
1991 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1993 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1994 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1995 block_end
= block_start
+ blocksize
;
1996 if (block_end
<= from
|| block_start
>= to
) {
1997 if (PageUptodate(page
)) {
1998 if (!buffer_uptodate(bh
))
1999 set_buffer_uptodate(bh
);
2004 clear_buffer_new(bh
);
2005 if (!buffer_mapped(bh
)) {
2006 WARN_ON(bh
->b_size
!= blocksize
);
2008 err
= get_block(inode
, block
, bh
, 1);
2012 iomap_to_bh(inode
, block
, bh
, iomap
);
2015 if (buffer_new(bh
)) {
2016 clean_bdev_bh_alias(bh
);
2017 if (PageUptodate(page
)) {
2018 clear_buffer_new(bh
);
2019 set_buffer_uptodate(bh
);
2020 mark_buffer_dirty(bh
);
2023 if (block_end
> to
|| block_start
< from
)
2024 zero_user_segments(page
,
2030 if (PageUptodate(page
)) {
2031 if (!buffer_uptodate(bh
))
2032 set_buffer_uptodate(bh
);
2035 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
2036 !buffer_unwritten(bh
) &&
2037 (block_start
< from
|| block_end
> to
)) {
2038 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2043 * If we issued read requests - let them complete.
2045 while(wait_bh
> wait
) {
2046 wait_on_buffer(*--wait_bh
);
2047 if (!buffer_uptodate(*wait_bh
))
2051 page_zero_new_buffers(page
, from
, to
);
2055 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2056 get_block_t
*get_block
)
2058 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2060 EXPORT_SYMBOL(__block_write_begin
);
2062 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2063 unsigned from
, unsigned to
)
2065 unsigned block_start
, block_end
;
2068 struct buffer_head
*bh
, *head
;
2070 bh
= head
= page_buffers(page
);
2071 blocksize
= bh
->b_size
;
2075 block_end
= block_start
+ blocksize
;
2076 if (block_end
<= from
|| block_start
>= to
) {
2077 if (!buffer_uptodate(bh
))
2080 set_buffer_uptodate(bh
);
2081 mark_buffer_dirty(bh
);
2083 clear_buffer_new(bh
);
2085 block_start
= block_end
;
2086 bh
= bh
->b_this_page
;
2087 } while (bh
!= head
);
2090 * If this is a partial write which happened to make all buffers
2091 * uptodate then we can optimize away a bogus readpage() for
2092 * the next read(). Here we 'discover' whether the page went
2093 * uptodate as a result of this (potentially partial) write.
2096 SetPageUptodate(page
);
2101 * block_write_begin takes care of the basic task of block allocation and
2102 * bringing partial write blocks uptodate first.
2104 * The filesystem needs to handle block truncation upon failure.
2106 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2107 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2109 pgoff_t index
= pos
>> PAGE_SHIFT
;
2113 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2117 status
= __block_write_begin(page
, pos
, len
, get_block
);
2118 if (unlikely(status
)) {
2127 EXPORT_SYMBOL(block_write_begin
);
2129 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2130 loff_t pos
, unsigned len
, unsigned copied
,
2131 struct page
*page
, void *fsdata
)
2133 struct inode
*inode
= mapping
->host
;
2136 start
= pos
& (PAGE_SIZE
- 1);
2138 if (unlikely(copied
< len
)) {
2140 * The buffers that were written will now be uptodate, so we
2141 * don't have to worry about a readpage reading them and
2142 * overwriting a partial write. However if we have encountered
2143 * a short write and only partially written into a buffer, it
2144 * will not be marked uptodate, so a readpage might come in and
2145 * destroy our partial write.
2147 * Do the simplest thing, and just treat any short write to a
2148 * non uptodate page as a zero-length write, and force the
2149 * caller to redo the whole thing.
2151 if (!PageUptodate(page
))
2154 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2156 flush_dcache_page(page
);
2158 /* This could be a short (even 0-length) commit */
2159 __block_commit_write(inode
, page
, start
, start
+copied
);
2163 EXPORT_SYMBOL(block_write_end
);
2165 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2166 loff_t pos
, unsigned len
, unsigned copied
,
2167 struct page
*page
, void *fsdata
)
2169 struct inode
*inode
= mapping
->host
;
2170 loff_t old_size
= inode
->i_size
;
2171 bool i_size_changed
= false;
2173 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2176 * No need to use i_size_read() here, the i_size cannot change under us
2177 * because we hold i_rwsem.
