1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * eCryptfs: Linux filesystem encryption layer
5 * Copyright (C) 1997-2004 Erez Zadok
6 * Copyright (C) 2001-2004 Stony Brook University
7 * Copyright (C) 2004-2007 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
34 * @dst: Buffer to take the bytes from src hex; must be at least of
36 * @src: Buffer to be converted from a hex string representation to raw value
37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
39 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
44 for (x
= 0; x
< dst_size
; x
++) {
46 tmp
[1] = src
[x
* 2 + 1];
47 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
51 static int ecryptfs_hash_digest(struct crypto_shash
*tfm
,
52 char *src
, int len
, char *dst
)
54 SHASH_DESC_ON_STACK(desc
, tfm
);
58 err
= crypto_shash_digest(desc
, src
, len
, dst
);
59 shash_desc_zero(desc
);
64 * ecryptfs_calculate_md5 - calculates the md5 of @src
65 * @dst: Pointer to 16 bytes of allocated memory
66 * @crypt_stat: Pointer to crypt_stat struct for the current inode
67 * @src: Data to be md5'd
68 * @len: Length of @src
70 * Uses the allocated crypto context that crypt_stat references to
71 * generate the MD5 sum of the contents of src.
73 static int ecryptfs_calculate_md5(char *dst
,
74 struct ecryptfs_crypt_stat
*crypt_stat
,
77 struct crypto_shash
*tfm
;
80 tfm
= crypt_stat
->hash_tfm
;
81 rc
= ecryptfs_hash_digest(tfm
, src
, len
, dst
);
84 "%s: Error computing crypto hash; rc = [%d]\n",
92 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
94 char *chaining_modifier
)
96 int cipher_name_len
= strlen(cipher_name
);
97 int chaining_modifier_len
= strlen(chaining_modifier
);
98 int algified_name_len
;
101 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
102 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
103 if (!(*algified_name
)) {
107 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
108 chaining_modifier
, cipher_name
);
116 * @iv: destination for the derived iv vale
117 * @crypt_stat: Pointer to crypt_stat struct for the current inode
118 * @offset: Offset of the extent whose IV we are to derive
120 * Generate the initialization vector from the given root IV and page
123 * Returns zero on success; non-zero on error.
125 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
129 char dst
[MD5_DIGEST_SIZE
];
130 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
132 if (unlikely(ecryptfs_verbosity
> 0)) {
133 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
134 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
136 /* TODO: It is probably secure to just cast the least
137 * significant bits of the root IV into an unsigned long and
138 * add the offset to that rather than go through all this
139 * hashing business. -Halcrow */
140 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
141 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
142 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
143 if (unlikely(ecryptfs_verbosity
> 0)) {
144 ecryptfs_printk(KERN_DEBUG
, "source:\n");
145 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
147 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
148 (crypt_stat
->iv_bytes
+ 16));
150 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
151 "MD5 while generating IV for a page\n");
154 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
155 if (unlikely(ecryptfs_verbosity
> 0)) {
156 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
157 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
164 * ecryptfs_init_crypt_stat
165 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
167 * Initialize the crypt_stat structure.
169 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
171 struct crypto_shash
*tfm
;
174 tfm
= crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH
, 0, 0);
177 ecryptfs_printk(KERN_ERR
, "Error attempting to "
178 "allocate crypto context; rc = [%d]\n",
183 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
184 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
185 mutex_init(&crypt_stat
->keysig_list_mutex
);
186 mutex_init(&crypt_stat
->cs_mutex
);
187 mutex_init(&crypt_stat
->cs_tfm_mutex
);
188 crypt_stat
->hash_tfm
= tfm
;
189 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
195 * ecryptfs_destroy_crypt_stat
196 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
198 * Releases all memory associated with a crypt_stat struct.
200 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
202 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
204 crypto_free_skcipher(crypt_stat
->tfm
);
205 crypto_free_shash(crypt_stat
->hash_tfm
);
206 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
207 &crypt_stat
->keysig_list
, crypt_stat_list
) {
208 list_del(&key_sig
->crypt_stat_list
);
209 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
211 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
214 void ecryptfs_destroy_mount_crypt_stat(
215 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
217 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
219 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
221 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
222 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
223 &mount_crypt_stat
->global_auth_tok_list
,
224 mount_crypt_stat_list
) {
225 list_del(&auth_tok
->mount_crypt_stat_list
);
226 if (!(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
227 key_put(auth_tok
->global_auth_tok_key
);
228 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
230 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
231 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
235 * virt_to_scatterlist
236 * @addr: Virtual address
237 * @size: Size of data; should be an even multiple of the block size
238 * @sg: Pointer to scatterlist array; set to NULL to obtain only
239 * the number of scatterlist structs required in array
240 * @sg_size: Max array size
242 * Fills in a scatterlist array with page references for a passed
245 * Returns the number of scatterlist structs in array used
247 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
253 int remainder_of_page
;
255 sg_init_table(sg
, sg_size
);
257 while (size
> 0 && i
< sg_size
) {
258 pg
= virt_to_page(addr
);
259 offset
= offset_in_page(addr
);
260 sg_set_page(&sg
[i
], pg
, 0, offset
);
261 remainder_of_page
= PAGE_SIZE
- offset
;
262 if (size
>= remainder_of_page
) {
263 sg
[i
].length
= remainder_of_page
;
264 addr
+= remainder_of_page
;
265 size
-= remainder_of_page
;
278 struct extent_crypt_result
{
279 struct completion completion
;
283 static void extent_crypt_complete(struct crypto_async_request
*req
, int rc
)
285 struct extent_crypt_result
*ecr
= req
