drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / f2fs / data.c
blobb27b7210791165d579d2d84c236fd574ff8e0e37
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
29 #define NUM_PREALLOC_POST_READ_CTXS 128
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static struct kmem_cache *bio_entry_slab;
33 static mempool_t *bio_post_read_ctx_pool;
34 static struct bio_set f2fs_bioset;
36 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
38 int __init f2fs_init_bioset(void)
40 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
41 0, BIOSET_NEED_BVECS))
42 return -ENOMEM;
43 return 0;
46 void f2fs_destroy_bioset(void)
48 bioset_exit(&f2fs_bioset);
51 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
52 unsigned int nr_iovecs)
54 return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool no_fail)
59 struct bio *bio;
61 if (no_fail) {
62 /* No failure on bio allocation */
63 bio = __f2fs_bio_alloc(GFP_NOIO, npages);
64 if (!bio)
65 bio = __f2fs_bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
66 return bio;
68 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
69 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
70 return NULL;
73 return __f2fs_bio_alloc(GFP_KERNEL, npages);
76 static bool __is_cp_guaranteed(struct page *page)
78 struct address_space *mapping = page->mapping;
79 struct inode *inode;
80 struct f2fs_sb_info *sbi;
82 if (!mapping)
83 return false;
85 if (f2fs_is_compressed_page(page))
86 return false;
88 inode = mapping->host;
89 sbi = F2FS_I_SB(inode);
91 if (inode->i_ino == F2FS_META_INO(sbi) ||
92 inode->i_ino == F2FS_NODE_INO(sbi) ||
93 S_ISDIR(inode->i_mode) ||
94 (S_ISREG(inode->i_mode) &&
95 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
96 is_cold_data(page))
97 return true;
98 return false;
101 static enum count_type __read_io_type(struct page *page)
103 struct address_space *mapping = page_file_mapping(page);
105 if (mapping) {
106 struct inode *inode = mapping->host;
107 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
109 if (inode->i_ino == F2FS_META_INO(sbi))
110 return F2FS_RD_META;
112 if (inode->i_ino == F2FS_NODE_INO(sbi))
113 return F2FS_RD_NODE;
115 return F2FS_RD_DATA;
118 /* postprocessing steps for read bios */
119 enum bio_post_read_step {
120 STEP_DECRYPT,
121 STEP_DECOMPRESS,
122 STEP_VERITY,
125 struct bio_post_read_ctx {
126 struct bio *bio;
127 struct f2fs_sb_info *sbi;
128 struct work_struct work;
129 unsigned int enabled_steps;
132 static void __read_end_io(struct bio *bio, bool compr, bool verity)
134 struct page *page;
135 struct bio_vec *bv;
136 struct bvec_iter_all iter_all;
138 bio_for_each_segment_all(bv, bio, iter_all) {
139 page = bv->bv_page;
141 #ifdef CONFIG_F2FS_FS_COMPRESSION
142 if (compr && f2fs_is_compressed_page(page)) {
143 f2fs_decompress_pages(bio, page, verity);
144 continue;
146 #endif
148 /* PG_error was set if any post_read step failed */
149 if (bio->bi_status || PageError(page)) {
150 ClearPageUptodate(page);
151 /* will re-read again later */
152 ClearPageError(page);
153 } else {
154 SetPageUptodate(page);
156 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
157 unlock_page(page);
161 static void f2fs_release_read_bio(struct bio *bio);
162 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
164 if (!compr)
165 __read_end_io(bio, false, verity);
166 f2fs_release_read_bio(bio);
169 static void f2fs_decompress_bio(struct bio *bio, bool verity)
171 __read_end_io(bio, true, verity);
174 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
176 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
178 fscrypt_decrypt_bio(ctx->bio);
181 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
183 f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
186 #ifdef CONFIG_F2FS_FS_COMPRESSION
187 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
189 f2fs_decompress_end_io(rpages, cluster_size, false, true);
192 static void f2fs_verify_bio(struct bio *bio)
194 struct page *page = bio_first_page_all(bio);
195 struct decompress_io_ctx *dic =
196 (struct decompress_io_ctx *)page_private(page);
198 f2fs_verify_pages(dic->rpages, dic->cluster_size);
199 f2fs_free_dic(dic);
201 #endif
203 static void f2fs_verity_work(struct work_struct *work)
205 struct bio_post_read_ctx *ctx =
206 container_of(work, struct bio_post_read_ctx, work);
207 struct bio *bio = ctx->bio;
208 #ifdef CONFIG_F2FS_FS_COMPRESSION
209 unsigned int enabled_steps = ctx->enabled_steps;
210 #endif
213 * fsverity_verify_bio() may call readpages() again, and while verity
214 * will be disabled for this, decryption may still be needed, resulting
215 * in another bio_post_read_ctx being allocated. So to prevent
216 * deadlocks we need to release the current ctx to the mempool first.
217 * This assumes that verity is the last post-read step.
219 mempool_free(ctx, bio_post_read_ctx_pool);
220 bio->bi_private = NULL;
222 #ifdef CONFIG_F2FS_FS_COMPRESSION
223 /* previous step is decompression */
224 if (enabled_steps & (1 << STEP_DECOMPRESS)) {
225 f2fs_verify_bio(bio);
226 f2fs_release_read_bio(bio);
227 return;
229 #endif
231 fsverity_verify_bio(bio);
232 __f2fs_read_end_io(bio, false, false);
235 static void f2fs_post_read_work(struct work_struct *work)
237 struct bio_post_read_ctx *ctx =
238 container_of(work, struct bio_post_read_ctx, work);
240 if (ctx->enabled_steps & (1 << STEP_DECRYPT))
241 f2fs_decrypt_work(ctx);
243 if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
244 f2fs_decompress_work(ctx);
246 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
247 INIT_WORK(&ctx->work, f2fs_verity_work);
248 fsverity_enqueue_verify_work(&ctx->work);
249 return;
252 __f2fs_read_end_io(ctx->bio,
253 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
256 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
257 struct work_struct *work)
259 queue_work(sbi->post_read_wq, work);
262 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
265 * We use different work queues for decryption and for verity because
266 * verity may require reading metadata pages that need decryption, and
267 * we shouldn't recurse to the same workqueue.
270 if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
271 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
272 INIT_WORK(&ctx->work, f2fs_post_read_work);
273 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
274 return;
277 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
278 INIT_WORK(&ctx->work, f2fs_verity_work);
279 fsverity_enqueue_verify_work(&ctx->work);
280 return;
283 __f2fs_read_end_io(ctx->bio, false, false);
286 static bool f2fs_bio_post_read_required(struct bio *bio)
288 return bio->bi_private;
291 static void f2fs_read_end_io(struct bio *bio)
293 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
295 if (time_to_inject(sbi, FAULT_READ_IO)) {
296 f2fs_show_injection_info(sbi, FAULT_READ_IO);
297 bio->bi_status = BLK_STS_IOERR;
300 if (f2fs_bio_post_read_required(bio)) {
301 struct bio_post_read_ctx *ctx = bio->bi_private;
303 bio_post_read_processing(ctx);
304 return;
307 __f2fs_read_end_io(bio, false, false);
310 static void f2fs_write_end_io(struct bio *bio)
312 struct f2fs_sb_info *sbi = bio->bi_private;
313 struct bio_vec *bvec;
314 struct bvec_iter_all iter_all;
316 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
317 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
318 bio->bi_status = BLK_STS_IOERR;
321 bio_for_each_segment_all(bvec, bio, iter_all) {
322 struct page *page = bvec->bv_page;
323 enum count_type type = WB_DATA_TYPE(page);
325 if (IS_DUMMY_WRITTEN_PAGE(page)) {
326 set_page_private(page, (unsigned long)NULL);
327 ClearPagePrivate(page);
328 unlock_page(page);
329 mempool_free(page, sbi->write_io_dummy);
331 if (unlikely(bio->bi_status))
332 f2fs_stop_checkpoint(sbi, true);
333 continue;
336 fscrypt_finalize_bounce_page(&page);
338 #ifdef CONFIG_F2FS_FS_COMPRESSION
339 if (f2fs_is_compressed_page(page)) {
340 f2fs_compress_write_end_io(bio, page);
341 continue;
343 #endif
345 if (unlikely(bio->bi_status)) {
346 mapping_set_error(page->mapping, -EIO);
347 if (type == F2FS_WB_CP_DATA)
348 f2fs_stop_checkpoint(sbi, true);
351 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
352 page->index != nid_of_node(page));
354 dec_page_count(sbi, type);
355 if (f2fs_in_warm_node_list(sbi, page))
356 f2fs_del_fsync_node_entry(sbi, page);
357 clear_cold_data(page);
358 end_page_writeback(page);
360 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
361 wq_has_sleeper(&sbi->cp_wait))
362 wake_up(&sbi->cp_wait);
364 bio_put(bio);
368 * Return true, if pre_bio's bdev is same as its target device.
370 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
371 block_t blk_addr, struct bio *bio)
373 struct block_device *bdev = sbi->sb->s_bdev;
374 int i;
376 if (f2fs_is_multi_device(sbi)) {
377 for (i = 0; i < sbi->s_ndevs; i++) {
378 if (FDEV(i).start_blk <= blk_addr &&
379 FDEV(i).end_blk >= blk_addr) {
380 blk_addr -= FDEV(i).start_blk;
381 bdev = FDEV(i).bdev;
382 break;
386 if (bio) {
387 bio_set_dev(bio, bdev);
388 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
390 return bdev;
393 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
395 int i;
397 if (!f2fs_is_multi_device(sbi))
398 return 0;
400 for (i = 0; i < sbi->s_ndevs; i++)
401 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
402 return i;
403 return 0;
406 static bool __same_bdev(struct f2fs_sb_info *sbi,
407 block_t blk_addr, struct bio *bio)
409 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
410 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
414 * Low-level block read/write IO operations.
416 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
418 struct f2fs_sb_info *sbi = fio->sbi;
419 struct bio *bio;
421 bio = f2fs_bio_alloc(sbi, npages, true);
423 f2fs_target_device(sbi, fio->new_blkaddr, bio);
424 if (is_read_io(fio->op)) {
425 bio->bi_end_io = f2fs_read_end_io;
426 bio->bi_private = NULL;
427 } else {
428 bio->bi_end_io = f2fs_write_end_io;
429 bio->bi_private = sbi;
430 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
431 fio->type, fio->temp);
433 if (fio->io_wbc)
434 wbc_init_bio(fio->io_wbc, bio);
436 return bio;
439 static inline void __submit_bio(struct f2fs_sb_info *sbi,
440 struct bio *bio, enum page_type type)
442 if (!is_read_io(bio_op(bio))) {
443 unsigned int start;
445 if (type != DATA && type != NODE)
446 goto submit_io;
448 if (test_opt(sbi, LFS) && current->plug)
449 blk_finish_plug(current->plug);
451 if (F2FS_IO_ALIGNED(sbi))
452 goto submit_io;
454 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
455 start %= F2FS_IO_SIZE(sbi);
457 if (start == 0)
458 goto submit_io;
460 /* fill dummy pages */
461 for (; start < F2FS_IO_SIZE(sbi); start++) {
462 struct page *page =
463 mempool_alloc(sbi->write_io_dummy,
464 GFP_NOIO | __GFP_NOFAIL);
465 f2fs_bug_on(sbi, !page);
467 zero_user_segment(page, 0, PAGE_SIZE);
468 SetPagePrivate(page);
469 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
470 lock_page(page);
471 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
472 f2fs_bug_on(sbi, 1);
475 * In the NODE case, we lose next block address chain. So, we
476 * need to do checkpoint in f2fs_sync_file.
