drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / f2fs / node.c
blob9d02cdcdbb07302df3bf4fc49a30b36dc19fa731
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
41 return 0;
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
52 si_meminfo(&val);
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
97 return res;
100 static void clear_node_page_dirty(struct page *page)
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107 ClearPageUptodate(page);
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
139 set_to_next_nat(nm_i, nid);
141 return dst_page;
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 struct nat_entry *new;
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
156 return new;
159 static void __free_nat_entry(struct nat_entry *e)
161 kmem_cache_free(nat_entry_slab, e);
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
180 nm_i->nat_cnt++;
181 return ne;
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 struct nat_entry *ne;
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
198 return ne;
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 nm_i->nat_cnt--;
211 __free_nat_entry(e);
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 struct nat_entry *ne)
217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 struct nat_entry_set *head;
220 head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 if (!head) {
222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224 INIT_LIST_HEAD(&head->entry_list);
225 INIT_LIST_HEAD(&head->set_list);
226 head->set = set;
227 head->entry_cnt = 0;
228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230 return head;
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
236 struct nat_entry_set *head;
237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239 if (!new_ne)
240 head = __grab_nat_entry_set(nm_i, ne);
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 !get_nat_flag(ne, IS_DIRTY)))
249 head->entry_cnt++;
251 set_nat_flag(ne, IS_PREALLOC, new_ne);
253 if (get_nat_flag(ne, IS_DIRTY))
254 goto refresh_list;
256 nm_i->dirty_nat_cnt++;
257 set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259 spin_lock(&nm_i->nat_list_lock);
260 if (new_ne)
261 list_del_init(&ne->list);
262 else
263 list_move_tail(&ne->list, &head->entry_list);
264 spin_unlock(&nm_i->nat_list_lock);
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry_set *set, struct nat_entry *ne)
270 spin_lock(&nm_i->nat_list_lock);
271 list_move_tail(&ne->list, &nm_i->nat_entries);
272 spin_unlock(&nm_i->nat_list_lock);
274 set_nat_flag(ne, IS_DIRTY, false);
275 set->entry_cnt--;
276 nm_i->dirty_nat_cnt--;
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 start, nr);
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 return NODE_MAPPING(sbi) == page->mapping &&
289 IS_DNODE(page) && is_cold_node(page);
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 spin_lock_init(&sbi->fsync_node_lock);
295 INIT_LIST_HEAD(&sbi->fsync_node_list);
296 sbi->fsync_seg_id = 0;
297 sbi->fsync_node_num = 0;
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 struct page *page)
303 struct fsync_node_entry *fn;
304 unsigned long flags;
305 unsigned int seq_id;
307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
309 get_page(page);
310 fn->page = page;
311 INIT_LIST_HEAD(&fn->list);
313 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 list_add_tail(&fn->list, &sbi->fsync_node_list);
315 fn->seq_id = sbi->fsync_seg_id++;
316 seq_id = fn->seq_id;
317 sbi->fsync_node_num++;
318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
320 return seq_id;
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 struct fsync_node_entry *fn;
326 unsigned long flags;
328 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 if (fn->page == page) {
331 list_del(&fn->list);
332 sbi->fsync_node_num--;
333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 kmem_cache_free(fsync_node_entry_slab, fn);
335 put_page(page);
336 return;
339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 f2fs_bug_on(sbi, 1);
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
345 unsigned long flags;
347 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 sbi->fsync_seg_id = 0;
349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 struct nat_entry *e;
356 bool need = false;
358 down_read(&nm_i->nat_tree_lock);
359 e = __lookup_nat_cache(nm_i, nid);
360 if (e) {
361 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 !get_nat_flag(e, HAS_FSYNCED_INODE))
363 need = true;
365 up_read(&nm_i->nat_tree_lock);
366 return need;
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 struct f2fs_nm_info *nm_i = NM_I(sbi);
372 struct nat_entry *e;
373 bool is_cp = true;
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 is_cp = false;
379 up_read(&nm_i->nat_tree_lock);
380 return is_cp;
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 struct f2fs_nm_info *nm_i = NM_I(sbi);
386 struct nat_entry *e;
387 bool need_update = true;
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, ino);
391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 (get_nat_flag(e, IS_CHECKPOINTED) ||
393 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 need_update = false;
395 up_read(&nm_i->nat_tree_lock);
396 return need_update;
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 struct f2fs_nat_entry *ne)
403 struct f2fs_nm_info *nm_i = NM_I(sbi);
404 struct nat_entry *new, *e;
406 new = __alloc_nat_entry(nid, false);
407 if (!new)
408 return;
410 down_write(&nm_i->nat_tree_lock);
411 e = __lookup_nat_cache(nm_i, nid);
412 if (!e)
413 e = __init_nat_entry(nm_i, new, ne, false);
414 else
415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 nat_get_blkaddr(e) !=
417 le32_to_cpu(ne->block_addr) ||
418 nat_get_version(e) != ne->version);
419 up_write(&nm_i->nat_tree_lock);
420 if (e != new)
421 __free_nat_entry(new);
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 block_t new_blkaddr, bool fsync_done)
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *e;
429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431 down_write(&nm_i->nat_tree_lock);
432 e = __lookup_nat_cache(nm_i, ni->nid);
433 if (!e) {
434 e = __init_nat_entry(nm_i, new, NULL, true);
435 copy_node_info(&e->ni, ni);
436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 } else if (new_blkaddr == NEW_ADDR) {
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
443 copy_node_info(&e->ni, ni);
444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446 /* let's free early to reduce memory consumption */
447 if (e != new)