2179 * But it's important to update i_size while still holding page lock:
2180 * page writeout could otherwise come in and zero beyond i_size.
2182 if (pos
+ copied
> inode
->i_size
) {
2183 i_size_write(inode
, pos
+ copied
);
2184 i_size_changed
= true;
2191 pagecache_isize_extended(inode
, old_size
, pos
);
2193 * Don't mark the inode dirty under page lock. First, it unnecessarily
2194 * makes the holding time of page lock longer. Second, it forces lock
2195 * ordering of page lock and transaction start for journaling
2199 mark_inode_dirty(inode
);
2202 EXPORT_SYMBOL(generic_write_end
);
2205 * block_is_partially_uptodate checks whether buffers within a page are
2208 * Returns true if all buffers which correspond to a file portion
2209 * we want to read are uptodate.
2211 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2212 unsigned long count
)
2214 unsigned block_start
, block_end
, blocksize
;
2216 struct buffer_head
*bh
, *head
;
2219 if (!page_has_buffers(page
))
2222 head
= page_buffers(page
);
2223 blocksize
= head
->b_size
;
2224 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2226 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2232 block_end
= block_start
+ blocksize
;
2233 if (block_end
> from
&& block_start
< to
) {
2234 if (!buffer_uptodate(bh
)) {
2238 if (block_end
>= to
)
2241 block_start
= block_end
;
2242 bh
= bh
->b_this_page
;
2243 } while (bh
!= head
);
2247 EXPORT_SYMBOL(block_is_partially_uptodate
);
2250 * Generic "read page" function for block devices that have the normal
2251 * get_block functionality. This is most of the block device filesystems.
2252 * Reads the page asynchronously --- the unlock_buffer() and
2253 * set/clear_buffer_uptodate() functions propagate buffer state into the
2254 * page struct once IO has completed.
2256 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2258 struct inode
*inode
= page
->mapping
->host
;
2259 sector_t iblock
, lblock
;
2260 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2261 unsigned int blocksize
, bbits
;
2263 int fully_mapped
= 1;
2265 head
= create_page_buffers(page
, inode
, 0);
2266 blocksize
= head
->b_size
;
2267 bbits
= block_size_bits(blocksize
);
2269 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2270 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2276 if (buffer_uptodate(bh
))
2279 if (!buffer_mapped(bh
)) {
2283 if (iblock
< lblock
) {
2284 WARN_ON(bh
->b_size
!= blocksize
);
2285 err
= get_block(inode
, iblock
, bh
, 0);
2289 if (!buffer_mapped(bh
)) {
2290 zero_user(page
, i
* blocksize
, blocksize
);
2292 set_buffer_uptodate(bh
);
2296 * get_block() might have updated the buffer
2299 if (buffer_uptodate(bh
))
2303 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2306 SetPageMappedToDisk(page
);
2310 * All buffers are uptodate - we can set the page uptodate
2311 * as well. But not if get_block() returned an error.
2313 if (!PageError(page
))
2314 SetPageUptodate(page
);
2319 /* Stage two: lock the buffers */
2320 for (i
= 0; i
< nr
; i
++) {
2323 mark_buffer_async_read(bh
);
2327 * Stage 3: start the IO. Check for uptodateness
2328 * inside the buffer lock in case another process reading
2329 * the underlying blockdev brought it uptodate (the sct fix).
2331 for (i
= 0; i
< nr
; i
++) {
2333 if (buffer_uptodate(bh
))
2334 end_buffer_async_read(bh
, 1);
2336 submit_bh(REQ_OP_READ
, 0, bh
);
2340 EXPORT_SYMBOL(block_read_full_page
);
2342 /* utility function for filesystems that need to do work on expanding
2343 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2344 * deal with the hole.
