drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / f2fs / file.c
blob0d4da644df3bc70815306be9316accb8e87c21ab
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
36 struct inode *inode = file_inode(vmf->vma->vm_file);
37 vm_fault_t ret;
39 down_read(&F2FS_I(inode)->i_mmap_sem);
40 ret = filemap_fault(vmf);
41 up_read(&F2FS_I(inode)->i_mmap_sem);
43 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
45 return ret;
48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
54 bool need_alloc = true;
55 int err = 0;
57 if (unlikely(f2fs_cp_error(sbi))) {
58 err = -EIO;
59 goto err;
62 if (!f2fs_is_checkpoint_ready(sbi)) {
63 err = -ENOSPC;
64 goto err;
67 #ifdef CONFIG_F2FS_FS_COMPRESSION
68 if (f2fs_compressed_file(inode)) {
69 int ret = f2fs_is_compressed_cluster(inode, page->index);
71 if (ret < 0) {
72 err = ret;
73 goto err;
74 } else if (ret) {
75 if (ret < F2FS_I(inode)->i_cluster_size) {
76 err = -EAGAIN;
77 goto err;
79 need_alloc = false;
82 #endif
83 /* should do out of any locked page */
84 if (need_alloc)
85 f2fs_balance_fs(sbi, true);
87 sb_start_pagefault(inode->i_sb);
89 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
91 file_update_time(vmf->vma->vm_file);
92 down_read(&F2FS_I(inode)->i_mmap_sem);
93 lock_page(page);
94 if (unlikely(page->mapping != inode->i_mapping ||
95 page_offset(page) > i_size_read(inode) ||
96 !PageUptodate(page))) {
97 unlock_page(page);
98 err = -EFAULT;
99 goto out_sem;
102 if (need_alloc) {
103 /* block allocation */
104 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
105 set_new_dnode(&dn, inode, NULL, NULL, 0);
106 err = f2fs_get_block(&dn, page->index);
107 f2fs_put_dnode(&dn);
108 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
109 if (err) {
110 unlock_page(page);
111 goto out_sem;
115 /* fill the page */
116 f2fs_wait_on_page_writeback(page, DATA, false, true);
118 /* wait for GCed page writeback via META_MAPPING */
119 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
122 * check to see if the page is mapped already (no holes)
124 if (PageMappedToDisk(page))
125 goto out_sem;
127 /* page is wholly or partially inside EOF */
128 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
129 i_size_read(inode)) {
130 loff_t offset;
132 offset = i_size_read(inode) & ~PAGE_MASK;
133 zero_user_segment(page, offset, PAGE_SIZE);
135 set_page_dirty(page);
136 if (!PageUptodate(page))
137 SetPageUptodate(page);
139 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
140 f2fs_update_time(sbi, REQ_TIME);
142 trace_f2fs_vm_page_mkwrite(page, DATA);
143 out_sem:
144 up_read(&F2FS_I(inode)->i_mmap_sem);
146 sb_end_pagefault(inode->i_sb);
147 err:
148 return block_page_mkwrite_return(err);
151 static const struct vm_operations_struct f2fs_file_vm_ops = {
152 .fault = f2fs_filemap_fault,
153 .map_pages = filemap_map_pages,
154 .page_mkwrite = f2fs_vm_page_mkwrite,
157 static int get_parent_ino(struct inode *inode, nid_t *pino)
159 struct dentry *dentry;
161 inode = igrab(inode);
162 dentry = d_find_any_alias(inode);
163 iput(inode);
164 if (!dentry)
165 return 0;
167 *pino = parent_ino(dentry);
168 dput(dentry);
169 return 1;
172 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
174 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
175 enum cp_reason_type cp_reason = CP_NO_NEEDED;
177 if (!S_ISREG(inode->i_mode))
178 cp_reason = CP_NON_REGULAR;
179 else if (f2fs_compressed_file(inode))
180 cp_reason = CP_COMPRESSED;
181 else if (inode->i_nlink != 1)
182 cp_reason = CP_HARDLINK;
183 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
184 cp_reason = CP_SB_NEED_CP;
185 else if (file_wrong_pino(inode))
186 cp_reason = CP_WRONG_PINO;
187 else if (!f2fs_space_for_roll_forward(sbi))
188 cp_reason = CP_NO_SPC_ROLL;
189 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
190 cp_reason = CP_NODE_NEED_CP;
191 else if (test_opt(sbi, FASTBOOT))
192 cp_reason = CP_FASTBOOT_MODE;
193 else if (F2FS_OPTION(sbi).active_logs == 2)
194 cp_reason = CP_SPEC_LOG_NUM;
195 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
196 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
197 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
198 TRANS_DIR_INO))
199 cp_reason = CP_RECOVER_DIR;
201 return cp_reason;
204 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
206 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
207 bool ret = false;
208 /* But we need to avoid that there are some inode updates */
209 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
210 ret = true;
211 f2fs_put_page(i, 0);
212 return ret;
215 static void try_to_fix_pino(struct inode *inode)
217 struct f2fs_inode_info *fi = F2FS_I(inode);
218 nid_t pino;
220 down_write(&fi->i_sem);
221 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
222 get_parent_ino(inode, &pino)) {
223 f2fs_i_pino_write(inode, pino);
224 file_got_pino(inode);
226 up_write(&fi->i_sem);
229 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
230 int datasync, bool atomic)
232 struct inode *inode = file->f_mapping->host;
233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
234 nid_t ino = inode->i_ino;
235 int ret = 0;
236 enum cp_reason_type cp_reason = 0;
237 struct writeback_control wbc = {
238 .sync_mode = WB_SYNC_ALL,
239 .nr_to_write = LONG_MAX,
240 .for_reclaim = 0,
242 unsigned int seq_id = 0;
244 if (unlikely(f2fs_readonly(inode->i_sb) ||
245 is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
246 return 0;
248 trace_f2fs_sync_file_enter(inode);
250 if (S_ISDIR(inode->i_mode))
251 goto go_write;
253 /* if fdatasync is triggered, let's do in-place-update */
254 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
255 set_inode_flag(inode, FI_NEED_IPU);
256 ret = file_write_and_wait_range(file, start, end);
257 clear_inode_flag(inode, FI_NEED_IPU);
259 if (ret) {
260 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
261 return ret;
264 /* if the inode is dirty, let's recover all the time */
265 if (!f2fs_skip_inode_update(inode, datasync)) {
266 f2fs_write_inode(inode, NULL);
267 goto go_write;
271 * if there is no written data, don't waste time to write recovery info.
273 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
274 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
276 /* it may call write_inode just prior to fsync */
277 if (need_inode_page_update(sbi, ino))
278 goto go_write;
280 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
281 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
282 goto flush_out;
283 goto out;
285 go_write:
287 * Both of fdatasync() and fsync() are able to be recovered from
288 * sudden-power-off.
290 down_read(&F2FS_I(inode)->i_sem);
291 cp_reason = need_do_checkpoint(inode);
292 up_read(&F2FS_I(inode)->i_sem);
294 if (cp_reason) {
295 /* all the dirty node pages should be flushed for POR */
296 ret = f2fs_sync_fs(inode->i_sb, 1);
299 * We've secured consistency through sync_fs. Following pino
300 * will be used only for fsynced inodes after checkpoint.
302 try_to_fix_pino(inode);
303 clear_inode_flag(inode, FI_APPEND_WRITE);
304 clear_inode_flag(inode, FI_UPDATE_WRITE);
305 goto out;
307 sync_nodes:
308 atomic_inc(&sbi->wb_sync_req[NODE]);
309 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
310 atomic_dec(&sbi->wb_sync_req[NODE]);
311 if (ret)
312 goto out;
314 /* if cp_error was enabled, we should avoid infinite loop */
315 if (unlikely(f2fs_cp_error(sbi))) {
316 ret = -EIO;
317 goto out;
320 if (f2fs_need_inode_block_update(sbi, ino)) {
321 f2fs_mark_inode_dirty_sync(inode, true);
322 f2fs_write_inode(inode, NULL);
323 goto sync_nodes;
327 * If it's atomic_write, it's just fine to keep write ordering. So
328 * here we don't need to wait for node write completion, since we use
329 * node chain which serializes node blocks. If one of node writes are
330 * reordered, we can see simply broken chain, resulting in stopping
331 * roll-forward recovery. It means we'll recover all or none node blocks
332 * given fsync mark.
334 if (!atomic) {
335 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
336 if (ret)
337 goto out;
340 /* once recovery info is written, don't need to tack this */
341 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
342 clear_inode_flag(inode, FI_APPEND_WRITE);
343 flush_out:
344 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
345 ret = f2fs_issue_flush(sbi, inode->i_ino);
346 if (!ret) {
347 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
348 clear_inode_flag(inode, FI_UPDATE_WRITE);
349 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
351 f2fs_update_time(sbi, REQ_TIME);
352 out:
353 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
354 f2fs_trace_ios(NULL, 1);
355 return ret;
358 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
360 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
361 return -EIO;
362 return f2fs_do_sync_file(file, start, end, datasync, false);
365 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
366 pgoff_t pgofs, int whence)
368 struct page *page;
369 int nr_pages;
371 if (whence != SEEK_DATA)
372 return 0;
374 /* find first dirty page index */
375 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
376 1, &page);
377 if (!nr_pages)
378 return ULONG_MAX;
379 pgofs = page->index;
380 put_page(page);
381 return pgofs;
384 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
385 pgoff_t dirty, pgoff_t pgofs, int whence)
387 switch (whence) {
388 case SEEK_DATA:
389 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
390 __is_valid_data_blkaddr(blkaddr))
391 return true;
392 break;
393 case SEEK_HOLE:
394 if (blkaddr == NULL_ADDR)
395 return true;
396 break;
398 return false;
401 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
403 struct inode *inode = file->f_mapping->host;
404 loff_t maxbytes = inode->i_sb->s_maxbytes;
405 struct dnode_of_data dn;
406 pgoff_t pgofs, end_offset, dirty;
407 loff_t data_ofs = offset;
408 loff_t isize;
409 int err = 0;
411 inode_lock(inode);
413 isize = i_size_read(inode);
414 if (offset >= isize)
415 goto fail;
417 /* handle inline data case */
418 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
419 if (whence == SEEK_HOLE)
420 data_ofs = isize;
421 goto found;
424 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
426 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
428 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
429 set_new_dnode(&dn, inode, NULL, NULL, 0);
430 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
431 if (err && err != -ENOENT) {
432 goto fail;
433 } else if (err == -ENOENT) {
434 /* direct node does not exists */
435 if (whence == SEEK_DATA) {
436 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
437 continue;
438 } else {
439 goto found;
443 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
445 /* find data/hole in dnode block */
446 for (; dn.ofs_in_node < end_offset;
447 dn.ofs_in_node++, pgofs++,
448 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
449 block_t blkaddr;
451 blkaddr = datablock_addr(dn.inode,
452 dn.node_page, dn.ofs_in_node);
454 if (__is_valid_data_blkaddr(blkaddr) &&
455 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
456 blkaddr, DATA_GENERIC_ENHANCE)) {
457 f2fs_put_dnode(&dn);
458 goto fail;
461 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
462 pgofs, whence)) {
463 f2fs_put_dnode(&dn);
464 goto found;
467 f2fs_put_dnode(&dn);
470 if (whence == SEEK_DATA)
471 goto fail;
472 found:
473 if (whence == SEEK_HOLE && data_ofs > isize)
474 data_ofs = isize;
475 inode_unlock(inode);
476 return vfs_setpos(file, data_ofs, maxbytes);
477 fail:
478 inode_unlock(inode);
479 return -ENXIO;
482 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
484 struct inode *inode = file->f_mapping->host;
485 loff_t maxbytes = inode->i_sb->s_maxbytes;
487 switch (whence) {
488 case SEEK_SET:
489 case SEEK_CUR:
490 case SEEK_END:
491 return generic_file_llseek_size(file, offset, whence,
492 maxbytes, i_size_read(inode));
493 case SEEK_DATA:
494 case SEEK_HOLE:
495 if (offset < 0)
496 return -ENXIO;
497 return f2fs_seek_block(file, offset, whence);
500 return -EINVAL;
503 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
505 struct inode *inode = file_inode(file);
506 int err;
508 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
509 return -EIO;
511 if (!f2fs_is_compress_backend_ready(inode))
512 return -EOPNOTSUPP;
514 /* we don't need to use inline_data strictly */
515 err = f2fs_convert_inline_inode(inode);
516 if (err)
517 return err;
519 file_accessed(file);
520 vma->vm_ops = &f2fs_file_vm_ops;
521 set_inode_flag(inode, FI_MMAP_FILE);
522 return 0;
525 static int f2fs_file_open(struct inode *inode, struct file *filp)
527 int err = fscrypt_file_open(inode, filp);
529 if (err)
530 return err;
532 if (!f2fs_is_compress_backend_ready(inode))
533 return -EOPNOTSUPP;
535 err = fsverity_file_open(inode, filp);
536 if (err)
537 return err;
539 filp->f_mode |= FMODE_NOWAIT;
541 return dquot_file_open(inode, filp);
544 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
546 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
547 struct f2fs_node *raw_node;
548 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
549 __le32 *addr;
550 int base = 0;
551 bool compressed_cluster = false;
552 int cluster_index = 0, valid_blocks = 0;
553 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
555 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
556 base = get_extra_isize(dn->inode);
558 raw_node = F2FS_NODE(dn->node_page);
559 addr = blkaddr_in_node(raw_node) + base + ofs;
561 /* Assumption: truncateion starts with cluster */
562 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
563 block_t blkaddr = le32_to_cpu(*addr);
565 if (f2fs_compressed_file(dn->inode) &&
566 !(cluster_index & (cluster_size - 1))) {
567 if (compressed_cluster)
568 f2fs_i_compr_blocks_update(dn->inode,
569 valid_blocks, false);
570 compressed_cluster = (blkaddr == COMPRESS_ADDR);
571 valid_blocks = 0;
574 if (blkaddr == NULL_ADDR)
575 continue;
577 dn->data_blkaddr = NULL_ADDR;
578 f2fs_set_data_blkaddr(dn);
580 if (__is_valid_data_blkaddr(blkaddr)) {
581 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
582 DATA_GENERIC_ENHANCE))
583 continue;
584 if (compressed_cluster)
585 valid_blocks++;
588 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
589 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
591 f2fs_invalidate_blocks(sbi, blkaddr);
592 nr_free++;
595 if (compressed_cluster)
596 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
598 if (nr_free) {
599 pgoff_t fofs;
601 * once we invalidate valid blkaddr in range [ofs, ofs + count],
602 * we will invalidate all blkaddr in the whole range.