448 __free_nat_entry(new);
450 /* sanity check */
451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 new_blkaddr == NULL_ADDR);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 new_blkaddr == NEW_ADDR);
456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 new_blkaddr == NEW_ADDR);
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 unsigned char version = nat_get_version(e);
462 nat_set_version(e, inc_node_version(version));
465 /* change address */
466 nat_set_blkaddr(e, new_blkaddr);
467 if (!__is_valid_data_blkaddr(new_blkaddr))
468 set_nat_flag(e, IS_CHECKPOINTED, false);
469 __set_nat_cache_dirty(nm_i, e);
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni->nid != ni->ino)
473 e = __lookup_nat_cache(nm_i, ni->ino);
474 if (e) {
475 if (fsync_done && ni->nid == ni->ino)
476 set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479 up_write(&nm_i->nat_tree_lock);
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 struct f2fs_nm_info *nm_i = NM_I(sbi);
485 int nr = nr_shrink;
487 if (!down_write_trylock(&nm_i->nat_tree_lock))
488 return 0;
490 spin_lock(&nm_i->nat_list_lock);
491 while (nr_shrink) {
492 struct nat_entry *ne;
494 if (list_empty(&nm_i->nat_entries))
495 break;
497 ne = list_first_entry(&nm_i->nat_entries,
498 struct nat_entry, list);
499 list_del(&ne->list);
500 spin_unlock(&nm_i->nat_list_lock);
502 __del_from_nat_cache(nm_i, ne);
503 nr_shrink--;
505 spin_lock(&nm_i->nat_list_lock);
507 spin_unlock(&nm_i->nat_list_lock);
509 up_write(&nm_i->nat_tree_lock);
510 return nr - nr_shrink;
514 * This function always returns success
516 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517 struct node_info *ni)
519 struct f2fs_nm_info *nm_i = NM_I(sbi);
520 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521 struct f2fs_journal *journal = curseg->journal;
522 nid_t start_nid = START_NID(nid);
523 struct f2fs_nat_block *nat_blk;
524 struct page *page = NULL;
525 struct f2fs_nat_entry ne;
526 struct nat_entry *e;
527 pgoff_t index;
528 block_t blkaddr;
529 int i;
531 ni->nid = nid;
533 /* Check nat cache */
534 down_read(&nm_i->nat_tree_lock);
535 e = __lookup_nat_cache(nm_i, nid);
536 if (e) {
537 ni->ino = nat_get_ino(e);
538 ni->blk_addr = nat_get_blkaddr(e);
539 ni->version = nat_get_version(e);
540 up_read(&nm_i->nat_tree_lock);
541 return 0;
544 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546 /* Check current segment summary */
547 down_read(&curseg->journal_rwsem);
548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 if (i >= 0) {
550 ne = nat_in_journal(journal, i);
551 node_info_from_raw_nat(ni, &ne);
553 up_read(&curseg->journal_rwsem);
554 if (i >= 0) {
555 up_read(&nm_i->nat_tree_lock);
556 goto cache;
559 /* Fill node_info from nat page */
560 index = current_nat_addr(sbi, nid);
561 up_read(&nm_i->nat_tree_lock);
563 page = f2fs_get_meta_page(sbi, index);
564 if (IS_ERR(page))
565 return PTR_ERR(page);
567 nat_blk = (struct f2fs_nat_block *)page_address(page);
568 ne = nat_blk->entries[nid - start_nid];
569 node_info_from_raw_nat(ni, &ne);
570 f2fs_put_page(page, 1);
571 cache:
572 blkaddr = le32_to_cpu(ne.block_addr);
573 if (__is_valid_data_blkaddr(blkaddr) &&
574 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575 return -EFAULT;
577 /* cache nat entry */
578 cache_nat_entry(sbi, nid, &ne);
579 return 0;
583 * readahead MAX_RA_NODE number of node pages.
585 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588 struct blk_plug plug;
589 int i, end;
590 nid_t nid;
592 blk_start_plug(&plug);
594 /* Then, try readahead for siblings of the desired node */
595 end = start + n;
596 end = min(end, NIDS_PER_BLOCK);
597 for (i = start; i < end; i++) {
598 nid = get_nid(parent, i, false);
599 f2fs_ra_node_page(sbi, nid);
602 blk_finish_plug(&plug);
605 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 const long direct_index = ADDRS_PER_INODE(dn->inode);
608 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611 int cur_level = dn->cur_level;
612 int max_level = dn->max_level;
613 pgoff_t base = 0;
615 if (!dn->max_level)
616 return pgofs + 1;
618 while (max_level-- > cur_level)
619 skipped_unit *= NIDS_PER_BLOCK;
621 switch (dn->max_level) {
622 case 3:
623 base += 2 * indirect_blks;
624 /* fall through */
625 case 2:
626 base += 2 * direct_blks;
627 /* fall through */
628 case 1:
629 base += direct_index;
630 break;
631 default:
632 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
635 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
639 * The maximum depth is four.
640 * Offset[0] will have raw inode offset.
642 static int get_node_path(struct inode *inode, long block,
643 int offset[4], unsigned int noffset[4])
645 const long direct_index = ADDRS_PER_INODE(inode);
646 const long direct_blks = ADDRS_PER_BLOCK(inode);
647 const long dptrs_per_blk = NIDS_PER_BLOCK;
648 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
649 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
650 int n = 0;
651 int level = 0;
653 noffset[0] = 0;
655 if (block < direct_index) {
656 offset[n] = block;
657 goto got;
659 block -= direct_index;
660 if (block < direct_blks) {
661 offset[n++] = NODE_DIR1_BLOCK;
662 noffset[n] = 1;
663 offset[n] = block;
664 level = 1;
665 goto got;
667 block -= direct_blks;
668 if (block < direct_blks) {
669 offset[n++] = NODE_DIR2_BLOCK;
670 noffset[n] = 2;
671 offset[n] = block;
672 level = 1;
673 goto got;
675 block -= direct_blks;
676 if (block < indirect_blks) {
677 offset[n++] = NODE_IND1_BLOCK;
678 noffset[n] = 3;
679 offset[n++] = block / direct_blks;
680 noffset[n] = 4 + offset[n - 1];
681 offset[n] = block % direct_blks;
682 level = 2;
683 goto got;
685 block -= indirect_blks;
686 if (block < indirect_blks) {
687 offset[n++] = NODE_IND2_BLOCK;
688 noffset[n] = 4 + dptrs_per_blk;
689 offset[n++] = block / direct_blks;
690 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
691 offset[n] = block % direct_blks;
692 level = 2;
693 goto got;
695 block -= indirect_blks;
696 if (block < dindirect_blks) {
697 offset[n++] = NODE_DIND_BLOCK;
698 noffset[n] = 5 + (dptrs_per_blk * 2);
699 offset[n++] = block / indirect_blks;
700 noffset[n] = 6 + (dptrs_per_blk * 2) +
701 offset[n - 1] * (dptrs_per_blk + 1);
702 offset[n++] = (block / direct_blks) % dptrs_per_blk;
703 noffset[n] = 7 + (dptrs_per_blk * 2) +
704 offset[n - 2] * (dptrs_per_blk + 1) +
705 offset[n - 1];
706 offset[n] = block % direct_blks;
707 level = 3;
708 goto got;
709 } else {
710 return -E2BIG;
712 got:
713 return level;
717 * Caller should call f2fs_put_dnode(dn).
