1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
6 * Davide Libenzi <davidel@xmailserver.org>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
44 * There are three level of locking required by epoll :
48 * 3) ep->lock (rwlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103 #define EP_UNACTIVE_PTR ((void *) -1L)
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
107 struct epoll_filefd
{
113 * Structure used to track possible nested calls, for too deep recursions
116 struct nested_call_node
{
117 struct list_head llink
;
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
126 struct nested_calls
{
127 struct list_head tasks_call_list
;
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
139 /* RB tree node links this structure to the eventpoll RB tree */
141 /* Used to free the struct epitem */
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink
;
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd
;
157 /* Number of active wait queue attached to poll operations */
160 /* List containing poll wait queues */
161 struct list_head pwqlist
;
163 /* The "container" of this item */
164 struct eventpoll
*ep
;
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink
;
169 /* wakeup_source used when EPOLLWAKEUP is set */
170 struct wakeup_source __rcu
*ws
;
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event
;
177 * This structure is stored inside the "private_data" member of the file
178 * structure and represents the main data structure for the eventpoll
183 * This mutex is used to ensure that files are not removed
184 * while epoll is using them. This is held during the event
185 * collection loop, the file cleanup path, the epoll file exit
186 * code and the ctl operations.
190 /* Wait queue used by sys_epoll_wait() */
191 wait_queue_head_t wq
;
193 /* Wait queue used by file->poll() */
194 wait_queue_head_t poll_wait
;
196 /* List of ready file descriptors */
197 struct list_head rdllist
;
199 /* Lock which protects rdllist and ovflist */
202 /* RB tree root used to store monitored fd structs */
203 struct rb_root_cached rbr
;
206 * This is a single linked list that chains all the "struct epitem" that
207 * happened while transferring ready events to userspace w/out
210 struct epitem
*ovflist
;
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source
*ws
;
215 /* The user that created the eventpoll descriptor */
216 struct user_struct
*user
;
220 /* used to optimize loop detection check */
222 struct list_head visited_list_link
;
224 #ifdef CONFIG_NET_RX_BUSY_POLL
225 /* used to track busy poll napi_id */
226 unsigned int napi_id
;
230 /* Wait structure used by the poll hooks */
231 struct eppoll_entry
{
232 /* List header used to link this structure to the "struct epitem" */
233 struct list_head llink
;
235 /* The "base" pointer is set to the container "struct epitem" */
239 * Wait queue item that will be linked to the target file wait
242 wait_queue_entry_t wait
;
244 /* The wait queue head that linked the "wait" wait queue item */
245 wait_queue_head_t
*whead
;
248 /* Wrapper struct used by poll queueing */
254 /* Used by the ep_send_events() function as callback private data */
255 struct ep_send_events_data
{
257 struct epoll_event __user
*events
;
262 * Configuration options available inside /proc/sys/fs/epoll/
264 /* Maximum number of epoll watched descriptors, per user */
265 static long max_user_watches __read_mostly
;
268 * This mutex is used to serialize ep_free() and eventpoll_release_file().
270 static DEFINE_MUTEX(epmutex
);
272 /* Used to check for epoll file descriptor inclusion loops */
273 static struct nested_calls poll_loop_ncalls
;
275 /* Slab cache used to allocate "struct epitem" */
276 static struct kmem_cache
*epi_cache __read_mostly
;
278 /* Slab cache used to allocate "struct eppoll_entry" */
279 static struct kmem_cache
*pwq_cache __read_mostly
;
281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
282 static LIST_HEAD(visited_list
);
285 * List of files with newly added links, where we may need to limit the number
286 * of emanating paths. Protected by the epmutex.
288 static LIST_HEAD(tfile_check_list
);
292 #include <linux/sysctl.h>
294 static long long_zero
;
295 static long long_max
= LONG_MAX
;
297 struct ctl_table epoll_table
[] = {
299 .procname
= "max_user_watches",
300 .data
= &max_user_watches
,
301 .maxlen
= sizeof(max_user_watches
),
303 .proc_handler
= proc_doulongvec_minmax
,
304 .extra1
= &long_zero
,
309 #endif /* CONFIG_SYSCTL */
311 static const struct file_operations eventpoll_fops
;
313 static inline int is_file_epoll(struct file
*f
)
315 return f
->f_op
== &eventpoll_fops
;
318 /* Setup the structure that is used as key for the RB tree */
319 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
320 struct file
*file
, int fd
)
326 /* Compare RB tree keys */
327 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
328 struct epoll_filefd
*p2
)
330 return (p1
->file
> p2
->file
? +1:
331 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
334 /* Tells us if the item is currently linked */
335 static inline int ep_is_linked(struct epitem
*epi
)
337 return !list_empty(&epi
->rdllink
);
340 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_entry_t
*p
)
342 return container_of(p
, struct eppoll_entry
, wait
);
345 /* Get the "struct epitem" from a wait queue pointer */
346 static inline struct epitem
*ep_item_from_wait(wait_queue_entry_t
*p
)
348 return container_of(p
, struct eppoll_entry
, wait
)->base
;
351 /* Get the "struct epitem" from an epoll queue wrapper */
352 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
354 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
357 /* Initialize the poll safe wake up structure */
358 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
360 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
361 spin_lock_init(&ncalls
->lock
);
365 * ep_events_available - Checks if ready events might be available.
367 * @ep: Pointer to the eventpoll context.
369 * Returns: Returns a value different than zero if ready events are available,
372 static inline int ep_events_available(struct eventpoll
*ep
)
374 return !list_empty_careful(&ep
->rdllist
) ||
375 READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 static bool ep_busy_loop_end(void *p
, unsigned long start_time
)
381 struct eventpoll
*ep
= p
;
383 return ep_events_available(ep
) || busy_loop_timeout(start_time
);
387 * Busy poll if globally on and supporting sockets found && no events,
388 * busy loop will return if need_resched or ep_events_available.
390 * we must do our busy polling with irqs enabled
392 static void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
394 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
396 if ((napi_id
>= MIN_NAPI_ID
) && net_busy_loop_on())
397 napi_busy_loop(napi_id
, nonblock
? NULL
: ep_busy_loop_end
, ep
);
400 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
407 * Set epoll busy poll NAPI ID from sk.
409 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
411 struct eventpoll
*ep
;
412 unsigned int napi_id
;
417 if (!net_busy_loop_on())
420 sock
= sock_from_file(epi
->ffd
.file
, &err
);
428 napi_id
= READ_ONCE(sk
->sk_napi_id
);
431 /* Non-NAPI IDs can be rejected
433 * Nothing to do if we already have this ID
435 if (napi_id
< MIN_NAPI_ID
|| napi_id
== ep
->napi_id
)
438 /* record NAPI ID for use in next busy poll */
439 ep
->napi_id
= napi_id
;
444 static inline void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
448 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
452 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
456 #endif /* CONFIG_NET_RX_BUSY_POLL */
459 * ep_call_nested - Perform a bound (possibly) nested call, by checking
460 * that the recursion limit is not exceeded, and that
461 * the same nested call (by the meaning of same cookie) is
464 * @ncalls: Pointer to the nested_calls structure to be used for this call.