2346 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2348 struct address_space
*mapping
= inode
->i_mapping
;
2353 err
= inode_newsize_ok(inode
, size
);
2357 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2358 AOP_FLAG_CONT_EXPAND
, &page
, &fsdata
);
2362 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2368 EXPORT_SYMBOL(generic_cont_expand_simple
);
2370 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2371 loff_t pos
, loff_t
*bytes
)
2373 struct inode
*inode
= mapping
->host
;
2374 unsigned int blocksize
= i_blocksize(inode
);
2377 pgoff_t index
, curidx
;
2379 unsigned zerofrom
, offset
, len
;
2382 index
= pos
>> PAGE_SHIFT
;
2383 offset
= pos
& ~PAGE_MASK
;
2385 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2386 zerofrom
= curpos
& ~PAGE_MASK
;
2387 if (zerofrom
& (blocksize
-1)) {
2388 *bytes
|= (blocksize
-1);
2391 len
= PAGE_SIZE
- zerofrom
;
2393 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2397 zero_user(page
, zerofrom
, len
);
2398 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2405 balance_dirty_pages_ratelimited(mapping
);
2407 if (fatal_signal_pending(current
)) {
2413 /* page covers the boundary, find the boundary offset */
2414 if (index
== curidx
) {
2415 zerofrom
= curpos
& ~PAGE_MASK
;
2416 /* if we will expand the thing last block will be filled */
2417 if (offset
<= zerofrom
) {
2420 if (zerofrom
& (blocksize
-1)) {
2421 *bytes
|= (blocksize
-1);
2424 len
= offset
- zerofrom
;
2426 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2430 zero_user(page
, zerofrom
, len
);
2431 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2443 * For moronic filesystems that do not allow holes in file.
2444 * We may have to extend the file.
2446 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2447 loff_t pos
, unsigned len
, unsigned flags
,
2448 struct page
**pagep
, void **fsdata
,
2449 get_block_t
*get_block
, loff_t
*bytes
)
2451 struct inode
*inode
= mapping
->host
;
2452 unsigned int blocksize
= i_blocksize(inode
);
2453 unsigned int zerofrom
;
2456 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2460 zerofrom
= *bytes
& ~PAGE_MASK
;
2461 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2462 *bytes
|= (blocksize
-1);
2466 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2468 EXPORT_SYMBOL(cont_write_begin
);
2470 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2472 struct inode
*inode
= page
->mapping
->host
;
2473 __block_commit_write(inode
,page
,from
,to
);
2476 EXPORT_SYMBOL(block_commit_write
);
2479 * block_page_mkwrite() is not allowed to change the file size as it gets
2480 * called from a page fault handler when a page is first dirtied. Hence we must
2481 * be careful to check for EOF conditions here. We set the page up correctly
2482 * for a written page which means we get ENOSPC checking when writing into
2483 * holes and correct delalloc and unwritten extent mapping on filesystems that
2484 * support these features.
2486 * We are not allowed to take the i_mutex here so we have to play games to
2487 * protect against truncate races as the page could now be beyond EOF. Because
2488 * truncate writes the inode size before removing pages, once we have the
2489 * page lock we can determine safely if the page is beyond EOF. If it is not
2490 * beyond EOF, then the page is guaranteed safe against truncation until we
2493 * Direct callers of this function should protect against filesystem freezing
2494 * using sb_start_pagefault() - sb_end_pagefault() functions.
2496 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2497 get_block_t get_block
)
2499 struct page
*page
= vmf
->page
;
2500 struct inode
*inode
= file_inode(vma
->vm_file
);
2506 size
= i_size_read(inode
);
2507 if ((page
->mapping
!= inode
->i_mapping
) ||
2508 (page_offset(page
) > size
)) {
2509 /* We overload EFAULT to mean page got truncated */
2514 /* page is wholly or partially inside EOF */
2515 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2516 end
= size
& ~PAGE_MASK
;
2520 ret
= __block_write_begin(page
, 0, end
, get_block
);
2522 ret
= block_commit_write(page
, 0, end
);
2524 if (unlikely(ret
< 0))
2526 set_page_dirty(page
);
2527 wait_for_stable_page(page
);
2533 EXPORT_SYMBOL(block_page_mkwrite
);
2536 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2537 * immediately, while under the page lock. So it needs a special end_io
2538 * handler which does not touch the bh after unlocking it.
2540 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2542 __end_buffer_read_notouch(bh
, uptodate
);
2546 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2547 * the page (converting it to circular linked list and taking care of page
2550 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2552 struct buffer_head
*bh
;
2554 BUG_ON(!PageLocked(page
));
2556 spin_lock(&page
->mapping
->private_lock
);
2559 if (PageDirty(page
))
2560 set_buffer_dirty(bh
);
2561 if (!bh
->b_this_page
)
2562 bh
->b_this_page
= head
;
2563 bh
= bh
->b_this_page
;
2564 } while (bh
!= head
);
2565 attach_page_buffers(page
, head
);
2566 spin_unlock(&page
->mapping
->private_lock
);
2570 * On entry, the page is fully not uptodate.