->data
;
287 if (rc
== -EINPROGRESS
)
291 complete(&ecr
->completion
);
296 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
297 * @dst_sg: Destination of the data after performing the crypto operation
298 * @src_sg: Data to be encrypted or decrypted
299 * @size: Length of data
301 * @op: ENCRYPT or DECRYPT to indicate the desired operation
303 * Returns the number of bytes encrypted or decrypted; negative value on error
305 static int crypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
306 struct scatterlist
*dst_sg
,
307 struct scatterlist
*src_sg
, int size
,
308 unsigned char *iv
, int op
)
310 struct skcipher_request
*req
= NULL
;
311 struct extent_crypt_result ecr
;
314 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
315 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
316 if (unlikely(ecryptfs_verbosity
> 0)) {
317 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
318 crypt_stat
->key_size
);
319 ecryptfs_dump_hex(crypt_stat
->key
,
320 crypt_stat
->key_size
);
323 init_completion(&ecr
.completion
);
325 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
326 req
= skcipher_request_alloc(crypt_stat
->tfm
, GFP_NOFS
);
328 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
333 skcipher_request_set_callback(req
,
334 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
335 extent_crypt_complete
, &ecr
);
336 /* Consider doing this once, when the file is opened */
337 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
338 rc
= crypto_skcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
339 crypt_stat
->key_size
);
341 ecryptfs_printk(KERN_ERR
,
342 "Error setting key; rc = [%d]\n",
344 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
348 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
350 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
351 skcipher_request_set_crypt(req
, src_sg
, dst_sg
, size
, iv
);
352 rc
= op
== ENCRYPT
? crypto_skcipher_encrypt(req
) :
353 crypto_skcipher_decrypt(req
);
354 if (rc
== -EINPROGRESS
|| rc
== -EBUSY
) {
355 struct extent_crypt_result
*ecr
= req
->base
.data
;
357 wait_for_completion(&ecr
->completion
);
359 reinit_completion(&ecr
->completion
);
362 skcipher_request_free(req
);
367 * lower_offset_for_page
369 * Convert an eCryptfs page index into a lower byte offset
371 static loff_t
lower_offset_for_page(struct ecryptfs_crypt_stat
*crypt_stat
,
374 return ecryptfs_lower_header_size(crypt_stat
) +
375 ((loff_t
)page
->index
<< PAGE_SHIFT
);
380 * @crypt_stat: crypt_stat containing cryptographic context for the
381 * encryption operation
382 * @dst_page: The page to write the result into
383 * @src_page: The page to read from
384 * @extent_offset: Page extent offset for use in generating IV
385 * @op: ENCRYPT or DECRYPT to indicate the desired operation
387 * Encrypts or decrypts one extent of data.
389 * Return zero on success; non-zero otherwise
391 static int crypt_extent(struct ecryptfs_crypt_stat
*crypt_stat
,
392 struct page
*dst_page
,
393 struct page
*src_page
,
394 unsigned long extent_offset
, int op
)
396 pgoff_t page_index
= op
== ENCRYPT
? src_page
->index
: dst_page
->index
;
398 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
399 struct scatterlist src_sg
, dst_sg
;
400 size_t extent_size
= crypt_stat
->extent_size
;
403 extent_base
= (((loff_t
)page_index
) * (PAGE_SIZE
/ extent_size
));
404 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
405 (extent_base
+ extent_offset
));
407 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
408 "extent [0x%.16llx]; rc = [%d]\n",
409 (unsigned long long)(extent_base
+ extent_offset
), rc
);
413 sg_init_table(&src_sg
, 1);
414 sg_init_table(&dst_sg
, 1);
416 sg_set_page(&src_sg
, src_page
, extent_size
,
417 extent_offset
* extent_size
);
418 sg_set_page(&dst_sg
, dst_page
, extent_size
,
419 extent_offset
* extent_size
);
421 rc
= crypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, extent_size
,
424 printk(KERN_ERR
"%s: Error attempting to crypt page with "
425 "page_index = [%ld], extent_offset = [%ld]; "
426 "rc = [%d]\n", __func__
, page_index
, extent_offset
, rc
);
435 * ecryptfs_encrypt_page
436 * @page: Page mapped from the eCryptfs inode for the file; contains
437 * decrypted content that needs to be encrypted (to a temporary
438 * page; not in place) and written out to the lower file
440 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
441 * that eCryptfs pages may straddle the lower pages -- for instance,
442 * if the file was created on a machine with an 8K page size
443 * (resulting in an 8K header), and then the file is copied onto a
444 * host with a 32K page size, then when reading page 0 of the eCryptfs
445 * file, 24K of page 0 of the lower file will be read and decrypted,
446 * and then 8K of page 1 of the lower file will be read and decrypted.
448 * Returns zero on success; negative on error
450 int ecryptfs_encrypt_page(struct page
*page
)
452 struct inode
*ecryptfs_inode
;
453 struct ecryptfs_crypt_stat
*crypt_stat
;
454 char *enc_extent_virt
;
455 struct page
*enc_extent_page
= NULL
;
456 loff_t extent_offset
;
460 ecryptfs_inode
= page
->mapping
->host
;
462 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
463 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
464 enc_extent_page
= alloc_page(GFP_USER
);
465 if (!enc_extent_page
) {
467 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
468 "encrypted extent\n");
472 for (extent_offset
= 0;
473 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
475 rc
= crypt_extent(crypt_stat
, enc_extent_page
, page
,
476 extent_offset
, ENCRYPT
);
478 printk(KERN_ERR
"%s: Error encrypting extent; "
479 "rc = [%d]\n", __func__
, rc
);
484 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
485 enc_extent_virt
= kmap(enc_extent_page
);
486 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
, lower_offset
,
488 kunmap(enc_extent_page
);
490 ecryptfs_printk(KERN_ERR
,
491 "Error attempting to write lower page; rc = [%d]\n",
497 if (enc_extent_page
) {
498 __free_page(enc_extent_page
);
504 * ecryptfs_decrypt_page
505 * @page: Page mapped from the eCryptfs inode for the file; data read
506 * and decrypted from the lower file will be written into this
509 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
510 * that eCryptfs pages may straddle the lower pages -- for instance,
511 * if the file was created on a machine with an 8K page size
512 * (resulting in an 8K header), and then the file is copied onto a
513 * host with a 32K page size, then when reading page 0 of the eCryptfs
514 * file, 24K of page 0 of the lower file will be read and decrypted,
515 * and then 8K of page 1 of the lower file will be read and decrypted.