465 * @nproc: Nested call core function pointer.
466 * @priv: Opaque data to be passed to the @nproc callback.
467 * @cookie: Cookie to be used to identify this nested call.
468 * @ctx: This instance context.
470 * Returns: Returns the code returned by the @nproc callback, or -1 if
471 * the maximum recursion limit has been exceeded.
473 static int ep_call_nested(struct nested_calls
*ncalls
,
474 int (*nproc
)(void *, void *, int), void *priv
,
475 void *cookie
, void *ctx
)
477 int error
, call_nests
= 0;
479 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
480 struct nested_call_node
*tncur
;
481 struct nested_call_node tnode
;
483 spin_lock_irqsave(&ncalls
->lock
, flags
);
486 * Try to see if the current task is already inside this wakeup call.
487 * We use a list here, since the population inside this set is always
490 list_for_each_entry(tncur
, lsthead
, llink
) {
491 if (tncur
->ctx
== ctx
&&
492 (tncur
->cookie
== cookie
|| ++call_nests
> EP_MAX_NESTS
)) {
494 * Ops ... loop detected or maximum nest level reached.
495 * We abort this wake by breaking the cycle itself.
502 /* Add the current task and cookie to the list */
504 tnode
.cookie
= cookie
;
505 list_add(&tnode
.llink
, lsthead
);
507 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
509 /* Call the nested function */
510 error
= (*nproc
)(priv
, cookie
, call_nests
);
512 /* Remove the current task from the list */
513 spin_lock_irqsave(&ncalls
->lock
, flags
);
514 list_del(&tnode
.llink
);
516 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
522 * As described in commit 0ccf831cb lockdep: annotate epoll
523 * the use of wait queues used by epoll is done in a very controlled
524 * manner. Wake ups can nest inside each other, but are never done
525 * with the same locking. For example:
528 * efd1 = epoll_create();
529 * efd2 = epoll_create();
530 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
531 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
533 * When a packet arrives to the device underneath "dfd", the net code will
534 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
535 * callback wakeup entry on that queue, and the wake_up() performed by the
536 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
537 * (efd1) notices that it may have some event ready, so it needs to wake up
538 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
539 * that ends up in another wake_up(), after having checked about the
540 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
541 * avoid stack blasting.
543 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
544 * this special case of epoll.
546 #ifdef CONFIG_DEBUG_LOCK_ALLOC
548 static DEFINE_PER_CPU(int, wakeup_nest
);
550 static void ep_poll_safewake(wait_queue_head_t
*wq
)
555 local_irq_save(flags
);
557 subclass
= __this_cpu_read(wakeup_nest
);
558 spin_lock_nested(&wq
->lock
, subclass
+ 1);
559 __this_cpu_inc(wakeup_nest
);
560 wake_up_locked_poll(wq
, POLLIN
);
561 __this_cpu_dec(wakeup_nest
);
562 spin_unlock(&wq
->lock
);
563 local_irq_restore(flags
);
569 static void ep_poll_safewake(wait_queue_head_t
*wq
)
571 wake_up_poll(wq
, EPOLLIN
);
576 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
578 wait_queue_head_t
*whead
;
582 * If it is cleared by POLLFREE, it should be rcu-safe.
583 * If we read NULL we need a barrier paired with
584 * smp_store_release() in ep_poll_callback(), otherwise
585 * we rely on whead->lock.
587 whead
= smp_load_acquire(&pwq
->whead
);
589 remove_wait_queue(whead
, &pwq
->wait
);
594 * This function unregisters poll callbacks from the associated file
595 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
598 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
600 struct list_head
*lsthead
= &epi
->pwqlist
;
601 struct eppoll_entry
*pwq
;
603 while (!list_empty(lsthead
)) {
604 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
606 list_del(&pwq
->llink
);
607 ep_remove_wait_queue(pwq
);
608 kmem_cache_free(pwq_cache
, pwq
);
612 /* call only when ep->mtx is held */
613 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
615 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
618 /* call only when ep->mtx is held */
619 static inline void ep_pm_stay_awake(struct epitem
*epi
)
621 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
627 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
629 return rcu_access_pointer(epi
->ws
) ? true : false;
632 /* call when ep->mtx cannot be held (ep_poll_callback) */
633 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
635 struct wakeup_source
*ws
;
638 ws
= rcu_dereference(epi
->ws
);
645 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
646 * the scan code, to call f_op->poll(). Also allows for
647 * O(NumReady) performance.
649 * @ep: Pointer to the epoll private data structure.
650 * @sproc: Pointer to the scan callback.
651 * @priv: Private opaque data passed to the @sproc callback.
652 * @depth: The current depth of recursive f_op->poll calls.
653 * @ep_locked: caller already holds ep->mtx
655 * Returns: The same integer error code returned by the @sproc callback.
657 static __poll_t
ep_scan_ready_list(struct eventpoll
*ep
,
658 __poll_t (*sproc
)(struct eventpoll
*,
659 struct list_head
*, void *),
660 void *priv
, int depth
, bool ep_locked
)
663 struct epitem
*epi
, *nepi
;
666 lockdep_assert_irqs_enabled();
669 * We need to lock this because we could be hit by
670 * eventpoll_release_file() and epoll_ctl().
674 mutex_lock_nested(&ep
->mtx
, depth
);
677 * Steal the ready list, and re-init the original one to the
678 * empty list. Also, set ep->ovflist to NULL so that events
679 * happening while looping w/out locks, are not lost. We cannot
680 * have the poll callback to queue directly on ep->rdllist,
681 * because we want the "sproc" callback to be able to do it
684 write_lock_irq(&ep
->lock
);
685 list_splice_init(&ep
->rdllist
, &txlist
);
686 WRITE_ONCE(ep
->ovflist
, NULL
);
687 write_unlock_irq(&ep
->lock
);
690 * Now call the callback function.
692 res
= (*sproc
)(ep
, &txlist
, priv
);
694 write_lock_irq(&ep
->lock
);
696 * During the time we spent inside the "sproc" callback, some
697 * other events might have been queued by the poll callback.
698 * We re-insert them inside the main ready-list here.
700 for (nepi
= READ_ONCE(ep
->ovflist
); (epi
= nepi
) != NULL
;
701 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
703 * We need to check if the item is already in the list.
704 * During the "sproc" callback execution time, items are
705 * queued into ->ovflist but the "txlist" might already
706 * contain them, and the list_splice() below takes care of them.