2571 * On exit the page is fully uptodate in the areas outside (from,to)
2572 * The filesystem needs to handle block truncation upon failure.
2574 int nobh_write_begin(struct address_space
*mapping
,
2575 loff_t pos
, unsigned len
, unsigned flags
,
2576 struct page
**pagep
, void **fsdata
,
2577 get_block_t
*get_block
)
2579 struct inode
*inode
= mapping
->host
;
2580 const unsigned blkbits
= inode
->i_blkbits
;
2581 const unsigned blocksize
= 1 << blkbits
;
2582 struct buffer_head
*head
, *bh
;
2586 unsigned block_in_page
;
2587 unsigned block_start
, block_end
;
2588 sector_t block_in_file
;
2591 int is_mapped_to_disk
= 1;
2593 index
= pos
>> PAGE_SHIFT
;
2594 from
= pos
& (PAGE_SIZE
- 1);
2597 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2603 if (page_has_buffers(page
)) {
2604 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2610 if (PageMappedToDisk(page
))
2614 * Allocate buffers so that we can keep track of state, and potentially
2615 * attach them to the page if an error occurs. In the common case of
2616 * no error, they will just be freed again without ever being attached
2617 * to the page (which is all OK, because we're under the page lock).
2619 * Be careful: the buffer linked list is a NULL terminated one, rather
2620 * than the circular one we're used to.
2622 head
= alloc_page_buffers(page
, blocksize
, false);
2628 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2631 * We loop across all blocks in the page, whether or not they are
2632 * part of the affected region. This is so we can discover if the
2633 * page is fully mapped-to-disk.
2635 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2636 block_start
< PAGE_SIZE
;
2637 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2640 block_end
= block_start
+ blocksize
;
2643 if (block_start
>= to
)
2645 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2649 if (!buffer_mapped(bh
))
2650 is_mapped_to_disk
= 0;
2652 clean_bdev_bh_alias(bh
);
2653 if (PageUptodate(page
)) {
2654 set_buffer_uptodate(bh
);
2657 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2658 zero_user_segments(page
, block_start
, from
,
2662 if (buffer_uptodate(bh
))
2663 continue; /* reiserfs does this */
2664 if (block_start
< from
|| block_end
> to
) {
2666 bh
->b_end_io
= end_buffer_read_nobh
;
2667 submit_bh(REQ_OP_READ
, 0, bh
);
2674 * The page is locked, so these buffers are protected from
2675 * any VM or truncate activity. Hence we don't need to care
2676 * for the buffer_head refcounts.
2678 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2680 if (!buffer_uptodate(bh
))
2687 if (is_mapped_to_disk
)
2688 SetPageMappedToDisk(page
);
2690 *fsdata
= head
; /* to be released by nobh_write_end */
2697 * Error recovery is a bit difficult. We need to zero out blocks that
2698 * were newly allocated, and dirty them to ensure they get written out.
2699 * Buffers need to be attached to the page at this point, otherwise
2700 * the handling of potential IO errors during writeout would be hard
2701 * (could try doing synchronous writeout, but what if that fails too?)
2703 attach_nobh_buffers(page
, head
);
2704 page_zero_new_buffers(page
, from
, to
);
2713 EXPORT_SYMBOL(nobh_write_begin
);
2715 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2716 loff_t pos
, unsigned len
, unsigned copied
,
2717 struct page
*page
, void *fsdata
)
2719 struct inode
*inode
= page
->mapping
->host
;
2720 struct buffer_head
*head
= fsdata
;
2721 struct buffer_head
*bh
;
2722 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2724 if (unlikely(copied
< len
) && head
)
2725 attach_nobh_buffers(page
, head
);
2726 if (page_has_buffers(page
))
2727 return generic_write_end(file
, mapping
, pos
, len
,
2728 copied
, page
, fsdata
);
2730 SetPageUptodate(page
);
2731 set_page_dirty(page
);
2732 if (pos
+copied
> inode
->i_size
) {
2733 i_size_write(inode
, pos
+copied
);
2734 mark_inode_dirty(inode
);
2742 head
= head
->b_this_page
;
2743 free_buffer_head(bh
);
2748 EXPORT_SYMBOL(nobh_write_end
);
2751 * nobh_writepage() - based on block_full_write_page() except
2752 * that it tries to operate without attaching bufferheads to
2755 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2756 struct writeback_control
*wbc
)
2758 struct inode
* const inode
= page
->mapping
->host
;
2759 loff_t i_size
= i_size_read(inode
);
2760 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2764 /* Is the page fully inside i_size? */
2765 if (page
->index
< end_index
)
2768 /* Is the page fully outside i_size? (truncate in progress) */
2769 offset
= i_size
& (PAGE_SIZE
-1);
2770 if (page
->index
>= end_index
+1 || !offset
) {
2772 * The page may have dirty, unmapped buffers. For example,
2773 * they may have been added in ext3_writepage(). Make them
2774 * freeable here, so the page does not leak.