478 if (type == NODE)
479 set_sbi_flag(sbi, SBI_NEED_CP);
481 submit_io:
482 if (is_read_io(bio_op(bio)))
483 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
484 else
485 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
486 submit_bio(bio);
489 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
490 struct bio *bio, enum page_type type)
492 __submit_bio(sbi, bio, type);
495 static void __submit_merged_bio(struct f2fs_bio_info *io)
497 struct f2fs_io_info *fio = &io->fio;
499 if (!io->bio)
500 return;
502 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
504 if (is_read_io(fio->op))
505 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
506 else
507 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
509 __submit_bio(io->sbi, io->bio, fio->type);
510 io->bio = NULL;
513 static bool __has_merged_page(struct bio *bio, struct inode *inode,
514 struct page *page, nid_t ino)
516 struct bio_vec *bvec;
517 struct bvec_iter_all iter_all;
519 if (!bio)
520 return false;
522 if (!inode && !page && !ino)
523 return true;
525 bio_for_each_segment_all(bvec, bio, iter_all) {
526 struct page *target = bvec->bv_page;
528 if (fscrypt_is_bounce_page(target)) {
529 target = fscrypt_pagecache_page(target);
530 if (IS_ERR(target))
531 continue;
533 if (f2fs_is_compressed_page(target)) {
534 target = f2fs_compress_control_page(target);
535 if (IS_ERR(target))
536 continue;
539 if (inode && inode == target->mapping->host)
540 return true;
541 if (page && page == target)
542 return true;
543 if (ino && ino == ino_of_node(target))
544 return true;
547 return false;
550 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
551 enum page_type type, enum temp_type temp)
553 enum page_type btype = PAGE_TYPE_OF_BIO(type);
554 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
556 down_write(&io->io_rwsem);
558 /* change META to META_FLUSH in the checkpoint procedure */
559 if (type >= META_FLUSH) {
560 io->fio.type = META_FLUSH;
561 io->fio.op = REQ_OP_WRITE;
562 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
563 if (!test_opt(sbi, NOBARRIER))
564 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
566 __submit_merged_bio(io);
567 up_write(&io->io_rwsem);
570 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
571 struct inode *inode, struct page *page,
572 nid_t ino, enum page_type type, bool force)
574 enum temp_type temp;
575 bool ret = true;
577 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
578 if (!force) {
579 enum page_type btype = PAGE_TYPE_OF_BIO(type);
580 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
582 down_read(&io->io_rwsem);
583 ret = __has_merged_page(io->bio, inode, page, ino);
584 up_read(&io->io_rwsem);
586 if (ret)
587 __f2fs_submit_merged_write(sbi, type, temp);
589 /* TODO: use HOT temp only for meta pages now. */
590 if (type >= META)
591 break;
595 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
597 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
600 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
601 struct inode *inode, struct page *page,
602 nid_t ino, enum page_type type)
604 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
607 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
609 f2fs_submit_merged_write(sbi, DATA);
610 f2fs_submit_merged_write(sbi, NODE);
611 f2fs_submit_merged_write(sbi, META);
615 * Fill the locked page with data located in the block address.
616 * A caller needs to unlock the page on failure.
618 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
620 struct bio *bio;
621 struct page *page = fio->encrypted_page ?
622 fio->encrypted_page : fio->page;
624 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
625 fio->is_por ? META_POR : (__is_meta_io(fio) ?
626 META_GENERIC : DATA_GENERIC_ENHANCE)))
627 return -EFSCORRUPTED;
629 trace_f2fs_submit_page_bio(page, fio);
630 f2fs_trace_ios(fio, 0);
632 /* Allocate a new bio */
633 bio = __bio_alloc(fio, 1);
635 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
636 bio_put(bio);
637 return -EFAULT;
640 if (fio->io_wbc && !is_read_io(fio->op))
641 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
643 bio_set_op_attrs(bio, fio->op, fio->op_flags);
645 inc_page_count(fio->sbi, is_read_io(fio->op) ?
646 __read_io_type(page): WB_DATA_TYPE(fio->page));
648 __submit_bio(fio->sbi, bio, fio->type);
649 return 0;
652 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
653 block_t last_blkaddr, block_t cur_blkaddr)
655 if (last_blkaddr + 1 != cur_blkaddr)
656 return false;
657 return __same_bdev(sbi, cur_blkaddr, bio);
660 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
661 struct f2fs_io_info *fio)
663 if (io->fio.op != fio->op)
664 return false;
665 return io->fio.op_flags == fio->op_flags;
668 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
669 struct f2fs_bio_info *io,
670 struct f2fs_io_info *fio,
671 block_t last_blkaddr,
672 block_t cur_blkaddr)
674 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
675 unsigned int filled_blocks =
676 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
677 unsigned int io_size = F2FS_IO_SIZE(sbi);
678 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
680 /* IOs in bio is aligned and left space of vectors is not enough */
681 if (!(filled_blocks % io_size) && left_vecs < io_size)
682 return false;
684 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
685 return false;
686 return io_type_is_mergeable(io, fio);
689 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
690 struct page *page, enum temp_type temp)
692 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
693 struct bio_entry *be;
695 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
696 be->bio = bio;
697 bio_get(bio);
699 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
700 f2fs_bug_on(sbi, 1);
702 down_write(&io->bio_list_lock);
703 list_add_tail(&be->list, &io->bio_list);
704 up_write(&io->bio_list_lock);
707 static void del_bio_entry(struct bio_entry *be)
709 list_del(&be->list);
710 kmem_cache_free(bio_entry_slab, be);
713 static int add_ipu_page(struct f2fs_sb_info *sbi, struct bio **bio,
714 struct page *page)
716 enum temp_type temp;
717 bool found = false;
718 int ret = -EAGAIN;
720 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
721 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
722 struct list_head *head = &io->bio_list;
723 struct bio_entry *be;
725 down_write(&io->bio_list_lock);
726 list_for_each_entry(be, head, list) {
727 if (be->bio != *bio)
728 continue;
730 found = true;
732 if (bio_add_page(*bio, page, PAGE_SIZE, 0) ==
733 PAGE_SIZE) {
734 ret = 0;
735 break;
738 /* bio is full */
739 del_bio_entry(be);
740 __submit_bio(sbi, *bio, DATA);
741 break;
743 up_write(&io->bio_list_lock);
746 if (ret) {
747 bio_put(*bio);
748 *bio = NULL;
751 return ret;
754 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
755 struct bio **bio, struct page *page)
757 enum temp_type temp;
758 bool found = false;
759 struct bio *target = bio ? *bio : NULL;
761 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
762 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
763 struct list_head *head = &io->bio_list;
764 struct bio_entry *be;
766 if (list_empty(head))
767 continue;
769 down_read(&io->bio_list_lock);
770 list_for_each_entry(be, head, list) {
771 if (target)
772 found = (target == be->bio);
773 else
774 found = __has_merged_page(be->bio, NULL,
775 page, 0);
776 if (found)
777 break;
779 up_read(&io->bio_list_lock);
781 if (!found)
782 continue;
784 found = false;
786 down_write(&io->bio_list_lock);
787 list_for_each_entry(be, head, list) {
788 if (target)
789 found = (target == be->bio);
790 else
791 found = __has_merged_page(be->bio, NULL,
792 page, 0);
793 if (found) {
794 target = be->bio;
795 del_bio_entry(be);
796 break;
799 up_write(&io->bio_list_lock);
802 if (found)
803 __submit_bio(sbi, target, DATA);
804 if (bio && *bio) {
805 bio_put(*bio);
806 *bio = NULL;
810 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
812 struct bio *bio = *fio->bio;
813 struct page *page = fio->encrypted_page ?
814 fio->encrypted_page : fio->page;
816 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
817 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
818 return -EFSCORRUPTED;
820 trace_f2fs_submit_page_bio(page, fio);
821 f2fs_trace_ios(fio, 0);
823 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
824 fio->new_blkaddr))
825 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
826 alloc_new:
827 if (!bio) {
828 bio = __bio_alloc(fio, BIO_MAX_PAGES);
829 bio_set_op_attrs(bio, fio->op, fio->op_flags);
831 add_bio_entry(fio->sbi, bio, page, fio->temp);
832 } else {
833 if (add_ipu_page(fio->sbi, &bio, page))
834 goto alloc_new;
837 if (fio->io_wbc)
838 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
840 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
842 *fio->last_block = fio->new_blkaddr;
843 *fio->bio = bio;
845 return 0;
848 void f2fs_submit_page_write(struct f2fs_io_info *fio)
850 struct f2fs_sb_info *sbi = fio->sbi;
851 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
852 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
853 struct page *bio_page;
855 f2fs_bug_on(sbi, is_read_io(fio->op));
857 down_write(&io->io_rwsem);
858 next:
859 if (fio->in_list) {
860 spin_lock(&io->io_lock);
861 if (list_empty(&io->io_list)) {
862 spin_unlock(&io->io_lock);
863 goto out;
865 fio = list_first_entry(&io->io_list,
866 struct f2fs_io_info, list);
867 list_del(&fio->list);
868 spin_unlock(&io->io_lock);
871 verify_fio_blkaddr(fio);
873 if (fio->encrypted_page)
874 bio_page = fio->encrypted_page;
875 else if (fio->compressed_page)
876 bio_page = fio->compressed_page;
877 else
878 bio_page = fio->page;
880 /* set submitted = true as a return value */
881 fio->submitted = true;
883 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
885 if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
886 io->last_block_in_bio, fio->new_blkaddr))
887 __submit_merged_bio(io);
888 alloc_new:
889 if (io->bio == NULL) {
890 if (F2FS_IO_ALIGNED(sbi) &&
891 (fio->type == DATA || fio->type == NODE) &&
892 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
893 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
894 fio->retry = true;
895 goto skip;
897 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
898 io->fio = *fio;
901 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
902 __submit_merged_bio(io);
903 goto alloc_new;
906 if (fio->io_wbc)
907 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
909 io->last_block_in_bio = fio->new_blkaddr;
910 f2fs_trace_ios(fio, 0);
912 trace_f2fs_submit_page_write(fio->page, fio);
913 skip:
914 if (fio->in_list)
915 goto next;
916 out:
917 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
918 !f2fs_is_checkpoint_ready(sbi))
919 __submit_merged_bio(io);
920 up_write(&io->io_rwsem);
923 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
925 return fsverity_active(inode) &&
926 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
929 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
930 unsigned nr_pages, unsigned op_flag,
931 pgoff_t first_idx)
933 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
934 struct bio *bio;
935 struct bio_post_read_ctx *ctx;
936 unsigned int post_read_steps = 0;
938 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
939 if (!bio)
940 return ERR_PTR(-ENOMEM);
941 f2fs_target_device(sbi, blkaddr, bio);
942 bio->bi_end_io = f2fs_read_end_io;
943 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
945 if (f2fs_encrypted_file(inode))
946 post_read_steps |= 1 << STEP_DECRYPT;
947 if (f2fs_compressed_file(inode))
948 post_read_steps |= 1 << STEP_DECOMPRESS;
949 if (f2fs_need_verity(inode, first_idx))
950 post_read_steps |= 1 << STEP_VERITY;
952 if (post_read_steps) {
953 /* Due to the mempool, this never fails. */
954 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
955 ctx->bio = bio;
956 ctx->sbi = sbi;
957 ctx->enabled_steps = post_read_steps;
958 bio->bi_private = ctx;
961 return bio;
964 static void f2fs_release_read_bio(struct bio *bio)
966 if (bio->bi_private)
967 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
968 bio_put(bio);
971 /* This can handle encryption stuffs */
972 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
973 block_t blkaddr)
975 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
976 struct bio *bio;
978 bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index);
979 if (IS_ERR(bio))
980 return PTR_ERR(bio);
982 /* wait for GCed page writeback via META_MAPPING */
983 f2fs_wait_on_block_writeback(inode, blkaddr);
985 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
986 bio_put(bio);
987 return -EFAULT;
989 ClearPageError(page);
990 inc_page_count(sbi, F2FS_RD_DATA);
991 __submit_bio(sbi, bio, DATA);
992 return 0;
995 static void __set_data_blkaddr(struct dnode_of_data *dn)
997 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
998 __le32 *addr_array;
999 int base = 0;
1001 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1002 base = get_extra_isize(dn->inode);
1004 /* Get physical address of data block */
1005 addr_array = blkaddr_in_node(rn);
1006 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1010 * Lock ordering for the change of data block address:
1011 * ->data_page
1012 * ->node_page
1013 * update block addresses in the node page
1015 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1017 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1018 __set_data_blkaddr(dn);
1019 if (set_page_dirty(dn->node_page))
1020 dn->node_changed = true;
1023 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1025 dn->data_blkaddr = blkaddr;
1026 f2fs_set_data_blkaddr(dn);
1027 f2fs_update_extent_cache(dn);
1030 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1031 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1033 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1034 int err;
1036 if (!count)
1037 return 0;
1039 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1040 return -EPERM;
1041 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1042 return err;
1044 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1045 dn->ofs_in_node, count);
1047 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1049 for (; count > 0; dn->ofs_in_node++) {
1050 block_t blkaddr = datablock_addr(dn->inode,
1051 dn->node_page, dn->ofs_in_node);
1052 if (blkaddr == NULL_ADDR) {
1053 dn->data_blkaddr = NEW_ADDR;
1054 __set_data_blkaddr(dn);
1055 count--;
1059 if (set_page_dirty(dn->node_page))
1060 dn->node_changed = true;
1061 return 0;
1064 /* Should keep dn->ofs_in_node unchanged */
1065 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1067 unsigned int ofs_in_node = dn->ofs_in_node;
1068 int ret;
1070 ret = f2fs_reserve_new_blocks(dn, 1);
1071 dn->ofs_in_node = ofs_in_node;
1072 return ret;
1075 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1077 bool need_put = dn->inode_page ? false : true;
1078 int err;
1080 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1081 if (err)
1082 return err;
1084 if (dn->data_blkaddr == NULL_ADDR)
1085 err = f2fs_reserve_new_block(dn);
1086 if (err || need_put)
1087 f2fs_put_dnode(dn);
1088 return err;
1091 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1093 struct extent_info ei = {0,0,0};
1094 struct inode *inode = dn->inode;
1096 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1097 dn->data_blkaddr = ei.blk + index - ei.fofs;
1098 return 0;
1101 return f2fs_reserve_block(dn, index);
1104 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1105 int op_flags, bool for_write)
1107 struct address_space *mapping = inode->i_mapping;
1108 struct dnode_of_data dn;
1109 struct page *page;
1110 struct extent_info ei = {0,0,0};
1111 int err;
1113 page = f2fs_grab_cache_page(mapping, index, for_write);
1114 if (!page)
1115 return ERR_PTR(-ENOMEM);
1117 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1118 dn.data_blkaddr = ei.blk + index - ei.fofs;
1119 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1120 DATA_GENERIC_ENHANCE_READ)) {
1121 err = -EFSCORRUPTED;
1122 goto put_err;
1124 goto got_it;
1127 set_new_dnode(&dn, inode, NULL, NULL, 0);
1128 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1129 if (err)
1130 goto put_err;
1131 f2fs_put_dnode(&dn);
1133 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1134 err = -ENOENT;
1135 goto put_err;
1137 if (dn.data_blkaddr != NEW_ADDR &&
1138 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1139 dn.data_blkaddr,
1140 DATA_GENERIC_ENHANCE)) {
1141 err = -EFSCORRUPTED;
1142 goto put_err;
1144 got_it:
1145 if (PageUptodate(page)) {
1146 unlock_page(page);
1147 return page;
1151 * A new dentry page is allocated but not able to be written, since its
1152 * new inode page couldn't be allocated due to -ENOSPC.