708 if (!ep_is_linked(epi
)) {
710 * ->ovflist is LIFO, so we have to reverse it in order
713 list_add(&epi
->rdllink
, &ep
->rdllist
);
714 ep_pm_stay_awake(epi
);
718 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
719 * releasing the lock, events will be queued in the normal way inside
722 WRITE_ONCE(ep
->ovflist
, EP_UNACTIVE_PTR
);
725 * Quickly re-inject items left on "txlist".
727 list_splice(&txlist
, &ep
->rdllist
);
729 write_unlock_irq(&ep
->lock
);
732 mutex_unlock(&ep
->mtx
);
737 static void epi_rcu_free(struct rcu_head
*head
)
739 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
740 kmem_cache_free(epi_cache
, epi
);
744 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
745 * all the associated resources. Must be called with "mtx" held.
747 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
749 struct file
*file
= epi
->ffd
.file
;
751 lockdep_assert_irqs_enabled();
754 * Removes poll wait queue hooks.
756 ep_unregister_pollwait(ep
, epi
);
758 /* Remove the current item from the list of epoll hooks */
759 spin_lock(&file
->f_lock
);
760 list_del_rcu(&epi
->fllink
);
761 spin_unlock(&file
->f_lock
);
763 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
765 write_lock_irq(&ep
->lock
);
766 if (ep_is_linked(epi
))
767 list_del_init(&epi
->rdllink
);
768 write_unlock_irq(&ep
->lock
);
770 wakeup_source_unregister(ep_wakeup_source(epi
));
772 * At this point it is safe to free the eventpoll item. Use the union
773 * field epi->rcu, since we are trying to minimize the size of
774 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
775 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
776 * use of the rbn field.
778 call_rcu(&epi
->rcu
, epi_rcu_free
);
780 atomic_long_dec(&ep
->user
->epoll_watches
);
785 static void ep_free(struct eventpoll
*ep
)
790 /* We need to release all tasks waiting for these file */
791 if (waitqueue_active(&ep
->poll_wait
))
792 ep_poll_safewake(&ep
->poll_wait
);
795 * We need to lock this because we could be hit by
796 * eventpoll_release_file() while we're freeing the "struct eventpoll".
797 * We do not need to hold "ep->mtx" here because the epoll file
798 * is on the way to be removed and no one has references to it
799 * anymore. The only hit might come from eventpoll_release_file() but
800 * holding "epmutex" is sufficient here.
802 mutex_lock(&epmutex
);
805 * Walks through the whole tree by unregistering poll callbacks.
807 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
808 epi
= rb_entry(rbp
, struct epitem
, rbn
);
810 ep_unregister_pollwait(ep
, epi
);
815 * Walks through the whole tree by freeing each "struct epitem". At this
816 * point we are sure no poll callbacks will be lingering around, and also by
817 * holding "epmutex" we can be sure that no file cleanup code will hit
818 * us during this operation. So we can avoid the lock on "ep->lock".
819 * We do not need to lock ep->mtx, either, we only do it to prevent
822 mutex_lock(&ep
->mtx
);
823 while ((rbp
= rb_first_cached(&ep
->rbr
)) != NULL
) {
824 epi
= rb_entry(rbp
, struct epitem
, rbn
);
828 mutex_unlock(&ep
->mtx
);
830 mutex_unlock(&epmutex
);
831 mutex_destroy(&ep
->mtx
);
833 wakeup_source_unregister(ep
->ws
);
837 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
839 struct eventpoll
*ep
= file
->private_data
;
847 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
849 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
853 * Differs from ep_eventpoll_poll() in that internal callers already have
854 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
855 * is correctly annotated.
857 static __poll_t
ep_item_poll(const struct epitem
*epi
, poll_table
*pt
,
860 struct eventpoll
*ep
;
863 pt
->_key
= epi
->event
.events
;
864 if (!is_file_epoll(epi
->ffd
.file
))
865 return vfs_poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
867 ep
= epi
->ffd
.file
->private_data
;
868 poll_wait(epi
->ffd
.file
, &ep
->poll_wait
, pt
);
869 locked
= pt
&& (pt
->_qproc
== ep_ptable_queue_proc
);
871 return ep_scan_ready_list(epi
->ffd
.file
->private_data
,
872 ep_read_events_proc
, &depth
, depth
,
873 locked
) & epi
->event
.events
;
876 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
879 struct epitem
*epi
, *tmp
;
881 int depth
= *(int *)priv
;
883 init_poll_funcptr(&pt
, NULL
);
886 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
887 if (ep_item_poll(epi
, &pt
, depth
)) {
888 return EPOLLIN
| EPOLLRDNORM
;
891 * Item has been dropped into the ready list by the poll
892 * callback, but it's not actually ready, as far as
893 * caller requested events goes. We can remove it here.
895 __pm_relax(ep_wakeup_source(epi
));
896 list_del_init(&epi
->rdllink
);
903 static __poll_t
ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
905 struct eventpoll
*ep
= file
->private_data
;
908 /* Insert inside our poll wait queue */
909 poll_wait(file
, &ep
->poll_wait
, wait
);
912 * Proceed to find out if wanted events are really available inside
915 return ep_scan_ready_list(ep
, ep_read_events_proc
,
916 &depth
, depth
, false);
919 #ifdef CONFIG_PROC_FS
920 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
922 struct eventpoll
*ep
= f
->private_data
;
925 mutex_lock(&ep
->mtx
);
926 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
927 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
928 struct inode
*inode
= file_inode(epi
->ffd
.file
);
930 seq_printf(m
, "tfd: %8d events: %8x data: %16llx "
931 " pos:%lli ino:%lx sdev:%x\n",
932 epi
->ffd
.fd
, epi
->event
.events
,
933 (long long)epi
->event
.data
,
934 (long long)epi
->ffd
.file
->f_pos
,
935 inode
->i_ino
, inode
->i_sb
->s_dev
);
936 if (seq_has_overflowed(m
))
939 mutex_unlock(&ep
->mtx
);
943 /* File callbacks that implement the eventpoll file behaviour */
944 static const struct file_operations eventpoll_fops
= {
945 #ifdef CONFIG_PROC_FS
946 .show_fdinfo
= ep_show_fdinfo
,
948 .release
= ep_eventpoll_release
,
949 .poll
= ep_eventpoll_poll
,
950 .llseek
= noop_llseek
,
954 * This is called from eventpoll_release() to unlink files from the eventpoll
955 * interface. We need to have this facility to cleanup correctly files that are
956 * closed without being removed from the eventpoll interface.
958 void eventpoll_release_file(struct file
*file
)
960 struct eventpoll
*ep
;
961 struct epitem
*epi
, *next
;
964 * We don't want to get "file->f_lock" because it is not
965 * necessary. It is not necessary because we're in the "struct file"
966 * cleanup path, and this means that no one is using this file anymore.
967 * So, for example, epoll_ctl() cannot hit here since if we reach this
968 * point, the file counter already went to zero and fget() would fail.