517 * Returns zero on success; negative on error
519 int ecryptfs_decrypt_page(struct page
*page
)
521 struct inode
*ecryptfs_inode
;
522 struct ecryptfs_crypt_stat
*crypt_stat
;
524 unsigned long extent_offset
;
528 ecryptfs_inode
= page
->mapping
->host
;
530 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
531 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
533 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
534 page_virt
= kmap(page
);
535 rc
= ecryptfs_read_lower(page_virt
, lower_offset
, PAGE_SIZE
,
539 ecryptfs_printk(KERN_ERR
,
540 "Error attempting to read lower page; rc = [%d]\n",
545 for (extent_offset
= 0;
546 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
548 rc
= crypt_extent(crypt_stat
, page
, page
,
549 extent_offset
, DECRYPT
);
551 printk(KERN_ERR
"%s: Error encrypting extent; "
552 "rc = [%d]\n", __func__
, rc
);
560 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
563 * ecryptfs_init_crypt_ctx
564 * @crypt_stat: Uninitialized crypt stats structure
566 * Initialize the crypto context.
568 * TODO: Performance: Keep a cache of initialized cipher contexts;
569 * only init if needed
571 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
576 ecryptfs_printk(KERN_DEBUG
,
577 "Initializing cipher [%s]; strlen = [%d]; "
578 "key_size_bits = [%zd]\n",
579 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
580 crypt_stat
->key_size
<< 3);
581 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
582 if (crypt_stat
->tfm
) {
586 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
587 crypt_stat
->cipher
, "cbc");
590 crypt_stat
->tfm
= crypto_alloc_skcipher(full_alg_name
, 0, 0);
591 if (IS_ERR(crypt_stat
->tfm
)) {
592 rc
= PTR_ERR(crypt_stat
->tfm
);
593 crypt_stat
->tfm
= NULL
;
594 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
595 "Error initializing cipher [%s]\n",
599 crypto_skcipher_set_flags(crypt_stat
->tfm
,
600 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS
);
603 kfree(full_alg_name
);
605 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
609 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
613 crypt_stat
->extent_mask
= 0xFFFFFFFF;
614 crypt_stat
->extent_shift
= 0;
615 if (crypt_stat
->extent_size
== 0)
617 extent_size_tmp
= crypt_stat
->extent_size
;
618 while ((extent_size_tmp
& 0x01) == 0) {
619 extent_size_tmp
>>= 1;
620 crypt_stat
->extent_mask
<<= 1;
621 crypt_stat
->extent_shift
++;
625 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
627 /* Default values; may be overwritten as we are parsing the
629 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
630 set_extent_mask_and_shift(crypt_stat
);
631 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
632 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
633 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
635 if (PAGE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
636 crypt_stat
->metadata_size
=
637 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
639 crypt_stat
->metadata_size
= PAGE_SIZE
;
644 * ecryptfs_compute_root_iv
647 * On error, sets the root IV to all 0's.
649 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
652 char dst
[MD5_DIGEST_SIZE
];
654 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
655 BUG_ON(crypt_stat
->iv_bytes
<= 0);
656 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
658 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
659 "cannot generate root IV\n");
662 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
663 crypt_stat
->key_size
);
665 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
666 "MD5 while generating root IV\n");
669 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
672 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
673 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
678 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
680 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
681 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
682 ecryptfs_compute_root_iv(crypt_stat
);
683 if (unlikely(ecryptfs_verbosity
> 0)) {
684 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
685 ecryptfs_dump_hex(crypt_stat
->key
,
686 crypt_stat
->key_size
);
691 * ecryptfs_copy_mount_wide_flags_to_inode_flags
692 * @crypt_stat: The inode's cryptographic context
693 * @mount_crypt_stat: The mount point's cryptographic context
695 * This function propagates the mount-wide flags to individual inode
698 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
699 struct ecryptfs_crypt_stat
*crypt_stat
,
700 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
702 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
703 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
704 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
705 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
706 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
707 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
708 if (mount_crypt_stat
->flags
709 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
710 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
711 else if (mount_crypt_stat
->flags
712 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
713 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
717 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
718 struct ecryptfs_crypt_stat
*crypt_stat
,
719 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
721 struct ecryptfs_global_auth_tok
*global_auth_tok
;
724 mutex_lock(&crypt_stat
->keysig_list_mutex
);
725 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
727 list_for_each_entry(global_auth_tok
,
728 &mount_crypt_stat
->global_auth_tok_list
,
729 mount_crypt_stat_list
) {
730 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
732 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
734 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
740 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
741 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
746 * ecryptfs_set_default_crypt_stat_vals
747 * @crypt_stat: The inode's cryptographic context
748 * @mount_crypt_stat: The mount point's cryptographic context
750 * Default values in the event that policy does not override them.
752 static void ecryptfs_set_default_crypt_stat_vals(
753 struct ecryptfs_crypt_stat
*crypt_stat
,
754 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
756 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
758 ecryptfs_set_default_sizes(crypt_stat
);
759 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
760 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
761 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
762 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
763 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
767 * ecryptfs_new_file_context
768 * @ecryptfs_inode: The eCryptfs inode
770 * If the crypto context for the file has not yet been established,
771 * this is where we do that. Establishing a new crypto context
772 * involves the following decisions:
773 * - What cipher to use?
774 * - What set of authentication tokens to use?