718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
720 * In the case of RDONLY_NODE, we don't need to care about mutex.
722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
787 done = true;
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = datablock_addr(dn->inode,
813 dn->node_page, dn->ofs_in_node);
814 return 0;
816 release_pages:
817 f2fs_put_page(parent, 1);
818 if (i > 1)
819 f2fs_put_page(npage[0], 0);
820 release_out:
821 dn->inode_page = NULL;
822 dn->node_page = NULL;
823 if (err == -ENOENT) {
824 dn->cur_level = i;
825 dn->max_level = level;
826 dn->ofs_in_node = offset[level];
828 return err;
831 static int truncate_node(struct dnode_of_data *dn)
833 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
834 struct node_info ni;
835 int err;
836 pgoff_t index;
838 err = f2fs_get_node_info(sbi, dn->nid, &ni);
839 if (err)
840 return err;
842 /* Deallocate node address */
843 f2fs_invalidate_blocks(sbi, ni.blk_addr);
844 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
845 set_node_addr(sbi, &ni, NULL_ADDR, false);
847 if (dn->nid == dn->inode->i_ino) {
848 f2fs_remove_orphan_inode(sbi, dn->nid);
849 dec_valid_inode_count(sbi);
850 f2fs_inode_synced(dn->inode);
853 clear_node_page_dirty(dn->node_page);
854 set_sbi_flag(sbi, SBI_IS_DIRTY);
856 index = dn->node_page->index;
857 f2fs_put_page(dn->node_page, 1);
859 invalidate_mapping_pages(NODE_MAPPING(sbi),
860 index, index);
862 dn->node_page = NULL;
863 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
865 return 0;
868 static int truncate_dnode(struct dnode_of_data *dn)
870 struct page *page;
871 int err;
873 if (dn->nid == 0)
874 return 1;
876 /* get direct node */
877 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
878 if (PTR_ERR(page) == -ENOENT)
879 return 1;
880 else if (IS_ERR(page))
881 return PTR_ERR(page);
883 /* Make dnode_of_data for parameter */
884 dn->node_page = page;
885 dn->ofs_in_node = 0;
886 f2fs_truncate_data_blocks(dn);
887 err = truncate_node(dn);
888 if (err)
889 return err;
891 return 1;
894 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
895 int ofs, int depth)
897 struct dnode_of_data rdn = *dn;
898 struct page *page;
899 struct f2fs_node *rn;
900 nid_t child_nid;
901 unsigned int child_nofs;
902 int freed = 0;
903 int i, ret;
905 if (dn->nid == 0)
906 return NIDS_PER_BLOCK + 1;
908 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
910 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
911 if (IS_ERR(page)) {
912 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
913 return PTR_ERR(page);
916 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
918 rn = F2FS_NODE(page);
919 if (depth < 3) {
920 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
921 child_nid = le32_to_cpu(rn->in.nid[i]);
922 if (child_nid == 0)
923 continue;
924 rdn.nid = child_nid;
925 ret = truncate_dnode(&rdn);
926 if (ret < 0)
927 goto out_err;
928 if (set_nid(page, i, 0, false))
929 dn->node_changed = true;
931 } else {
932 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
933 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
934 child_nid = le32_to_cpu(rn->in.nid[i]);
935 if (child_nid == 0) {
936 child_nofs += NIDS_PER_BLOCK + 1;
937 continue;
939 rdn.nid = child_nid;
940 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
941 if (ret == (NIDS_PER_BLOCK + 1)) {
942 if (set_nid(page, i, 0, false))
943 dn->node_changed = true;
944 child_nofs += ret;
945 } else if (ret < 0 && ret != -ENOENT) {
946 goto out_err;
949 freed = child_nofs;
952 if (!ofs) {
953 /* remove current indirect node */
954 dn->node_page = page;
955 ret = truncate_node(dn);
956 if (ret)
957 goto out_err;
958 freed++;
959 } else {
960 f2fs_put_page(page, 1);
962 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
963 return freed;
965 out_err:
966 f2fs_put_page(page, 1);
967 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
968 return ret;
971 static int truncate_partial_nodes(struct dnode_of_data *dn,
972 struct f2fs_inode *ri, int *offset, int depth)
974 struct page *pages[2];
975 nid_t nid[3];
976 nid_t child_nid;
977 int err = 0;
978 int i;
979 int idx = depth - 2;
981 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
982 if (!nid[0])
983 return 0;
985 /* get indirect nodes in the path */
986 for (i = 0; i < idx + 1; i++) {
987 /* reference count'll be increased */
988 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
989 if (IS_ERR(pages[i])) {
990 err = PTR_ERR(pages[i]);
991 idx = i - 1;
992 goto fail;
994 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
997 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
999 /* free direct nodes linked to a partial indirect node */
1000 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001 child_nid = get_nid(pages[idx], i, false);
1002 if (!child_nid)
1003 continue;
1004 dn->nid = child_nid;
1005 err = truncate_dnode(dn);
1006 if (err < 0)
1007 goto fail;
1008 if (set_nid(pages[idx], i, 0, false))
1009 dn->node_changed = true;
1012 if (offset[idx + 1] == 0) {
1013 dn->node_page = pages[idx];
1014 dn->nid = nid[idx];
1015 err = truncate_node(dn);
1016 if (err)
1017 goto fail;
1018 } else {
1019 f2fs_put_page(pages[idx], 1);
1021 offset[idx]++;
1022 offset[idx + 1] = 0;
1023 idx--;
1024 fail:
1025 for (i = idx; i >= 0; i--)
1026 f2fs_put_page(pages[i], 1);
1028 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1030 return err;
1034 * All the block addresses of data and nodes should be nullified.