1153 * In such the case, its blkaddr can be remained as NEW_ADDR.
1154 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1155 * f2fs_init_inode_metadata.
1157 if (dn.data_blkaddr == NEW_ADDR) {
1158 zero_user_segment(page, 0, PAGE_SIZE);
1159 if (!PageUptodate(page))
1160 SetPageUptodate(page);
1161 unlock_page(page);
1162 return page;
1165 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
1166 if (err)
1167 goto put_err;
1168 return page;
1170 put_err:
1171 f2fs_put_page(page, 1);
1172 return ERR_PTR(err);
1175 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1177 struct address_space *mapping = inode->i_mapping;
1178 struct page *page;
1180 page = find_get_page(mapping, index);
1181 if (page && PageUptodate(page))
1182 return page;
1183 f2fs_put_page(page, 0);
1185 page = f2fs_get_read_data_page(inode, index, 0, false);
1186 if (IS_ERR(page))
1187 return page;
1189 if (PageUptodate(page))
1190 return page;
1192 wait_on_page_locked(page);
1193 if (unlikely(!PageUptodate(page))) {
1194 f2fs_put_page(page, 0);
1195 return ERR_PTR(-EIO);
1197 return page;
1201 * If it tries to access a hole, return an error.
1202 * Because, the callers, functions in dir.c and GC, should be able to know
1203 * whether this page exists or not.
1205 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1206 bool for_write)
1208 struct address_space *mapping = inode->i_mapping;
1209 struct page *page;
1210 repeat:
1211 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1212 if (IS_ERR(page))
1213 return page;
1215 /* wait for read completion */
1216 lock_page(page);
1217 if (unlikely(page->mapping != mapping)) {
1218 f2fs_put_page(page, 1);
1219 goto repeat;
1221 if (unlikely(!PageUptodate(page))) {
1222 f2fs_put_page(page, 1);
1223 return ERR_PTR(-EIO);
1225 return page;
1229 * Caller ensures that this data page is never allocated.
1230 * A new zero-filled data page is allocated in the page cache.
1232 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1233 * f2fs_unlock_op().
1234 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1235 * ipage should be released by this function.
1237 struct page *f2fs_get_new_data_page(struct inode *inode,
1238 struct page *ipage, pgoff_t index, bool new_i_size)
1240 struct address_space *mapping = inode->i_mapping;
1241 struct page *page;
1242 struct dnode_of_data dn;
1243 int err;
1245 page = f2fs_grab_cache_page(mapping, index, true);
1246 if (!page) {
1248 * before exiting, we should make sure ipage will be released
1249 * if any error occur.
1251 f2fs_put_page(ipage, 1);
1252 return ERR_PTR(-ENOMEM);
1255 set_new_dnode(&dn, inode, ipage, NULL, 0);
1256 err = f2fs_reserve_block(&dn, index);
1257 if (err) {
1258 f2fs_put_page(page, 1);
1259 return ERR_PTR(err);
1261 if (!ipage)
1262 f2fs_put_dnode(&dn);
1264 if (PageUptodate(page))
1265 goto got_it;
1267 if (dn.data_blkaddr == NEW_ADDR) {
1268 zero_user_segment(page, 0, PAGE_SIZE);
1269 if (!PageUptodate(page))
1270 SetPageUptodate(page);
1271 } else {
1272 f2fs_put_page(page, 1);
1274 /* if ipage exists, blkaddr should be NEW_ADDR */
1275 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1276 page = f2fs_get_lock_data_page(inode, index, true);
1277 if (IS_ERR(page))
1278 return page;
1280 got_it:
1281 if (new_i_size && i_size_read(inode) <
1282 ((loff_t)(index + 1) << PAGE_SHIFT))
1283 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1284 return page;
1287 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1289 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1290 struct f2fs_summary sum;
1291 struct node_info ni;
1292 block_t old_blkaddr;
1293 blkcnt_t count = 1;
1294 int err;
1296 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1297 return -EPERM;
1299 err = f2fs_get_node_info(sbi, dn->nid, &ni);
1300 if (err)
1301 return err;
1303 dn->data_blkaddr = datablock_addr(dn->inode,
1304 dn->node_page, dn->ofs_in_node);
1305 if (dn->data_blkaddr != NULL_ADDR)
1306 goto alloc;
1308 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1309 return err;
1311 alloc:
1312 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1313 old_blkaddr = dn->data_blkaddr;
1314 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1315 &sum, seg_type, NULL, false);
1316 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1317 invalidate_mapping_pages(META_MAPPING(sbi),
1318 old_blkaddr, old_blkaddr);
1319 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1322 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1323 * data from unwritten block via dio_read.
1325 return 0;
1328 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1330 struct inode *inode = file_inode(iocb->ki_filp);
1331 struct f2fs_map_blocks map;
1332 int flag;
1333 int err = 0;
1334 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1336 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1337 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1338 if (map.m_len > map.m_lblk)
1339 map.m_len -= map.m_lblk;
1340 else
1341 map.m_len = 0;
1343 map.m_next_pgofs = NULL;
1344 map.m_next_extent = NULL;
1345 map.m_seg_type = NO_CHECK_TYPE;
1346 map.m_may_create = true;
1348 if (direct_io) {
1349 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1350 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1351 F2FS_GET_BLOCK_PRE_AIO :
1352 F2FS_GET_BLOCK_PRE_DIO;
1353 goto map_blocks;
1355 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1356 err = f2fs_convert_inline_inode(inode);
1357 if (err)
1358 return err;
1360 if (f2fs_has_inline_data(inode))
1361 return err;
1363 flag = F2FS_GET_BLOCK_PRE_AIO;
1365 map_blocks:
1366 err = f2fs_map_blocks(inode, &map, 1, flag);
1367 if (map.m_len > 0 && err == -ENOSPC) {
1368 if (!direct_io)
1369 set_inode_flag(inode, FI_NO_PREALLOC);
1370 err = 0;
1372 return err;
1375 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1377 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1378 if (lock)
1379 down_read(&sbi->node_change);
1380 else
1381 up_read(&sbi->node_change);
1382 } else {
1383 if (lock)
1384 f2fs_lock_op(sbi);
1385 else
1386 f2fs_unlock_op(sbi);
1391 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1392 * f2fs_map_blocks structure.
1393 * If original data blocks are allocated, then give them to blockdev.
1394 * Otherwise,
1395 * a. preallocate requested block addresses
1396 * b. do not use extent cache for better performance
1397 * c. give the block addresses to blockdev
1399 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1400 int create, int flag)
1402 unsigned int maxblocks = map->m_len;
1403 struct dnode_of_data dn;
1404 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1405 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1406 pgoff_t pgofs, end_offset, end;
1407 int err = 0, ofs = 1;
1408 unsigned int ofs_in_node, last_ofs_in_node;
1409 blkcnt_t prealloc;
1410 struct extent_info ei = {0,0,0};
1411 block_t blkaddr;
1412 unsigned int start_pgofs;
1414 if (!maxblocks)
1415 return 0;
1417 map->m_len = 0;
1418 map->m_flags = 0;
1420 /* it only supports block size == page size */
1421 pgofs = (pgoff_t)map->m_lblk;
1422 end = pgofs + maxblocks;
1424 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1425 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1426 map->m_may_create)
1427 goto next_dnode;
1429 map->m_pblk = ei.blk + pgofs - ei.fofs;
1430 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1431 map->m_flags = F2FS_MAP_MAPPED;
1432 if (map->m_next_extent)
1433 *map->m_next_extent = pgofs + map->m_len;
1435 /* for hardware encryption, but to avoid potential issue in future */
1436 if (flag == F2FS_GET_BLOCK_DIO)
1437 f2fs_wait_on_block_writeback_range(inode,
1438 map->m_pblk, map->m_len);
1439 goto out;
1442 next_dnode:
1443 if (map->m_may_create)
1444 __do_map_lock(sbi, flag, true);
1446 /* When reading holes, we need its node page */
1447 set_new_dnode(&dn, inode, NULL, NULL, 0);
1448 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1449 if (err) {
1450 if (flag == F2FS_GET_BLOCK_BMAP)
1451 map->m_pblk = 0;
1452 if (err == -ENOENT) {
1453 err = 0;
1454 if (map->m_next_pgofs)
1455 *map->m_next_pgofs =
1456 f2fs_get_next_page_offset(&dn, pgofs);
1457 if (map->m_next_extent)
1458 *map->m_next_extent =
1459 f2fs_get_next_page_offset(&dn, pgofs);
1461 goto unlock_out;
1464 start_pgofs = pgofs;
1465 prealloc = 0;
1466 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1467 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1469 next_block:
1470 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1472 if (__is_valid_data_blkaddr(blkaddr) &&
1473 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1474 err = -EFSCORRUPTED;
1475 goto sync_out;
1478 if (__is_valid_data_blkaddr(blkaddr)) {
1479 /* use out-place-update for driect IO under LFS mode */
1480 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1481 map->m_may_create) {
1482 err = __allocate_data_block(&dn, map->m_seg_type);
1483 if (err)
1484 goto sync_out;
1485 blkaddr = dn.data_blkaddr;
1486 set_inode_flag(inode, FI_APPEND_WRITE);
1488 } else {
1489 if (create) {
1490 if (unlikely(f2fs_cp_error(sbi))) {
1491 err = -EIO;
1492 goto sync_out;
1494 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1495 if (blkaddr == NULL_ADDR) {
1496 prealloc++;
1497 last_ofs_in_node = dn.ofs_in_node;
1499 } else {
1500 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1501 flag != F2FS_GET_BLOCK_DIO);
1502 err = __allocate_data_block(&dn,
1503 map->m_seg_type);
1504 if (!err)
1505 set_inode_flag(inode, FI_APPEND_WRITE);
1507 if (err)
1508 goto sync_out;
1509 map->m_flags |= F2FS_MAP_NEW;
1510 blkaddr = dn.data_blkaddr;
1511 } else {
1512 if (flag == F2FS_GET_BLOCK_BMAP) {
1513 map->m_pblk = 0;
1514 goto sync_out;
1516 if (flag == F2FS_GET_BLOCK_PRECACHE)
1517 goto sync_out;
1518 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1519 blkaddr == NULL_ADDR) {
1520 if (map->m_next_pgofs)
1521 *map->m_next_pgofs = pgofs + 1;
1522 goto sync_out;
1524 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1525 /* for defragment case */
1526 if (map->m_next_pgofs)
1527 *map->m_next_pgofs = pgofs + 1;
1528 goto sync_out;
1533 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1534 goto skip;
1536 if (map->m_len == 0) {
1537 /* preallocated unwritten block should be mapped for fiemap. */
1538 if (blkaddr == NEW_ADDR)
1539 map->m_flags |= F2FS_MAP_UNWRITTEN;
1540 map->m_flags |= F2FS_MAP_MAPPED;
1542 map->m_pblk = blkaddr;
1543 map->m_len = 1;
1544 } else if ((map->m_pblk != NEW_ADDR &&
1545 blkaddr == (map->m_pblk + ofs)) ||
1546 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1547 flag == F2FS_GET_BLOCK_PRE_DIO) {
1548 ofs++;
1549 map->m_len++;
1550 } else {
1551 goto sync_out;
1554 skip:
1555 dn.ofs_in_node++;
1556 pgofs++;
1558 /* preallocate blocks in batch for one dnode page */
1559 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1560 (pgofs == end || dn.ofs_in_node == end_offset)) {