775 * Here we just worry about getting enough information into the
776 * authentication tokens so that we know that they are available.
777 * We associate the available authentication tokens with the new file
778 * via the set of signatures in the crypt_stat struct. Later, when
779 * the headers are actually written out, we may again defer to
780 * userspace to perform the encryption of the session key; for the
781 * foreseeable future, this will be the case with public key packets.
783 * Returns zero on success; non-zero otherwise
785 int ecryptfs_new_file_context(struct inode
*ecryptfs_inode
)
787 struct ecryptfs_crypt_stat
*crypt_stat
=
788 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
789 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
790 &ecryptfs_superblock_to_private(
791 ecryptfs_inode
->i_sb
)->mount_crypt_stat
;
795 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
796 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
797 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
799 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
802 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
803 "to the inode key sigs; rc = [%d]\n", rc
);
807 strlen(mount_crypt_stat
->global_default_cipher_name
);
808 memcpy(crypt_stat
->cipher
,
809 mount_crypt_stat
->global_default_cipher_name
,
811 crypt_stat
->cipher
[cipher_name_len
] = '\0';
812 crypt_stat
->key_size
=
813 mount_crypt_stat
->global_default_cipher_key_size
;
814 ecryptfs_generate_new_key(crypt_stat
);
815 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
817 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
818 "context for cipher [%s]: rc = [%d]\n",
819 crypt_stat
->cipher
, rc
);
825 * ecryptfs_validate_marker - check for the ecryptfs marker
826 * @data: The data block in which to check
828 * Returns zero if marker found; -EINVAL if not found
830 static int ecryptfs_validate_marker(char *data
)
834 m_1
= get_unaligned_be32(data
);
835 m_2
= get_unaligned_be32(data
+ 4);
836 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
838 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
839 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
840 MAGIC_ECRYPTFS_MARKER
);
841 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
842 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
846 struct ecryptfs_flag_map_elem
{
851 /* Add support for additional flags by adding elements here. */
852 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
853 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
854 {0x00000002, ECRYPTFS_ENCRYPTED
},
855 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
856 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
860 * ecryptfs_process_flags
861 * @crypt_stat: The cryptographic context
862 * @page_virt: Source data to be parsed
863 * @bytes_read: Updated with the number of bytes read
865 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
866 char *page_virt
, int *bytes_read
)
871 flags
= get_unaligned_be32(page_virt
);
872 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_flag_map
); i
++)
873 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
874 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
876 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
877 /* Version is in top 8 bits of the 32-bit flag vector */
878 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
883 * write_ecryptfs_marker
884 * @page_virt: The pointer to in a page to begin writing the marker
885 * @written: Number of bytes written
887 * Marker = 0x3c81b7f5
889 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
893 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
894 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
895 put_unaligned_be32(m_1
, page_virt
);
896 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
897 put_unaligned_be32(m_2
, page_virt
);
898 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
901 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
902 struct ecryptfs_crypt_stat
*crypt_stat
,
908 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_flag_map
); i
++)
909 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
910 flags
|= ecryptfs_flag_map
[i
].file_flag
;
911 /* Version is in top 8 bits of the 32-bit flag vector */
912 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
913 put_unaligned_be32(flags
, page_virt
);
917 struct ecryptfs_cipher_code_str_map_elem
{
922 /* Add support for additional ciphers by adding elements here. The
923 * cipher_code is whatever OpenPGP applications use to identify the
924 * ciphers. List in order of probability. */
925 static struct ecryptfs_cipher_code_str_map_elem
926 ecryptfs_cipher_code_str_map
[] = {
927 {"aes",RFC2440_CIPHER_AES_128
},
928 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
929 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
930 {"cast5", RFC2440_CIPHER_CAST_5
},
931 {"twofish", RFC2440_CIPHER_TWOFISH
},
932 {"cast6", RFC2440_CIPHER_CAST_6
},
933 {"aes", RFC2440_CIPHER_AES_192
},
934 {"aes", RFC2440_CIPHER_AES_256
}
938 * ecryptfs_code_for_cipher_string
939 * @cipher_name: The string alias for the cipher
940 * @key_bytes: Length of key in bytes; used for AES code selection
942 * Returns zero on no match, or the cipher code on match
944 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
948 struct ecryptfs_cipher_code_str_map_elem
*map
=
949 ecryptfs_cipher_code_str_map
;
951 if (strcmp(cipher_name
, "aes") == 0) {
954 code
= RFC2440_CIPHER_AES_128
;
957 code
= RFC2440_CIPHER_AES_192
;
960 code
= RFC2440_CIPHER_AES_256
;
963 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
964 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
965 code
= map
[i
].cipher_code
;
973 * ecryptfs_cipher_code_to_string
974 * @str: Destination to write out the cipher name
975 * @cipher_code: The code to convert to cipher name string
977 * Returns zero on success
979 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
985 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
986 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
987 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
988 if (str
[0] == '\0') {
989 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
990 "[%d]\n", cipher_code
);
996 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
998 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
999 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1002 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
1006 else if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1008 rc
= ecryptfs_validate_marker(marker
);
1010 ecryptfs_i_size_init(file_size
, inode
);
1015 ecryptfs_write_header_metadata(char *virt
,
1016 struct ecryptfs_crypt_stat
*crypt_stat
,
1019 u32 header_extent_size
;
1020 u16 num_header_extents_at_front
;
1022 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1023 num_header_extents_at_front
=
1024 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1025 put_unaligned_be32(header_extent_size
, virt
);
1027 put_unaligned_be16(num_header_extents_at_front
, virt
);
1031 struct kmem_cache
*ecryptfs_header_cache
;
1034 * ecryptfs_write_headers_virt
1035 * @page_virt: The virtual address to write the headers to
1036 * @max: The size of memory allocated at page_virt
1037 * @size: Set to the number of bytes written by this function
1038 * @crypt_stat: The cryptographic context
1039 * @ecryptfs_dentry: The eCryptfs dentry
1044 * Octets 0-7: Unencrypted file size (big-endian)
1045 * Octets 8-15: eCryptfs special marker
1046 * Octets 16-19: Flags
1047 * Octet 16: File format version number (between 0 and 255)