1036 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039 int err = 0, cont = 1;
1040 int level, offset[4], noffset[4];
1041 unsigned int nofs = 0;
1042 struct f2fs_inode *ri;
1043 struct dnode_of_data dn;
1044 struct page *page;
1046 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1048 level = get_node_path(inode, from, offset, noffset);
1049 if (level < 0)
1050 return level;
1052 page = f2fs_get_node_page(sbi, inode->i_ino);
1053 if (IS_ERR(page)) {
1054 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055 return PTR_ERR(page);
1058 set_new_dnode(&dn, inode, page, NULL, 0);
1059 unlock_page(page);
1061 ri = F2FS_INODE(page);
1062 switch (level) {
1063 case 0:
1064 case 1:
1065 nofs = noffset[1];
1066 break;
1067 case 2:
1068 nofs = noffset[1];
1069 if (!offset[level - 1])
1070 goto skip_partial;
1071 err = truncate_partial_nodes(&dn, ri, offset, level);
1072 if (err < 0 && err != -ENOENT)
1073 goto fail;
1074 nofs += 1 + NIDS_PER_BLOCK;
1075 break;
1076 case 3:
1077 nofs = 5 + 2 * NIDS_PER_BLOCK;
1078 if (!offset[level - 1])
1079 goto skip_partial;
1080 err = truncate_partial_nodes(&dn, ri, offset, level);
1081 if (err < 0 && err != -ENOENT)
1082 goto fail;
1083 break;
1084 default:
1085 BUG();
1088 skip_partial:
1089 while (cont) {
1090 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091 switch (offset[0]) {
1092 case NODE_DIR1_BLOCK:
1093 case NODE_DIR2_BLOCK:
1094 err = truncate_dnode(&dn);
1095 break;
1097 case NODE_IND1_BLOCK:
1098 case NODE_IND2_BLOCK:
1099 err = truncate_nodes(&dn, nofs, offset[1], 2);
1100 break;
1102 case NODE_DIND_BLOCK:
1103 err = truncate_nodes(&dn, nofs, offset[1], 3);
1104 cont = 0;
1105 break;
1107 default:
1108 BUG();
1110 if (err < 0 && err != -ENOENT)
1111 goto fail;
1112 if (offset[1] == 0 &&
1113 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114 lock_page(page);
1115 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116 f2fs_wait_on_page_writeback(page, NODE, true, true);
1117 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118 set_page_dirty(page);
1119 unlock_page(page);
1121 offset[1] = 0;
1122 offset[0]++;
1123 nofs += err;
1125 fail:
1126 f2fs_put_page(page, 0);
1127 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128 return err > 0 ? 0 : err;
1131 /* caller must lock inode page */
1132 int f2fs_truncate_xattr_node(struct inode *inode)
1134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136 struct dnode_of_data dn;
1137 struct page *npage;
1138 int err;
1140 if (!nid)
1141 return 0;
1143 npage = f2fs_get_node_page(sbi, nid);
1144 if (IS_ERR(npage))
1145 return PTR_ERR(npage);
1147 set_new_dnode(&dn, inode, NULL, npage, nid);
1148 err = truncate_node(&dn);
1149 if (err) {
1150 f2fs_put_page(npage, 1);
1151 return err;
1154 f2fs_i_xnid_write(inode, 0);
1156 return 0;
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161 * f2fs_unlock_op().
1163 int f2fs_remove_inode_page(struct inode *inode)
1165 struct dnode_of_data dn;
1166 int err;
1168 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170 if (err)
1171 return err;
1173 err = f2fs_truncate_xattr_node(inode);
1174 if (err) {
1175 f2fs_put_dnode(&dn);
1176 return err;
1179 /* remove potential inline_data blocks */
1180 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181 S_ISLNK(inode->i_mode))
1182 f2fs_truncate_data_blocks_range(&dn, 1);
1184 /* 0 is possible, after f2fs_new_inode() has failed */
1185 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186 f2fs_put_dnode(&dn);
1187 return -EIO;
1190 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191 f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192 inode->i_ino, (unsigned long long)inode->i_blocks);
1193 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1196 /* will put inode & node pages */
1197 err = truncate_node(&dn);
1198 if (err) {
1199 f2fs_put_dnode(&dn);
1200 return err;
1202 return 0;
1205 struct page *f2fs_new_inode_page(struct inode *inode)
1207 struct dnode_of_data dn;
1209 /* allocate inode page for new inode */
1210 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1212 /* caller should f2fs_put_page(page, 1); */
1213 return f2fs_new_node_page(&dn, 0);
1216 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1218 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219 struct node_info new_ni;
1220 struct page *page;
1221 int err;
1223 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224 return ERR_PTR(-EPERM);
1226 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227 if (!page)
1228 return ERR_PTR(-ENOMEM);
1230 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231 goto fail;
1233 #ifdef CONFIG_F2FS_CHECK_FS
1234 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235 if (err) {
1236 dec_valid_node_count(sbi, dn->inode, !ofs);
1237 goto fail;
1239 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240 #endif
1241 new_ni.nid = dn->nid;
1242 new_ni.ino = dn->inode->i_ino;
1243 new_ni.blk_addr = NULL_ADDR;
1244 new_ni.flag = 0;
1245 new_ni.version = 0;
1246 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1248 f2fs_wait_on_page_writeback(page, NODE, true, true);
1249 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251 if (!PageUptodate(page))
1252 SetPageUptodate(page);
1253 if (set_page_dirty(page))
1254 dn->node_changed = true;
1256 if (f2fs_has_xattr_block(ofs))
1257 f2fs_i_xnid_write(dn->inode, dn->nid);
1259 if (ofs == 0)
1260 inc_valid_inode_count(sbi);
1261 return page;
1263 fail:
1264 clear_node_page_dirty(page);
1265 f2fs_put_page(page, 1);
1266 return ERR_PTR(err);
1270 * Caller should do after getting the following values.