1562 dn.ofs_in_node = ofs_in_node;
1563 err = f2fs_reserve_new_blocks(&dn, prealloc);
1564 if (err)
1565 goto sync_out;
1567 map->m_len += dn.ofs_in_node - ofs_in_node;
1568 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1569 err = -ENOSPC;
1570 goto sync_out;
1572 dn.ofs_in_node = end_offset;
1575 if (pgofs >= end)
1576 goto sync_out;
1577 else if (dn.ofs_in_node < end_offset)
1578 goto next_block;
1580 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1581 if (map->m_flags & F2FS_MAP_MAPPED) {
1582 unsigned int ofs = start_pgofs - map->m_lblk;
1584 f2fs_update_extent_cache_range(&dn,
1585 start_pgofs, map->m_pblk + ofs,
1586 map->m_len - ofs);
1590 f2fs_put_dnode(&dn);
1592 if (map->m_may_create) {
1593 __do_map_lock(sbi, flag, false);
1594 f2fs_balance_fs(sbi, dn.node_changed);
1596 goto next_dnode;
1598 sync_out:
1600 /* for hardware encryption, but to avoid potential issue in future */
1601 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1602 f2fs_wait_on_block_writeback_range(inode,
1603 map->m_pblk, map->m_len);
1605 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1606 if (map->m_flags & F2FS_MAP_MAPPED) {
1607 unsigned int ofs = start_pgofs - map->m_lblk;
1609 f2fs_update_extent_cache_range(&dn,
1610 start_pgofs, map->m_pblk + ofs,
1611 map->m_len - ofs);
1613 if (map->m_next_extent)
1614 *map->m_next_extent = pgofs + 1;
1616 f2fs_put_dnode(&dn);
1617 unlock_out:
1618 if (map->m_may_create) {
1619 __do_map_lock(sbi, flag, false);
1620 f2fs_balance_fs(sbi, dn.node_changed);
1622 out:
1623 trace_f2fs_map_blocks(inode, map, err);
1624 return err;
1627 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1629 struct f2fs_map_blocks map;
1630 block_t last_lblk;
1631 int err;
1633 if (pos + len > i_size_read(inode))
1634 return false;
1636 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1637 map.m_next_pgofs = NULL;
1638 map.m_next_extent = NULL;
1639 map.m_seg_type = NO_CHECK_TYPE;
1640 map.m_may_create = false;
1641 last_lblk = F2FS_BLK_ALIGN(pos + len);
1643 while (map.m_lblk < last_lblk) {
1644 map.m_len = last_lblk - map.m_lblk;
1645 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1646 if (err || map.m_len == 0)
1647 return false;
1648 map.m_lblk += map.m_len;
1650 return true;
1653 static int __get_data_block(struct inode *inode, sector_t iblock,
1654 struct buffer_head *bh, int create, int flag,
1655 pgoff_t *next_pgofs, int seg_type, bool may_write)
1657 struct f2fs_map_blocks map;
1658 int err;
1660 map.m_lblk = iblock;
1661 map.m_len = bh->b_size >> inode->i_blkbits;
1662 map.m_next_pgofs = next_pgofs;
1663 map.m_next_extent = NULL;
1664 map.m_seg_type = seg_type;
1665 map.m_may_create = may_write;
1667 err = f2fs_map_blocks(inode, &map, create, flag);
1668 if (!err) {
1669 map_bh(bh, inode->i_sb, map.m_pblk);
1670 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1671 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1673 return err;
1676 static int get_data_block(struct inode *inode, sector_t iblock,
1677 struct buffer_head *bh_result, int create, int flag,
1678 pgoff_t *next_pgofs)
1680 return __get_data_block(inode, iblock, bh_result, create,
1681 flag, next_pgofs,
1682 NO_CHECK_TYPE, create);
1685 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1686 struct buffer_head *bh_result, int create)
1688 return __get_data_block(inode, iblock, bh_result, create,
1689 F2FS_GET_BLOCK_DIO, NULL,
1690 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1691 IS_SWAPFILE(inode) ? false : true);
1694 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1695 struct buffer_head *bh_result, int create)
1697 return __get_data_block(inode, iblock, bh_result, create,
1698 F2FS_GET_BLOCK_DIO, NULL,
1699 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1700 false);
1703 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1704 struct buffer_head *bh_result, int create)
1706 /* Block number less than F2FS MAX BLOCKS */
1707 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1708 return -EFBIG;
1710 return __get_data_block(inode, iblock, bh_result, create,
1711 F2FS_GET_BLOCK_BMAP, NULL,
1712 NO_CHECK_TYPE, create);
1715 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1717 return (offset >> inode->i_blkbits);
1720 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1722 return (blk << inode->i_blkbits);
1725 static int f2fs_xattr_fiemap(struct inode *inode,
1726 struct fiemap_extent_info *fieinfo)
1728 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1729 struct page *page;
1730 struct node_info ni;
1731 __u64 phys = 0, len;
1732 __u32 flags;
1733 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1734 int err = 0;
1736 if (f2fs_has_inline_xattr(inode)) {
1737 int offset;
1739 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1740 inode->i_ino, false);
1741 if (!page)
1742 return -ENOMEM;
1744 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1745 if (err) {
1746 f2fs_put_page(page, 1);
1747 return err;
1750 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1751 offset = offsetof(struct f2fs_inode, i_addr) +
1752 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1753 get_inline_xattr_addrs(inode));
1755 phys += offset;
1756 len = inline_xattr_size(inode);
1758 f2fs_put_page(page, 1);
1760 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1762 if (!xnid)
1763 flags |= FIEMAP_EXTENT_LAST;
1765 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1766 if (err || err == 1)
1767 return err;
1770 if (xnid) {
1771 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1772 if (!page)
1773 return -ENOMEM;
1775 err = f2fs_get_node_info(sbi, xnid, &ni);
1776 if (err) {
1777 f2fs_put_page(page, 1);
1778 return err;
1781 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1782 len = inode->i_sb->s_blocksize;
1784 f2fs_put_page(page, 1);
1786 flags = FIEMAP_EXTENT_LAST;
1789 if (phys)
1790 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1792 return (err < 0 ? err : 0);
1795 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1796 u64 start, u64 len)
1798 struct buffer_head map_bh;
1799 sector_t start_blk, last_blk;
1800 pgoff_t next_pgofs;
1801 u64 logical = 0, phys = 0, size = 0;
1802 u32 flags = 0;
1803 int ret = 0;
1805 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1806 ret = f2fs_precache_extents(inode);
1807 if (ret)
1808 return ret;
1811 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1812 if (ret)
1813 return ret;
1815 inode_lock(inode);
1817 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1818 ret = f2fs_xattr_fiemap(inode, fieinfo);
1819 goto out;
1822 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1823 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1824 if (ret != -EAGAIN)
1825 goto out;
1828 if (logical_to_blk(inode, len) == 0)
1829 len = blk_to_logical(inode, 1);
1831 start_blk = logical_to_blk(inode, start);
1832 last_blk = logical_to_blk(inode, start + len - 1);
1834 next:
1835 memset(&map_bh, 0, sizeof(struct buffer_head));
1836 map_bh.b_size = len;
1838 ret = get_data_block(inode, start_blk, &map_bh, 0,
1839 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1840 if (ret)
1841 goto out;
1843 /* HOLE */
1844 if (!buffer_mapped(&map_bh)) {
1845 start_blk = next_pgofs;
1847 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1848 F2FS_I_SB(inode)->max_file_blocks))
1849 goto prep_next;
1851 flags |= FIEMAP_EXTENT_LAST;
1854 if (size) {
1855 if (IS_ENCRYPTED(inode))
1856 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1858 ret = fiemap_fill_next_extent(fieinfo, logical,
1859 phys, size, flags);
1862 if (start_blk > last_blk || ret)
1863 goto out;
1865 logical = blk_to_logical(inode, start_blk);
1866 phys = blk_to_logical(inode, map_bh.b_blocknr);
1867 size = map_bh.b_size;
1868 flags = 0;
1869 if (buffer_unwritten(&map_bh))
1870 flags = FIEMAP_EXTENT_UNWRITTEN;
1872 start_blk += logical_to_blk(inode, size);
1874 prep_next:
1875 cond_resched();
1876 if (fatal_signal_pending(current))
1877 ret = -EINTR;
1878 else
1879 goto next;
1880 out:
1881 if (ret == 1)
1882 ret = 0;
1884 inode_unlock(inode);
1885 return ret;
1888 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1890 if (IS_ENABLED(CONFIG_FS_VERITY) &&
1891 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1892 return inode->i_sb->s_maxbytes;
1894 return i_size_read(inode);
1897 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1898 unsigned nr_pages,
1899 struct f2fs_map_blocks *map,
1900 struct bio **bio_ret,
1901 sector_t *last_block_in_bio,
1902 bool is_readahead)
1904 struct bio *bio = *bio_ret;
1905 const unsigned blkbits = inode->i_blkbits;
1906 const unsigned blocksize = 1 << blkbits;
1907 sector_t block_in_file;
1908 sector_t last_block;
1909 sector_t last_block_in_file;
1910 sector_t block_nr;
1911 int ret = 0;
1913 block_in_file = (sector_t)page_index(page);
1914 last_block = block_in_file + nr_pages;
1915 last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1916 blkbits;
1917 if (last_block > last_block_in_file)
1918 last_block = last_block_in_file;
1920 /* just zeroing out page which is beyond EOF */
1921 if (block_in_file >= last_block)
1922 goto zero_out;
1924 * Map blocks using the previous result first.
1926 if ((map->m_flags & F2FS_MAP_MAPPED) &&
1927 block_in_file > map->m_lblk &&
1928 block_in_file < (map->m_lblk + map->m_len))
1929 goto got_it;
1932 * Then do more f2fs_map_blocks() calls until we are
1933 * done with this page.
1935 map->m_lblk = block_in_file;
1936 map->m_len = last_block - block_in_file;
1938 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1939 if (ret)
1940 goto out;
1941 got_it:
1942 if ((map->m_flags & F2FS_MAP_MAPPED)) {
1943 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1944 SetPageMappedToDisk(page);
1946 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1947 !cleancache_get_page(page))) {
1948 SetPageUptodate(page);
1949 goto confused;
1952 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1953 DATA_GENERIC_ENHANCE_READ)) {
1954 ret = -EFSCORRUPTED;
1955 goto out;
1957 } else {
1958 zero_out:
1959 zero_user_segment(page, 0, PAGE_SIZE);
1960 if (f2fs_need_verity(inode, page->index) &&
1961 !fsverity_verify_page(page)) {
1962 ret = -EIO;
1963 goto out;
1965 if (!PageUptodate(page))
1966 SetPageUptodate(page);
1967 unlock_page(page);
1968 goto out;
1972 * This page will go to BIO. Do we need to send this
1973 * BIO off first?
1975 if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
1976 *last_block_in_bio, block_nr)) {
1977 submit_and_realloc:
1978 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1979 bio = NULL;
1981 if (bio == NULL) {
1982 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1983 is_readahead ? REQ_RAHEAD : 0, page->index);
1984 if (IS_ERR(bio)) {
1985 ret = PTR_ERR(bio);
1986 bio = NULL;
1987 goto out;
1992 * If the page is under writeback, we need to wait for
1993 * its completion to see the correct decrypted data.