1048 * Octets 17-18: Reserved
1049 * Octet 19: Bit 1 (lsb): Reserved
1051 * Bits 3-8: Reserved
1052 * Octets 20-23: Header extent size (big-endian)
1053 * Octets 24-25: Number of header extents at front of file
1055 * Octet 26: Begin RFC 2440 authentication token packet set
1057 * Lower data (CBC encrypted)
1059 * Lower data (CBC encrypted)
1062 * Returns zero on success
1064 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1066 struct ecryptfs_crypt_stat
*crypt_stat
,
1067 struct dentry
*ecryptfs_dentry
)
1073 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1074 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1076 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1079 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1082 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1083 ecryptfs_dentry
, &written
,
1086 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1087 "set; rc = [%d]\n", rc
);
1096 ecryptfs_write_metadata_to_contents(struct inode
*ecryptfs_inode
,
1097 char *virt
, size_t virt_len
)
1101 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
,
1104 printk(KERN_ERR
"%s: Error attempting to write header "
1105 "information to lower file; rc = [%d]\n", __func__
, rc
);
1112 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1113 struct inode
*ecryptfs_inode
,
1114 char *page_virt
, size_t size
)
1117 struct dentry
*lower_dentry
= ecryptfs_dentry_to_lower(ecryptfs_dentry
);
1118 struct inode
*lower_inode
= d_inode(lower_dentry
);
1120 if (!(lower_inode
->i_opflags
& IOP_XATTR
)) {
1125 inode_lock(lower_inode
);
1126 rc
= __vfs_setxattr(lower_dentry
, lower_inode
, ECRYPTFS_XATTR_NAME
,
1127 page_virt
, size
, 0);
1128 if (!rc
&& ecryptfs_inode
)
1129 fsstack_copy_attr_all(ecryptfs_inode
, lower_inode
);
1130 inode_unlock(lower_inode
);
1135 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1140 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1142 return (unsigned long) page_address(page
);
1147 * ecryptfs_write_metadata
1148 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1149 * @ecryptfs_inode: The newly created eCryptfs inode
1151 * Write the file headers out. This will likely involve a userspace
1152 * callout, in which the session key is encrypted with one or more
1153 * public keys and/or the passphrase necessary to do the encryption is
1154 * retrieved via a prompt. Exactly what happens at this point should
1155 * be policy-dependent.
1157 * Returns zero on success; non-zero on error
1159 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1160 struct inode
*ecryptfs_inode
)
1162 struct ecryptfs_crypt_stat
*crypt_stat
=
1163 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1170 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1171 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1172 printk(KERN_ERR
"Key is invalid; bailing out\n");
1177 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1182 virt_len
= crypt_stat
->metadata_size
;
1183 order
= get_order(virt_len
);
1184 /* Released in this function */
1185 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1187 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1191 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1192 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1195 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1199 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1200 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, ecryptfs_inode
,
1203 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_inode
, virt
,
1206 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1207 "rc = [%d]\n", __func__
, rc
);
1211 free_pages((unsigned long)virt
, order
);
1216 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1217 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1218 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1219 char *virt
, int *bytes_read
,
1220 int validate_header_size
)
1223 u32 header_extent_size
;
1224 u16 num_header_extents_at_front
;
1226 header_extent_size
= get_unaligned_be32(virt
);
1227 virt
+= sizeof(__be32
);
1228 num_header_extents_at_front
= get_unaligned_be16(virt
);
1229 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1230 * (size_t)header_extent_size
));
1231 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1232 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1233 && (crypt_stat
->metadata_size
1234 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1236 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1237 crypt_stat
->metadata_size
);
1243 * set_default_header_data
1244 * @crypt_stat: The cryptographic context
1246 * For version 0 file format; this function is only for backwards
1247 * compatibility for files created with the prior versions of
1250 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1252 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1255 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1257 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1258 struct ecryptfs_crypt_stat
*crypt_stat
;
1261 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1263 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1264 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1265 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1266 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1267 file_size
+= crypt_stat
->metadata_size
;
1269 file_size
= get_unaligned_be64(page_virt
);
1270 i_size_write(inode
, (loff_t
)file_size
);
1271 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1275 * ecryptfs_read_headers_virt
1276 * @page_virt: The virtual address into which to read the headers
1277 * @crypt_stat: The cryptographic context
1278 * @ecryptfs_dentry: The eCryptfs dentry
1279 * @validate_header_size: Whether to validate the header size while reading
1281 * Read/parse the header data. The header format is detailed in the
1282 * comment block for the ecryptfs_write_headers_virt() function.
1284 * Returns zero on success
1286 static int ecryptfs_read_headers_virt(char *page_virt
,
1287 struct ecryptfs_crypt_stat
*crypt_stat
,
1288 struct dentry
*ecryptfs_dentry
,
1289 int validate_header_size
)
1295 ecryptfs_set_default_sizes(crypt_stat
);
1296 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1297 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1298 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1299 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1302 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1303 ecryptfs_i_size_init(page_virt
, d_inode(ecryptfs_dentry
));
1304 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1305 ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
), &bytes_read
);
1306 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1307 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1308 "file version [%d] is supported by this "
1309 "version of eCryptfs\n",
1310 crypt_stat
->file_version
,
1311 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1315 offset
+= bytes_read
;
1316 if (crypt_stat
->file_version
>= 1) {
1317 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1318 &bytes_read
, validate_header_size
);
1320 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1321 "metadata; rc = [%d]\n", rc
);
1323 offset
+= bytes_read
;
1325 set_default_header_data(crypt_stat
);
1326 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1333 * ecryptfs_read_xattr_region
1334 * @page_virt: The vitual address into which to read the xattr data
1335 * @ecryptfs_inode: The eCryptfs inode
1337 * Attempts to read the crypto metadata from the extended attribute
1338 * region of the lower file.