604 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
605 dn->inode) + ofs;
606 f2fs_update_extent_cache_range(dn, fofs, 0, len);
607 dec_valid_block_count(sbi, dn->inode, nr_free);
609 dn->ofs_in_node = ofs;
611 f2fs_update_time(sbi, REQ_TIME);
612 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
613 dn->ofs_in_node, nr_free);
616 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
618 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
621 static int truncate_partial_data_page(struct inode *inode, u64 from,
622 bool cache_only)
624 loff_t offset = from & (PAGE_SIZE - 1);
625 pgoff_t index = from >> PAGE_SHIFT;
626 struct address_space *mapping = inode->i_mapping;
627 struct page *page;
629 if (!offset && !cache_only)
630 return 0;
632 if (cache_only) {
633 page = find_lock_page(mapping, index);
634 if (page && PageUptodate(page))
635 goto truncate_out;
636 f2fs_put_page(page, 1);
637 return 0;
640 if (f2fs_compressed_file(inode))
641 return 0;
643 page = f2fs_get_lock_data_page(inode, index, true);
644 if (IS_ERR(page))
645 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
646 truncate_out:
647 f2fs_wait_on_page_writeback(page, DATA, true, true);
648 zero_user(page, offset, PAGE_SIZE - offset);
650 /* An encrypted inode should have a key and truncate the last page. */
651 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
652 if (!cache_only)
653 set_page_dirty(page);
654 f2fs_put_page(page, 1);
655 return 0;
658 static int do_truncate_blocks(struct inode *inode, u64 from, bool lock)
660 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
661 struct dnode_of_data dn;
662 pgoff_t free_from;
663 int count = 0, err = 0;
664 struct page *ipage;
665 bool truncate_page = false;
667 trace_f2fs_truncate_blocks_enter(inode, from);
669 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
671 if (free_from >= sbi->max_file_blocks)
672 goto free_partial;
674 if (lock)
675 f2fs_lock_op(sbi);
677 ipage = f2fs_get_node_page(sbi, inode->i_ino);
678 if (IS_ERR(ipage)) {
679 err = PTR_ERR(ipage);
680 goto out;
683 if (f2fs_has_inline_data(inode)) {
684 f2fs_truncate_inline_inode(inode, ipage, from);
685 f2fs_put_page(ipage, 1);
686 truncate_page = true;
687 goto out;
690 set_new_dnode(&dn, inode, ipage, NULL, 0);
691 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
692 if (err) {
693 if (err == -ENOENT)
694 goto free_next;
695 goto out;
698 count = ADDRS_PER_PAGE(dn.node_page, inode);
700 count -= dn.ofs_in_node;
701 f2fs_bug_on(sbi, count < 0);
703 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
704 f2fs_truncate_data_blocks_range(&dn, count);
705 free_from += count;
708 f2fs_put_dnode(&dn);
709 free_next:
710 err = f2fs_truncate_inode_blocks(inode, free_from);
711 out:
712 if (lock)
713 f2fs_unlock_op(sbi);
714 free_partial:
715 /* lastly zero out the first data page */
716 if (!err)
717 err = truncate_partial_data_page(inode, from, truncate_page);
719 trace_f2fs_truncate_blocks_exit(inode, err);
720 return err;
723 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
725 u64 free_from = from;
728 * for compressed file, only support cluster size
729 * aligned truncation.
731 if (f2fs_compressed_file(inode)) {
732 size_t cluster_shift = PAGE_SHIFT +
733 F2FS_I(inode)->i_log_cluster_size;
734 size_t cluster_mask = (1 << cluster_shift) - 1;
736 free_from = from >> cluster_shift;
737 if (from & cluster_mask)
738 free_from++;
739 free_from <<= cluster_shift;
742 return do_truncate_blocks(inode, free_from, lock);
745 int f2fs_truncate(struct inode *inode)
747 int err;
749 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
750 return -EIO;
752 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
753 S_ISLNK(inode->i_mode)))
754 return 0;
756 trace_f2fs_truncate(inode);
758 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
759 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
760 return -EIO;
763 /* we should check inline_data size */
764 if (!f2fs_may_inline_data(inode)) {
765 err = f2fs_convert_inline_inode(inode);
766 if (err)
767 return err;
770 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
771 if (err)
772 return err;
774 inode->i_mtime = inode->i_ctime = current_time(inode);
775 f2fs_mark_inode_dirty_sync(inode, false);
776 return 0;
779 int f2fs_getattr(const struct path *path, struct kstat *stat,
780 u32 request_mask, unsigned int query_flags)
782 struct inode *inode = d_inode(path->dentry);
783 struct f2fs_inode_info *fi = F2FS_I(inode);
784 struct f2fs_inode *ri;
785 unsigned int flags;
787 if (f2fs_has_extra_attr(inode) &&
788 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
789 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
790 stat->result_mask |= STATX_BTIME;
791 stat->btime.tv_sec = fi->i_crtime.tv_sec;
792 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
795 flags = fi->i_flags;
796 if (flags & F2FS_APPEND_FL)
797 stat->attributes |= STATX_ATTR_APPEND;
798 if (IS_ENCRYPTED(inode))
799 stat->attributes |= STATX_ATTR_ENCRYPTED;
800 if (flags & F2FS_IMMUTABLE_FL)
801 stat->attributes |= STATX_ATTR_IMMUTABLE;
802 if (flags & F2FS_NODUMP_FL)
803 stat->attributes |= STATX_ATTR_NODUMP;
804 if (IS_VERITY(inode))
805 stat->attributes |= STATX_ATTR_VERITY;
807 stat->attributes_mask |= (STATX_ATTR_APPEND |
808 STATX_ATTR_ENCRYPTED |
809 STATX_ATTR_IMMUTABLE |
810 STATX_ATTR_NODUMP |
811 STATX_ATTR_VERITY);
813 generic_fillattr(inode, stat);
815 /* we need to show initial sectors used for inline_data/dentries */
816 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
817 f2fs_has_inline_dentry(inode))
818 stat->blocks += (stat->size + 511) >> 9;
820 return 0;
823 #ifdef CONFIG_F2FS_FS_POSIX_ACL
824 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
826 unsigned int ia_valid = attr->ia_valid;
828 if (ia_valid & ATTR_UID)
829 inode->i_uid = attr->ia_uid;
830 if (ia_valid & ATTR_GID)
831 inode->i_gid = attr->ia_gid;
832 if (ia_valid & ATTR_ATIME)
833 inode->i_atime = attr->ia_atime;
834 if (ia_valid & ATTR_MTIME)
835 inode->i_mtime = attr->ia_mtime;
836 if (ia_valid & ATTR_CTIME)
837 inode->i_ctime = attr->ia_ctime;
838 if (ia_valid & ATTR_MODE) {
839 umode_t mode = attr->ia_mode;
841 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
842 mode &= ~S_ISGID;
843 set_acl_inode(inode, mode);
846 #else
847 #define __setattr_copy setattr_copy
848 #endif
850 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
852 struct inode *inode = d_inode(dentry);
853 int err;
855 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
856 return -EIO;
858 if ((attr->ia_valid & ATTR_SIZE) &&
859 !f2fs_is_compress_backend_ready(inode))
860 return -EOPNOTSUPP;
862 err = setattr_prepare(dentry, attr);
863 if (err)
864 return err;
866 err = fscrypt_prepare_setattr(dentry, attr);
867 if (err)
868 return err;
870 err = fsverity_prepare_setattr(dentry, attr);
871 if (err)
872 return err;
874 if (is_quota_modification(inode, attr)) {
875 err = dquot_initialize(inode);
876 if (err)
877 return err;
879 if ((attr->ia_valid & ATTR_UID &&
880 !uid_eq(attr->ia_uid, inode->i_uid)) ||
881 (attr->ia_valid & ATTR_GID &&
882 !gid_eq(attr->ia_gid, inode->i_gid))) {
883 f2fs_lock_op(F2FS_I_SB(inode));
884 err = dquot_transfer(inode, attr);
885 if (err) {
886 set_sbi_flag(F2FS_I_SB(inode),
887 SBI_QUOTA_NEED_REPAIR);
888 f2fs_unlock_op(F2FS_I_SB(inode));
889 return err;
892 * update uid/gid under lock_op(), so that dquot and inode can
893 * be updated atomically.
895 if (attr->ia_valid & ATTR_UID)
896 inode->i_uid = attr->ia_uid;
897 if (attr->ia_valid & ATTR_GID)
898 inode->i_gid = attr->ia_gid;
899 f2fs_mark_inode_dirty_sync(inode, true);
900 f2fs_unlock_op(F2FS_I_SB(inode));
903 if (attr->ia_valid & ATTR_SIZE) {
904 loff_t old_size = i_size_read(inode);
906 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
908 * should convert inline inode before i_size_write to
909 * keep smaller than inline_data size with inline flag.
911 err = f2fs_convert_inline_inode(inode);
912 if (err)
913 return err;
916 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
917 down_write(&F2FS_I(inode)->i_mmap_sem);
919 truncate_setsize(inode, attr->ia_size);
921 if (attr->ia_size <= old_size)
922 err = f2fs_truncate(inode);
924 * do not trim all blocks after i_size if target size is
925 * larger than i_size.