969 * The only hit might come from ep_free() but by holding the mutex
970 * will correctly serialize the operation. We do need to acquire
971 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
972 * from anywhere but ep_free().
974 * Besides, ep_remove() acquires the lock, so we can't hold it here.
976 mutex_lock(&epmutex
);
977 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
979 mutex_lock_nested(&ep
->mtx
, 0);
981 mutex_unlock(&ep
->mtx
);
983 mutex_unlock(&epmutex
);
986 static int ep_alloc(struct eventpoll
**pep
)
989 struct user_struct
*user
;
990 struct eventpoll
*ep
;
992 user
= get_current_user();
994 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
998 mutex_init(&ep
->mtx
);
999 rwlock_init(&ep
->lock
);
1000 init_waitqueue_head(&ep
->wq
);
1001 init_waitqueue_head(&ep
->poll_wait
);
1002 INIT_LIST_HEAD(&ep
->rdllist
);
1003 ep
->rbr
= RB_ROOT_CACHED
;
1004 ep
->ovflist
= EP_UNACTIVE_PTR
;
1017 * Search the file inside the eventpoll tree. The RB tree operations
1018 * are protected by the "mtx" mutex, and ep_find() must be called with
1021 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
1024 struct rb_node
*rbp
;
1025 struct epitem
*epi
, *epir
= NULL
;
1026 struct epoll_filefd ffd
;
1028 ep_set_ffd(&ffd
, file
, fd
);
1029 for (rbp
= ep
->rbr
.rb_root
.rb_node
; rbp
; ) {
1030 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1031 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1033 rbp
= rbp
->rb_right
;
1045 #ifdef CONFIG_CHECKPOINT_RESTORE
1046 static struct epitem
*ep_find_tfd(struct eventpoll
*ep
, int tfd
, unsigned long toff
)
1048 struct rb_node
*rbp
;
1051 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1052 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1053 if (epi
->ffd
.fd
== tfd
) {
1065 struct file
*get_epoll_tfile_raw_ptr(struct file
*file
, int tfd
,
1068 struct file
*file_raw
;
1069 struct eventpoll
*ep
;
1072 if (!is_file_epoll(file
))
1073 return ERR_PTR(-EINVAL
);
1075 ep
= file
->private_data
;
1077 mutex_lock(&ep
->mtx
);
1078 epi
= ep_find_tfd(ep
, tfd
, toff
);
1080 file_raw
= epi
->ffd
.file
;
1082 file_raw
= ERR_PTR(-ENOENT
);
1083 mutex_unlock(&ep
->mtx
);
1087 #endif /* CONFIG_CHECKPOINT_RESTORE */
1090 * Adds a new entry to the tail of the list in a lockless way, i.e.
1091 * multiple CPUs are allowed to call this function concurrently.
1093 * Beware: it is necessary to prevent any other modifications of the
1094 * existing list until all changes are completed, in other words
1095 * concurrent list_add_tail_lockless() calls should be protected
1096 * with a read lock, where write lock acts as a barrier which
1097 * makes sure all list_add_tail_lockless() calls are fully
1100 * Also an element can be locklessly added to the list only in one
1101 * direction i.e. either to the tail either to the head, otherwise
1102 * concurrent access will corrupt the list.
1104 * Returns %false if element has been already added to the list, %true
1107 static inline bool list_add_tail_lockless(struct list_head
*new,
1108 struct list_head
*head
)
1110 struct list_head
*prev
;
1113 * This is simple 'new->next = head' operation, but cmpxchg()
1114 * is used in order to detect that same element has been just
1115 * added to the list from another CPU: the winner observes
1118 if (cmpxchg(&new->next
, new, head
) != new)
1122 * Initially ->next of a new element must be updated with the head
1123 * (we are inserting to the tail) and only then pointers are atomically
1124 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1125 * updated before pointers are actually swapped and pointers are
1126 * swapped before prev->next is updated.
1129 prev
= xchg(&head
->prev
, new);
1132 * It is safe to modify prev->next and new->prev, because a new element
1133 * is added only to the tail and new->next is updated before XCHG.
1143 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1144 * i.e. multiple CPUs are allowed to call this function concurrently.
1146 * Returns %false if epi element has been already chained, %true otherwise.
1148 static inline bool chain_epi_lockless(struct epitem
*epi
)
1150 struct eventpoll
*ep
= epi
->ep
;
1152 /* Check that the same epi has not been just chained from another CPU */
1153 if (cmpxchg(&epi
->next
, EP_UNACTIVE_PTR
, NULL
) != EP_UNACTIVE_PTR
)
1156 /* Atomically exchange tail */
1157 epi
->next
= xchg(&ep
->ovflist
, epi
);
1163 * This is the callback that is passed to the wait queue wakeup
1164 * mechanism. It is called by the stored file descriptors when they
1165 * have events to report.
1167 * This callback takes a read lock in order not to content with concurrent
1168 * events from another file descriptors, thus all modifications to ->rdllist
1169 * or ->ovflist are lockless. Read lock is paired with the write lock from
1170 * ep_scan_ready_list(), which stops all list modifications and guarantees
1171 * that lists state is seen correctly.
1173 * Another thing worth to mention is that ep_poll_callback() can be called
1174 * concurrently for the same @epi from different CPUs if poll table was inited
1175 * with several wait queues entries. Plural wakeup from different CPUs of a
1176 * single wait queue is serialized by wq.lock, but the case when multiple wait
1177 * queues are used should be detected accordingly. This is detected using
1178 * cmpxchg() operation.
1180 static int ep_poll_callback(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1183 struct epitem
*epi
= ep_item_from_wait(wait
);
1184 struct eventpoll
*ep
= epi
->ep
;
1185 __poll_t pollflags
= key_to_poll(key
);
1186 unsigned long flags
;
1189 read_lock_irqsave(&ep
->lock
, flags
);
1191 ep_set_busy_poll_napi_id(epi
);
1194 * If the event mask does not contain any poll(2) event, we consider the
1195 * descriptor to be disabled. This condition is likely the effect of the
1196 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1197 * until the next EPOLL_CTL_MOD will be issued.
1199 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1203 * Check the events coming with the callback. At this stage, not
1204 * every device reports the events in the "key" parameter of the
1205 * callback. We need to be able to handle both cases here, hence the
1206 * test for "key" != NULL before the event match test.
1208 if (pollflags
&& !(pollflags
& epi
->event
.events
))
1212 * If we are transferring events to userspace, we can hold no locks
1213 * (because we're accessing user memory, and because of linux f_op->poll()
1214 * semantics). All the events that happen during that period of time are
1215 * chained in ep->ovflist and requeued later on.