1340 * Returns zero on success; non-zero on error
1342 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1344 struct dentry
*lower_dentry
=
1345 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_path
.dentry
;
1349 size
= ecryptfs_getxattr_lower(lower_dentry
,
1350 ecryptfs_inode_to_lower(ecryptfs_inode
),
1351 ECRYPTFS_XATTR_NAME
,
1352 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1354 if (unlikely(ecryptfs_verbosity
> 0))
1355 printk(KERN_INFO
"Error attempting to read the [%s] "
1356 "xattr from the lower file; return value = "
1357 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1365 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1366 struct inode
*inode
)
1368 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1369 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1372 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1373 ecryptfs_inode_to_lower(inode
),
1374 ECRYPTFS_XATTR_NAME
, file_size
,
1375 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1378 else if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1380 rc
= ecryptfs_validate_marker(marker
);
1382 ecryptfs_i_size_init(file_size
, inode
);
1387 * ecryptfs_read_metadata
1389 * Common entry point for reading file metadata. From here, we could
1390 * retrieve the header information from the header region of the file,
1391 * the xattr region of the file, or some other repository that is
1392 * stored separately from the file itself. The current implementation
1393 * supports retrieving the metadata information from the file contents
1394 * and from the xattr region.
1396 * Returns zero if valid headers found and parsed; non-zero otherwise
1398 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1402 struct inode
*ecryptfs_inode
= d_inode(ecryptfs_dentry
);
1403 struct ecryptfs_crypt_stat
*crypt_stat
=
1404 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1405 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1406 &ecryptfs_superblock_to_private(
1407 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1409 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1411 /* Read the first page from the underlying file */
1412 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1417 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1420 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1422 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1424 /* metadata is not in the file header, so try xattrs */
1425 memset(page_virt
, 0, PAGE_SIZE
);
1426 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1428 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1429 "file header region or xattr region, inode %lu\n",
1430 ecryptfs_inode
->i_ino
);
1434 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1436 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1438 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1439 "file xattr region either, inode %lu\n",
1440 ecryptfs_inode
->i_ino
);
1443 if (crypt_stat
->mount_crypt_stat
->flags
1444 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1445 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1447 printk(KERN_WARNING
"Attempt to access file with "
1448 "crypto metadata only in the extended attribute "
1449 "region, but eCryptfs was mounted without "
1450 "xattr support enabled. eCryptfs will not treat "
1451 "this like an encrypted file, inode %lu\n",
1452 ecryptfs_inode
->i_ino
);
1458 memset(page_virt
, 0, PAGE_SIZE
);
1459 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1465 * ecryptfs_encrypt_filename - encrypt filename
1467 * CBC-encrypts the filename. We do not want to encrypt the same
1468 * filename with the same key and IV, which may happen with hard
1469 * links, so we prepend random bits to each filename.
1471 * Returns zero on success; non-zero otherwise
1474 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1475 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1479 filename
->encrypted_filename
= NULL
;
1480 filename
->encrypted_filename_size
= 0;
1481 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1482 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
1484 size_t remaining_bytes
;
1486 rc
= ecryptfs_write_tag_70_packet(
1488 &filename
->encrypted_filename_size
,
1489 mount_crypt_stat
, NULL
,
1490 filename
->filename_size
);
1492 printk(KERN_ERR
"%s: Error attempting to get packet "
1493 "size for tag 72; rc = [%d]\n", __func__
,
1495 filename
->encrypted_filename_size
= 0;
1498 filename
->encrypted_filename
=
1499 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1500 if (!filename
->encrypted_filename
) {
1504 remaining_bytes
= filename
->encrypted_filename_size
;
1505 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1510 filename
->filename_size
);
1512 printk(KERN_ERR
"%s: Error attempting to generate "
1513 "tag 70 packet; rc = [%d]\n", __func__
,
1515 kfree(filename
->encrypted_filename
);
1516 filename
->encrypted_filename
= NULL
;
1517 filename
->encrypted_filename_size
= 0;
1520 filename
->encrypted_filename_size
= packet_size
;
1522 printk(KERN_ERR
"%s: No support for requested filename "
1523 "encryption method in this release\n", __func__
);
1531 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1532 const char *name
, size_t name_size
)
1536 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1537 if (!(*copied_name
)) {
1541 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1542 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1543 * in printing out the
1546 (*copied_name_size
) = name_size
;
1552 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1553 * @key_tfm: Crypto context for key material, set by this function
1554 * @cipher_name: Name of the cipher
1555 * @key_size: Size of the key in bytes
1557 * Returns zero on success. Any crypto_tfm structs allocated here
1558 * should be released by other functions, such as on a superblock put
1559 * event, regardless of whether this function succeeds for fails.