1995 f2fs_wait_on_block_writeback(inode, block_nr);
1997 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1998 goto submit_and_realloc;
2000 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2001 ClearPageError(page);
2002 *last_block_in_bio = block_nr;
2003 goto out;
2004 confused:
2005 if (bio) {
2006 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2007 bio = NULL;
2009 unlock_page(page);
2010 out:
2011 *bio_ret = bio;
2012 return ret;
2015 #ifdef CONFIG_F2FS_FS_COMPRESSION
2016 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2017 unsigned nr_pages, sector_t *last_block_in_bio,
2018 bool is_readahead)
2020 struct dnode_of_data dn;
2021 struct inode *inode = cc->inode;
2022 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2023 struct bio *bio = *bio_ret;
2024 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2025 sector_t last_block_in_file;
2026 const unsigned blkbits = inode->i_blkbits;
2027 const unsigned blocksize = 1 << blkbits;
2028 struct decompress_io_ctx *dic = NULL;
2029 int i;
2030 int ret = 0;
2032 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2034 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
2036 /* get rid of pages beyond EOF */
2037 for (i = 0; i < cc->cluster_size; i++) {
2038 struct page *page = cc->rpages[i];
2040 if (!page)
2041 continue;
2042 if ((sector_t)page->index >= last_block_in_file) {
2043 zero_user_segment(page, 0, PAGE_SIZE);
2044 if (!PageUptodate(page))
2045 SetPageUptodate(page);
2046 } else if (!PageUptodate(page)) {
2047 continue;
2049 unlock_page(page);
2050 cc->rpages[i] = NULL;
2051 cc->nr_rpages--;
2054 /* we are done since all pages are beyond EOF */
2055 if (f2fs_cluster_is_empty(cc))
2056 goto out;
2058 set_new_dnode(&dn, inode, NULL, NULL, 0);
2059 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2060 if (ret)
2061 goto out;
2063 /* cluster was overwritten as normal cluster */
2064 if (dn.data_blkaddr != COMPRESS_ADDR)
2065 goto out;
2067 for (i = 1; i < cc->cluster_size; i++) {
2068 block_t blkaddr;
2070 blkaddr = datablock_addr(dn.inode, dn.node_page,
2071 dn.ofs_in_node + i);
2073 if (!__is_valid_data_blkaddr(blkaddr))
2074 break;
2076 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2077 ret = -EFAULT;
2078 goto out_put_dnode;
2080 cc->nr_cpages++;
2083 /* nothing to decompress */
2084 if (cc->nr_cpages == 0) {
2085 ret = 0;
2086 goto out_put_dnode;
2089 dic = f2fs_alloc_dic(cc);
2090 if (IS_ERR(dic)) {
2091 ret = PTR_ERR(dic);
2092 goto out_put_dnode;
2095 for (i = 0; i < dic->nr_cpages; i++) {
2096 struct page *page = dic->cpages[i];
2097 block_t blkaddr;
2099 blkaddr = datablock_addr(dn.inode, dn.node_page,
2100 dn.ofs_in_node + i + 1);
2102 if (bio && !page_is_mergeable(sbi, bio,
2103 *last_block_in_bio, blkaddr)) {
2104 submit_and_realloc:
2105 __submit_bio(sbi, bio, DATA);
2106 bio = NULL;
2109 if (!bio) {
2110 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2111 is_readahead ? REQ_RAHEAD : 0,
2112 page->index);
2113 if (IS_ERR(bio)) {
2114 ret = PTR_ERR(bio);
2115 bio = NULL;
2116 dic->failed = true;
2117 if (refcount_sub_and_test(dic->nr_cpages - i,
2118 &dic->ref))
2119 f2fs_decompress_end_io(dic->rpages,
2120 cc->cluster_size, true,
2121 false);
2122 f2fs_free_dic(dic);
2123 f2fs_put_dnode(&dn);
2124 *bio_ret = bio;
2125 return ret;
2129 f2fs_wait_on_block_writeback(inode, blkaddr);
2131 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2132 goto submit_and_realloc;
2134 inc_page_count(sbi, F2FS_RD_DATA);
2135 ClearPageError(page);
2136 *last_block_in_bio = blkaddr;
2139 f2fs_put_dnode(&dn);
2141 *bio_ret = bio;
2142 return 0;
2144 out_put_dnode:
2145 f2fs_put_dnode(&dn);
2146 out:
2147 f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2148 *bio_ret = bio;
2149 return ret;
2151 #endif
2154 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2155 * Major change was from block_size == page_size in f2fs by default.
2157 * Note that the aops->readpages() function is ONLY used for read-ahead. If
2158 * this function ever deviates from doing just read-ahead, it should either
2159 * use ->readpage() or do the necessary surgery to decouple ->readpages()
2160 * from read-ahead.
2162 int f2fs_mpage_readpages(struct address_space *mapping,
2163 struct list_head *pages, struct page *page,
2164 unsigned nr_pages, bool is_readahead)
2166 struct bio *bio = NULL;
2167 sector_t last_block_in_bio = 0;
2168 struct inode *inode = mapping->host;
2169 struct f2fs_map_blocks map;
2170 #ifdef CONFIG_F2FS_FS_COMPRESSION
2171 struct compress_ctx cc = {
2172 .inode = inode,
2173 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2174 .cluster_size = F2FS_I(inode)->i_cluster_size,
2175 .cluster_idx = NULL_CLUSTER,
2176 .rpages = NULL,
2177 .cpages = NULL,
2178 .nr_rpages = 0,
2179 .nr_cpages = 0,
2181 #endif
2182 unsigned max_nr_pages = nr_pages;
2183 int ret = 0;
2185 map.m_pblk = 0;
2186 map.m_lblk = 0;
2187 map.m_len = 0;
2188 map.m_flags = 0;
2189 map.m_next_pgofs = NULL;
2190 map.m_next_extent = NULL;
2191 map.m_seg_type = NO_CHECK_TYPE;
2192 map.m_may_create = false;
2194 for (; nr_pages; nr_pages--) {
2195 if (pages) {
2196 page = list_last_entry(pages, struct page, lru);
2198 prefetchw(&page->flags);
2199 list_del(&page->lru);
2200 if (add_to_page_cache_lru(page, mapping,
2201 page_index(page),
2202 readahead_gfp_mask(mapping)))
2203 goto next_page;
2206 #ifdef CONFIG_F2FS_FS_COMPRESSION
2207 if (f2fs_compressed_file(inode)) {
2208 /* there are remained comressed pages, submit them */
2209 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2210 ret = f2fs_read_multi_pages(&cc, &bio,
2211 max_nr_pages,
2212 &last_block_in_bio,
2213 is_readahead);
2214 f2fs_destroy_compress_ctx(&cc);
2215 if (ret)
2216 goto set_error_page;
2218 ret = f2fs_is_compressed_cluster(inode, page->index);
2219 if (ret < 0)
2220 goto set_error_page;
2221 else if (!ret)
2222 goto read_single_page;
2224 ret = f2fs_init_compress_ctx(&cc);
2225 if (ret)
2226 goto set_error_page;
2228 f2fs_compress_ctx_add_page(&cc, page);
2230 goto next_page;
2232 read_single_page:
2233 #endif
2235 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2236 &bio, &last_block_in_bio, is_readahead);
2237 if (ret) {
2238 #ifdef CONFIG_F2FS_FS_COMPRESSION
2239 set_error_page:
2240 #endif
2241 SetPageError(page);
2242 zero_user_segment(page, 0, PAGE_SIZE);
2243 unlock_page(page);
2245 next_page:
2246 if (pages)
2247 put_page(page);
2249 #ifdef CONFIG_F2FS_FS_COMPRESSION
2250 if (f2fs_compressed_file(inode)) {
2251 /* last page */
2252 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2253 ret = f2fs_read_multi_pages(&cc, &bio,
2254 max_nr_pages,
2255 &last_block_in_bio,
2256 is_readahead);
2257 f2fs_destroy_compress_ctx(&cc);
2260 #endif
2262 BUG_ON(pages && !list_empty(pages));
2263 if (bio)
2264 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2265 return pages ? 0 : ret;
2268 static int f2fs_read_data_page(struct file *file, struct page *page)
2270 struct inode *inode = page_file_mapping(page)->host;
2271 int ret = -EAGAIN;
2273 trace_f2fs_readpage(page, DATA);
2275 if (!f2fs_is_compress_backend_ready(inode)) {
2276 unlock_page(page);
2277 return -EOPNOTSUPP;
2280 /* If the file has inline data, try to read it directly */
2281 if (f2fs_has_inline_data(inode))
2282 ret = f2fs_read_inline_data(inode, page);
2283 if (ret == -EAGAIN)
2284 ret = f2fs_mpage_readpages(page_file_mapping(page),
2285 NULL, page, 1, false);
2286 return ret;
2289 static int f2fs_read_data_pages(struct file *file,
2290 struct address_space *mapping,
2291 struct list_head *pages, unsigned nr_pages)
2293 struct inode *inode = mapping->host;
2294 struct page *page = list_last_entry(pages, struct page, lru);
2296 trace_f2fs_readpages(inode, page, nr_pages);
2298 if (!f2fs_is_compress_backend_ready(inode))
2299 return 0;
2301 /* If the file has inline data, skip readpages */
2302 if (f2fs_has_inline_data(inode))
2303 return 0;
2305 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
2308 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2310 struct inode *inode = fio->page->mapping->host;
2311 struct page *mpage, *page;
2312 gfp_t gfp_flags = GFP_NOFS;
2314 if (!f2fs_encrypted_file(inode))
2315 return 0;
2317 page = fio->compressed_page ? fio->compressed_page : fio->page;
2319 /* wait for GCed page writeback via META_MAPPING */
2320 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2322 retry_encrypt:
2323 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2324 PAGE_SIZE, 0, gfp_flags);
2325 if (IS_ERR(fio->encrypted_page)) {
2326 /* flush pending IOs and wait for a while in the ENOMEM case */
2327 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2328 f2fs_flush_merged_writes(fio->sbi);
2329 congestion_wait(BLK_RW_ASYNC, HZ/50);
2330 gfp_flags |= __GFP_NOFAIL;
2331 goto retry_encrypt;
2333 return PTR_ERR(fio->encrypted_page);
2336 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2337 if (mpage) {
2338 if (PageUptodate(mpage))
2339 memcpy(page_address(mpage),
2340 page_address(fio->encrypted_page), PAGE_SIZE);
2341 f2fs_put_page(mpage, 1);
2343 return 0;
2346 static inline bool check_inplace_update_policy(struct inode *inode,
2347 struct f2fs_io_info *fio)
2349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2350 unsigned int policy = SM_I(sbi)->ipu_policy;
2352 if (policy & (0x1 << F2FS_IPU_FORCE))
2353 return true;
2354 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2355 return true;
2356 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2357 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2358 return true;
2359 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2360 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2361 return true;
2364 * IPU for rewrite async pages
2366 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2367 fio && fio->op == REQ_OP_WRITE &&
2368 !(fio->op_flags & REQ_SYNC) &&
2369 !IS_ENCRYPTED(inode))
2370 return true;
2372 /* this is only set during fdatasync */
2373 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2374 is_inode_flag_set(inode, FI_NEED_IPU))
2375 return true;
2377 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2378 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2379 return true;
2381 return false;
2384 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2386 if (f2fs_is_pinned_file(inode))
2387 return true;
2389 /* if this is cold file, we should overwrite to avoid fragmentation */
2390 if (file_is_cold(inode))
2391 return true;
2393 return check_inplace_update_policy(inode, fio);
2396 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2398 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2400 if (test_opt(sbi, LFS))
2401 return true;
2402 if (S_ISDIR(inode->i_mode))
2403 return true;
2404 if (IS_NOQUOTA(inode))
2405 return true;
2406 if (f2fs_is_atomic_file(inode))
2407 return true;
2408 if (fio) {
2409 if (is_cold_data(fio->page))
2410 return true;
2411 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2412 return true;
2413 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2414 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2415 return true;
2417 return false;
2420 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2422 struct inode *inode = fio->page->mapping->host;
2424 if (f2fs_should_update_outplace(inode, fio))
2425 return false;
2427 return f2fs_should_update_inplace(inode, fio);
2430 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2432 struct page *page = fio->page;
2433 struct inode *inode = page->mapping->host;
2434 struct dnode_of_data dn;
2435 struct extent_info ei = {0,0,0};
2436 struct node_info ni;
2437 bool ipu_force = false;
2438 int err = 0;
2440 set_new_dnode(&dn, inode, NULL, NULL, 0);
2441 if (need_inplace_update(fio) &&
2442 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2443 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2445 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2446 DATA_GENERIC_ENHANCE))
2447 return -EFSCORRUPTED;
2449 ipu_force = true;
2450 fio->need_lock = LOCK_DONE;
2451 goto got_it;
2454 /* Deadlock due to between page->lock and f2fs_lock_op */
2455 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2456 return -EAGAIN;
2458 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2459 if (err)
2460 goto out;
2462 fio->old_blkaddr = dn.data_blkaddr;
2464 /* This page is already truncated */
2465 if (fio->old_blkaddr == NULL_ADDR) {
2466 ClearPageUptodate(page);
2467 clear_cold_data(page);
2468 goto out_writepage;
2470 got_it:
2471 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2472 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2473 DATA_GENERIC_ENHANCE)) {
2474 err = -EFSCORRUPTED;
2475 goto out_writepage;
2478 * If current allocation needs SSR,
2479 * it had better in-place writes for updated data.