927 up_write(&F2FS_I(inode)->i_mmap_sem);
928 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
929 if (err)
930 return err;
932 down_write(&F2FS_I(inode)->i_sem);
933 inode->i_mtime = inode->i_ctime = current_time(inode);
934 F2FS_I(inode)->last_disk_size = i_size_read(inode);
935 up_write(&F2FS_I(inode)->i_sem);
938 __setattr_copy(inode, attr);
940 if (attr->ia_valid & ATTR_MODE) {
941 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
942 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
943 inode->i_mode = F2FS_I(inode)->i_acl_mode;
944 clear_inode_flag(inode, FI_ACL_MODE);
948 /* file size may changed here */
949 f2fs_mark_inode_dirty_sync(inode, true);
951 /* inode change will produce dirty node pages flushed by checkpoint */
952 f2fs_balance_fs(F2FS_I_SB(inode), true);
954 return err;
957 const struct inode_operations f2fs_file_inode_operations = {
958 .getattr = f2fs_getattr,
959 .setattr = f2fs_setattr,
960 .get_acl = f2fs_get_acl,
961 .set_acl = f2fs_set_acl,
962 #ifdef CONFIG_F2FS_FS_XATTR
963 .listxattr = f2fs_listxattr,
964 #endif
965 .fiemap = f2fs_fiemap,
968 static int fill_zero(struct inode *inode, pgoff_t index,
969 loff_t start, loff_t len)
971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
972 struct page *page;
974 if (!len)
975 return 0;
977 f2fs_balance_fs(sbi, true);
979 f2fs_lock_op(sbi);
980 page = f2fs_get_new_data_page(inode, NULL, index, false);
981 f2fs_unlock_op(sbi);
983 if (IS_ERR(page))
984 return PTR_ERR(page);
986 f2fs_wait_on_page_writeback(page, DATA, true, true);
987 zero_user(page, start, len);
988 set_page_dirty(page);
989 f2fs_put_page(page, 1);
990 return 0;
993 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
995 int err;
997 while (pg_start < pg_end) {
998 struct dnode_of_data dn;
999 pgoff_t end_offset, count;
1001 set_new_dnode(&dn, inode, NULL, NULL, 0);
1002 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1003 if (err) {
1004 if (err == -ENOENT) {
1005 pg_start = f2fs_get_next_page_offset(&dn,
1006 pg_start);
1007 continue;
1009 return err;
1012 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1013 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1015 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1017 f2fs_truncate_data_blocks_range(&dn, count);
1018 f2fs_put_dnode(&dn);
1020 pg_start += count;
1022 return 0;
1025 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1027 pgoff_t pg_start, pg_end;
1028 loff_t off_start, off_end;
1029 int ret;
1031 ret = f2fs_convert_inline_inode(inode);
1032 if (ret)
1033 return ret;
1035 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1036 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1038 off_start = offset & (PAGE_SIZE - 1);
1039 off_end = (offset + len) & (PAGE_SIZE - 1);
1041 if (pg_start == pg_end) {
1042 ret = fill_zero(inode, pg_start, off_start,
1043 off_end - off_start);
1044 if (ret)
1045 return ret;
1046 } else {
1047 if (off_start) {
1048 ret = fill_zero(inode, pg_start++, off_start,
1049 PAGE_SIZE - off_start);
1050 if (ret)
1051 return ret;
1053 if (off_end) {
1054 ret = fill_zero(inode, pg_end, 0, off_end);
1055 if (ret)
1056 return ret;
1059 if (pg_start < pg_end) {
1060 struct address_space *mapping = inode->i_mapping;
1061 loff_t blk_start, blk_end;
1062 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1064 f2fs_balance_fs(sbi, true);
1066 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1067 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1069 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1070 down_write(&F2FS_I(inode)->i_mmap_sem);
1072 truncate_inode_pages_range(mapping, blk_start,
1073 blk_end - 1);
1075 f2fs_lock_op(sbi);
1076 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1077 f2fs_unlock_op(sbi);
1079 up_write(&F2FS_I(inode)->i_mmap_sem);
1080 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1084 return ret;
1087 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1088 int *do_replace, pgoff_t off, pgoff_t len)
1090 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1091 struct dnode_of_data dn;
1092 int ret, done, i;
1094 next_dnode:
1095 set_new_dnode(&dn, inode, NULL, NULL, 0);
1096 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1097 if (ret && ret != -ENOENT) {
1098 return ret;
1099 } else if (ret == -ENOENT) {
1100 if (dn.max_level == 0)
1101 return -ENOENT;
1102 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1103 dn.ofs_in_node, len);
1104 blkaddr += done;
1105 do_replace += done;
1106 goto next;
1109 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1110 dn.ofs_in_node, len);
1111 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1112 *blkaddr = datablock_addr(dn.inode,
1113 dn.node_page, dn.ofs_in_node);
1115 if (__is_valid_data_blkaddr(*blkaddr) &&
1116 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1117 DATA_GENERIC_ENHANCE)) {
1118 f2fs_put_dnode(&dn);
1119 return -EFSCORRUPTED;
1122 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1124 if (test_opt(sbi, LFS)) {
1125 f2fs_put_dnode(&dn);
1126 return -EOPNOTSUPP;
1129 /* do not invalidate this block address */
1130 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1131 *do_replace = 1;
1134 f2fs_put_dnode(&dn);
1135 next:
1136 len -= done;
1137 off += done;
1138 if (len)
1139 goto next_dnode;
1140 return 0;
1143 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1144 int *do_replace, pgoff_t off, int len)
1146 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147 struct dnode_of_data dn;
1148 int ret, i;
1150 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1151 if (*do_replace == 0)
1152 continue;
1154 set_new_dnode(&dn, inode, NULL, NULL, 0);
1155 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1156 if (ret) {
1157 dec_valid_block_count(sbi, inode, 1);
1158 f2fs_invalidate_blocks(sbi, *blkaddr);
1159 } else {
1160 f2fs_update_data_blkaddr(&dn, *blkaddr);
1162 f2fs_put_dnode(&dn);
1164 return 0;
1167 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1168 block_t *blkaddr, int *do_replace,
1169 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1171 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1172 pgoff_t i = 0;
1173 int ret;
1175 while (i < len) {
1176 if (blkaddr[i] == NULL_ADDR && !full) {
1177 i++;
1178 continue;
1181 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1182 struct dnode_of_data dn;
1183 struct node_info ni;
1184 size_t new_size;
1185 pgoff_t ilen;
1187 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1188 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1189 if (ret)
1190 return ret;
1192 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1193 if (ret) {
1194 f2fs_put_dnode(&dn);
1195 return ret;
1198 ilen = min((pgoff_t)
1199 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1200 dn.ofs_in_node, len - i);
1201 do {
1202 dn.data_blkaddr = datablock_addr(dn.inode,
1203 dn.node_page, dn.ofs_in_node);
1204 f2fs_truncate_data_blocks_range(&dn, 1);
1206 if (do_replace[i]) {
1207 f2fs_i_blocks_write(src_inode,
1208 1, false, false);
1209 f2fs_i_blocks_write(dst_inode,
1210 1, true, false);
1211 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1212 blkaddr[i], ni.version, true, false);
1214 do_replace[i] = 0;
1216 dn.ofs_in_node++;
1217 i++;
1218 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1219 if (dst_inode->i_size < new_size)
1220 f2fs_i_size_write(dst_inode, new_size);
1221 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1223 f2fs_put_dnode(&dn);
1224 } else {
1225 struct page *psrc, *pdst;
1227 psrc = f2fs_get_lock_data_page(src_inode,
1228 src + i, true);
1229 if (IS_ERR(psrc))
1230 return PTR_ERR(psrc);
1231 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1232 true);
1233 if (IS_ERR(pdst)) {
1234 f2fs_put_page(psrc, 1);
1235 return PTR_ERR(pdst);
1237 f2fs_copy_page(psrc, pdst);
1238 set_page_dirty(pdst);
1239 f2fs_put_page(pdst, 1);
1240 f2fs_put_page(psrc, 1);
1242 ret = f2fs_truncate_hole(src_inode,
1243 src + i, src + i + 1);
1244 if (ret)
1245 return ret;
1246 i++;
1249 return 0;
1252 static int __exchange_data_block(struct inode *src_inode,
1253 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1254 pgoff_t len, bool full)
1256 block_t *src_blkaddr;
1257 int *do_replace;
1258 pgoff_t olen;
1259 int ret;
1261 while (len) {
1262 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1264 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1265 array_size(olen, sizeof(block_t)),
1266 GFP_NOFS);
1267 if (!src_blkaddr)
1268 return -ENOMEM;
1270 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1271 array_size(olen, sizeof(int)),
1272 GFP_NOFS);
1273 if (!do_replace) {
1274 kvfree(src_blkaddr);
1275 return -ENOMEM;
1278 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1279 do_replace, src, olen);
1280 if (ret)
1281 goto roll_back;
1283 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1284 do_replace, src, dst, olen, full);
1285 if (ret)
1286 goto roll_back;
1288 src += olen;
1289 dst += olen;
1290 len -= olen;
1292 kvfree(src_blkaddr);
1293 kvfree(do_replace);
1295 return 0;
1297 roll_back:
1298 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1299 kvfree(src_blkaddr);
1300 kvfree(do_replace);
1301 return ret;
1304 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1306 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1307 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1308 pgoff_t start = offset >> PAGE_SHIFT;
1309 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1310 int ret;
1312 f2fs_balance_fs(sbi, true);
1314 /* avoid gc operation during block exchange */
1315 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1316 down_write(&F2FS_I(inode)->i_mmap_sem);
1318 f2fs_lock_op(sbi);
1319 f2fs_drop_extent_tree(inode);
1320 truncate_pagecache(inode, offset);
1321 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1322 f2fs_unlock_op(sbi);
1324 up_write(&F2FS_I(inode)->i_mmap_sem);
1325 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1326 return ret;
1329 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1331 loff_t new_size;
1332 int ret;
1334 if (offset + len >= i_size_read(inode))
1335 return -EINVAL;
1337 /* collapse range should be aligned to block size of f2fs. */
1338 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1339 return -EINVAL;
1341 ret = f2fs_convert_inline_inode(inode);
1342 if (ret)
1343 return ret;
1345 /* write out all dirty pages from offset */
1346 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1347 if (ret)
1348 return ret;
1350 ret = f2fs_do_collapse(inode, offset, len);
1351 if (ret)
1352 return ret;
1354 /* write out all moved pages, if possible */
1355 down_write(&F2FS_I(inode)->i_mmap_sem);
1356 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1357 truncate_pagecache(inode, offset);
1359 new_size = i_size_read(inode) - len;
1360 truncate_pagecache(inode, new_size);
1362 ret = f2fs_truncate_blocks(inode, new_size, true);
1363 up_write(&F2FS_I(inode)->i_mmap_sem);
1364 if (!ret)
1365 f2fs_i_size_write(inode, new_size);
1366 return ret;
1369 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1370 pgoff_t end)
1372 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1373 pgoff_t index = start;
1374 unsigned int ofs_in_node = dn->ofs_in_node;
1375 blkcnt_t count = 0;
1376 int ret;
1378 for (; index < end; index++, dn->ofs_in_node++) {
1379 if (datablock_addr(dn->inode, dn->node_page,
1380 dn->ofs_in_node) == NULL_ADDR)
1381 count++;
1384 dn->ofs_in_node = ofs_in_node;
1385 ret = f2fs_reserve_new_blocks(dn, count);
1386 if (ret)
1387 return ret;
1389 dn->ofs_in_node = ofs_in_node;
1390 for (index = start; index < end; index++, dn->ofs_in_node++) {
1391 dn->data_blkaddr = datablock_addr(dn->inode,
1392 dn->node_page, dn->ofs_in_node);
1394 * f2fs_reserve_new_blocks will not guarantee entire block
1395 * allocation.