1217 if (READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
) {
1218 if (epi
->next
== EP_UNACTIVE_PTR
&&
1219 chain_epi_lockless(epi
))
1220 ep_pm_stay_awake_rcu(epi
);
1224 /* If this file is already in the ready list we exit soon */
1225 if (!ep_is_linked(epi
) &&
1226 list_add_tail_lockless(&epi
->rdllink
, &ep
->rdllist
)) {
1227 ep_pm_stay_awake_rcu(epi
);
1231 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1234 if (waitqueue_active(&ep
->wq
)) {
1235 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1236 !(pollflags
& POLLFREE
)) {
1237 switch (pollflags
& EPOLLINOUT_BITS
) {
1239 if (epi
->event
.events
& EPOLLIN
)
1243 if (epi
->event
.events
& EPOLLOUT
)
1253 if (waitqueue_active(&ep
->poll_wait
))
1257 read_unlock_irqrestore(&ep
->lock
, flags
);
1259 /* We have to call this outside the lock */
1261 ep_poll_safewake(&ep
->poll_wait
);
1263 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1266 if (pollflags
& POLLFREE
) {
1268 * If we race with ep_remove_wait_queue() it can miss
1269 * ->whead = NULL and do another remove_wait_queue() after
1270 * us, so we can't use __remove_wait_queue().
1272 list_del_init(&wait
->entry
);
1274 * ->whead != NULL protects us from the race with ep_free()
1275 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1276 * held by the caller. Once we nullify it, nothing protects
1277 * ep/epi or even wait.
1279 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1286 * This is the callback that is used to add our wait queue to the
1287 * target file wakeup lists.
1289 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1292 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1293 struct eppoll_entry
*pwq
;
1295 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1296 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1299 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1300 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1302 add_wait_queue(whead
, &pwq
->wait
);
1303 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1306 /* We have to signal that an error occurred */
1311 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1314 struct rb_node
**p
= &ep
->rbr
.rb_root
.rb_node
, *parent
= NULL
;
1315 struct epitem
*epic
;
1316 bool leftmost
= true;
1320 epic
= rb_entry(parent
, struct epitem
, rbn
);
1321 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1323 p
= &parent
->rb_right
;
1326 p
= &parent
->rb_left
;
1328 rb_link_node(&epi
->rbn
, parent
, p
);
1329 rb_insert_color_cached(&epi
->rbn
, &ep
->rbr
, leftmost
);
1334 #define PATH_ARR_SIZE 5
1336 * These are the number paths of length 1 to 5, that we are allowing to emanate
1337 * from a single file of interest. For example, we allow 1000 paths of length
1338 * 1, to emanate from each file of interest. This essentially represents the
1339 * potential wakeup paths, which need to be limited in order to avoid massive
1340 * uncontrolled wakeup storms. The common use case should be a single ep which
1341 * is connected to n file sources. In this case each file source has 1 path
1342 * of length 1. Thus, the numbers below should be more than sufficient. These
1343 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1344 * and delete can't add additional paths. Protected by the epmutex.
1346 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1347 static int path_count
[PATH_ARR_SIZE
];
1349 static int path_count_inc(int nests
)
1351 /* Allow an arbitrary number of depth 1 paths */
1355 if (++path_count
[nests
] > path_limits
[nests
])
1360 static void path_count_init(void)
1364 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1368 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1371 struct file
*file
= priv
;
1372 struct file
*child_file
;
1375 /* CTL_DEL can remove links here, but that can't increase our count */
1377 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1378 child_file
= epi
->ep
->file
;
1379 if (is_file_epoll(child_file
)) {
1380 if (list_empty(&child_file
->f_ep_links
)) {
1381 if (path_count_inc(call_nests
)) {
1386 error
= ep_call_nested(&poll_loop_ncalls
,
1387 reverse_path_check_proc
,
1388 child_file
, child_file
,
1394 printk(KERN_ERR
"reverse_path_check_proc: "
1395 "file is not an ep!\n");
1403 * reverse_path_check - The tfile_check_list is list of file *, which have
1404 * links that are proposed to be newly added. We need to
1405 * make sure that those added links don't add too many
1406 * paths such that we will spend all our time waking up
1407 * eventpoll objects.
1409 * Returns: Returns zero if the proposed links don't create too many paths,
1412 static int reverse_path_check(void)
1415 struct file
*current_file
;
1417 /* let's call this for all tfiles */
1418 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1420 error
= ep_call_nested(&poll_loop_ncalls
,
1421 reverse_path_check_proc
, current_file
,
1422 current_file
, current
);
1429 static int ep_create_wakeup_source(struct epitem
*epi
)
1432 struct wakeup_source
*ws
;
1435 epi
->ep
->ws
= wakeup_source_register(NULL
, "eventpoll");
1440 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1441 ws
= wakeup_source_register(NULL
, name
);
1445 rcu_assign_pointer(epi
->ws
, ws
);
1450 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1451 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1453 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1455 RCU_INIT_POINTER(epi
->ws
, NULL
);
1458 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1459 * used internally by wakeup_source_remove, too (called by
1460 * wakeup_source_unregister), so we cannot use call_rcu
1463 wakeup_source_unregister(ws
);
1467 * Must be called with "mtx" held.
1469 static int ep_insert(struct eventpoll
*ep
, const struct epoll_event
*event
,
1470 struct file
*tfile
, int fd
, int full_check
)
1472 int error
, pwake
= 0;
1476 struct ep_pqueue epq
;
1478 lockdep_assert_irqs_enabled();
1480 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1481 if (unlikely(user_watches
>= max_user_watches
))
1483 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1486 /* Item initialization follow here ... */
1487 INIT_LIST_HEAD(&epi
->rdllink
);
1488 INIT_LIST_HEAD(&epi
->fllink
);
1489 INIT_LIST_HEAD(&epi
->pwqlist
);
1491 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1492 epi
->event
= *event
;
1494 epi
->next
= EP_UNACTIVE_PTR
;
1495 if (epi
->event
.events
& EPOLLWAKEUP
) {
1496 error
= ep_create_wakeup_source(epi
);
1498 goto error_create_wakeup_source
;
1500 RCU_INIT_POINTER(epi
->ws
, NULL
);
1503 /* Initialize the poll table using the queue callback */
1505 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1508 * Attach the item to the poll hooks and get current event bits.
1509 * We can safely use the file* here because its usage count has
1510 * been increased by the caller of this function. Note that after
1511 * this operation completes, the poll callback can start hitting
1514 revents
= ep_item_poll(epi
, &epq
.pt
, 1);
1517 * We have to check if something went wrong during the poll wait queue
1518 * install process. Namely an allocation for a wait queue failed due
1519 * high memory pressure.
1523 goto error_unregister
;
1525 /* Add the current item to the list of active epoll hook for this file */
1526 spin_lock(&tfile
->f_lock
);
1527 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1528 spin_unlock(&tfile
->f_lock
);
1531 * Add the current item to the RB tree. All RB tree operations are
1532 * protected by "mtx", and ep_insert() is called with "mtx" held.