2481 if (ipu_force ||
2482 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2483 need_inplace_update(fio))) {
2484 err = f2fs_encrypt_one_page(fio);
2485 if (err)
2486 goto out_writepage;
2488 set_page_writeback(page);
2489 ClearPageError(page);
2490 f2fs_put_dnode(&dn);
2491 if (fio->need_lock == LOCK_REQ)
2492 f2fs_unlock_op(fio->sbi);
2493 err = f2fs_inplace_write_data(fio);
2494 if (err) {
2495 if (f2fs_encrypted_file(inode))
2496 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2497 if (PageWriteback(page))
2498 end_page_writeback(page);
2499 } else {
2500 set_inode_flag(inode, FI_UPDATE_WRITE);
2502 trace_f2fs_do_write_data_page(fio->page, IPU);
2503 return err;
2506 if (fio->need_lock == LOCK_RETRY) {
2507 if (!f2fs_trylock_op(fio->sbi)) {
2508 err = -EAGAIN;
2509 goto out_writepage;
2511 fio->need_lock = LOCK_REQ;
2514 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2515 if (err)
2516 goto out_writepage;
2518 fio->version = ni.version;
2520 err = f2fs_encrypt_one_page(fio);
2521 if (err)
2522 goto out_writepage;
2524 set_page_writeback(page);
2525 ClearPageError(page);
2527 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2528 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2530 /* LFS mode write path */
2531 f2fs_outplace_write_data(&dn, fio);
2532 trace_f2fs_do_write_data_page(page, OPU);
2533 set_inode_flag(inode, FI_APPEND_WRITE);
2534 if (page->index == 0)
2535 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2536 out_writepage:
2537 f2fs_put_dnode(&dn);
2538 out:
2539 if (fio->need_lock == LOCK_REQ)
2540 f2fs_unlock_op(fio->sbi);
2541 return err;
2544 int f2fs_write_single_data_page(struct page *page, int *submitted,
2545 struct bio **bio,
2546 sector_t *last_block,
2547 struct writeback_control *wbc,
2548 enum iostat_type io_type,
2549 int compr_blocks)
2551 struct inode *inode = page->mapping->host;
2552 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2553 loff_t i_size = i_size_read(inode);
2554 const pgoff_t end_index = ((unsigned long long)i_size)
2555 >> PAGE_SHIFT;
2556 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2557 unsigned offset = 0;
2558 bool need_balance_fs = false;
2559 int err = 0;
2560 struct f2fs_io_info fio = {
2561 .sbi = sbi,
2562 .ino = inode->i_ino,
2563 .type = DATA,
2564 .op = REQ_OP_WRITE,
2565 .op_flags = wbc_to_write_flags(wbc),
2566 .old_blkaddr = NULL_ADDR,
2567 .page = page,
2568 .encrypted_page = NULL,
2569 .submitted = false,
2570 .compr_blocks = compr_blocks,
2571 .need_lock = LOCK_RETRY,
2572 .io_type = io_type,
2573 .io_wbc = wbc,
2574 .bio = bio,
2575 .last_block = last_block,
2578 trace_f2fs_writepage(page, DATA);
2580 /* we should bypass data pages to proceed the kworkder jobs */
2581 if (unlikely(f2fs_cp_error(sbi))) {
2582 mapping_set_error(page->mapping, -EIO);
2584 * don't drop any dirty dentry pages for keeping lastest
2585 * directory structure.
2587 if (S_ISDIR(inode->i_mode))
2588 goto redirty_out;
2589 goto out;
2592 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2593 goto redirty_out;
2595 if (page->index < end_index ||
2596 f2fs_verity_in_progress(inode) ||
2597 compr_blocks)
2598 goto write;
2601 * If the offset is out-of-range of file size,
2602 * this page does not have to be written to disk.
2604 offset = i_size & (PAGE_SIZE - 1);
2605 if ((page->index >= end_index + 1) || !offset)
2606 goto out;
2608 zero_user_segment(page, offset, PAGE_SIZE);
2609 write:
2610 if (f2fs_is_drop_cache(inode))
2611 goto out;
2612 /* we should not write 0'th page having journal header */
2613 if (f2fs_is_volatile_file(inode) && (!page->index ||
2614 (!wbc->for_reclaim &&
2615 f2fs_available_free_memory(sbi, BASE_CHECK))))
2616 goto redirty_out;
2618 /* Dentry blocks are controlled by checkpoint */
2619 if (S_ISDIR(inode->i_mode)) {
2620 fio.need_lock = LOCK_DONE;
2621 err = f2fs_do_write_data_page(&fio);
2622 goto done;
2625 if (!wbc->for_reclaim)
2626 need_balance_fs = true;
2627 else if (has_not_enough_free_secs(sbi, 0, 0))
2628 goto redirty_out;
2629 else
2630 set_inode_flag(inode, FI_HOT_DATA);
2632 err = -EAGAIN;
2633 if (f2fs_has_inline_data(inode)) {
2634 err = f2fs_write_inline_data(inode, page);
2635 if (!err)
2636 goto out;
2639 if (err == -EAGAIN) {
2640 err = f2fs_do_write_data_page(&fio);
2641 if (err == -EAGAIN) {
2642 fio.need_lock = LOCK_REQ;
2643 err = f2fs_do_write_data_page(&fio);
2647 if (err) {
2648 file_set_keep_isize(inode);
2649 } else {
2650 down_write(&F2FS_I(inode)->i_sem);
2651 if (F2FS_I(inode)->last_disk_size < psize)
2652 F2FS_I(inode)->last_disk_size = psize;
2653 up_write(&F2FS_I(inode)->i_sem);
2656 done:
2657 if (err && err != -ENOENT)
2658 goto redirty_out;
2660 out:
2661 inode_dec_dirty_pages(inode);
2662 if (err) {
2663 ClearPageUptodate(page);
2664 clear_cold_data(page);
2667 if (wbc->for_reclaim) {
2668 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2669 clear_inode_flag(inode, FI_HOT_DATA);
2670 f2fs_remove_dirty_inode(inode);
2671 submitted = NULL;
2673 unlock_page(page);
2674 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2675 !F2FS_I(inode)->cp_task)
2676 f2fs_balance_fs(sbi, need_balance_fs);
2678 if (unlikely(f2fs_cp_error(sbi))) {
2679 f2fs_submit_merged_write(sbi, DATA);
2680 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2681 submitted = NULL;
2684 if (submitted)
2685 *submitted = fio.submitted ? 1 : 0;
2687 return 0;
2689 redirty_out:
2690 redirty_page_for_writepage(wbc, page);
2692 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2693 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2694 * file_write_and_wait_range() will see EIO error, which is critical
2695 * to return value of fsync() followed by atomic_write failure to user.
2697 if (!err || wbc->for_reclaim)
2698 return AOP_WRITEPAGE_ACTIVATE;
2699 unlock_page(page);
2700 return err;
2703 static int f2fs_write_data_page(struct page *page,
2704 struct writeback_control *wbc)
2706 #ifdef CONFIG_F2FS_FS_COMPRESSION
2707 struct inode *inode = page->mapping->host;
2709 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2710 goto out;
2712 if (f2fs_compressed_file(inode)) {
2713 if (f2fs_is_compressed_cluster(inode, page->index)) {
2714 redirty_page_for_writepage(wbc, page);
2715 return AOP_WRITEPAGE_ACTIVATE;
2718 out:
2719 #endif
2721 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2722 wbc, FS_DATA_IO, 0);
2726 * This function was copied from write_cche_pages from mm/page-writeback.c.
2727 * The major change is making write step of cold data page separately from
2728 * warm/hot data page.
2730 static int f2fs_write_cache_pages(struct address_space *mapping,
2731 struct writeback_control *wbc,
2732 enum iostat_type io_type)
2734 int ret = 0;
2735 int done = 0, retry = 0;
2736 struct pagevec pvec;
2737 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2738 struct bio *bio = NULL;
2739 sector_t last_block;
2740 #ifdef CONFIG_F2FS_FS_COMPRESSION
2741 struct inode *inode = mapping->host;
2742 struct compress_ctx cc = {
2743 .inode = inode,
2744 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2745 .cluster_size = F2FS_I(inode)->i_cluster_size,
2746 .cluster_idx = NULL_CLUSTER,
2747 .rpages = NULL,
2748 .nr_rpages = 0,
2749 .cpages = NULL,
2750 .rbuf = NULL,
2751 .cbuf = NULL,
2752 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2753 .private = NULL,
2755 #endif
2756 int nr_pages;
2757 pgoff_t uninitialized_var(writeback_index);
2758 pgoff_t index;
2759 pgoff_t end; /* Inclusive */
2760 pgoff_t done_index;
2761 int cycled;
2762 int range_whole = 0;
2763 xa_mark_t tag;
2764 int nwritten = 0;
2765 int submitted = 0;
2766 int i;
2768 pagevec_init(&pvec);
2770 if (get_dirty_pages(mapping->host) <=
2771 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2772 set_inode_flag(mapping->host, FI_HOT_DATA);
2773 else
2774 clear_inode_flag(mapping->host, FI_HOT_DATA);
2776 if (wbc->range_cyclic) {
2777 writeback_index = mapping->writeback_index; /* prev offset */
2778 index = writeback_index;
2779 if (index == 0)
2780 cycled = 1;
2781 else
2782 cycled = 0;
2783 end = -1;
2784 } else {
2785 index = wbc->range_start >> PAGE_SHIFT;
2786 end = wbc->range_end >> PAGE_SHIFT;
2787 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788 range_whole = 1;
2789 cycled = 1; /* ignore range_cyclic tests */
2791 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2792 tag = PAGECACHE_TAG_TOWRITE;
2793 else
2794 tag = PAGECACHE_TAG_DIRTY;
2795 retry:
2796 retry = 0;
2797 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2798 tag_pages_for_writeback(mapping, index, end);
2799 done_index = index;
2800 while (!done && !retry && (index <= end)) {
2801 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2802 tag);
2803 if (nr_pages == 0)
2804 break;
2806 for (i = 0; i < nr_pages; i++) {
2807 struct page *page = pvec.pages[i];
2808 bool need_readd;
2809 readd:
2810 need_readd = false;
2811 #ifdef CONFIG_F2FS_FS_COMPRESSION
2812 if (f2fs_compressed_file(inode)) {
2813 ret = f2fs_init_compress_ctx(&cc);
2814 if (ret) {
2815 done = 1;
2816 break;
2819 if (!f2fs_cluster_can_merge_page(&cc,
2820 page->index)) {
2821 ret = f2fs_write_multi_pages(&cc,
2822 &submitted, wbc, io_type);
2823 if (!ret)
2824 need_readd = true;
2825 goto result;
2828 if (unlikely(f2fs_cp_error(sbi)))
2829 goto lock_page;
2831 if (f2fs_cluster_is_empty(&cc)) {
2832 void *fsdata = NULL;
2833 struct page *pagep;
2834 int ret2;
2836 ret2 = f2fs_prepare_compress_overwrite(
2837 inode, &pagep,
2838 page->index, &fsdata);
2839 if (ret2 < 0) {
2840 ret = ret2;
2841 done = 1;
2842 break;
2843 } else if (ret2 &&
2844 !f2fs_compress_write_end(inode,
2845 fsdata, page->index,
2846 1)) {
2847 retry = 1;
2848 break;
2850 } else {
2851 goto lock_page;
2854 #endif
2855 /* give a priority to WB_SYNC threads */
2856 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2857 wbc->sync_mode == WB_SYNC_NONE) {
2858 done = 1;
2859 break;
2861 #ifdef CONFIG_F2FS_FS_COMPRESSION
2862 lock_page:
2863 #endif
2864 done_index = page->index;
2865 retry_write:
2866 lock_page(page);
2868 if (unlikely(page->mapping != mapping)) {
2869 continue_unlock:
2870 unlock_page(page);
2871 continue;
2874 if (!PageDirty(page)) {
2875 /* someone wrote it for us */
2876 goto continue_unlock;
2879 if (PageWriteback(page)) {
2880 if (wbc->sync_mode != WB_SYNC_NONE)
2881 f2fs_wait_on_page_writeback(page,
2882 DATA, true, true);
2883 else
2884 goto continue_unlock;
2887 if (!clear_page_dirty_for_io(page))
2888 goto continue_unlock;
2890 #ifdef CONFIG_F2FS_FS_COMPRESSION
2891 if (f2fs_compressed_file(inode)) {
2892 get_page(page);
2893 f2fs_compress_ctx_add_page(&cc, page);
2894 continue;
2896 #endif
2897 ret = f2fs_write_single_data_page(page, &submitted,
2898 &bio, &last_block, wbc, io_type, 0);
2899 if (ret == AOP_WRITEPAGE_ACTIVATE)
2900 unlock_page(page);
2901 #ifdef CONFIG_F2FS_FS_COMPRESSION
2902 result:
2903 #endif
2904 nwritten += submitted;
2905 wbc->nr_to_write -= submitted;
2907 if (unlikely(ret)) {
2909 * keep nr_to_write, since vfs uses this to
2910 * get # of written pages.