2777 /* Not really sure about this - do we need this ? */
2778 if (page
->mapping
->a_ops
->invalidatepage
)
2779 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2782 return 0; /* don't care */
2786 * The page straddles i_size. It must be zeroed out on each and every
2787 * writepage invocation because it may be mmapped. "A file is mapped
2788 * in multiples of the page size. For a file that is not a multiple of
2789 * the page size, the remaining memory is zeroed when mapped, and
2790 * writes to that region are not written out to the file."
2792 zero_user_segment(page
, offset
, PAGE_SIZE
);
2794 ret
= mpage_writepage(page
, get_block
, wbc
);
2796 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2797 end_buffer_async_write
);
2800 EXPORT_SYMBOL(nobh_writepage
);
2802 int nobh_truncate_page(struct address_space
*mapping
,
2803 loff_t from
, get_block_t
*get_block
)
2805 pgoff_t index
= from
>> PAGE_SHIFT
;
2806 unsigned offset
= from
& (PAGE_SIZE
-1);
2809 unsigned length
, pos
;
2810 struct inode
*inode
= mapping
->host
;
2812 struct buffer_head map_bh
;
2815 blocksize
= i_blocksize(inode
);
2816 length
= offset
& (blocksize
- 1);
2818 /* Block boundary? Nothing to do */
2822 length
= blocksize
- length
;
2823 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2825 page
= grab_cache_page(mapping
, index
);
2830 if (page_has_buffers(page
)) {
2834 return block_truncate_page(mapping
, from
, get_block
);
2837 /* Find the buffer that contains "offset" */
2839 while (offset
>= pos
) {
2844 map_bh
.b_size
= blocksize
;
2846 err
= get_block(inode
, iblock
, &map_bh
, 0);
2849 /* unmapped? It's a hole - nothing to do */
2850 if (!buffer_mapped(&map_bh
))
2853 /* Ok, it's mapped. Make sure it's up-to-date */
2854 if (!PageUptodate(page
)) {
2855 err
= mapping
->a_ops
->readpage(NULL
, page
);
2861 if (!PageUptodate(page
)) {
2865 if (page_has_buffers(page
))
2868 zero_user(page
, offset
, length
);
2869 set_page_dirty(page
);
2878 EXPORT_SYMBOL(nobh_truncate_page
);
2880 int block_truncate_page(struct address_space
*mapping
,
2881 loff_t from
, get_block_t
*get_block
)
2883 pgoff_t index
= from
>> PAGE_SHIFT
;
2884 unsigned offset
= from
& (PAGE_SIZE
-1);
2887 unsigned length
, pos
;
2888 struct inode
*inode
= mapping
->host
;
2890 struct buffer_head
*bh
;
2893 blocksize
= i_blocksize(inode
);
2894 length
= offset
& (blocksize
- 1);
2896 /* Block boundary? Nothing to do */
2900 length
= blocksize
- length
;
2901 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2903 page
= grab_cache_page(mapping
, index
);
2908 if (!page_has_buffers(page
))
2909 create_empty_buffers(page
, blocksize
, 0);
2911 /* Find the buffer that contains "offset" */
2912 bh
= page_buffers(page
);
2914 while (offset
>= pos
) {
2915 bh
= bh
->b_this_page
;
2921 if (!buffer_mapped(bh
)) {
2922 WARN_ON(bh
->b_size
!= blocksize
);
2923 err
= get_block(inode
, iblock
, bh
, 0);
2926 /* unmapped? It's a hole - nothing to do */
2927 if (!buffer_mapped(bh
))
2931 /* Ok, it's mapped. Make sure it's up-to-date */
2932 if (PageUptodate(page
))
2933 set_buffer_uptodate(bh
);
2935 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2937 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2939 /* Uhhuh. Read error. Complain and punt. */
2940 if (!buffer_uptodate(bh
))
2944 zero_user(page
, offset
, length
);
2945 mark_buffer_dirty(bh
);
2954 EXPORT_SYMBOL(block_truncate_page
);
2957 * The generic ->writepage function for buffer-backed address_spaces
2959 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2960 struct writeback_control
*wbc
)
2962 struct inode
* const inode
= page
->mapping
->host
;
2963 loff_t i_size
= i_size_read(inode
);
2964 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2967 /* Is the page fully inside i_size? */
2968 if (page
->index
< end_index
)
2969 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2970 end_buffer_async_write
);
2972 /* Is the page fully outside i_size? (truncate in progress) */
2973 offset
= i_size
& (PAGE_SIZE
-1);
2974 if (page
->index
>= end_index
+1 || !offset
) {
2976 * The page may have dirty, unmapped buffers. For example,
2977 * they may have been added in ext3_writepage(). Make them
2978 * freeable here, so the page does not leak.