1397 if (dn->data_blkaddr == NULL_ADDR) {
1398 ret = -ENOSPC;
1399 break;
1401 if (dn->data_blkaddr != NEW_ADDR) {
1402 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1403 dn->data_blkaddr = NEW_ADDR;
1404 f2fs_set_data_blkaddr(dn);
1408 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1410 return ret;
1413 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1414 int mode)
1416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1417 struct address_space *mapping = inode->i_mapping;
1418 pgoff_t index, pg_start, pg_end;
1419 loff_t new_size = i_size_read(inode);
1420 loff_t off_start, off_end;
1421 int ret = 0;
1423 ret = inode_newsize_ok(inode, (len + offset));
1424 if (ret)
1425 return ret;
1427 ret = f2fs_convert_inline_inode(inode);
1428 if (ret)
1429 return ret;
1431 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1432 if (ret)
1433 return ret;
1435 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1436 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1438 off_start = offset & (PAGE_SIZE - 1);
1439 off_end = (offset + len) & (PAGE_SIZE - 1);
1441 if (pg_start == pg_end) {
1442 ret = fill_zero(inode, pg_start, off_start,
1443 off_end - off_start);
1444 if (ret)
1445 return ret;
1447 new_size = max_t(loff_t, new_size, offset + len);
1448 } else {
1449 if (off_start) {
1450 ret = fill_zero(inode, pg_start++, off_start,
1451 PAGE_SIZE - off_start);
1452 if (ret)
1453 return ret;
1455 new_size = max_t(loff_t, new_size,
1456 (loff_t)pg_start << PAGE_SHIFT);
1459 for (index = pg_start; index < pg_end;) {
1460 struct dnode_of_data dn;
1461 unsigned int end_offset;
1462 pgoff_t end;
1464 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1465 down_write(&F2FS_I(inode)->i_mmap_sem);
1467 truncate_pagecache_range(inode,
1468 (loff_t)index << PAGE_SHIFT,
1469 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1471 f2fs_lock_op(sbi);
1473 set_new_dnode(&dn, inode, NULL, NULL, 0);
1474 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1475 if (ret) {
1476 f2fs_unlock_op(sbi);
1477 up_write(&F2FS_I(inode)->i_mmap_sem);
1478 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1479 goto out;
1482 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1483 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1485 ret = f2fs_do_zero_range(&dn, index, end);
1486 f2fs_put_dnode(&dn);
1488 f2fs_unlock_op(sbi);
1489 up_write(&F2FS_I(inode)->i_mmap_sem);
1490 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1492 f2fs_balance_fs(sbi, dn.node_changed);
1494 if (ret)
1495 goto out;
1497 index = end;
1498 new_size = max_t(loff_t, new_size,
1499 (loff_t)index << PAGE_SHIFT);
1502 if (off_end) {
1503 ret = fill_zero(inode, pg_end, 0, off_end);
1504 if (ret)
1505 goto out;
1507 new_size = max_t(loff_t, new_size, offset + len);
1511 out:
1512 if (new_size > i_size_read(inode)) {
1513 if (mode & FALLOC_FL_KEEP_SIZE)
1514 file_set_keep_isize(inode);
1515 else
1516 f2fs_i_size_write(inode, new_size);
1518 return ret;
1521 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1523 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1524 pgoff_t nr, pg_start, pg_end, delta, idx;
1525 loff_t new_size;
1526 int ret = 0;
1528 new_size = i_size_read(inode) + len;
1529 ret = inode_newsize_ok(inode, new_size);
1530 if (ret)
1531 return ret;
1533 if (offset >= i_size_read(inode))
1534 return -EINVAL;
1536 /* insert range should be aligned to block size of f2fs. */
1537 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1538 return -EINVAL;
1540 ret = f2fs_convert_inline_inode(inode);
1541 if (ret)
1542 return ret;
1544 f2fs_balance_fs(sbi, true);
1546 down_write(&F2FS_I(inode)->i_mmap_sem);
1547 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1548 up_write(&F2FS_I(inode)->i_mmap_sem);
1549 if (ret)
1550 return ret;
1552 /* write out all dirty pages from offset */
1553 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1554 if (ret)
1555 return ret;
1557 pg_start = offset >> PAGE_SHIFT;
1558 pg_end = (offset + len) >> PAGE_SHIFT;
1559 delta = pg_end - pg_start;
1560 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1562 /* avoid gc operation during block exchange */
1563 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1564 down_write(&F2FS_I(inode)->i_mmap_sem);
1565 truncate_pagecache(inode, offset);
1567 while (!ret && idx > pg_start) {
1568 nr = idx - pg_start;
1569 if (nr > delta)
1570 nr = delta;
1571 idx -= nr;
1573 f2fs_lock_op(sbi);
1574 f2fs_drop_extent_tree(inode);
1576 ret = __exchange_data_block(inode, inode, idx,
1577 idx + delta, nr, false);
1578 f2fs_unlock_op(sbi);
1580 up_write(&F2FS_I(inode)->i_mmap_sem);
1581 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1583 /* write out all moved pages, if possible */
1584 down_write(&F2FS_I(inode)->i_mmap_sem);
1585 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1586 truncate_pagecache(inode, offset);
1587 up_write(&F2FS_I(inode)->i_mmap_sem);
1589 if (!ret)
1590 f2fs_i_size_write(inode, new_size);
1591 return ret;
1594 static int expand_inode_data(struct inode *inode, loff_t offset,
1595 loff_t len, int mode)
1597 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1598 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1599 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1600 .m_may_create = true };
1601 pgoff_t pg_end;
1602 loff_t new_size = i_size_read(inode);
1603 loff_t off_end;
1604 int err;
1606 err = inode_newsize_ok(inode, (len + offset));
1607 if (err)
1608 return err;
1610 err = f2fs_convert_inline_inode(inode);
1611 if (err)
1612 return err;
1614 f2fs_balance_fs(sbi, true);
1616 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1617 off_end = (offset + len) & (PAGE_SIZE - 1);
1619 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1620 map.m_len = pg_end - map.m_lblk;
1621 if (off_end)
1622 map.m_len++;
1624 if (!map.m_len)
1625 return 0;
1627 if (f2fs_is_pinned_file(inode)) {
1628 block_t len = (map.m_len >> sbi->log_blocks_per_seg) <<
1629 sbi->log_blocks_per_seg;
1630 block_t done = 0;
1632 if (map.m_len % sbi->blocks_per_seg)
1633 len += sbi->blocks_per_seg;
1635 map.m_len = sbi->blocks_per_seg;
1636 next_alloc:
1637 if (has_not_enough_free_secs(sbi, 0,
1638 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1639 down_write(&sbi->gc_lock);
1640 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1641 if (err && err != -ENODATA && err != -EAGAIN)
1642 goto out_err;
1645 down_write(&sbi->pin_sem);
1646 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1647 f2fs_allocate_new_segments(sbi, CURSEG_COLD_DATA);
1648 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1649 up_write(&sbi->pin_sem);
1651 done += map.m_len;
1652 len -= map.m_len;
1653 map.m_lblk += map.m_len;
1654 if (!err && len)
1655 goto next_alloc;
1657 map.m_len = done;
1658 } else {
1659 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1661 out_err:
1662 if (err) {
1663 pgoff_t last_off;
1665 if (!map.m_len)
1666 return err;
1668 last_off = map.m_lblk + map.m_len - 1;
1670 /* update new size to the failed position */
1671 new_size = (last_off == pg_end) ? offset + len :
1672 (loff_t)(last_off + 1) << PAGE_SHIFT;
1673 } else {
1674 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1677 if (new_size > i_size_read(inode)) {
1678 if (mode & FALLOC_FL_KEEP_SIZE)
1679 file_set_keep_isize(inode);
1680 else
1681 f2fs_i_size_write(inode, new_size);
1684 return err;
1687 static long f2fs_fallocate(struct file *file, int mode,
1688 loff_t offset, loff_t len)
1690 struct inode *inode = file_inode(file);
1691 long ret = 0;
1693 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1694 return -EIO;
1695 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1696 return -ENOSPC;
1697 if (!f2fs_is_compress_backend_ready(inode))
1698 return -EOPNOTSUPP;
1700 /* f2fs only support ->fallocate for regular file */
1701 if (!S_ISREG(inode->i_mode))
1702 return -EINVAL;
1704 if (IS_ENCRYPTED(inode) &&
1705 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1706 return -EOPNOTSUPP;
1708 if (f2fs_compressed_file(inode) &&
1709 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1710 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1711 return -EOPNOTSUPP;
1713 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1714 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1715 FALLOC_FL_INSERT_RANGE))
1716 return -EOPNOTSUPP;
1718 inode_lock(inode);
1720 if (mode & FALLOC_FL_PUNCH_HOLE) {
1721 if (offset >= inode->i_size)
1722 goto out;
1724 ret = punch_hole(inode, offset, len);
1725 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1726 ret = f2fs_collapse_range(inode, offset, len);
1727 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1728 ret = f2fs_zero_range(inode, offset, len, mode);
1729 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1730 ret = f2fs_insert_range(inode, offset, len);
1731 } else {
1732 ret = expand_inode_data(inode, offset, len, mode);
1735 if (!ret) {
1736 inode->i_mtime = inode->i_ctime = current_time(inode);
1737 f2fs_mark_inode_dirty_sync(inode, false);
1738 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1741 out:
1742 inode_unlock(inode);
1744 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1745 return ret;
1748 static int f2fs_release_file(struct inode *inode, struct file *filp)
1751 * f2fs_relase_file is called at every close calls. So we should
1752 * not drop any inmemory pages by close called by other process.
1754 if (!(filp->f_mode & FMODE_WRITE) ||
1755 atomic_read(&inode->i_writecount) != 1)
1756 return 0;
1758 /* some remained atomic pages should discarded */
1759 if (f2fs_is_atomic_file(inode))
1760 f2fs_drop_inmem_pages(inode);
1761 if (f2fs_is_volatile_file(inode)) {
1762 set_inode_flag(inode, FI_DROP_CACHE);
1763 filemap_fdatawrite(inode->i_mapping);
1764 clear_inode_flag(inode, FI_DROP_CACHE);
1765 clear_inode_flag(inode, FI_VOLATILE_FILE);
1766 stat_dec_volatile_write(inode);
1768 return 0;
1771 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1773 struct inode *inode = file_inode(file);
1776 * If the process doing a transaction is crashed, we should do
1777 * roll-back. Otherwise, other reader/write can see corrupted database
1778 * until all the writers close its file. Since this should be done
1779 * before dropping file lock, it needs to do in ->flush.