2912 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2913 ret = 0;
2914 goto next;
2915 } else if (ret == -EAGAIN) {
2916 ret = 0;
2917 if (wbc->sync_mode == WB_SYNC_ALL) {
2918 cond_resched();
2919 congestion_wait(BLK_RW_ASYNC,
2920 HZ/50);
2921 goto retry_write;
2923 goto next;
2925 done_index = page->index + 1;
2926 done = 1;
2927 break;
2930 if (wbc->nr_to_write <= 0 &&
2931 wbc->sync_mode == WB_SYNC_NONE) {
2932 done = 1;
2933 break;
2935 next:
2936 if (need_readd)
2937 goto readd;
2939 pagevec_release(&pvec);
2940 cond_resched();
2942 #ifdef CONFIG_F2FS_FS_COMPRESSION
2943 /* flush remained pages in compress cluster */
2944 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
2945 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
2946 nwritten += submitted;
2947 wbc->nr_to_write -= submitted;
2948 if (ret) {
2949 done = 1;
2950 retry = 0;
2953 #endif
2954 if ((!cycled && !done) || retry) {
2955 cycled = 1;
2956 index = 0;
2957 end = writeback_index - 1;
2958 goto retry;
2960 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2961 mapping->writeback_index = done_index;
2963 if (nwritten)
2964 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2965 NULL, 0, DATA);
2966 /* submit cached bio of IPU write */
2967 if (bio)
2968 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
2970 return ret;
2973 static inline bool __should_serialize_io(struct inode *inode,
2974 struct writeback_control *wbc)
2976 if (!S_ISREG(inode->i_mode))
2977 return false;
2978 if (f2fs_compressed_file(inode))
2979 return true;
2980 if (IS_NOQUOTA(inode))
2981 return false;
2982 /* to avoid deadlock in path of data flush */
2983 if (F2FS_I(inode)->cp_task)
2984 return false;
2985 if (wbc->sync_mode != WB_SYNC_ALL)
2986 return true;
2987 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2988 return true;
2989 return false;
2992 static int __f2fs_write_data_pages(struct address_space *mapping,
2993 struct writeback_control *wbc,
2994 enum iostat_type io_type)
2996 struct inode *inode = mapping->host;
2997 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2998 struct blk_plug plug;
2999 int ret;
3000 bool locked = false;
3002 /* deal with chardevs and other special file */
3003 if (!mapping->a_ops->writepage)
3004 return 0;
3006 /* skip writing if there is no dirty page in this inode */
3007 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3008 return 0;
3010 /* during POR, we don't need to trigger writepage at all. */
3011 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3012 goto skip_write;
3014 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3015 wbc->sync_mode == WB_SYNC_NONE &&
3016 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3017 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3018 goto skip_write;
3020 /* skip writing during file defragment */
3021 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3022 goto skip_write;
3024 trace_f2fs_writepages(mapping->host, wbc, DATA);
3026 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3027 if (wbc->sync_mode == WB_SYNC_ALL)
3028 atomic_inc(&sbi->wb_sync_req[DATA]);
3029 else if (atomic_read(&sbi->wb_sync_req[DATA]))
3030 goto skip_write;
3032 if (__should_serialize_io(inode, wbc)) {
3033 mutex_lock(&sbi->writepages);
3034 locked = true;
3037 blk_start_plug(&plug);
3038 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3039 blk_finish_plug(&plug);
3041 if (locked)
3042 mutex_unlock(&sbi->writepages);
3044 if (wbc->sync_mode == WB_SYNC_ALL)
3045 atomic_dec(&sbi->wb_sync_req[DATA]);
3047 * if some pages were truncated, we cannot guarantee its mapping->host
3048 * to detect pending bios.
3051 f2fs_remove_dirty_inode(inode);
3052 return ret;
3054 skip_write:
3055 wbc->pages_skipped += get_dirty_pages(inode);
3056 trace_f2fs_writepages(mapping->host, wbc, DATA);
3057 return 0;
3060 static int f2fs_write_data_pages(struct address_space *mapping,
3061 struct writeback_control *wbc)
3063 struct inode *inode = mapping->host;
3065 return __f2fs_write_data_pages(mapping, wbc,
3066 F2FS_I(inode)->cp_task == current ?
3067 FS_CP_DATA_IO : FS_DATA_IO);
3070 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3072 struct inode *inode = mapping->host;
3073 loff_t i_size = i_size_read(inode);
3075 if (IS_NOQUOTA(inode))
3076 return;
3078 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3079 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3080 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3081 down_write(&F2FS_I(inode)->i_mmap_sem);
3083 truncate_pagecache(inode, i_size);
3084 f2fs_truncate_blocks(inode, i_size, true);
3086 up_write(&F2FS_I(inode)->i_mmap_sem);
3087 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3091 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3092 struct page *page, loff_t pos, unsigned len,
3093 block_t *blk_addr, bool *node_changed)
3095 struct inode *inode = page->mapping->host;
3096 pgoff_t index = page->index;
3097 struct dnode_of_data dn;
3098 struct page *ipage;
3099 bool locked = false;
3100 struct extent_info ei = {0,0,0};
3101 int err = 0;
3102 int flag;
3105 * we already allocated all the blocks, so we don't need to get
3106 * the block addresses when there is no need to fill the page.
3108 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3109 !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3110 !f2fs_verity_in_progress(inode))
3111 return 0;
3113 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3114 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3115 flag = F2FS_GET_BLOCK_DEFAULT;
3116 else
3117 flag = F2FS_GET_BLOCK_PRE_AIO;
3119 if (f2fs_has_inline_data(inode) ||
3120 (pos & PAGE_MASK) >= i_size_read(inode)) {
3121 __do_map_lock(sbi, flag, true);
3122 locked = true;
3125 restart:
3126 /* check inline_data */
3127 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3128 if (IS_ERR(ipage)) {
3129 err = PTR_ERR(ipage);
3130 goto unlock_out;
3133 set_new_dnode(&dn, inode, ipage, ipage, 0);
3135 if (f2fs_has_inline_data(inode)) {
3136 if (pos + len <= MAX_INLINE_DATA(inode)) {
3137 f2fs_do_read_inline_data(page, ipage);
3138 set_inode_flag(inode, FI_DATA_EXIST);
3139 if (inode->i_nlink)
3140 set_inline_node(ipage);
3141 } else {
3142 err = f2fs_convert_inline_page(&dn, page);
3143 if (err)
3144 goto out;
3145 if (dn.data_blkaddr == NULL_ADDR)
3146 err = f2fs_get_block(&dn, index);
3148 } else if (locked) {
3149 err = f2fs_get_block(&dn, index);
3150 } else {
3151 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3152 dn.data_blkaddr = ei.blk + index - ei.fofs;
3153 } else {
3154 /* hole case */
3155 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3156 if (err || dn.data_blkaddr == NULL_ADDR) {
3157 f2fs_put_dnode(&dn);
3158 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3159 true);
3160 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3161 locked = true;
3162 goto restart;
3167 /* convert_inline_page can make node_changed */
3168 *blk_addr = dn.data_blkaddr;
3169 *node_changed = dn.node_changed;
3170 out:
3171 f2fs_put_dnode(&dn);
3172 unlock_out:
3173 if (locked)
3174 __do_map_lock(sbi, flag, false);
3175 return err;
3178 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3179 loff_t pos, unsigned len, unsigned flags,
3180 struct page **pagep, void **fsdata)
3182 struct inode *inode = mapping->host;
3183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3184 struct page *page = NULL;
3185 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3186 bool need_balance = false, drop_atomic = false;
3187 block_t blkaddr = NULL_ADDR;
3188 int err = 0;
3190 trace_f2fs_write_begin(inode, pos, len, flags);
3192 if (!f2fs_is_checkpoint_ready(sbi)) {
3193 err = -ENOSPC;
3194 goto fail;
3197 if ((f2fs_is_atomic_file(inode) &&
3198 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3199 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3200 err = -ENOMEM;
3201 drop_atomic = true;
3202 goto fail;
3206 * We should check this at this moment to avoid deadlock on inode page
3207 * and #0 page. The locking rule for inline_data conversion should be:
3208 * lock_page(page #0) -> lock_page(inode_page)
3210 if (index != 0) {
3211 err = f2fs_convert_inline_inode(inode);
3212 if (err)
3213 goto fail;
3216 #ifdef CONFIG_F2FS_FS_COMPRESSION
3217 if (f2fs_compressed_file(inode)) {
3218 int ret;
3220 *fsdata = NULL;
3222 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3223 index, fsdata);
3224 if (ret < 0) {
3225 err = ret;
3226 goto fail;
3227 } else if (ret) {
3228 return 0;
3231 #endif
3233 repeat:
3235 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3236 * wait_for_stable_page. Will wait that below with our IO control.
3238 page = f2fs_pagecache_get_page(mapping, index,
3239 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3240 if (!page) {
3241 err = -ENOMEM;
3242 goto fail;
3245 /* TODO: cluster can be compressed due to race with .writepage */
3247 *pagep = page;
3249 err = prepare_write_begin(sbi, page, pos, len,
3250 &blkaddr, &need_balance);
3251 if (err)
3252 goto fail;
3254 if (need_balance && !IS_NOQUOTA(inode) &&
3255 has_not_enough_free_secs(sbi, 0, 0)) {
3256 unlock_page(page);
3257 f2fs_balance_fs(sbi, true);
3258 lock_page(page);
3259 if (page->mapping != mapping) {
3260 /* The page got truncated from under us */
3261 f2fs_put_page(page, 1);
3262 goto repeat;
3266 f2fs_wait_on_page_writeback(page, DATA, false, true);
3268 if (len == PAGE_SIZE || PageUptodate(page))
3269 return 0;
3271 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3272 !f2fs_verity_in_progress(inode)) {
3273 zero_user_segment(page, len, PAGE_SIZE);
3274 return 0;
3277 if (blkaddr == NEW_ADDR) {
3278 zero_user_segment(page, 0, PAGE_SIZE);
3279 SetPageUptodate(page);
3280 } else {
3281 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3282 DATA_GENERIC_ENHANCE_READ)) {
3283 err = -EFSCORRUPTED;
3284 goto fail;
3286 err = f2fs_submit_page_read(inode, page, blkaddr);
3287 if (err)
3288 goto fail;
3290 lock_page(page);
3291 if (unlikely(page->mapping != mapping)) {
3292 f2fs_put_page(page, 1);
3293 goto repeat;
3295 if (unlikely(!PageUptodate(page))) {
3296 err = -EIO;
3297 goto fail;
3300 return 0;
3302 fail:
3303 f2fs_put_page(page, 1);
3304 f2fs_write_failed(mapping, pos + len);
3305 if (drop_atomic)
3306 f2fs_drop_inmem_pages_all(sbi, false);
3307 return err;
3310 static int f2fs_write_end(struct file *file,
3311 struct address_space *mapping,
3312 loff_t pos, unsigned len, unsigned copied,
3313 struct page *page, void *fsdata)
3315 struct inode *inode = page->mapping->host;
3317 trace_f2fs_write_end(inode, pos, len, copied);
3320 * This should be come from len == PAGE_SIZE, and we expect copied
3321 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3322 * let generic_perform_write() try to copy data again through copied=0.