2980 do_invalidatepage(page
, 0, PAGE_SIZE
);
2982 return 0; /* don't care */
2986 * The page straddles i_size. It must be zeroed out on each and every
2987 * writepage invocation because it may be mmapped. "A file is mapped
2988 * in multiples of the page size. For a file that is not a multiple of
2989 * the page size, the remaining memory is zeroed when mapped, and
2990 * writes to that region are not written out to the file."
2992 zero_user_segment(page
, offset
, PAGE_SIZE
);
2993 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2994 end_buffer_async_write
);
2996 EXPORT_SYMBOL(block_write_full_page
);
2998 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2999 get_block_t
*get_block
)
3001 struct inode
*inode
= mapping
->host
;
3002 struct buffer_head tmp
= {
3003 .b_size
= i_blocksize(inode
),
3006 get_block(inode
, block
, &tmp
, 0);
3007 return tmp
.b_blocknr
;
3009 EXPORT_SYMBOL(generic_block_bmap
);
3011 static void end_bio_bh_io_sync(struct bio
*bio
)
3013 struct buffer_head
*bh
= bio
->bi_private
;
3015 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
3016 set_bit(BH_Quiet
, &bh
->b_state
);
3018 bh
->b_end_io(bh
, !bio
->bi_status
);
3023 * This allows us to do IO even on the odd last sectors
3024 * of a device, even if the block size is some multiple
3025 * of the physical sector size.
3027 * We'll just truncate the bio to the size of the device,
3028 * and clear the end of the buffer head manually.
3030 * Truly out-of-range accesses will turn into actual IO
3031 * errors, this only handles the "we need to be able to
3032 * do IO at the final sector" case.
3034 void guard_bio_eod(struct bio
*bio
)
3037 struct hd_struct
*part
;
3040 part
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
3042 maxsector
= part_nr_sects_read(part
);
3044 maxsector
= get_capacity(bio
->bi_disk
);
3051 * If the *whole* IO is past the end of the device,
3052 * let it through, and the IO layer will turn it into
3055 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3058 maxsector
-= bio
->bi_iter
.bi_sector
;
3059 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
3062 bio_truncate(bio
, maxsector
<< 9);
3065 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3066 enum rw_hint write_hint
, struct writeback_control
*wbc
)
3070 BUG_ON(!buffer_locked(bh
));
3071 BUG_ON(!buffer_mapped(bh
));
3072 BUG_ON(!bh
->b_end_io
);
3073 BUG_ON(buffer_delay(bh
));
3074 BUG_ON(buffer_unwritten(bh
));
3077 * Only clear out a write error when rewriting
3079 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3080 clear_buffer_write_io_error(bh
);
3083 * from here on down, it's all bio -- do the initial mapping,
3084 * submit_bio -> generic_make_request may further map this bio around
3086 bio
= bio_alloc(GFP_NOIO
, 1);
3088 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3089 bio_set_dev(bio
, bh
->b_bdev
);
3090 bio
->bi_write_hint
= write_hint
;
3092 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3093 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3095 bio
->bi_end_io
= end_bio_bh_io_sync
;
3096 bio
->bi_private
= bh
;
3098 if (buffer_meta(bh
))
3099 op_flags
|= REQ_META
;
3100 if (buffer_prio(bh
))
3101 op_flags
|= REQ_PRIO
;
3102 bio_set_op_attrs(bio
, op
, op_flags
);
3104 /* Take care of bh's that straddle the end of the device */
3108 wbc_init_bio(wbc
, bio
);
3109 wbc_account_cgroup_owner(wbc
, bh
->b_page
, bh
->b_size
);
3116 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3118 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3120 EXPORT_SYMBOL(submit_bh
);
3123 * ll_rw_block: low-level access to block devices (DEPRECATED)
3124 * @op: whether to %READ or %WRITE
3125 * @op_flags: req_flag_bits
3126 * @nr: number of &struct buffer_heads in the array
3127 * @bhs: array of pointers to &struct buffer_head
3129 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3130 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3131 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3134 * This function drops any buffer that it cannot get a lock on (with the
3135 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3136 * request, and any buffer that appears to be up-to-date when doing read
3137 * request. Further it marks as clean buffers that are processed for
3138 * writing (the buffer cache won't assume that they are actually clean
3139 * until the buffer gets unlocked).