1271 * 0: f2fs_put_page(page, 0)
1272 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1274 static int read_node_page(struct page *page, int op_flags)
1276 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277 struct node_info ni;
1278 struct f2fs_io_info fio = {
1279 .sbi = sbi,
1280 .type = NODE,
1281 .op = REQ_OP_READ,
1282 .op_flags = op_flags,
1283 .page = page,
1284 .encrypted_page = NULL,
1286 int err;
1288 if (PageUptodate(page)) {
1289 if (!f2fs_inode_chksum_verify(sbi, page)) {
1290 ClearPageUptodate(page);
1291 return -EFSBADCRC;
1293 return LOCKED_PAGE;
1296 err = f2fs_get_node_info(sbi, page->index, &ni);
1297 if (err)
1298 return err;
1300 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302 ClearPageUptodate(page);
1303 return -ENOENT;
1306 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307 return f2fs_submit_page_bio(&fio);
1311 * Readahead a node page
1313 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1315 struct page *apage;
1316 int err;
1318 if (!nid)
1319 return;
1320 if (f2fs_check_nid_range(sbi, nid))
1321 return;
1323 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324 if (apage)
1325 return;
1327 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328 if (!apage)
1329 return;
1331 err = read_node_page(apage, REQ_RAHEAD);
1332 f2fs_put_page(apage, err ? 1 : 0);
1335 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336 struct page *parent, int start)
1338 struct page *page;
1339 int err;
1341 if (!nid)
1342 return ERR_PTR(-ENOENT);
1343 if (f2fs_check_nid_range(sbi, nid))
1344 return ERR_PTR(-EINVAL);
1345 repeat:
1346 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347 if (!page)
1348 return ERR_PTR(-ENOMEM);
1350 err = read_node_page(page, 0);
1351 if (err < 0) {
1352 f2fs_put_page(page, 1);
1353 return ERR_PTR(err);
1354 } else if (err == LOCKED_PAGE) {
1355 err = 0;
1356 goto page_hit;
1359 if (parent)
1360 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1362 lock_page(page);
1364 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365 f2fs_put_page(page, 1);
1366 goto repeat;
1369 if (unlikely(!PageUptodate(page))) {
1370 err = -EIO;
1371 goto out_err;
1374 if (!f2fs_inode_chksum_verify(sbi, page)) {
1375 err = -EFSBADCRC;
1376 goto out_err;
1378 page_hit:
1379 if(unlikely(nid != nid_of_node(page))) {
1380 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381 nid, nid_of_node(page), ino_of_node(page),
1382 ofs_of_node(page), cpver_of_node(page),
1383 next_blkaddr_of_node(page));
1384 err = -EINVAL;
1385 out_err:
1386 ClearPageUptodate(page);
1387 f2fs_put_page(page, 1);
1388 return ERR_PTR(err);
1390 return page;
1393 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1395 return __get_node_page(sbi, nid, NULL, 0);
1398 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1400 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401 nid_t nid = get_nid(parent, start, false);
1403 return __get_node_page(sbi, nid, parent, start);
1406 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1408 struct inode *inode;
1409 struct page *page;
1410 int ret;
1412 /* should flush inline_data before evict_inode */
1413 inode = ilookup(sbi->sb, ino);
1414 if (!inode)
1415 return;
1417 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418 FGP_LOCK|FGP_NOWAIT, 0);
1419 if (!page)
1420 goto iput_out;
1422 if (!PageUptodate(page))
1423 goto page_out;
1425 if (!PageDirty(page))
1426 goto page_out;
1428 if (!clear_page_dirty_for_io(page))
1429 goto page_out;
1431 ret = f2fs_write_inline_data(inode, page);
1432 inode_dec_dirty_pages(inode);
1433 f2fs_remove_dirty_inode(inode);
1434 if (ret)
1435 set_page_dirty(page);
1436 page_out:
1437 f2fs_put_page(page, 1);
1438 iput_out:
1439 iput(inode);
1442 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1444 pgoff_t index;
1445 struct pagevec pvec;
1446 struct page *last_page = NULL;
1447 int nr_pages;
1449 pagevec_init(&pvec);
1450 index = 0;
1452 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453 PAGECACHE_TAG_DIRTY))) {
1454 int i;
1456 for (i = 0; i < nr_pages; i++) {
1457 struct page *page = pvec.pages[i];
1459 if (unlikely(f2fs_cp_error(sbi))) {
1460 f2fs_put_page(last_page, 0);
1461 pagevec_release(&pvec);
1462 return ERR_PTR(-EIO);
1465 if (!IS_DNODE(page) || !is_cold_node(page))
1466 continue;
1467 if (ino_of_node(page) != ino)
1468 continue;
1470 lock_page(page);
1472 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473 continue_unlock:
1474 unlock_page(page);
1475 continue;
1477 if (ino_of_node(page) != ino)
1478 goto continue_unlock;
1480 if (!PageDirty(page)) {
1481 /* someone wrote it for us */
1482 goto continue_unlock;
1485 if (last_page)
1486 f2fs_put_page(last_page, 0);
1488 get_page(page);
1489 last_page = page;
1490 unlock_page(page);
1492 pagevec_release(&pvec);
1493 cond_resched();
1495 return last_page;
1498 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499 struct writeback_control *wbc, bool do_balance,
1500 enum iostat_type io_type, unsigned int *seq_id)
1502 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503 nid_t nid;
1504 struct node_info ni;
1505 struct f2fs_io_info fio = {
1506 .sbi = sbi,
1507 .ino = ino_of_node(page),
1508 .type = NODE,
1509 .op = REQ_OP_WRITE,