1781 if (f2fs_is_atomic_file(inode) &&
1782 F2FS_I(inode)->inmem_task == current)
1783 f2fs_drop_inmem_pages(inode);
1784 return 0;
1787 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1789 struct f2fs_inode_info *fi = F2FS_I(inode);
1791 /* Is it quota file? Do not allow user to mess with it */
1792 if (IS_NOQUOTA(inode))
1793 return -EPERM;
1795 if ((iflags ^ fi->i_flags) & F2FS_CASEFOLD_FL) {
1796 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1797 return -EOPNOTSUPP;
1798 if (!f2fs_empty_dir(inode))
1799 return -ENOTEMPTY;
1802 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1803 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1804 return -EOPNOTSUPP;
1805 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1806 return -EINVAL;
1809 if ((iflags ^ fi->i_flags) & F2FS_COMPR_FL) {
1810 if (S_ISREG(inode->i_mode) &&
1811 (fi->i_flags & F2FS_COMPR_FL || i_size_read(inode) ||
1812 F2FS_HAS_BLOCKS(inode)))
1813 return -EINVAL;
1814 if (iflags & F2FS_NOCOMP_FL)
1815 return -EINVAL;
1816 if (iflags & F2FS_COMPR_FL) {
1817 int err = f2fs_convert_inline_inode(inode);
1819 if (err)
1820 return err;
1822 if (!f2fs_may_compress(inode))
1823 return -EINVAL;
1825 set_compress_context(inode);
1828 if ((iflags ^ fi->i_flags) & F2FS_NOCOMP_FL) {
1829 if (fi->i_flags & F2FS_COMPR_FL)
1830 return -EINVAL;
1833 fi->i_flags = iflags | (fi->i_flags & ~mask);
1834 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1835 (fi->i_flags & F2FS_NOCOMP_FL));
1837 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1838 set_inode_flag(inode, FI_PROJ_INHERIT);
1839 else
1840 clear_inode_flag(inode, FI_PROJ_INHERIT);
1842 inode->i_ctime = current_time(inode);
1843 f2fs_set_inode_flags(inode);
1844 f2fs_mark_inode_dirty_sync(inode, true);
1845 return 0;
1848 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1851 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1852 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1853 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1854 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1857 static const struct {
1858 u32 iflag;
1859 u32 fsflag;
1860 } f2fs_fsflags_map[] = {
1861 { F2FS_COMPR_FL, FS_COMPR_FL },
1862 { F2FS_SYNC_FL, FS_SYNC_FL },
1863 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1864 { F2FS_APPEND_FL, FS_APPEND_FL },
1865 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1866 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1867 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1868 { F2FS_INDEX_FL, FS_INDEX_FL },
1869 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1870 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1871 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1874 #define F2FS_GETTABLE_FS_FL ( \
1875 FS_COMPR_FL | \
1876 FS_SYNC_FL | \
1877 FS_IMMUTABLE_FL | \
1878 FS_APPEND_FL | \
1879 FS_NODUMP_FL | \
1880 FS_NOATIME_FL | \
1881 FS_NOCOMP_FL | \
1882 FS_INDEX_FL | \
1883 FS_DIRSYNC_FL | \
1884 FS_PROJINHERIT_FL | \
1885 FS_ENCRYPT_FL | \
1886 FS_INLINE_DATA_FL | \
1887 FS_NOCOW_FL | \
1888 FS_VERITY_FL | \
1889 FS_CASEFOLD_FL)
1891 #define F2FS_SETTABLE_FS_FL ( \
1892 FS_COMPR_FL | \
1893 FS_SYNC_FL | \
1894 FS_IMMUTABLE_FL | \
1895 FS_APPEND_FL | \
1896 FS_NODUMP_FL | \
1897 FS_NOATIME_FL | \
1898 FS_NOCOMP_FL | \
1899 FS_DIRSYNC_FL | \
1900 FS_PROJINHERIT_FL | \
1901 FS_CASEFOLD_FL)
1903 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1904 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1906 u32 fsflags = 0;
1907 int i;
1909 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1910 if (iflags & f2fs_fsflags_map[i].iflag)
1911 fsflags |= f2fs_fsflags_map[i].fsflag;
1913 return fsflags;
1916 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1917 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1919 u32 iflags = 0;
1920 int i;
1922 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1923 if (fsflags & f2fs_fsflags_map[i].fsflag)
1924 iflags |= f2fs_fsflags_map[i].iflag;
1926 return iflags;
1929 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1931 struct inode *inode = file_inode(filp);
1932 struct f2fs_inode_info *fi = F2FS_I(inode);
1933 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1935 if (IS_ENCRYPTED(inode))
1936 fsflags |= FS_ENCRYPT_FL;
1937 if (IS_VERITY(inode))
1938 fsflags |= FS_VERITY_FL;
1939 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1940 fsflags |= FS_INLINE_DATA_FL;
1941 if (is_inode_flag_set(inode, FI_PIN_FILE))
1942 fsflags |= FS_NOCOW_FL;
1944 fsflags &= F2FS_GETTABLE_FS_FL;
1946 return put_user(fsflags, (int __user *)arg);
1949 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1951 struct inode *inode = file_inode(filp);
1952 struct f2fs_inode_info *fi = F2FS_I(inode);
1953 u32 fsflags, old_fsflags;
1954 u32 iflags;
1955 int ret;
1957 if (!inode_owner_or_capable(inode))
1958 return -EACCES;
1960 if (get_user(fsflags, (int __user *)arg))
1961 return -EFAULT;
1963 if (fsflags & ~F2FS_GETTABLE_FS_FL)
1964 return -EOPNOTSUPP;
1965 fsflags &= F2FS_SETTABLE_FS_FL;
1967 iflags = f2fs_fsflags_to_iflags(fsflags);
1968 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1969 return -EOPNOTSUPP;
1971 ret = mnt_want_write_file(filp);
1972 if (ret)
1973 return ret;
1975 inode_lock(inode);
1977 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1978 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
1979 if (ret)
1980 goto out;
1982 ret = f2fs_setflags_common(inode, iflags,
1983 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
1984 out:
1985 inode_unlock(inode);
1986 mnt_drop_write_file(filp);
1987 return ret;
1990 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1992 struct inode *inode = file_inode(filp);
1994 return put_user(inode->i_generation, (int __user *)arg);
1997 static int f2fs_ioc_start_atomic_write(struct file *filp)
1999 struct inode *inode = file_inode(filp);
2000 struct f2fs_inode_info *fi = F2FS_I(inode);
2001 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2002 int ret;
2004 if (!inode_owner_or_capable(inode))
2005 return -EACCES;
2007 if (!S_ISREG(inode->i_mode))
2008 return -EINVAL;
2010 if (filp->f_flags & O_DIRECT)
2011 return -EINVAL;
2013 ret = mnt_want_write_file(filp);
2014 if (ret)
2015 return ret;
2017 inode_lock(inode);
2019 f2fs_disable_compressed_file(inode);
2021 if (f2fs_is_atomic_file(inode)) {
2022 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2023 ret = -EINVAL;
2024 goto out;
2027 ret = f2fs_convert_inline_inode(inode);
2028 if (ret)
2029 goto out;
2031 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2034 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2035 * f2fs_is_atomic_file.
2037 if (get_dirty_pages(inode))
2038 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2039 inode->i_ino, get_dirty_pages(inode));
2040 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2041 if (ret) {
2042 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2043 goto out;
2046 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2047 if (list_empty(&fi->inmem_ilist))
2048 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2049 sbi->atomic_files++;
2050 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2052 /* add inode in inmem_list first and set atomic_file */
2053 set_inode_flag(inode, FI_ATOMIC_FILE);
2054 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2055 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2057 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2058 F2FS_I(inode)->inmem_task = current;
2059 stat_update_max_atomic_write(inode);
2060 out:
2061 inode_unlock(inode);
2062 mnt_drop_write_file(filp);
2063 return ret;
2066 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2068 struct inode *inode = file_inode(filp);
2069 int ret;
2071 if (!inode_owner_or_capable(inode))
2072 return -EACCES;
2074 ret = mnt_want_write_file(filp);
2075 if (ret)
2076 return ret;
2078 f2fs_balance_fs(F2FS_I_SB(inode), true);
2080 inode_lock(inode);
2082 if (f2fs_is_volatile_file(inode)) {
2083 ret = -EINVAL;
2084 goto err_out;
2087 if (f2fs_is_atomic_file(inode)) {
2088 ret = f2fs_commit_inmem_pages(inode);
2089 if (ret)
2090 goto err_out;
2092 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2093 if (!ret)
2094 f2fs_drop_inmem_pages(inode);
2095 } else {
2096 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2098 err_out:
2099 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2100 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2101 ret = -EINVAL;
2103 inode_unlock(inode);
2104 mnt_drop_write_file(filp);
2105 return ret;
2108 static int f2fs_ioc_start_volatile_write(struct file *filp)
2110 struct inode *inode = file_inode(filp);
2111 int ret;
2113 if (!inode_owner_or_capable(inode))
2114 return -EACCES;
2116 if (!S_ISREG(inode->i_mode))
2117 return -EINVAL;
2119 ret = mnt_want_write_file(filp);
2120 if (ret)
2121 return ret;
2123 inode_lock(inode);
2125 if (f2fs_is_volatile_file(inode))
2126 goto out;
2128 ret = f2fs_convert_inline_inode(inode);
2129 if (ret)
2130 goto out;
2132 stat_inc_volatile_write(inode);
2133 stat_update_max_volatile_write(inode);
2135 set_inode_flag(inode, FI_VOLATILE_FILE);
2136 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2137 out:
2138 inode_unlock(inode);
2139 mnt_drop_write_file(filp);
2140 return ret;
2143 static int f2fs_ioc_release_volatile_write(struct file *filp)
2145 struct inode *inode = file_inode(filp);
2146 int ret;
2148 if (!inode_owner_or_capable(inode))
2149 return -EACCES;
2151 ret = mnt_want_write_file(filp);
2152 if (ret)
2153 return ret;
2155 inode_lock(inode);
2157 if (!f2fs_is_volatile_file(inode))
2158 goto out;
2160 if (!f2fs_is_first_block_written(inode)) {
2161 ret = truncate_partial_data_page(inode, 0, true);
2162 goto out;
2165 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2166 out:
2167 inode_unlock(inode);
2168 mnt_drop_write_file(filp);
2169 return ret;
2172 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2174 struct inode *inode = file_inode(filp);
2175 int ret;
2177 if (!inode_owner_or_capable(inode))
2178 return -EACCES;
2180 ret = mnt_want_write_file(filp);
2181 if (ret)
2182 return ret;
2184 inode_lock(inode);
2186 if (f2fs_is_atomic_file(inode))
2187 f2fs_drop_inmem_pages(inode);
2188 if (f2fs_is_volatile_file(inode)) {
2189 clear_inode_flag(inode, FI_VOLATILE_FILE);
2190 stat_dec_volatile_write(inode);
2191 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2194 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2196 inode_unlock(inode);
2198 mnt_drop_write_file(filp);
2199 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2200 return ret;
2203 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2205 struct inode *inode = file_inode(filp);
2206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2207 struct super_block *sb = sbi->sb;
2208 __u32 in;
2209 int ret = 0;
2211 if (!capable(CAP_SYS_ADMIN))
2212 return -EPERM;
2214 if (get_user(in, (__u32 __user *)arg))
2215 return -EFAULT;
2217 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2218 ret = mnt_want_write_file(filp);
2219 if (ret)
2220 return ret;
2223 switch (in) {
2224 case F2FS_GOING_DOWN_FULLSYNC:
2225 sb = freeze_bdev(sb->s_bdev);
2226 if (IS_ERR(sb)) {
2227 ret = PTR_ERR(sb);
2228 goto out;
2230 if (sb) {
2231 f2fs_stop_checkpoint(sbi, false);
2232 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2233 thaw_bdev(sb->s_bdev, sb);
2235 break;
2236 case F2FS_GOING_DOWN_METASYNC:
2237 /* do checkpoint only */
2238 ret = f2fs_sync_fs(sb, 1);
2239 if (ret)
2240 goto out;
2241 f2fs_stop_checkpoint(sbi, false);
2242 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2243 break;
2244 case F2FS_GOING_DOWN_NOSYNC:
2245 f2fs_stop_checkpoint(sbi, false);
2246 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2247 break;
2248 case F2FS_GOING_DOWN_METAFLUSH:
2249 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2250 f2fs_stop_checkpoint(sbi, false);
2251 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2252 break;