3141 * ll_rw_block sets b_end_io to simple completion handler that marks
3142 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3145 * All of the buffers must be for the same device, and must also be a
3146 * multiple of the current approved size for the device.
3148 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3152 for (i
= 0; i
< nr
; i
++) {
3153 struct buffer_head
*bh
= bhs
[i
];
3155 if (!trylock_buffer(bh
))
3158 if (test_clear_buffer_dirty(bh
)) {
3159 bh
->b_end_io
= end_buffer_write_sync
;
3161 submit_bh(op
, op_flags
, bh
);
3165 if (!buffer_uptodate(bh
)) {
3166 bh
->b_end_io
= end_buffer_read_sync
;
3168 submit_bh(op
, op_flags
, bh
);
3175 EXPORT_SYMBOL(ll_rw_block
);
3177 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3180 if (!test_clear_buffer_dirty(bh
)) {
3184 bh
->b_end_io
= end_buffer_write_sync
;
3186 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3188 EXPORT_SYMBOL(write_dirty_buffer
);
3191 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3192 * and then start new I/O and then wait upon it. The caller must have a ref on
3195 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3199 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3201 if (test_clear_buffer_dirty(bh
)) {
3203 bh
->b_end_io
= end_buffer_write_sync
;
3204 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3206 if (!ret
&& !buffer_uptodate(bh
))
3213 EXPORT_SYMBOL(__sync_dirty_buffer
);
3215 int sync_dirty_buffer(struct buffer_head
*bh
)
3217 return __sync_dirty_buffer(bh
, REQ_SYNC
);
3219 EXPORT_SYMBOL(sync_dirty_buffer
);
3222 * try_to_free_buffers() checks if all the buffers on this particular page
3223 * are unused, and releases them if so.
3225 * Exclusion against try_to_free_buffers may be obtained by either
3226 * locking the page or by holding its mapping's private_lock.
3228 * If the page is dirty but all the buffers are clean then we need to
3229 * be sure to mark the page clean as well. This is because the page
3230 * may be against a block device, and a later reattachment of buffers
3231 * to a dirty page will set *all* buffers dirty. Which would corrupt
3232 * filesystem data on the same device.
3234 * The same applies to regular filesystem pages: if all the buffers are
3235 * clean then we set the page clean and proceed. To do that, we require
3236 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3239 * try_to_free_buffers() is non-blocking.
3241 static inline int buffer_busy(struct buffer_head
*bh
)
3243 return atomic_read(&bh
->b_count
) |
3244 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3248 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3250 struct buffer_head
*head
= page_buffers(page
);
3251 struct buffer_head
*bh
;
3255 if (buffer_busy(bh
))
3257 bh
= bh
->b_this_page
;
3258 } while (bh
!= head
);
3261 struct buffer_head
*next
= bh
->b_this_page
;
3263 if (bh
->b_assoc_map
)
3264 __remove_assoc_queue(bh
);
3266 } while (bh
!= head
);
3267 *buffers_to_free
= head
;
3268 __clear_page_buffers(page
);
3274 int try_to_free_buffers(struct page
*page
)
3276 struct address_space
* const mapping
= page
->mapping
;
3277 struct buffer_head
*buffers_to_free
= NULL
;
3280 BUG_ON(!PageLocked(page
));
3281 if (PageWriteback(page
))
3284 if (mapping
== NULL
) { /* can this still happen? */
3285 ret
= drop_buffers(page
, &buffers_to_free
);
3289 spin_lock(&mapping
->private_lock
);
3290 ret
= drop_buffers(page
, &buffers_to_free
);
3293 * If the filesystem writes its buffers by hand (eg ext3)
3294 * then we can have clean buffers against a dirty page. We
3295 * clean the page here; otherwise the VM will never notice
3296 * that the filesystem did any IO at all.