1510 .op_flags = wbc_to_write_flags(wbc),
1511 .page = page,
1512 .encrypted_page = NULL,
1513 .submitted = false,
1514 .io_type = io_type,
1515 .io_wbc = wbc,
1517 unsigned int seq;
1519 trace_f2fs_writepage(page, NODE);
1521 if (unlikely(f2fs_cp_error(sbi)))
1522 goto redirty_out;
1524 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525 goto redirty_out;
1527 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528 wbc->sync_mode == WB_SYNC_NONE &&
1529 IS_DNODE(page) && is_cold_node(page))
1530 goto redirty_out;
1532 /* get old block addr of this node page */
1533 nid = nid_of_node(page);
1534 f2fs_bug_on(sbi, page->index != nid);
1536 if (f2fs_get_node_info(sbi, nid, &ni))
1537 goto redirty_out;
1539 if (wbc->for_reclaim) {
1540 if (!down_read_trylock(&sbi->node_write))
1541 goto redirty_out;
1542 } else {
1543 down_read(&sbi->node_write);
1546 /* This page is already truncated */
1547 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548 ClearPageUptodate(page);
1549 dec_page_count(sbi, F2FS_DIRTY_NODES);
1550 up_read(&sbi->node_write);
1551 unlock_page(page);
1552 return 0;
1555 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557 DATA_GENERIC_ENHANCE)) {
1558 up_read(&sbi->node_write);
1559 goto redirty_out;
1562 if (atomic && !test_opt(sbi, NOBARRIER))
1563 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1565 set_page_writeback(page);
1566 ClearPageError(page);
1568 if (f2fs_in_warm_node_list(sbi, page)) {
1569 seq = f2fs_add_fsync_node_entry(sbi, page);
1570 if (seq_id)
1571 *seq_id = seq;
1574 fio.old_blkaddr = ni.blk_addr;
1575 f2fs_do_write_node_page(nid, &fio);
1576 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1577 dec_page_count(sbi, F2FS_DIRTY_NODES);
1578 up_read(&sbi->node_write);
1580 if (wbc->for_reclaim) {
1581 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1582 submitted = NULL;
1585 unlock_page(page);
1587 if (unlikely(f2fs_cp_error(sbi))) {
1588 f2fs_submit_merged_write(sbi, NODE);
1589 submitted = NULL;
1591 if (submitted)
1592 *submitted = fio.submitted;
1594 if (do_balance)
1595 f2fs_balance_fs(sbi, false);
1596 return 0;
1598 redirty_out:
1599 redirty_page_for_writepage(wbc, page);
1600 return AOP_WRITEPAGE_ACTIVATE;
1603 int f2fs_move_node_page(struct page *node_page, int gc_type)
1605 int err = 0;
1607 if (gc_type == FG_GC) {
1608 struct writeback_control wbc = {
1609 .sync_mode = WB_SYNC_ALL,
1610 .nr_to_write = 1,
1611 .for_reclaim = 0,
1614 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1616 set_page_dirty(node_page);
1618 if (!clear_page_dirty_for_io(node_page)) {
1619 err = -EAGAIN;
1620 goto out_page;
1623 if (__write_node_page(node_page, false, NULL,
1624 &wbc, false, FS_GC_NODE_IO, NULL)) {
1625 err = -EAGAIN;
1626 unlock_page(node_page);
1628 goto release_page;
1629 } else {
1630 /* set page dirty and write it */
1631 if (!PageWriteback(node_page))
1632 set_page_dirty(node_page);
1634 out_page:
1635 unlock_page(node_page);
1636 release_page:
1637 f2fs_put_page(node_page, 0);
1638 return err;
1641 static int f2fs_write_node_page(struct page *page,
1642 struct writeback_control *wbc)
1644 return __write_node_page(page, false, NULL, wbc, false,
1645 FS_NODE_IO, NULL);
1648 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1649 struct writeback_control *wbc, bool atomic,
1650 unsigned int *seq_id)
1652 pgoff_t index;
1653 struct pagevec pvec;
1654 int ret = 0;
1655 struct page *last_page = NULL;
1656 bool marked = false;
1657 nid_t ino = inode->i_ino;
1658 int nr_pages;
1659 int nwritten = 0;
1661 if (atomic) {
1662 last_page = last_fsync_dnode(sbi, ino);
1663 if (IS_ERR_OR_NULL(last_page))
1664 return PTR_ERR_OR_ZERO(last_page);
1666 retry:
1667 pagevec_init(&pvec);
1668 index = 0;
1670 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1671 PAGECACHE_TAG_DIRTY))) {
1672 int i;
1674 for (i = 0; i < nr_pages; i++) {
1675 struct page *page = pvec.pages[i];
1676 bool submitted = false;
1678 if (unlikely(f2fs_cp_error(sbi))) {
1679 f2fs_put_page(last_page, 0);
1680 pagevec_release(&pvec);
1681 ret = -EIO;
1682 goto out;
1685 if (!IS_DNODE(page) || !is_cold_node(page))
1686 continue;
1687 if (ino_of_node(page) != ino)
1688 continue;
1690 lock_page(page);
1692 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1693 continue_unlock:
1694 unlock_page(page);
1695 continue;
1697 if (ino_of_node(page) != ino)
1698 goto continue_unlock;
1700 if (!PageDirty(page) && page != last_page) {
1701 /* someone wrote it for us */
1702 goto continue_unlock;
1705 f2fs_wait_on_page_writeback(page, NODE, true, true);
1707 set_fsync_mark(page, 0);
1708 set_dentry_mark(page, 0);
1710 if (!atomic || page == last_page) {
1711 set_fsync_mark(page, 1);
1712 if (IS_INODE(page)) {
1713 if (is_inode_flag_set(inode,
1714 FI_DIRTY_INODE))
1715 f2fs_update_inode(inode, page);
1716 set_dentry_mark(page,
1717 f2fs_need_dentry_mark(sbi, ino));
1719 /* may be written by other thread */
1720 if (!PageDirty(page))
1721 set_page_dirty(page);
1724 if (!clear_page_dirty_for_io(page))
1725 goto continue_unlock;
1727 ret = __write_node_page(page, atomic &&
1728 page == last_page,
1729 &submitted, wbc, true,
1730 FS_NODE_IO, seq_id);
1731 if (ret) {
1732 unlock_page(page);