1562 ecryptfs_process_key_cipher(struct crypto_skcipher
**key_tfm
,
1563 char *cipher_name
, size_t *key_size
)
1565 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1566 char *full_alg_name
= NULL
;
1570 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1572 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1573 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1576 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1580 *key_tfm
= crypto_alloc_skcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1581 if (IS_ERR(*key_tfm
)) {
1582 rc
= PTR_ERR(*key_tfm
);
1583 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1584 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1587 crypto_skcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS
);
1589 *key_size
= crypto_skcipher_max_keysize(*key_tfm
);
1590 get_random_bytes(dummy_key
, *key_size
);
1591 rc
= crypto_skcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1593 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1594 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1600 kfree(full_alg_name
);
1604 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1605 static struct list_head key_tfm_list
;
1606 struct mutex key_tfm_list_mutex
;
1608 int __init
ecryptfs_init_crypto(void)
1610 mutex_init(&key_tfm_list_mutex
);
1611 INIT_LIST_HEAD(&key_tfm_list
);
1616 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1618 * Called only at module unload time
1620 int ecryptfs_destroy_crypto(void)
1622 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1624 mutex_lock(&key_tfm_list_mutex
);
1625 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1627 list_del(&key_tfm
->key_tfm_list
);
1628 crypto_free_skcipher(key_tfm
->key_tfm
);
1629 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1631 mutex_unlock(&key_tfm_list_mutex
);
1636 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1639 struct ecryptfs_key_tfm
*tmp_tfm
;
1642 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1644 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1646 (*key_tfm
) = tmp_tfm
;
1651 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1652 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1653 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1654 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1655 tmp_tfm
->key_size
= key_size
;
1656 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1657 tmp_tfm
->cipher_name
,
1658 &tmp_tfm
->key_size
);
1660 printk(KERN_ERR
"Error attempting to initialize key TFM "
1661 "cipher with name = [%s]; rc = [%d]\n",
1662 tmp_tfm
->cipher_name
, rc
);
1663 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1668 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1674 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1675 * @cipher_name: the name of the cipher to search for
1676 * @key_tfm: set to corresponding tfm if found
1678 * Searches for cached key_tfm matching @cipher_name
1679 * Must be called with &key_tfm_list_mutex held
1680 * Returns 1 if found, with @key_tfm set
1681 * Returns 0 if not found, with @key_tfm set to NULL
1683 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1685 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1687 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1689 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1690 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1692 (*key_tfm
) = tmp_key_tfm
;
1702 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1704 * @tfm: set to cached tfm found, or new tfm created
1705 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1706 * @cipher_name: the name of the cipher to search for and/or add
1708 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1709 * Searches for cached item first, and creates new if not found.
1710 * Returns 0 on success, non-zero if adding new cipher failed
1712 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher
**tfm
,
1713 struct mutex
**tfm_mutex
,
1716 struct ecryptfs_key_tfm
*key_tfm
;
1720 (*tfm_mutex
) = NULL
;
1722 mutex_lock(&key_tfm_list_mutex
);
1723 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1724 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1726 printk(KERN_ERR
"Error adding new key_tfm to list; "
1731 (*tfm
) = key_tfm
->key_tfm
;
1732 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1734 mutex_unlock(&key_tfm_list_mutex
);
1738 /* 64 characters forming a 6-bit target field */
1739 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1742 "klmnopqrstuvwxyz");
1744 /* We could either offset on every reverse map or just pad some 0x00's
1745 * at the front here */
1746 static const unsigned char filename_rev_map
[256] = {
1747 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1748 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1749 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1750 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1751 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1752 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1753 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1754 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1755 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1756 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1757 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1758 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1759 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1760 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1761 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1762 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1766 * ecryptfs_encode_for_filename
1767 * @dst: Destination location for encoded filename
1768 * @dst_size: Size of the encoded filename in bytes
1769 * @src: Source location for the filename to encode
1770 * @src_size: Size of the source in bytes
1772 static void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1773 unsigned char *src
, size_t src_size
)
1776 size_t block_num
= 0;
1777 size_t dst_offset
= 0;
1778 unsigned char last_block
[3];
1780 if (src_size
== 0) {
1784 num_blocks
= (src_size
/ 3);
1785 if ((src_size
% 3) == 0) {
1786 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1789 last_block
[2] = 0x00;
1790 switch (src_size
% 3) {
1792 last_block
[0] = src
[src_size
- 1];
1793 last_block
[1] = 0x00;
1796 last_block
[0] = src
[src_size
- 2];
1797 last_block
[1] = src
[src_size
- 1];
1800 (*dst_size
) = (num_blocks
* 4);
1803 while (block_num
< num_blocks
) {
1804 unsigned char *src_block
;
1805 unsigned char dst_block
[4];
1807 if (block_num
== (num_blocks
- 1))
1808 src_block
= last_block
;
1810 src_block
= &src
[block_num
* 3];
1811 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1812 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1813 | ((src_block
[1] >> 4) & 0x0F));
1814 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
1815 | ((src_block
[2] >> 6) & 0x03));
1816 dst_block
[3] = (src_block
[2] & 0x3F);
1817 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
1818 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
1819 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
1820 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
1827 static size_t ecryptfs_max_decoded_size(size_t encoded_size
)
1829 /* Not exact; conservatively long. Every block of 4
1830 * encoded characters decodes into a block of 3
1831 * decoded characters. This segment of code provides
1832 * the caller with the maximum amount of allocated
1833 * space that @dst will need to point to in a
1834 * subsequent call. */
1835 return ((encoded_size
+ 1) * 3) / 4;
1839 * ecryptfs_decode_from_filename
1840 * @dst: If NULL, this function only sets @dst_size and returns. If
1841 * non-NULL, this function decodes the encoded octets in @src
1842 * into the memory that @dst points to.
1843 * @dst_size: Set to the size of the decoded string.
1844 * @src: The encoded set of octets to decode.
1845 * @src_size: The size of the encoded set of octets to decode.
1848 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
1849 const unsigned char *src
, size_t src_size
)
1851 u8 current_bit_offset
= 0;
1852 size_t src_byte_offset
= 0;
1853 size_t dst_byte_offset
= 0;
1856 (*dst_size
) = ecryptfs_max_decoded_size(src_size
);
1859 while (src_byte_offset
< src_size
) {
1860 unsigned char src_byte
=
1861 filename_rev_map
[(int)src
[src_byte_offset
]];
1863 switch (current_bit_offset
) {
1865 dst
[dst_byte_offset
] = (src_byte
<< 2);
1866 current_bit_offset
= 6;
1869 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
1870 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
1872 current_bit_offset
= 4;
1875 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
1876 dst
[dst_byte_offset
] = (src_byte
<< 6);
1877 current_bit_offset
= 2;
1880 dst
[dst_byte_offset
++] |= (src_byte
);
1881 current_bit_offset
= 0;
1886 (*dst_size
) = dst_byte_offset
;
1892 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1893 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1894 * @name: The plaintext name
1895 * @length: The length of the plaintext
1896 * @encoded_name: The encypted name
1898 * Encrypts and encodes a filename into something that constitutes a
1899 * valid filename for a filesystem, with printable characters.