3324 if (!PageUptodate(page)) {
3325 if (unlikely(copied != len))
3326 copied = 0;
3327 else
3328 SetPageUptodate(page);
3331 #ifdef CONFIG_F2FS_FS_COMPRESSION
3332 /* overwrite compressed file */
3333 if (f2fs_compressed_file(inode) && fsdata) {
3334 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3335 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3336 return copied;
3338 #endif
3340 if (!copied)
3341 goto unlock_out;
3343 set_page_dirty(page);
3345 if (pos + copied > i_size_read(inode) &&
3346 !f2fs_verity_in_progress(inode))
3347 f2fs_i_size_write(inode, pos + copied);
3348 unlock_out:
3349 f2fs_put_page(page, 1);
3350 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3351 return copied;
3354 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3355 loff_t offset)
3357 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3358 unsigned blkbits = i_blkbits;
3359 unsigned blocksize_mask = (1 << blkbits) - 1;
3360 unsigned long align = offset | iov_iter_alignment(iter);
3361 struct block_device *bdev = inode->i_sb->s_bdev;
3363 if (align & blocksize_mask) {
3364 if (bdev)
3365 blkbits = blksize_bits(bdev_logical_block_size(bdev));
3366 blocksize_mask = (1 << blkbits) - 1;
3367 if (align & blocksize_mask)
3368 return -EINVAL;
3369 return 1;
3371 return 0;
3374 static void f2fs_dio_end_io(struct bio *bio)
3376 struct f2fs_private_dio *dio = bio->bi_private;
3378 dec_page_count(F2FS_I_SB(dio->inode),
3379 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3381 bio->bi_private = dio->orig_private;
3382 bio->bi_end_io = dio->orig_end_io;
3384 kvfree(dio);
3386 bio_endio(bio);
3389 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3390 loff_t file_offset)
3392 struct f2fs_private_dio *dio;
3393 bool write = (bio_op(bio) == REQ_OP_WRITE);
3395 dio = f2fs_kzalloc(F2FS_I_SB(inode),
3396 sizeof(struct f2fs_private_dio), GFP_NOFS);
3397 if (!dio)
3398 goto out;
3400 dio->inode = inode;
3401 dio->orig_end_io = bio->bi_end_io;
3402 dio->orig_private = bio->bi_private;
3403 dio->write = write;
3405 bio->bi_end_io = f2fs_dio_end_io;
3406 bio->bi_private = dio;
3408 inc_page_count(F2FS_I_SB(inode),
3409 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3411 submit_bio(bio);
3412 return;
3413 out:
3414 bio->bi_status = BLK_STS_IOERR;
3415 bio_endio(bio);
3418 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3420 struct address_space *mapping = iocb->ki_filp->f_mapping;
3421 struct inode *inode = mapping->host;
3422 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3423 struct f2fs_inode_info *fi = F2FS_I(inode);
3424 size_t count = iov_iter_count(iter);
3425 loff_t offset = iocb->ki_pos;
3426 int rw = iov_iter_rw(iter);
3427 int err;
3428 enum rw_hint hint = iocb->ki_hint;
3429 int whint_mode = F2FS_OPTION(sbi).whint_mode;
3430 bool do_opu;
3432 err = check_direct_IO(inode, iter, offset);
3433 if (err)
3434 return err < 0 ? err : 0;
3436 if (f2fs_force_buffered_io(inode, iocb, iter))
3437 return 0;
3439 do_opu = allow_outplace_dio(inode, iocb, iter);
3441 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3443 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3444 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3446 if (iocb->ki_flags & IOCB_NOWAIT) {
3447 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3448 iocb->ki_hint = hint;
3449 err = -EAGAIN;
3450 goto out;
3452 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3453 up_read(&fi->i_gc_rwsem[rw]);
3454 iocb->ki_hint = hint;
3455 err = -EAGAIN;
3456 goto out;
3458 } else {
3459 down_read(&fi->i_gc_rwsem[rw]);
3460 if (do_opu)
3461 down_read(&fi->i_gc_rwsem[READ]);
3464 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3465 iter, rw == WRITE ? get_data_block_dio_write :
3466 get_data_block_dio, NULL, f2fs_dio_submit_bio,
3467 DIO_LOCKING | DIO_SKIP_HOLES);
3469 if (do_opu)
3470 up_read(&fi->i_gc_rwsem[READ]);
3472 up_read(&fi->i_gc_rwsem[rw]);
3474 if (rw == WRITE) {
3475 if (whint_mode == WHINT_MODE_OFF)
3476 iocb->ki_hint = hint;
3477 if (err > 0) {
3478 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3479 err);
3480 if (!do_opu)
3481 set_inode_flag(inode, FI_UPDATE_WRITE);
3482 } else if (err < 0) {
3483 f2fs_write_failed(mapping, offset + count);
3487 out:
3488 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3490 return err;
3493 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3494 unsigned int length)
3496 struct inode *inode = page->mapping->host;
3497 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3499 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3500 (offset % PAGE_SIZE || length != PAGE_SIZE))
3501 return;
3503 if (PageDirty(page)) {
3504 if (inode->i_ino == F2FS_META_INO(sbi)) {
3505 dec_page_count(sbi, F2FS_DIRTY_META);
3506 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3507 dec_page_count(sbi, F2FS_DIRTY_NODES);
3508 } else {
3509 inode_dec_dirty_pages(inode);
3510 f2fs_remove_dirty_inode(inode);
3514 clear_cold_data(page);
3516 if (IS_ATOMIC_WRITTEN_PAGE(page))
3517 return f2fs_drop_inmem_page(inode, page);
3519 f2fs_clear_page_private(page);
3522 int f2fs_release_page(struct page *page, gfp_t wait)
3524 /* If this is dirty page, keep PagePrivate */
3525 if (PageDirty(page))
3526 return 0;
3528 /* This is atomic written page, keep Private */
3529 if (IS_ATOMIC_WRITTEN_PAGE(page))
3530 return 0;
3532 clear_cold_data(page);
3533 f2fs_clear_page_private(page);
3534 return 1;
3537 static int f2fs_set_data_page_dirty(struct page *page)
3539 struct inode *inode = page_file_mapping(page)->host;
3541 trace_f2fs_set_page_dirty(page, DATA);
3543 if (!PageUptodate(page))
3544 SetPageUptodate(page);
3545 if (PageSwapCache(page))
3546 return __set_page_dirty_nobuffers(page);
3548 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3549 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3550 f2fs_register_inmem_page(inode, page);
3551 return 1;
3554 * Previously, this page has been registered, we just
3555 * return here.
3557 return 0;
3560 if (!PageDirty(page)) {
3561 __set_page_dirty_nobuffers(page);
3562 f2fs_update_dirty_page(inode, page);
3563 return 1;
3565 return 0;
3568 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3570 struct inode *inode = mapping->host;
3572 if (f2fs_has_inline_data(inode))
3573 return 0;
3575 /* make sure allocating whole blocks */
3576 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3577 filemap_write_and_wait(mapping);
3579 return generic_block_bmap(mapping, block, get_data_block_bmap);
3582 #ifdef CONFIG_MIGRATION
3583 #include <linux/migrate.h>
3585 int f2fs_migrate_page(struct address_space *mapping,
3586 struct page *newpage, struct page *page, enum migrate_mode mode)
3588 int rc, extra_count;
3589 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3590 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3592 BUG_ON(PageWriteback(page));
3594 /* migrating an atomic written page is safe with the inmem_lock hold */
3595 if (atomic_written) {
3596 if (mode != MIGRATE_SYNC)
3597 return -EBUSY;
3598 if (!mutex_trylock(&fi->inmem_lock))
3599 return -EAGAIN;
3602 /* one extra reference was held for atomic_write page */
3603 extra_count = atomic_written ? 1 : 0;
3604 rc = migrate_page_move_mapping(mapping, newpage,
3605 page, extra_count);
3606 if (rc != MIGRATEPAGE_SUCCESS) {
3607 if (atomic_written)
3608 mutex_unlock(&fi->inmem_lock);
3609 return rc;
3612 if (atomic_written) {
3613 struct inmem_pages *cur;
3614 list_for_each_entry(cur, &fi->inmem_pages, list)
3615 if (cur->page == page) {
3616 cur->page = newpage;
3617 break;
3619 mutex_unlock(&fi->inmem_lock);
3620 put_page(page);
3621 get_page(newpage);
3624 if (PagePrivate(page)) {
3625 f2fs_set_page_private(newpage, page_private(page));
3626 f2fs_clear_page_private(page);
3629 if (mode != MIGRATE_SYNC_NO_COPY)
3630 migrate_page_copy(newpage, page);
3631 else
3632 migrate_page_states(newpage, page);
3634 return MIGRATEPAGE_SUCCESS;
3636 #endif
3638 #ifdef CONFIG_SWAP
3639 /* Copied from generic_swapfile_activate() to check any holes */
3640 static int check_swap_activate(struct swap_info_struct *sis,
3641 struct file *swap_file, sector_t *span)
3643 struct address_space *mapping = swap_file->f_mapping;
3644 struct inode *inode = mapping->host;
3645 unsigned blocks_per_page;
3646 unsigned long page_no;
3647 unsigned blkbits;
3648 sector_t probe_block;
3649 sector_t last_block;
3650 sector_t lowest_block = -1;
3651 sector_t highest_block = 0;
3652 int nr_extents = 0;
3653 int ret;
3655 blkbits = inode->i_blkbits;
3656 blocks_per_page = PAGE_SIZE >> blkbits;
3659 * Map all the blocks into the extent list. This code doesn't try
3660 * to be very smart.
3662 probe_block = 0;
3663 page_no = 0;
3664 last_block = i_size_read(inode) >> blkbits;
3665 while ((probe_block + blocks_per_page) <= last_block &&
3666 page_no < sis->max) {
3667 unsigned block_in_page;
3668 sector_t first_block;
3669 sector_t block = 0;
3670 int err = 0;
3672 cond_resched();
3674 block = probe_block;
3675 err = bmap(inode, &block);
3676 if (err || !block)
3677 goto bad_bmap;
3678 first_block = block;
3681 * It must be PAGE_SIZE aligned on-disk
3683 if (first_block & (blocks_per_page - 1)) {
3684 probe_block++;
3685 goto reprobe;
3688 for (block_in_page = 1; block_in_page < blocks_per_page;
3689 block_in_page++) {
3691 block = probe_block + block_in_page;
3692 err = bmap(inode, &block);
3694 if (err || !block)
3695 goto bad_bmap;
3697 if (block != first_block + block_in_page) {
3698 /* Discontiguity */
3699 probe_block++;
3700 goto reprobe;
3704 first_block >>= (PAGE_SHIFT - blkbits);
3705 if (page_no) { /* exclude the header page */
3706 if (first_block < lowest_block)
3707 lowest_block = first_block;
3708 if (first_block > highest_block)
3709 highest_block = first_block;
3713 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3715 ret = add_swap_extent(sis, page_no, 1, first_block);
3716 if (ret < 0)
3717 goto out;
3718 nr_extents += ret;
3719 page_no++;
3720 probe_block += blocks_per_page;
3721 reprobe:
3722 continue;
3724 ret = nr_extents;
3725 *span = 1 + highest_block - lowest_block;
3726 if (page_no == 0)
3727 page_no = 1; /* force Empty message */
3728 sis->max = page_no;
3729 sis->pages = page_no - 1;
3730 sis->highest_bit = page_no - 1;
3731 out:
3732 return ret;
3733 bad_bmap:
3734 pr_err("swapon: swapfile has holes\n");
3735 return -EINVAL;
3738 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3739 sector_t *span)
3741 struct inode *inode = file_inode(file);
3742 int ret;
3744 if (!S_ISREG(inode->i_mode))
3745 return -EINVAL;
3747 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3748 return -EROFS;
3750 ret = f2fs_convert_inline_inode(inode);
3751 if (ret)
3752 return ret;
3754 if (f2fs_disable_compressed_file(inode))
3755 return -EINVAL;
3757 ret = check_swap_activate(sis, file, span);
3758 if (ret < 0)
3759 return ret;
3761 set_inode_flag(inode, FI_PIN_FILE);
3762 f2fs_precache_extents(inode);
3763 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3764 return ret;
3767 static void f2fs_swap_deactivate(struct file *file)
3769 struct inode *inode = file_inode(file);
3771 clear_inode_flag(inode, FI_PIN_FILE);
3773 #else
3774 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3775 sector_t *span)
3777 return -EOPNOTSUPP;
3780 static void f2fs_swap_deactivate(struct file *file)
3783 #endif
3785 const struct address_space_operations f2fs_dblock_aops = {
3786 .readpage = f2fs_read_data_page,
3787 .readpages = f2fs_read_data_pages,
3788 .writepage = f2fs_write_data_page,
3789 .writepages = f2fs_write_data_pages,
3790 .write_begin = f2fs_write_begin,
3791 .write_end = f2fs_write_end,
3792 .set_page_dirty = f2fs_set_data_page_dirty,
3793 .invalidatepage = f2fs_invalidate_page,
3794 .releasepage = f2fs_release_page,
3795 .direct_IO = f2fs_direct_IO,
3796 .bmap = f2fs_bmap,
3797 .swap_activate = f2fs_swap_activate,
3798 .swap_deactivate = f2fs_swap_deactivate,
3799 #ifdef CONFIG_MIGRATION
3800 .migratepage = f2fs_migrate_page,
3801 #endif
3804 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3806 struct address_space *mapping = page_mapping(page);
3807 unsigned long flags;
3809 xa_lock_irqsave(&mapping->i_pages, flags);
3810 __xa_clear_mark(&mapping->i_pages, page_index(page),
3811 PAGECACHE_TAG_DIRTY);
3812 xa_unlock_irqrestore(&mapping->i_pages, flags);
3815 int __init f2fs_init_post_read_processing(void)
3817 bio_post_read_ctx_cache =
3818 kmem_cache_create("f2fs_bio_post_read_ctx",
3819 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3820 if (!bio_post_read_ctx_cache)
3821 goto fail;
3822 bio_post_read_ctx_pool =
3823 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3824 bio_post_read_ctx_cache);
3825 if (!bio_post_read_ctx_pool)
3826 goto fail_free_cache;
3827 return 0;
3829 fail_free_cache:
3830 kmem_cache_destroy(bio_post_read_ctx_cache);
3831 fail:
3832 return -ENOMEM;
3835 void f2fs_destroy_post_read_processing(void)
3837 mempool_destroy(bio_post_read_ctx_pool);
3838 kmem_cache_destroy(bio_post_read_ctx_cache);
3841 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
3843 if (!f2fs_sb_has_encrypt(sbi) &&
3844 !f2fs_sb_has_verity(sbi) &&
3845 !f2fs_sb_has_compression(sbi))
3846 return 0;
3848 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
3849 WQ_UNBOUND | WQ_HIGHPRI,
3850 num_online_cpus());
3851 if (!sbi->post_read_wq)
3852 return -ENOMEM;
3853 return 0;
3856 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
3858 if (sbi->post_read_wq)
3859 destroy_workqueue(sbi->post_read_wq);
3862 int __init f2fs_init_bio_entry_cache(void)
3864 bio_entry_slab = f2fs_kmem_cache_create("bio_entry_slab",
3865 sizeof(struct bio_entry));
3866 if (!bio_entry_slab)
3867 return -ENOMEM;
3868 return 0;
3871 void f2fs_destroy_bio_entry_cache(void)
3873 kmem_cache_destroy(bio_entry_slab);