1733 f2fs_put_page(last_page, 0);
1734 break;
1735 } else if (submitted) {
1736 nwritten++;
1739 if (page == last_page) {
1740 f2fs_put_page(page, 0);
1741 marked = true;
1742 break;
1745 pagevec_release(&pvec);
1746 cond_resched();
1748 if (ret || marked)
1749 break;
1751 if (!ret && atomic && !marked) {
1752 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1753 ino, last_page->index);
1754 lock_page(last_page);
1755 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1756 set_page_dirty(last_page);
1757 unlock_page(last_page);
1758 goto retry;
1760 out:
1761 if (nwritten)
1762 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1763 return ret ? -EIO: 0;
1766 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1768 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769 bool clean;
1771 if (inode->i_ino != ino)
1772 return 0;
1774 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1775 return 0;
1777 spin_lock(&sbi->inode_lock[DIRTY_META]);
1778 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1779 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1781 if (clean)
1782 return 0;
1784 inode = igrab(inode);
1785 if (!inode)
1786 return 0;
1787 return 1;
1790 static bool flush_dirty_inode(struct page *page)
1792 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1793 struct inode *inode;
1794 nid_t ino = ino_of_node(page);
1796 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1797 if (!inode)
1798 return false;
1800 f2fs_update_inode(inode, page);
1801 unlock_page(page);
1803 iput(inode);
1804 return true;
1807 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1808 struct writeback_control *wbc,
1809 bool do_balance, enum iostat_type io_type)
1811 pgoff_t index;
1812 struct pagevec pvec;
1813 int step = 0;
1814 int nwritten = 0;
1815 int ret = 0;
1816 int nr_pages, done = 0;
1818 pagevec_init(&pvec);
1820 next_step:
1821 index = 0;
1823 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1824 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1825 int i;
1827 for (i = 0; i < nr_pages; i++) {
1828 struct page *page = pvec.pages[i];
1829 bool submitted = false;
1830 bool may_dirty = true;
1832 /* give a priority to WB_SYNC threads */
1833 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1834 wbc->sync_mode == WB_SYNC_NONE) {
1835 done = 1;
1836 break;
1840 * flushing sequence with step:
1841 * 0. indirect nodes
1842 * 1. dentry dnodes
1843 * 2. file dnodes
1845 if (step == 0 && IS_DNODE(page))
1846 continue;
1847 if (step == 1 && (!IS_DNODE(page) ||
1848 is_cold_node(page)))
1849 continue;
1850 if (step == 2 && (!IS_DNODE(page) ||
1851 !is_cold_node(page)))
1852 continue;
1853 lock_node:
1854 if (wbc->sync_mode == WB_SYNC_ALL)
1855 lock_page(page);
1856 else if (!trylock_page(page))
1857 continue;
1859 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860 continue_unlock:
1861 unlock_page(page);
1862 continue;
1865 if (!PageDirty(page)) {
1866 /* someone wrote it for us */
1867 goto continue_unlock;
1870 /* flush inline_data */
1871 if (is_inline_node(page)) {
1872 clear_inline_node(page);
1873 unlock_page(page);
1874 flush_inline_data(sbi, ino_of_node(page));
1875 goto lock_node;
1878 /* flush dirty inode */
1879 if (IS_INODE(page) && may_dirty) {
1880 may_dirty = false;
1881 if (flush_dirty_inode(page))
1882 goto lock_node;
1885 f2fs_wait_on_page_writeback(page, NODE, true, true);
1887 if (!clear_page_dirty_for_io(page))
1888 goto continue_unlock;
1890 set_fsync_mark(page, 0);
1891 set_dentry_mark(page, 0);
1893 ret = __write_node_page(page, false, &submitted,
1894 wbc, do_balance, io_type, NULL);
1895 if (ret)
1896 unlock_page(page);
1897 else if (submitted)
1898 nwritten++;
1900 if (--wbc->nr_to_write == 0)
1901 break;
1903 pagevec_release(&pvec);
1904 cond_resched();
1906 if (wbc->nr_to_write == 0) {
1907 step = 2;
1908 break;
1912 if (step < 2) {
1913 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1915 goto out;
1916 step++;
1917 goto next_step;
1919 out:
1920 if (nwritten)
1921 f2fs_submit_merged_write(sbi, NODE);
1923 if (unlikely(f2fs_cp_error(sbi)))
1924 return -EIO;
1925 return ret;
1928 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1929 unsigned int seq_id)
1931 struct fsync_node_entry *fn;
1932 struct page *page;
1933 struct list_head *head = &sbi->fsync_node_list;
1934 unsigned long flags;
1935 unsigned int cur_seq_id = 0;
1936 int ret2, ret = 0;
1938 while (seq_id && cur_seq_id < seq_id) {
1939 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1940 if (list_empty(head)) {
1941 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1942 break;
1944 fn = list_first_entry(head, struct fsync_node_entry, list);
1945 if (fn->seq_id > seq_id) {
1946 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1947 break;
1949 cur_seq_id = fn->seq_id;
1950 page = fn->page;
1951 get_page(page);
1952 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1954 f2fs_wait_on_page_writeback(page, NODE, true, false);
1955 if (TestClearPageError(page))
1956 ret = -EIO;
1958 put_page(page);
1960 if (ret)
1961 break;
1964 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1965 if (!ret)
1966 ret = ret2;
1968 return ret;
1971 static int f2fs_write_node_pages(struct address_space *mapping,