2253 case F2FS_GOING_DOWN_NEED_FSCK:
2254 set_sbi_flag(sbi, SBI_NEED_FSCK);
2255 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2256 set_sbi_flag(sbi, SBI_IS_DIRTY);
2257 /* do checkpoint only */
2258 ret = f2fs_sync_fs(sb, 1);
2259 goto out;
2260 default:
2261 ret = -EINVAL;
2262 goto out;
2265 f2fs_stop_gc_thread(sbi);
2266 f2fs_stop_discard_thread(sbi);
2268 f2fs_drop_discard_cmd(sbi);
2269 clear_opt(sbi, DISCARD);
2271 f2fs_update_time(sbi, REQ_TIME);
2272 out:
2273 if (in != F2FS_GOING_DOWN_FULLSYNC)
2274 mnt_drop_write_file(filp);
2276 trace_f2fs_shutdown(sbi, in, ret);
2278 return ret;
2281 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2283 struct inode *inode = file_inode(filp);
2284 struct super_block *sb = inode->i_sb;
2285 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2286 struct fstrim_range range;
2287 int ret;
2289 if (!capable(CAP_SYS_ADMIN))
2290 return -EPERM;
2292 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2293 return -EOPNOTSUPP;
2295 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2296 sizeof(range)))
2297 return -EFAULT;
2299 ret = mnt_want_write_file(filp);
2300 if (ret)
2301 return ret;
2303 range.minlen = max((unsigned int)range.minlen,
2304 q->limits.discard_granularity);
2305 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2306 mnt_drop_write_file(filp);
2307 if (ret < 0)
2308 return ret;
2310 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2311 sizeof(range)))
2312 return -EFAULT;
2313 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2314 return 0;
2317 static bool uuid_is_nonzero(__u8 u[16])
2319 int i;
2321 for (i = 0; i < 16; i++)
2322 if (u[i])
2323 return true;
2324 return false;
2327 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2329 struct inode *inode = file_inode(filp);
2331 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2332 return -EOPNOTSUPP;
2334 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2336 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2339 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2341 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2342 return -EOPNOTSUPP;
2343 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2346 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2348 struct inode *inode = file_inode(filp);
2349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2350 int err;
2352 if (!f2fs_sb_has_encrypt(sbi))
2353 return -EOPNOTSUPP;
2355 err = mnt_want_write_file(filp);
2356 if (err)
2357 return err;
2359 down_write(&sbi->sb_lock);
2361 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2362 goto got_it;
2364 /* update superblock with uuid */
2365 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2367 err = f2fs_commit_super(sbi, false);
2368 if (err) {
2369 /* undo new data */
2370 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2371 goto out_err;
2373 got_it:
2374 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2375 16))
2376 err = -EFAULT;
2377 out_err:
2378 up_write(&sbi->sb_lock);
2379 mnt_drop_write_file(filp);
2380 return err;
2383 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2384 unsigned long arg)
2386 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2387 return -EOPNOTSUPP;
2389 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2392 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2394 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2395 return -EOPNOTSUPP;
2397 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2400 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2402 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2403 return -EOPNOTSUPP;
2405 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2408 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2409 unsigned long arg)
2411 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2412 return -EOPNOTSUPP;
2414 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2417 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2418 unsigned long arg)
2420 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2421 return -EOPNOTSUPP;
2423 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2426 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2428 struct inode *inode = file_inode(filp);
2429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2430 __u32 sync;
2431 int ret;
2433 if (!capable(CAP_SYS_ADMIN))
2434 return -EPERM;
2436 if (get_user(sync, (__u32 __user *)arg))
2437 return -EFAULT;
2439 if (f2fs_readonly(sbi->sb))
2440 return -EROFS;
2442 ret = mnt_want_write_file(filp);
2443 if (ret)
2444 return ret;
2446 if (!sync) {
2447 if (!down_write_trylock(&sbi->gc_lock)) {
2448 ret = -EBUSY;
2449 goto out;
2451 } else {
2452 down_write(&sbi->gc_lock);
2455 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2456 out:
2457 mnt_drop_write_file(filp);
2458 return ret;
2461 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2463 struct inode *inode = file_inode(filp);
2464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2465 struct f2fs_gc_range range;
2466 u64 end;
2467 int ret;
2469 if (!capable(CAP_SYS_ADMIN))
2470 return -EPERM;
2472 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2473 sizeof(range)))
2474 return -EFAULT;
2476 if (f2fs_readonly(sbi->sb))
2477 return -EROFS;
2479 end = range.start + range.len;
2480 if (end < range.start || range.start < MAIN_BLKADDR(sbi) ||
2481 end >= MAX_BLKADDR(sbi))
2482 return -EINVAL;
2484 ret = mnt_want_write_file(filp);
2485 if (ret)
2486 return ret;
2488 do_more:
2489 if (!range.sync) {
2490 if (!down_write_trylock(&sbi->gc_lock)) {
2491 ret = -EBUSY;
2492 goto out;
2494 } else {
2495 down_write(&sbi->gc_lock);
2498 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2499 range.start += BLKS_PER_SEC(sbi);
2500 if (range.start <= end)
2501 goto do_more;
2502 out:
2503 mnt_drop_write_file(filp);
2504 return ret;
2507 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2509 struct inode *inode = file_inode(filp);
2510 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2511 int ret;
2513 if (!capable(CAP_SYS_ADMIN))
2514 return -EPERM;
2516 if (f2fs_readonly(sbi->sb))
2517 return -EROFS;
2519 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2520 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2521 return -EINVAL;
2524 ret = mnt_want_write_file(filp);
2525 if (ret)
2526 return ret;
2528 ret = f2fs_sync_fs(sbi->sb, 1);
2530 mnt_drop_write_file(filp);
2531 return ret;
2534 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2535 struct file *filp,
2536 struct f2fs_defragment *range)
2538 struct inode *inode = file_inode(filp);
2539 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2540 .m_seg_type = NO_CHECK_TYPE ,
2541 .m_may_create = false };
2542 struct extent_info ei = {0, 0, 0};
2543 pgoff_t pg_start, pg_end, next_pgofs;
2544 unsigned int blk_per_seg = sbi->blocks_per_seg;
2545 unsigned int total = 0, sec_num;
2546 block_t blk_end = 0;
2547 bool fragmented = false;
2548 int err;
2550 /* if in-place-update policy is enabled, don't waste time here */
2551 if (f2fs_should_update_inplace(inode, NULL))
2552 return -EINVAL;
2554 pg_start = range->start >> PAGE_SHIFT;
2555 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2557 f2fs_balance_fs(sbi, true);
2559 inode_lock(inode);
2561 /* writeback all dirty pages in the range */
2562 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2563 range->start + range->len - 1);
2564 if (err)
2565 goto out;
2568 * lookup mapping info in extent cache, skip defragmenting if physical
2569 * block addresses are continuous.
2571 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2572 if (ei.fofs + ei.len >= pg_end)
2573 goto out;
2576 map.m_lblk = pg_start;
2577 map.m_next_pgofs = &next_pgofs;
2580 * lookup mapping info in dnode page cache, skip defragmenting if all
2581 * physical block addresses are continuous even if there are hole(s)
2582 * in logical blocks.
2584 while (map.m_lblk < pg_end) {
2585 map.m_len = pg_end - map.m_lblk;
2586 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2587 if (err)
2588 goto out;
2590 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2591 map.m_lblk = next_pgofs;
2592 continue;
2595 if (blk_end && blk_end != map.m_pblk)
2596 fragmented = true;
2598 /* record total count of block that we're going to move */
2599 total += map.m_len;
2601 blk_end = map.m_pblk + map.m_len;
2603 map.m_lblk += map.m_len;
2606 if (!fragmented) {
2607 total = 0;
2608 goto out;
2611 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2614 * make sure there are enough free section for LFS allocation, this can
2615 * avoid defragment running in SSR mode when free section are allocated
2616 * intensively
2618 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2619 err = -EAGAIN;
2620 goto out;
2623 map.m_lblk = pg_start;
2624 map.m_len = pg_end - pg_start;
2625 total = 0;
2627 while (map.m_lblk < pg_end) {
2628 pgoff_t idx;
2629 int cnt = 0;
2631 do_map:
2632 map.m_len = pg_end - map.m_lblk;
2633 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2634 if (err)
2635 goto clear_out;
2637 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2638 map.m_lblk = next_pgofs;
2639 goto check;
2642 set_inode_flag(inode, FI_DO_DEFRAG);
2644 idx = map.m_lblk;
2645 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2646 struct page *page;
2648 page = f2fs_get_lock_data_page(inode, idx, true);
2649 if (IS_ERR(page)) {
2650 err = PTR_ERR(page);
2651 goto clear_out;
2654 set_page_dirty(page);
2655 f2fs_put_page(page, 1);
2657 idx++;
2658 cnt++;
2659 total++;
2662 map.m_lblk = idx;
2663 check:
2664 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2665 goto do_map;
2667 clear_inode_flag(inode, FI_DO_DEFRAG);
2669 err = filemap_fdatawrite(inode->i_mapping);
2670 if (err)
2671 goto out;
2673 clear_out:
2674 clear_inode_flag(inode, FI_DO_DEFRAG);
2675 out:
2676 inode_unlock(inode);
2677 if (!err)
2678 range->len = (u64)total << PAGE_SHIFT;
2679 return err;
2682 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2684 struct inode *inode = file_inode(filp);
2685 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2686 struct f2fs_defragment range;
2687 int err;
2689 if (!capable(CAP_SYS_ADMIN))
2690 return -EPERM;
2692 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2693 return -EINVAL;
2695 if (f2fs_readonly(sbi->sb))
2696 return -EROFS;
2698 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2699 sizeof(range)))
2700 return -EFAULT;
2702 /* verify alignment of offset & size */
2703 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2704 return -EINVAL;
2706 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2707 sbi->max_file_blocks))
2708 return -EINVAL;
2710 err = mnt_want_write_file(filp);
2711 if (err)
2712 return err;
2714 err = f2fs_defragment_range(sbi, filp, &range);
2715 mnt_drop_write_file(filp);
2717 f2fs_update_time(sbi, REQ_TIME);
2718 if (err < 0)
2719 return err;
2721 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2722 sizeof(range)))
2723 return -EFAULT;
2725 return 0;
2728 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2729 struct file *file_out, loff_t pos_out, size_t len)
2731 struct inode *src = file_inode(file_in);
2732 struct inode *dst = file_inode(file_out);
2733 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2734 size_t olen = len, dst_max_i_size = 0;
2735 size_t dst_osize;
2736 int ret;
2738 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2739 src->i_sb != dst->i_sb)
2740 return -EXDEV;
2742 if (unlikely(f2fs_readonly(src->i_sb)))
2743 return -EROFS;
2745 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2746 return -EINVAL;
2748 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2749 return -EOPNOTSUPP;
2751 if (src == dst) {
2752 if (pos_in == pos_out)
2753 return 0;
2754 if (pos_out > pos_in && pos_out < pos_in + len)
2755 return -EINVAL;
2758 inode_lock(src);
2759 if (src != dst) {
2760 ret = -EBUSY;
2761 if (!inode_trylock(dst))
2762 goto out;