1534 ep_rbtree_insert(ep
, epi
);
1536 /* now check if we've created too many backpaths */
1538 if (full_check
&& reverse_path_check())
1539 goto error_remove_epi
;
1541 /* We have to drop the new item inside our item list to keep track of it */
1542 write_lock_irq(&ep
->lock
);
1544 /* record NAPI ID of new item if present */
1545 ep_set_busy_poll_napi_id(epi
);
1547 /* If the file is already "ready" we drop it inside the ready list */
1548 if (revents
&& !ep_is_linked(epi
)) {
1549 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1550 ep_pm_stay_awake(epi
);
1552 /* Notify waiting tasks that events are available */
1553 if (waitqueue_active(&ep
->wq
))
1555 if (waitqueue_active(&ep
->poll_wait
))
1559 write_unlock_irq(&ep
->lock
);
1561 atomic_long_inc(&ep
->user
->epoll_watches
);
1563 /* We have to call this outside the lock */
1565 ep_poll_safewake(&ep
->poll_wait
);
1570 spin_lock(&tfile
->f_lock
);
1571 list_del_rcu(&epi
->fllink
);
1572 spin_unlock(&tfile
->f_lock
);
1574 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
1577 ep_unregister_pollwait(ep
, epi
);
1580 * We need to do this because an event could have been arrived on some
1581 * allocated wait queue. Note that we don't care about the ep->ovflist
1582 * list, since that is used/cleaned only inside a section bound by "mtx".
1583 * And ep_insert() is called with "mtx" held.
1585 write_lock_irq(&ep
->lock
);
1586 if (ep_is_linked(epi
))
1587 list_del_init(&epi
->rdllink
);
1588 write_unlock_irq(&ep
->lock
);
1590 wakeup_source_unregister(ep_wakeup_source(epi
));
1592 error_create_wakeup_source
:
1593 kmem_cache_free(epi_cache
, epi
);
1599 * Modify the interest event mask by dropping an event if the new mask
1600 * has a match in the current file status. Must be called with "mtx" held.
1602 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
,
1603 const struct epoll_event
*event
)
1608 lockdep_assert_irqs_enabled();
1610 init_poll_funcptr(&pt
, NULL
);
1613 * Set the new event interest mask before calling f_op->poll();
1614 * otherwise we might miss an event that happens between the
1615 * f_op->poll() call and the new event set registering.
1617 epi
->event
.events
= event
->events
; /* need barrier below */
1618 epi
->event
.data
= event
->data
; /* protected by mtx */
1619 if (epi
->event
.events
& EPOLLWAKEUP
) {
1620 if (!ep_has_wakeup_source(epi
))
1621 ep_create_wakeup_source(epi
);
1622 } else if (ep_has_wakeup_source(epi
)) {
1623 ep_destroy_wakeup_source(epi
);
1627 * The following barrier has two effects:
1629 * 1) Flush epi changes above to other CPUs. This ensures
1630 * we do not miss events from ep_poll_callback if an
1631 * event occurs immediately after we call f_op->poll().
1632 * We need this because we did not take ep->lock while
1633 * changing epi above (but ep_poll_callback does take
1636 * 2) We also need to ensure we do not miss _past_ events
1637 * when calling f_op->poll(). This barrier also
1638 * pairs with the barrier in wq_has_sleeper (see
1639 * comments for wq_has_sleeper).
1641 * This barrier will now guarantee ep_poll_callback or f_op->poll
1642 * (or both) will notice the readiness of an item.
1647 * Get current event bits. We can safely use the file* here because
1648 * its usage count has been increased by the caller of this function.
1649 * If the item is "hot" and it is not registered inside the ready
1650 * list, push it inside.
1652 if (ep_item_poll(epi
, &pt
, 1)) {
1653 write_lock_irq(&ep
->lock
);
1654 if (!ep_is_linked(epi
)) {
1655 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1656 ep_pm_stay_awake(epi
);
1658 /* Notify waiting tasks that events are available */
1659 if (waitqueue_active(&ep
->wq
))
1661 if (waitqueue_active(&ep
->poll_wait
))
1664 write_unlock_irq(&ep
->lock
);
1667 /* We have to call this outside the lock */
1669 ep_poll_safewake(&ep
->poll_wait
);
1674 static __poll_t
ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1677 struct ep_send_events_data
*esed
= priv
;
1679 struct epitem
*epi
, *tmp
;
1680 struct epoll_event __user
*uevent
= esed
->events
;
1681 struct wakeup_source
*ws
;
1684 init_poll_funcptr(&pt
, NULL
);
1688 * We can loop without lock because we are passed a task private list.
1689 * Items cannot vanish during the loop because ep_scan_ready_list() is
1690 * holding "mtx" during this call.
1692 lockdep_assert_held(&ep
->mtx
);
1694 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
1695 if (esed
->res
>= esed
->maxevents
)
1699 * Activate ep->ws before deactivating epi->ws to prevent
1700 * triggering auto-suspend here (in case we reactive epi->ws
1703 * This could be rearranged to delay the deactivation of epi->ws
1704 * instead, but then epi->ws would temporarily be out of sync
1705 * with ep_is_linked().
1707 ws
= ep_wakeup_source(epi
);
1710 __pm_stay_awake(ep
->ws
);
1714 list_del_init(&epi
->rdllink
);
1717 * If the event mask intersect the caller-requested one,
1718 * deliver the event to userspace. Again, ep_scan_ready_list()
1719 * is holding ep->mtx, so no operations coming from userspace
1720 * can change the item.
1722 revents
= ep_item_poll(epi
, &pt
, 1);
1726 if (__put_user(revents
, &uevent
->events
) ||
1727 __put_user(epi
->event
.data
, &uevent
->data
)) {
1728 list_add(&epi
->rdllink
, head
);
1729 ep_pm_stay_awake(epi
);
1731 esed
->res
= -EFAULT
;
1736 if (epi
->event
.events
& EPOLLONESHOT
)
1737 epi
->event
.events
&= EP_PRIVATE_BITS
;
1738 else if (!(epi
->event
.events
& EPOLLET
)) {
1740 * If this file has been added with Level
1741 * Trigger mode, we need to insert back inside
1742 * the ready list, so that the next call to
1743 * epoll_wait() will check again the events
1744 * availability. At this point, no one can insert
1745 * into ep->rdllist besides us. The epoll_ctl()
1746 * callers are locked out by
1747 * ep_scan_ready_list() holding "mtx" and the
1748 * poll callback will queue them in ep->ovflist.
1750 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1751 ep_pm_stay_awake(epi
);
1758 static int ep_send_events(struct eventpoll
*ep
,
1759 struct epoll_event __user
*events
, int maxevents
)
1761 struct ep_send_events_data esed
;
1763 esed
.maxevents
= maxevents
;
1764 esed
.events
= events
;
1766 ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1770 static inline struct timespec64
ep_set_mstimeout(long ms
)
1772 struct timespec64 now
, ts
= {
1773 .tv_sec
= ms
/ MSEC_PER_SEC
,
1774 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1777 ktime_get_ts64(&now
);
1778 return timespec64_add_safe(now
, ts
);
1782 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1785 * @ep: Pointer to the eventpoll context.