3298 * Also, during truncate, discard_buffer will have marked all
3299 * the page's buffers clean. We discover that here and clean
3302 * private_lock must be held over this entire operation in order
3303 * to synchronise against __set_page_dirty_buffers and prevent the
3304 * dirty bit from being lost.
3307 cancel_dirty_page(page
);
3308 spin_unlock(&mapping
->private_lock
);
3310 if (buffers_to_free
) {
3311 struct buffer_head
*bh
= buffers_to_free
;
3314 struct buffer_head
*next
= bh
->b_this_page
;
3315 free_buffer_head(bh
);
3317 } while (bh
!= buffers_to_free
);
3321 EXPORT_SYMBOL(try_to_free_buffers
);
3324 * There are no bdflush tunables left. But distributions are
3325 * still running obsolete flush daemons, so we terminate them here.
3327 * Use of bdflush() is deprecated and will be removed in a future kernel.
3328 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3330 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3332 static int msg_count
;
3334 if (!capable(CAP_SYS_ADMIN
))
3337 if (msg_count
< 5) {
3340 "warning: process `%s' used the obsolete bdflush"
3341 " system call\n", current
->comm
);
3342 printk(KERN_INFO
"Fix your initscripts?\n");
3351 * Buffer-head allocation
3353 static struct kmem_cache
*bh_cachep __read_mostly
;
3356 * Once the number of bh's in the machine exceeds this level, we start
3357 * stripping them in writeback.
3359 static unsigned long max_buffer_heads
;
3361 int buffer_heads_over_limit
;
3363 struct bh_accounting
{
3364 int nr
; /* Number of live bh's */
3365 int ratelimit
; /* Limit cacheline bouncing */
3368 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3370 static void recalc_bh_state(void)
3375 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3377 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3378 for_each_online_cpu(i
)
3379 tot
+= per_cpu(bh_accounting
, i
).nr
;
3380 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3383 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3385 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3387 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3389 __this_cpu_inc(bh_accounting
.nr
);
3395 EXPORT_SYMBOL(alloc_buffer_head
);
3397 void free_buffer_head(struct buffer_head
*bh
)
3399 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3400 kmem_cache_free(bh_cachep
, bh
);
3402 __this_cpu_dec(bh_accounting
.nr
);
3406 EXPORT_SYMBOL(free_buffer_head
);
3408 static int buffer_exit_cpu_dead(unsigned int cpu
)
3411 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3413 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3417 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3418 per_cpu(bh_accounting
, cpu
).nr
= 0;
3423 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3424 * @bh: struct buffer_head
3426 * Return true if the buffer is up-to-date and false,
3427 * with the buffer locked, if not.
3429 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3431 if (!buffer_uptodate(bh
)) {
3433 if (!buffer_uptodate(bh
))
3439 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3442 * bh_submit_read - Submit a locked buffer for reading
3443 * @bh: struct buffer_head
3445 * Returns zero on success and -EIO on error.
3447 int bh_submit_read(struct buffer_head
*bh
)
3449 BUG_ON(!buffer_locked(bh
));
3451 if (buffer_uptodate(bh
)) {
3457 bh
->b_end_io
= end_buffer_read_sync
;
3458 submit_bh(REQ_OP_READ
, 0, bh
);
3460 if (buffer_uptodate(bh
))
3464 EXPORT_SYMBOL(bh_submit_read
);
3466 void __init
buffer_init(void)
3468 unsigned long nrpages
;
3471 bh_cachep
= kmem_cache_create("buffer_head",
3472 sizeof(struct buffer_head
), 0,
3473 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3478 * Limit the bh occupancy to 10% of ZONE_NORMAL
3480 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3481 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3482 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3483 NULL
, buffer_exit_cpu_dead
);