1901 * We assume that we have a properly initialized crypto context,
1902 * pointed to by crypt_stat->tfm.
1904 * Returns zero on success; non-zero on otherwise
1906 int ecryptfs_encrypt_and_encode_filename(
1907 char **encoded_name
,
1908 size_t *encoded_name_size
,
1909 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
1910 const char *name
, size_t name_size
)
1912 size_t encoded_name_no_prefix_size
;
1915 (*encoded_name
) = NULL
;
1916 (*encoded_name_size
) = 0;
1917 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1918 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
1919 struct ecryptfs_filename
*filename
;
1921 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
1926 filename
->filename
= (char *)name
;
1927 filename
->filename_size
= name_size
;
1928 rc
= ecryptfs_encrypt_filename(filename
, mount_crypt_stat
);
1930 printk(KERN_ERR
"%s: Error attempting to encrypt "
1931 "filename; rc = [%d]\n", __func__
, rc
);
1935 ecryptfs_encode_for_filename(
1936 NULL
, &encoded_name_no_prefix_size
,
1937 filename
->encrypted_filename
,
1938 filename
->encrypted_filename_size
);
1939 if (mount_crypt_stat
1940 && (mount_crypt_stat
->flags
1941 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))
1942 (*encoded_name_size
) =
1943 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1944 + encoded_name_no_prefix_size
);
1946 (*encoded_name_size
) =
1947 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1948 + encoded_name_no_prefix_size
);
1949 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
1950 if (!(*encoded_name
)) {
1952 kfree(filename
->encrypted_filename
);
1956 if (mount_crypt_stat
1957 && (mount_crypt_stat
->flags
1958 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
1959 memcpy((*encoded_name
),
1960 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
1961 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
1962 ecryptfs_encode_for_filename(
1964 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
1965 &encoded_name_no_prefix_size
,
1966 filename
->encrypted_filename
,
1967 filename
->encrypted_filename_size
);
1968 (*encoded_name_size
) =
1969 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1970 + encoded_name_no_prefix_size
);
1971 (*encoded_name
)[(*encoded_name_size
)] = '\0';
1976 printk(KERN_ERR
"%s: Error attempting to encode "
1977 "encrypted filename; rc = [%d]\n", __func__
,
1979 kfree((*encoded_name
));
1980 (*encoded_name
) = NULL
;
1981 (*encoded_name_size
) = 0;
1983 kfree(filename
->encrypted_filename
);
1986 rc
= ecryptfs_copy_filename(encoded_name
,
1994 static bool is_dot_dotdot(const char *name
, size_t name_size
)
1996 if (name_size
== 1 && name
[0] == '.')
1998 else if (name_size
== 2 && name
[0] == '.' && name
[1] == '.')
2005 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2006 * @plaintext_name: The plaintext name
2007 * @plaintext_name_size: The plaintext name size
2008 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2009 * @name: The filename in cipher text
2010 * @name_size: The cipher text name size
2012 * Decrypts and decodes the filename.
2014 * Returns zero on error; non-zero otherwise
2016 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2017 size_t *plaintext_name_size
,
2018 struct super_block
*sb
,
2019 const char *name
, size_t name_size
)
2021 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2022 &ecryptfs_superblock_to_private(sb
)->mount_crypt_stat
;
2024 size_t decoded_name_size
;
2028 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) &&
2029 !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)) {
2030 if (is_dot_dotdot(name
, name_size
)) {
2031 rc
= ecryptfs_copy_filename(plaintext_name
,
2032 plaintext_name_size
,
2037 if (name_size
<= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
||
2038 strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2039 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)) {
2044 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2045 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2046 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2048 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2049 if (!decoded_name
) {
2053 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2055 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2056 plaintext_name_size
,
2062 ecryptfs_printk(KERN_DEBUG
,
2063 "%s: Could not parse tag 70 packet from filename\n",
2068 rc
= ecryptfs_copy_filename(plaintext_name
,
2069 plaintext_name_size
,
2074 kfree(decoded_name
);
2079 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2081 int ecryptfs_set_f_namelen(long *namelen
, long lower_namelen
,
2082 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
2084 struct crypto_skcipher
*tfm
;
2085 struct mutex
*tfm_mutex
;
2086 size_t cipher_blocksize
;
2089 if (!(mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
2090 (*namelen
) = lower_namelen
;
2094 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm
, &tfm_mutex
,
2095 mount_crypt_stat
->global_default_fn_cipher_name
);
2101 mutex_lock(tfm_mutex
);
2102 cipher_blocksize
= crypto_skcipher_blocksize(tfm
);
2103 mutex_unlock(tfm_mutex
);
2105 /* Return an exact amount for the common cases */
2106 if (lower_namelen
== NAME_MAX
2107 && (cipher_blocksize
== 8 || cipher_blocksize
== 16)) {
2108 (*namelen
) = ENC_NAME_MAX_BLOCKLEN_8_OR_16
;
2112 /* Return a safe estimate for the uncommon cases */
2113 (*namelen
) = lower_namelen
;
2114 (*namelen
) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2115 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2116 (*namelen
) = ecryptfs_max_decoded_size(*namelen
) - 3;
2117 (*namelen
) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE
;
2118 (*namelen
) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
;
2119 /* Worst case is that the filename is padded nearly a full block size */
2120 (*namelen
) -= cipher_blocksize
- 1;