1786 * @events: Pointer to the userspace buffer where the ready events should be
1788 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1789 * @timeout: Maximum timeout for the ready events fetch operation, in
1790 * milliseconds. If the @timeout is zero, the function will not block,
1791 * while if the @timeout is less than zero, the function will block
1792 * until at least one event has been retrieved (or an error
1795 * Returns: Returns the number of ready events which have been fetched, or an
1796 * error code, in case of error.
1798 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1799 int maxevents
, long timeout
)
1801 int res
= 0, eavail
, timed_out
= 0;
1803 bool waiter
= false;
1804 wait_queue_entry_t wait
;
1805 ktime_t expires
, *to
= NULL
;
1807 lockdep_assert_irqs_enabled();
1810 struct timespec64 end_time
= ep_set_mstimeout(timeout
);
1812 slack
= select_estimate_accuracy(&end_time
);
1814 *to
= timespec64_to_ktime(end_time
);
1815 } else if (timeout
== 0) {
1817 * Avoid the unnecessary trip to the wait queue loop, if the
1818 * caller specified a non blocking operation. We still need
1819 * lock because we could race and not see an epi being added
1820 * to the ready list while in irq callback. Thus incorrectly
1821 * returning 0 back to userspace.
1825 write_lock_irq(&ep
->lock
);
1826 eavail
= ep_events_available(ep
);
1827 write_unlock_irq(&ep
->lock
);
1834 if (!ep_events_available(ep
))
1835 ep_busy_loop(ep
, timed_out
);
1837 eavail
= ep_events_available(ep
);
1842 * Busy poll timed out. Drop NAPI ID for now, we can add
1843 * it back in when we have moved a socket with a valid NAPI
1844 * ID onto the ready list.
1846 ep_reset_busy_poll_napi_id(ep
);
1849 * We don't have any available event to return to the caller. We need
1850 * to sleep here, and we will be woken by ep_poll_callback() when events
1855 init_waitqueue_entry(&wait
, current
);
1857 spin_lock_irq(&ep
->wq
.lock
);
1858 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1859 spin_unlock_irq(&ep
->wq
.lock
);
1864 * We don't want to sleep if the ep_poll_callback() sends us
1865 * a wakeup in between. That's why we set the task state
1866 * to TASK_INTERRUPTIBLE before doing the checks.
1868 set_current_state(TASK_INTERRUPTIBLE
);
1870 * Always short-circuit for fatal signals to allow
1871 * threads to make a timely exit without the chance of
1872 * finding more events available and fetching
1875 if (fatal_signal_pending(current
)) {
1880 eavail
= ep_events_available(ep
);
1883 if (signal_pending(current
)) {
1888 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
)) {
1894 __set_current_state(TASK_RUNNING
);
1898 * Try to transfer events to user space. In case we get 0 events and
1899 * there's still timeout left over, we go trying again in search of
1902 if (!res
&& eavail
&&
1903 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1907 spin_lock_irq(&ep
->wq
.lock
);
1908 __remove_wait_queue(&ep
->wq
, &wait
);
1909 spin_unlock_irq(&ep
->wq
.lock
);
1916 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1917 * API, to verify that adding an epoll file inside another
1918 * epoll structure, does not violate the constraints, in
1919 * terms of closed loops, or too deep chains (which can
1920 * result in excessive stack usage).
1922 * @priv: Pointer to the epoll file to be currently checked.
1923 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1924 * data structure pointer.
1925 * @call_nests: Current dept of the @ep_call_nested() call stack.
1927 * Returns: Returns zero if adding the epoll @file inside current epoll
1928 * structure @ep does not violate the constraints, or -1 otherwise.
1930 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1933 struct file
*file
= priv
;
1934 struct eventpoll
*ep
= file
->private_data
;
1935 struct eventpoll
*ep_tovisit
;
1936 struct rb_node
*rbp
;
1939 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1941 list_add(&ep
->visited_list_link
, &visited_list
);
1942 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1943 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1944 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1945 ep_tovisit
= epi
->ffd
.file
->private_data
;
1946 if (ep_tovisit
->visited
)
1948 error
= ep_call_nested(&poll_loop_ncalls
,
1949 ep_loop_check_proc
, epi
->ffd
.file
,
1950 ep_tovisit
, current
);
1955 * If we've reached a file that is not associated with
1956 * an ep, then we need to check if the newly added
1957 * links are going to add too many wakeup paths. We do
1958 * this by adding it to the tfile_check_list, if it's
1959 * not already there, and calling reverse_path_check()
1960 * during ep_insert().
1962 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1963 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1967 mutex_unlock(&ep
->mtx
);
1973 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1974 * another epoll file (represented by @ep) does not create
1975 * closed loops or too deep chains.
1977 * @ep: Pointer to the epoll private data structure.
1978 * @file: Pointer to the epoll file to be checked.
1980 * Returns: Returns zero if adding the epoll @file inside current epoll
1981 * structure @ep does not violate the constraints, or -1 otherwise.
1983 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1986 struct eventpoll
*ep_cur
, *ep_next
;
1988 ret
= ep_call_nested(&poll_loop_ncalls
,
1989 ep_loop_check_proc
, file
, ep
, current
);
1990 /* clear visited list */
1991 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1992 visited_list_link
) {
1993 ep_cur
->visited
= 0;
1994 list_del(&ep_cur
->visited_list_link
);
1999 static void clear_tfile_check_list(void)
2003 /* first clear the tfile_check_list */
2004 while (!list_empty(&tfile_check_list
)) {
2005 file
= list_first_entry(&tfile_check_list
, struct file
,
2007 list_del_init(&file
->f_tfile_llink
);
2009 INIT_LIST_HEAD(&tfile_check_list
);
2013 * Open an eventpoll file descriptor.
2015 static int do_epoll_create(int flags
)
2018 struct eventpoll
*ep
= NULL
;
2021 /* Check the EPOLL_* constant for consistency. */
2022 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
2024 if (flags
& ~EPOLL_CLOEXEC
)
2027 * Create the internal data structure ("struct eventpoll").
2029 error
= ep_alloc(&ep
);
2033 * Creates all the items needed to setup an eventpoll file. That is,
2034 * a file structure and a free file descriptor.