2765 ret = -EINVAL;
2766 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2767 goto out_unlock;
2768 if (len == 0)
2769 olen = len = src->i_size - pos_in;
2770 if (pos_in + len == src->i_size)
2771 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2772 if (len == 0) {
2773 ret = 0;
2774 goto out_unlock;
2777 dst_osize = dst->i_size;
2778 if (pos_out + olen > dst->i_size)
2779 dst_max_i_size = pos_out + olen;
2781 /* verify the end result is block aligned */
2782 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2783 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2784 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2785 goto out_unlock;
2787 ret = f2fs_convert_inline_inode(src);
2788 if (ret)
2789 goto out_unlock;
2791 ret = f2fs_convert_inline_inode(dst);
2792 if (ret)
2793 goto out_unlock;
2795 /* write out all dirty pages from offset */
2796 ret = filemap_write_and_wait_range(src->i_mapping,
2797 pos_in, pos_in + len);
2798 if (ret)
2799 goto out_unlock;
2801 ret = filemap_write_and_wait_range(dst->i_mapping,
2802 pos_out, pos_out + len);
2803 if (ret)
2804 goto out_unlock;
2806 f2fs_balance_fs(sbi, true);
2808 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2809 if (src != dst) {
2810 ret = -EBUSY;
2811 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2812 goto out_src;
2815 f2fs_lock_op(sbi);
2816 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2817 pos_out >> F2FS_BLKSIZE_BITS,
2818 len >> F2FS_BLKSIZE_BITS, false);
2820 if (!ret) {
2821 if (dst_max_i_size)
2822 f2fs_i_size_write(dst, dst_max_i_size);
2823 else if (dst_osize != dst->i_size)
2824 f2fs_i_size_write(dst, dst_osize);
2826 f2fs_unlock_op(sbi);
2828 if (src != dst)
2829 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2830 out_src:
2831 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2832 out_unlock:
2833 if (src != dst)
2834 inode_unlock(dst);
2835 out:
2836 inode_unlock(src);
2837 return ret;
2840 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2842 struct f2fs_move_range range;
2843 struct fd dst;
2844 int err;
2846 if (!(filp->f_mode & FMODE_READ) ||
2847 !(filp->f_mode & FMODE_WRITE))
2848 return -EBADF;
2850 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2851 sizeof(range)))
2852 return -EFAULT;
2854 dst = fdget(range.dst_fd);
2855 if (!dst.file)
2856 return -EBADF;
2858 if (!(dst.file->f_mode & FMODE_WRITE)) {
2859 err = -EBADF;
2860 goto err_out;
2863 err = mnt_want_write_file(filp);
2864 if (err)
2865 goto err_out;
2867 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2868 range.pos_out, range.len);
2870 mnt_drop_write_file(filp);
2871 if (err)
2872 goto err_out;
2874 if (copy_to_user((struct f2fs_move_range __user *)arg,
2875 &range, sizeof(range)))
2876 err = -EFAULT;
2877 err_out:
2878 fdput(dst);
2879 return err;
2882 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2884 struct inode *inode = file_inode(filp);
2885 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2886 struct sit_info *sm = SIT_I(sbi);
2887 unsigned int start_segno = 0, end_segno = 0;
2888 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2889 struct f2fs_flush_device range;
2890 int ret;
2892 if (!capable(CAP_SYS_ADMIN))
2893 return -EPERM;
2895 if (f2fs_readonly(sbi->sb))
2896 return -EROFS;
2898 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2899 return -EINVAL;
2901 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2902 sizeof(range)))
2903 return -EFAULT;
2905 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2906 __is_large_section(sbi)) {
2907 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2908 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2909 return -EINVAL;
2912 ret = mnt_want_write_file(filp);
2913 if (ret)
2914 return ret;
2916 if (range.dev_num != 0)
2917 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2918 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2920 start_segno = sm->last_victim[FLUSH_DEVICE];
2921 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2922 start_segno = dev_start_segno;
2923 end_segno = min(start_segno + range.segments, dev_end_segno);
2925 while (start_segno < end_segno) {
2926 if (!down_write_trylock(&sbi->gc_lock)) {
2927 ret = -EBUSY;
2928 goto out;
2930 sm->last_victim[GC_CB] = end_segno + 1;
2931 sm->last_victim[GC_GREEDY] = end_segno + 1;
2932 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2933 ret = f2fs_gc(sbi, true, true, start_segno);
2934 if (ret == -EAGAIN)
2935 ret = 0;
2936 else if (ret < 0)
2937 break;
2938 start_segno++;
2940 out:
2941 mnt_drop_write_file(filp);
2942 return ret;
2945 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2947 struct inode *inode = file_inode(filp);
2948 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2950 /* Must validate to set it with SQLite behavior in Android. */
2951 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2953 return put_user(sb_feature, (u32 __user *)arg);
2956 #ifdef CONFIG_QUOTA
2957 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2959 struct dquot *transfer_to[MAXQUOTAS] = {};
2960 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2961 struct super_block *sb = sbi->sb;
2962 int err = 0;
2964 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2965 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2966 err = __dquot_transfer(inode, transfer_to);
2967 if (err)
2968 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2969 dqput(transfer_to[PRJQUOTA]);
2971 return err;
2974 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2976 struct inode *inode = file_inode(filp);
2977 struct f2fs_inode_info *fi = F2FS_I(inode);
2978 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2979 struct page *ipage;
2980 kprojid_t kprojid;
2981 int err;
2983 if (!f2fs_sb_has_project_quota(sbi)) {
2984 if (projid != F2FS_DEF_PROJID)
2985 return -EOPNOTSUPP;
2986 else
2987 return 0;
2990 if (!f2fs_has_extra_attr(inode))
2991 return -EOPNOTSUPP;
2993 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2995 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2996 return 0;
2998 err = -EPERM;
2999 /* Is it quota file? Do not allow user to mess with it */
3000 if (IS_NOQUOTA(inode))
3001 return err;
3003 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3004 if (IS_ERR(ipage))
3005 return PTR_ERR(ipage);
3007 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3008 i_projid)) {
3009 err = -EOVERFLOW;
3010 f2fs_put_page(ipage, 1);
3011 return err;
3013 f2fs_put_page(ipage, 1);
3015 err = dquot_initialize(inode);
3016 if (err)
3017 return err;
3019 f2fs_lock_op(sbi);
3020 err = f2fs_transfer_project_quota(inode, kprojid);
3021 if (err)
3022 goto out_unlock;
3024 F2FS_I(inode)->i_projid = kprojid;
3025 inode->i_ctime = current_time(inode);
3026 f2fs_mark_inode_dirty_sync(inode, true);
3027 out_unlock:
3028 f2fs_unlock_op(sbi);
3029 return err;
3031 #else
3032 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3034 return 0;
3037 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3039 if (projid != F2FS_DEF_PROJID)
3040 return -EOPNOTSUPP;
3041 return 0;
3043 #endif
3045 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3048 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3049 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3050 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3053 static const struct {
3054 u32 iflag;
3055 u32 xflag;
3056 } f2fs_xflags_map[] = {
3057 { F2FS_SYNC_FL, FS_XFLAG_SYNC },
3058 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
3059 { F2FS_APPEND_FL, FS_XFLAG_APPEND },
3060 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
3061 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
3062 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
3065 #define F2FS_SUPPORTED_XFLAGS ( \
3066 FS_XFLAG_SYNC | \
3067 FS_XFLAG_IMMUTABLE | \
3068 FS_XFLAG_APPEND | \
3069 FS_XFLAG_NODUMP | \
3070 FS_XFLAG_NOATIME | \
3071 FS_XFLAG_PROJINHERIT)
3073 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
3074 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3076 u32 xflags = 0;
3077 int i;
3079 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3080 if (iflags & f2fs_xflags_map[i].iflag)
3081 xflags |= f2fs_xflags_map[i].xflag;
3083 return xflags;
3086 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
3087 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3089 u32 iflags = 0;
3090 int i;
3092 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3093 if (xflags & f2fs_xflags_map[i].xflag)
3094 iflags |= f2fs_xflags_map[i].iflag;
3096 return iflags;
3099 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3101 struct f2fs_inode_info *fi = F2FS_I(inode);
3103 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3105 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3106 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3109 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3111 struct inode *inode = file_inode(filp);
3112 struct fsxattr fa;
3114 f2fs_fill_fsxattr(inode, &fa);
3116 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3117 return -EFAULT;
3118 return 0;
3121 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3123 struct inode *inode = file_inode(filp);
3124 struct fsxattr fa, old_fa;
3125 u32 iflags;
3126 int err;
3128 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3129 return -EFAULT;
3131 /* Make sure caller has proper permission */
3132 if (!inode_owner_or_capable(inode))
3133 return -EACCES;
3135 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3136 return -EOPNOTSUPP;
3138 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3139 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3140 return -EOPNOTSUPP;
3142 err = mnt_want_write_file(filp);
3143 if (err)
3144 return err;
3146 inode_lock(inode);
3148 f2fs_fill_fsxattr(inode, &old_fa);
3149 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3150 if (err)
3151 goto out;
3153 err = f2fs_setflags_common(inode, iflags,
3154 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3155 if (err)
3156 goto out;
3158 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3159 out:
3160 inode_unlock(inode);
3161 mnt_drop_write_file(filp);
3162 return err;
3165 int f2fs_pin_file_control(struct inode *inode, bool inc)
3167 struct f2fs_inode_info *fi = F2FS_I(inode);
3168 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3170 /* Use i_gc_failures for normal file as a risk signal. */
3171 if (inc)
3172 f2fs_i_gc_failures_write(inode,
3173 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3175 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3176 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3177 __func__, inode->i_ino,
3178 fi->i_gc_failures[GC_FAILURE_PIN]);
3179 clear_inode_flag(inode, FI_PIN_FILE);
3180 return -EAGAIN;
3182 return 0;
3185 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3187 struct inode *inode = file_inode(filp);
3188 __u32 pin;
3189 int ret = 0;
3191 if (get_user(pin, (__u32 __user *)arg))
3192 return -EFAULT;
3194 if (!S_ISREG(inode->i_mode))
3195 return -EINVAL;
3197 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3198 return -EROFS;
3200 ret = mnt_want_write_file(filp);
3201 if (ret)
3202 return ret;
3204 inode_lock(inode);
3206 if (f2fs_should_update_outplace(inode, NULL)) {
3207 ret = -EINVAL;
3208 goto out;
3211 if (!pin) {
3212 clear_inode_flag(inode, FI_PIN_FILE);
3213 f2fs_i_gc_failures_write(inode, 0);
3214 goto done;
3217 if (f2fs_pin_file_control(inode, false)) {
3218 ret = -EAGAIN;
3219 goto out;
3222 ret = f2fs_convert_inline_inode(inode);
3223 if (ret)
3224 goto out;
3226 if (f2fs_disable_compressed_file(inode)) {
3227 ret = -EOPNOTSUPP;
3228 goto out;
3231 set_inode_flag(inode, FI_PIN_FILE);
3232 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3233 done:
3234 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3235 out:
3236 inode_unlock(inode);
3237 mnt_drop_write_file(filp);
3238 return ret;