2036 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
2041 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
2042 O_RDWR
| (flags
& O_CLOEXEC
));
2044 error
= PTR_ERR(file
);
2048 fd_install(fd
, file
);
2058 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
2060 return do_epoll_create(flags
);
2063 SYSCALL_DEFINE1(epoll_create
, int, size
)
2068 return do_epoll_create(0);
2071 static inline int epoll_mutex_lock(struct mutex
*mutex
, int depth
,
2075 mutex_lock_nested(mutex
, depth
);
2078 if (mutex_trylock(mutex
))
2083 int do_epoll_ctl(int epfd
, int op
, int fd
, struct epoll_event
*epds
,
2089 struct eventpoll
*ep
;
2091 struct eventpoll
*tep
= NULL
;
2098 /* Get the "struct file *" for the target file */
2103 /* The target file descriptor must support poll */
2105 if (!file_can_poll(tf
.file
))
2106 goto error_tgt_fput
;
2108 /* Check if EPOLLWAKEUP is allowed */
2109 if (ep_op_has_event(op
))
2110 ep_take_care_of_epollwakeup(epds
);
2113 * We have to check that the file structure underneath the file descriptor
2114 * the user passed to us _is_ an eventpoll file. And also we do not permit
2115 * adding an epoll file descriptor inside itself.
2118 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
2119 goto error_tgt_fput
;
2122 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2123 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2124 * Also, we do not currently supported nested exclusive wakeups.
2126 if (ep_op_has_event(op
) && (epds
->events
& EPOLLEXCLUSIVE
)) {
2127 if (op
== EPOLL_CTL_MOD
)
2128 goto error_tgt_fput
;
2129 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(tf
.file
) ||
2130 (epds
->events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
2131 goto error_tgt_fput
;
2135 * At this point it is safe to assume that the "private_data" contains
2136 * our own data structure.
2138 ep
= f
.file
->private_data
;
2141 * When we insert an epoll file descriptor, inside another epoll file
2142 * descriptor, there is the change of creating closed loops, which are
2143 * better be handled here, than in more critical paths. While we are
2144 * checking for loops we also determine the list of files reachable
2145 * and hang them on the tfile_check_list, so we can check that we
2146 * haven't created too many possible wakeup paths.
2148 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2149 * the epoll file descriptor is attaching directly to a wakeup source,
2150 * unless the epoll file descriptor is nested. The purpose of taking the
2151 * 'epmutex' on add is to prevent complex toplogies such as loops and
2152 * deep wakeup paths from forming in parallel through multiple
2153 * EPOLL_CTL_ADD operations.
2155 error
= epoll_mutex_lock(&ep
->mtx
, 0, nonblock
);
2157 goto error_tgt_fput
;
2158 if (op
== EPOLL_CTL_ADD
) {
2159 if (!list_empty(&f
.file
->f_ep_links
) ||
2160 is_file_epoll(tf
.file
)) {
2161 mutex_unlock(&ep
->mtx
);
2162 error
= epoll_mutex_lock(&epmutex
, 0, nonblock
);
2164 goto error_tgt_fput
;
2166 if (is_file_epoll(tf
.file
)) {
2168 if (ep_loop_check(ep
, tf
.file
) != 0) {
2169 clear_tfile_check_list();
2170 goto error_tgt_fput
;
2173 list_add(&tf
.file
->f_tfile_llink
,
2175 error
= epoll_mutex_lock(&ep
->mtx
, 0, nonblock
);
2178 list_del(&tf
.file
->f_tfile_llink
);
2179 goto error_tgt_fput
;
2181 if (is_file_epoll(tf
.file
)) {
2182 tep
= tf
.file
->private_data
;
2183 error
= epoll_mutex_lock(&tep
->mtx
, 1, nonblock
);
2185 mutex_unlock(&ep
->mtx
);
2193 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2194 * above, we can be sure to be able to use the item looked up by
2195 * ep_find() till we release the mutex.
2197 epi
= ep_find(ep
, tf
.file
, fd
);
2203 epds
->events
|= EPOLLERR
| EPOLLHUP
;
2204 error
= ep_insert(ep
, epds
, tf
.file
, fd
, full_check
);
2208 clear_tfile_check_list();
2212 error
= ep_remove(ep
, epi
);
2218 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
2219 epds
->events
|= EPOLLERR
| EPOLLHUP
;
2220 error
= ep_modify(ep
, epi
, epds
);
2227 mutex_unlock(&tep
->mtx
);
2228 mutex_unlock(&ep
->mtx
);
2232 mutex_unlock(&epmutex
);
2243 * The following function implements the controller interface for
2244 * the eventpoll file that enables the insertion/removal/change of
2245 * file descriptors inside the interest set.
2247 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
2248 struct epoll_event __user
*, event
)
2250 struct epoll_event epds
;
2252 if (ep_op_has_event(op
) &&
2253 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
2256 return do_epoll_ctl(epfd
, op
, fd
, &epds
, false);
2260 * Implement the event wait interface for the eventpoll file. It is the kernel
2261 * part of the user space epoll_wait(2).
2263 static int do_epoll_wait(int epfd
, struct epoll_event __user
*events
,
2264 int maxevents
, int timeout
)
2268 struct eventpoll
*ep
;
2270 /* The maximum number of event must be greater than zero */
2271 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2274 /* Verify that the area passed by the user is writeable */
2275 if (!access_ok(events
, maxevents
* sizeof(struct epoll_event
)))
2278 /* Get the "struct file *" for the eventpoll file */
2284 * We have to check that the file structure underneath the fd
2285 * the user passed to us _is_ an eventpoll file.
2288 if (!is_file_epoll(f
.file
))
2292 * At this point it is safe to assume that the "private_data" contains
2293 * our own data structure.
2295 ep
= f
.file
->private_data
;
2297 /* Time to fish for events ... */
2298 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2305 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2306 int, maxevents
, int, timeout
)
2308 return do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2312 * Implement the event wait interface for the eventpoll file. It is the kernel
2313 * part of the user space epoll_pwait(2).
2315 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2316 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2322 * If the caller wants a certain signal mask to be set during the wait,
2325 error
= set_user_sigmask(sigmask
, sigsetsize
);
2329 error
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2330 restore_saved_sigmask_unless(error
== -EINTR
);
2335 #ifdef CONFIG_COMPAT
2336 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2337 struct epoll_event __user
*, events
,
2338 int, maxevents
, int, timeout
,
2339 const compat_sigset_t __user
*, sigmask
,
2340 compat_size_t
, sigsetsize
)
2345 * If the caller wants a certain signal mask to be set during the wait,
2348 err
= set_compat_user_sigmask(sigmask
, sigsetsize
);
2352 err
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2353 restore_saved_sigmask_unless(err
== -EINTR
);
2359 static int __init
eventpoll_init(void)
2365 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2367 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2369 BUG_ON(max_user_watches
< 0);
2372 * Initialize the structure used to perform epoll file descriptor
2373 * inclusion loops checks.
2375 ep_nested_calls_init(&poll_loop_ncalls
);
2378 * We can have many thousands of epitems, so prevent this from
2379 * using an extra cache line on 64-bit (and smaller) CPUs
2381 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2383 /* Allocates slab cache used to allocate "struct epitem" items */
2384 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2385 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2387 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2388 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2389 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2393 fs_initcall(eventpoll_init
);