3241 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3243 struct inode *inode = file_inode(filp);
3244 __u32 pin = 0;
3246 if (is_inode_flag_set(inode, FI_PIN_FILE))
3247 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3248 return put_user(pin, (u32 __user *)arg);
3251 int f2fs_precache_extents(struct inode *inode)
3253 struct f2fs_inode_info *fi = F2FS_I(inode);
3254 struct f2fs_map_blocks map;
3255 pgoff_t m_next_extent;
3256 loff_t end;
3257 int err;
3259 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3260 return -EOPNOTSUPP;
3262 map.m_lblk = 0;
3263 map.m_next_pgofs = NULL;
3264 map.m_next_extent = &m_next_extent;
3265 map.m_seg_type = NO_CHECK_TYPE;
3266 map.m_may_create = false;
3267 end = F2FS_I_SB(inode)->max_file_blocks;
3269 while (map.m_lblk < end) {
3270 map.m_len = end - map.m_lblk;
3272 down_write(&fi->i_gc_rwsem[WRITE]);
3273 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3274 up_write(&fi->i_gc_rwsem[WRITE]);
3275 if (err)
3276 return err;
3278 map.m_lblk = m_next_extent;
3281 return err;
3284 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3286 return f2fs_precache_extents(file_inode(filp));
3289 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3291 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3292 __u64 block_count;
3293 int ret;
3295 if (!capable(CAP_SYS_ADMIN))
3296 return -EPERM;
3298 if (f2fs_readonly(sbi->sb))
3299 return -EROFS;
3301 if (copy_from_user(&block_count, (void __user *)arg,
3302 sizeof(block_count)))
3303 return -EFAULT;
3305 ret = f2fs_resize_fs(sbi, block_count);
3307 return ret;
3310 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3312 struct inode *inode = file_inode(filp);
3314 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3316 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3317 f2fs_warn(F2FS_I_SB(inode),
3318 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3319 inode->i_ino);
3320 return -EOPNOTSUPP;
3323 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3326 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3328 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3329 return -EOPNOTSUPP;
3331 return fsverity_ioctl_measure(filp, (void __user *)arg);
3334 static int f2fs_get_volume_name(struct file *filp, unsigned long arg)
3336 struct inode *inode = file_inode(filp);
3337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3338 char *vbuf;
3339 int count;
3340 int err = 0;
3342 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3343 if (!vbuf)
3344 return -ENOMEM;
3346 down_read(&sbi->sb_lock);
3347 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3348 ARRAY_SIZE(sbi->raw_super->volume_name),
3349 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3350 up_read(&sbi->sb_lock);
3352 if (copy_to_user((char __user *)arg, vbuf,
3353 min(FSLABEL_MAX, count)))
3354 err = -EFAULT;
3356 kvfree(vbuf);
3357 return err;
3360 static int f2fs_set_volume_name(struct file *filp, unsigned long arg)
3362 struct inode *inode = file_inode(filp);
3363 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3364 char *vbuf;
3365 int err = 0;
3367 if (!capable(CAP_SYS_ADMIN))
3368 return -EPERM;
3370 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3371 if (IS_ERR(vbuf))
3372 return PTR_ERR(vbuf);
3374 err = mnt_want_write_file(filp);
3375 if (err)
3376 goto out;
3378 down_write(&sbi->sb_lock);
3380 memset(sbi->raw_super->volume_name, 0,
3381 sizeof(sbi->raw_super->volume_name));
3382 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3383 sbi->raw_super->volume_name,
3384 ARRAY_SIZE(sbi->raw_super->volume_name));
3386 err = f2fs_commit_super(sbi, false);
3388 up_write(&sbi->sb_lock);
3390 mnt_drop_write_file(filp);
3391 out:
3392 kfree(vbuf);
3393 return err;
3396 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
3398 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
3399 return -EIO;
3400 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
3401 return -ENOSPC;
3403 switch (cmd) {
3404 case F2FS_IOC_GETFLAGS:
3405 return f2fs_ioc_getflags(filp, arg);
3406 case F2FS_IOC_SETFLAGS:
3407 return f2fs_ioc_setflags(filp, arg);
3408 case F2FS_IOC_GETVERSION:
3409 return f2fs_ioc_getversion(filp, arg);
3410 case F2FS_IOC_START_ATOMIC_WRITE:
3411 return f2fs_ioc_start_atomic_write(filp);
3412 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3413 return f2fs_ioc_commit_atomic_write(filp);
3414 case F2FS_IOC_START_VOLATILE_WRITE:
3415 return f2fs_ioc_start_volatile_write(filp);
3416 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3417 return f2fs_ioc_release_volatile_write(filp);
3418 case F2FS_IOC_ABORT_VOLATILE_WRITE:
3419 return f2fs_ioc_abort_volatile_write(filp);
3420 case F2FS_IOC_SHUTDOWN:
3421 return f2fs_ioc_shutdown(filp, arg);
3422 case FITRIM:
3423 return f2fs_ioc_fitrim(filp, arg);
3424 case F2FS_IOC_SET_ENCRYPTION_POLICY:
3425 return f2fs_ioc_set_encryption_policy(filp, arg);
3426 case F2FS_IOC_GET_ENCRYPTION_POLICY:
3427 return f2fs_ioc_get_encryption_policy(filp, arg);
3428 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3429 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
3430 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3431 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
3432 case FS_IOC_ADD_ENCRYPTION_KEY:
3433 return f2fs_ioc_add_encryption_key(filp, arg);
3434 case FS_IOC_REMOVE_ENCRYPTION_KEY:
3435 return f2fs_ioc_remove_encryption_key(filp, arg);
3436 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3437 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
3438 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3439 return f2fs_ioc_get_encryption_key_status(filp, arg);
3440 case F2FS_IOC_GARBAGE_COLLECT:
3441 return f2fs_ioc_gc(filp, arg);
3442 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3443 return f2fs_ioc_gc_range(filp, arg);
3444 case F2FS_IOC_WRITE_CHECKPOINT:
3445 return f2fs_ioc_write_checkpoint(filp, arg);
3446 case F2FS_IOC_DEFRAGMENT:
3447 return f2fs_ioc_defragment(filp, arg);
3448 case F2FS_IOC_MOVE_RANGE:
3449 return f2fs_ioc_move_range(filp, arg);
3450 case F2FS_IOC_FLUSH_DEVICE:
3451 return f2fs_ioc_flush_device(filp, arg);
3452 case F2FS_IOC_GET_FEATURES:
3453 return f2fs_ioc_get_features(filp, arg);
3454 case F2FS_IOC_FSGETXATTR:
3455 return f2fs_ioc_fsgetxattr(filp, arg);
3456 case F2FS_IOC_FSSETXATTR:
3457 return f2fs_ioc_fssetxattr(filp, arg);
3458 case F2FS_IOC_GET_PIN_FILE:
3459 return f2fs_ioc_get_pin_file(filp, arg);
3460 case F2FS_IOC_SET_PIN_FILE:
3461 return f2fs_ioc_set_pin_file(filp, arg);
3462 case F2FS_IOC_PRECACHE_EXTENTS:
3463 return f2fs_ioc_precache_extents(filp, arg);
3464 case F2FS_IOC_RESIZE_FS:
3465 return f2fs_ioc_resize_fs(filp, arg);
3466 case FS_IOC_ENABLE_VERITY:
3467 return f2fs_ioc_enable_verity(filp, arg);
3468 case FS_IOC_MEASURE_VERITY:
3469 return f2fs_ioc_measure_verity(filp, arg);
3470 case F2FS_IOC_GET_VOLUME_NAME:
3471 return f2fs_get_volume_name(filp, arg);
3472 case F2FS_IOC_SET_VOLUME_NAME:
3473 return f2fs_set_volume_name(filp, arg);
3474 default:
3475 return -ENOTTY;
3479 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
3481 struct file *file = iocb->ki_filp;
3482 struct inode *inode = file_inode(file);
3484 if (!f2fs_is_compress_backend_ready(inode))
3485 return -EOPNOTSUPP;
3487 return generic_file_read_iter(iocb, iter);
3490 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3492 struct file *file = iocb->ki_filp;
3493 struct inode *inode = file_inode(file);
3494 ssize_t ret;
3496 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
3497 ret = -EIO;
3498 goto out;
3501 if (!f2fs_is_compress_backend_ready(inode))
3502 return -EOPNOTSUPP;
3504 if (iocb->ki_flags & IOCB_NOWAIT) {
3505 if (!inode_trylock(inode)) {
3506 ret = -EAGAIN;
3507 goto out;
3509 } else {
3510 inode_lock(inode);
3513 ret = generic_write_checks(iocb, from);
3514 if (ret > 0) {
3515 bool preallocated = false;
3516 size_t target_size = 0;
3517 int err;
3519 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3520 set_inode_flag(inode, FI_NO_PREALLOC);
3522 if ((iocb->ki_flags & IOCB_NOWAIT)) {
3523 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3524 iov_iter_count(from)) ||
3525 f2fs_has_inline_data(inode) ||
3526 f2fs_force_buffered_io(inode, iocb, from)) {
3527 clear_inode_flag(inode, FI_NO_PREALLOC);
3528 inode_unlock(inode);
3529 ret = -EAGAIN;
3530 goto out;
3532 goto write;
3535 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
3536 goto write;
3538 if (iocb->ki_flags & IOCB_DIRECT) {
3540 * Convert inline data for Direct I/O before entering
3541 * f2fs_direct_IO().
3543 err = f2fs_convert_inline_inode(inode);
3544 if (err)
3545 goto out_err;
3547 * If force_buffere_io() is true, we have to allocate
3548 * blocks all the time, since f2fs_direct_IO will fall
3549 * back to buffered IO.
3551 if (!f2fs_force_buffered_io(inode, iocb, from) &&
3552 allow_outplace_dio(inode, iocb, from))
3553 goto write;
3555 preallocated = true;
3556 target_size = iocb->ki_pos + iov_iter_count(from);
3558 err = f2fs_preallocate_blocks(iocb, from);
3559 if (err) {
3560 out_err:
3561 clear_inode_flag(inode, FI_NO_PREALLOC);
3562 inode_unlock(inode);
3563 ret = err;
3564 goto out;
3566 write:
3567 ret = __generic_file_write_iter(iocb, from);
3568 clear_inode_flag(inode, FI_NO_PREALLOC);
3570 /* if we couldn't write data, we should deallocate blocks. */
3571 if (preallocated && i_size_read(inode) < target_size)
3572 f2fs_truncate(inode);
3574 if (ret > 0)
3575 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3577 inode_unlock(inode);
3578 out:
3579 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
3580 iov_iter_count(from), ret);
3581 if (ret > 0)
3582 ret = generic_write_sync(iocb, ret);
3583 return ret;
3586 #ifdef CONFIG_COMPAT
3587 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3589 switch (cmd) {
3590 case F2FS_IOC32_GETFLAGS:
3591 cmd = F2FS_IOC_GETFLAGS;
3592 break;
3593 case F2FS_IOC32_SETFLAGS:
3594 cmd = F2FS_IOC_SETFLAGS;
3595 break;
3596 case F2FS_IOC32_GETVERSION:
3597 cmd = F2FS_IOC_GETVERSION;
3598 break;
3599 case F2FS_IOC_START_ATOMIC_WRITE:
3600 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3601 case F2FS_IOC_START_VOLATILE_WRITE:
3602 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3603 case F2FS_IOC_ABORT_VOLATILE_WRITE:
3604 case F2FS_IOC_SHUTDOWN:
3605 case FITRIM:
3606 case F2FS_IOC_SET_ENCRYPTION_POLICY:
3607 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3608 case F2FS_IOC_GET_ENCRYPTION_POLICY:
3609 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3610 case FS_IOC_ADD_ENCRYPTION_KEY:
3611 case FS_IOC_REMOVE_ENCRYPTION_KEY:
3612 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3613 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3614 case F2FS_IOC_GARBAGE_COLLECT:
3615 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3616 case F2FS_IOC_WRITE_CHECKPOINT:
3617 case F2FS_IOC_DEFRAGMENT:
3618 case F2FS_IOC_MOVE_RANGE:
3619 case F2FS_IOC_FLUSH_DEVICE:
3620 case F2FS_IOC_GET_FEATURES:
3621 case F2FS_IOC_FSGETXATTR:
3622 case F2FS_IOC_FSSETXATTR:
3623 case F2FS_IOC_GET_PIN_FILE:
3624 case F2FS_IOC_SET_PIN_FILE:
3625 case F2FS_IOC_PRECACHE_EXTENTS:
3626 case F2FS_IOC_RESIZE_FS:
3627 case FS_IOC_ENABLE_VERITY:
3628 case FS_IOC_MEASURE_VERITY:
3629 case F2FS_IOC_GET_VOLUME_NAME:
3630 case F2FS_IOC_SET_VOLUME_NAME:
3631 break;
3632 default:
3633 return -ENOIOCTLCMD;
3635 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3637 #endif
3639 const struct file_operations f2fs_file_operations = {
3640 .llseek = f2fs_llseek,
3641 .read_iter = f2fs_file_read_iter,
3642 .write_iter = f2fs_file_write_iter,
3643 .open = f2fs_file_open,
3644 .release = f2fs_release_file,
3645 .mmap = f2fs_file_mmap,
3646 .flush = f2fs_file_flush,
3647 .fsync = f2fs_sync_file,
3648 .fallocate = f2fs_fallocate,
3649 .unlocked_ioctl = f2fs_ioctl,
3650 #ifdef CONFIG_COMPAT
3651 .compat_ioctl = f2fs_compat_ioctl,
3652 #endif
3653 .splice_read = generic_file_splice_read,
3654 .splice_write = iter_file_splice_write,