1972 struct writeback_control *wbc)
1974 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1975 struct blk_plug plug;
1976 long diff;
1978 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1979 goto skip_write;
1981 /* balancing f2fs's metadata in background */
1982 f2fs_balance_fs_bg(sbi);
1984 /* collect a number of dirty node pages and write together */
1985 if (wbc->sync_mode != WB_SYNC_ALL &&
1986 get_pages(sbi, F2FS_DIRTY_NODES) <
1987 nr_pages_to_skip(sbi, NODE))
1988 goto skip_write;
1990 if (wbc->sync_mode == WB_SYNC_ALL)
1991 atomic_inc(&sbi->wb_sync_req[NODE]);
1992 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1993 goto skip_write;
1995 trace_f2fs_writepages(mapping->host, wbc, NODE);
1997 diff = nr_pages_to_write(sbi, NODE, wbc);
1998 blk_start_plug(&plug);
1999 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2000 blk_finish_plug(&plug);
2001 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2003 if (wbc->sync_mode == WB_SYNC_ALL)
2004 atomic_dec(&sbi->wb_sync_req[NODE]);
2005 return 0;
2007 skip_write:
2008 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2009 trace_f2fs_writepages(mapping->host, wbc, NODE);
2010 return 0;
2013 static int f2fs_set_node_page_dirty(struct page *page)
2015 trace_f2fs_set_page_dirty(page, NODE);
2017 if (!PageUptodate(page))
2018 SetPageUptodate(page);
2019 #ifdef CONFIG_F2FS_CHECK_FS
2020 if (IS_INODE(page))
2021 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2022 #endif
2023 if (!PageDirty(page)) {
2024 __set_page_dirty_nobuffers(page);
2025 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2026 f2fs_set_page_private(page, 0);
2027 f2fs_trace_pid(page);
2028 return 1;
2030 return 0;
2034 * Structure of the f2fs node operations
2036 const struct address_space_operations f2fs_node_aops = {
2037 .writepage = f2fs_write_node_page,
2038 .writepages = f2fs_write_node_pages,
2039 .set_page_dirty = f2fs_set_node_page_dirty,
2040 .invalidatepage = f2fs_invalidate_page,
2041 .releasepage = f2fs_release_page,
2042 #ifdef CONFIG_MIGRATION
2043 .migratepage = f2fs_migrate_page,
2044 #endif
2047 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2048 nid_t n)
2050 return radix_tree_lookup(&nm_i->free_nid_root, n);
2053 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2054 struct free_nid *i, enum nid_state state)
2056 struct f2fs_nm_info *nm_i = NM_I(sbi);
2058 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2059 if (err)
2060 return err;
2062 f2fs_bug_on(sbi, state != i->state);
2063 nm_i->nid_cnt[state]++;
2064 if (state == FREE_NID)
2065 list_add_tail(&i->list, &nm_i->free_nid_list);
2066 return 0;
2069 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2070 struct free_nid *i, enum nid_state state)
2072 struct f2fs_nm_info *nm_i = NM_I(sbi);
2074 f2fs_bug_on(sbi, state != i->state);
2075 nm_i->nid_cnt[state]--;
2076 if (state == FREE_NID)
2077 list_del(&i->list);
2078 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2081 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2082 enum nid_state org_state, enum nid_state dst_state)
2084 struct f2fs_nm_info *nm_i = NM_I(sbi);
2086 f2fs_bug_on(sbi, org_state != i->state);
2087 i->state = dst_state;
2088 nm_i->nid_cnt[org_state]--;
2089 nm_i->nid_cnt[dst_state]++;
2091 switch (dst_state) {
2092 case PREALLOC_NID:
2093 list_del(&i->list);
2094 break;
2095 case FREE_NID:
2096 list_add_tail(&i->list, &nm_i->free_nid_list);
2097 break;
2098 default:
2099 BUG_ON(1);
2103 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2104 bool set, bool build)
2106 struct f2fs_nm_info *nm_i = NM_I(sbi);
2107 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2108 unsigned int nid_ofs = nid - START_NID(nid);
2110 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2111 return;
2113 if (set) {
2114 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2115 return;
2116 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2117 nm_i->free_nid_count[nat_ofs]++;
2118 } else {
2119 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2120 return;
2121 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2122 if (!build)
2123 nm_i->free_nid_count[nat_ofs]--;
2127 /* return if the nid is recognized as free */
2128 static bool add_free_nid(struct f2fs_sb_info *sbi,
2129 nid_t nid, bool build, bool update)
2131 struct f2fs_nm_info *nm_i = NM_I(sbi);
2132 struct free_nid *i, *e;
2133 struct nat_entry *ne;
2134 int err = -EINVAL;
2135 bool ret = false;
2137 /* 0 nid should not be used */
2138 if (unlikely(nid == 0))
2139 return false;
2141 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2142 return false;
2144 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2145 i->nid = nid;
2146 i->state = FREE_NID;
2148 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2150 spin_lock(&nm_i->nid_list_lock);
2152 if (build) {
2154 * Thread A Thread B
2155 * - f2fs_create
2156 * - f2fs_new_inode
2157 * - f2fs_alloc_nid
2158 * - __insert_nid_to_list(PREALLOC_NID)
2159 * - f2fs_balance_fs_bg
2160 * - f2fs_build_free_nids
2161 * - __f2fs_build_free_nids
2162 * - scan_nat_page
2163 * - add_free_nid
2164 * - __lookup_nat_cache
2165 * - f2fs_add_link
2166 * - f2fs_init_inode_metadata
2167 * - f2fs_new_inode_page
2168 * - f2fs_new_node_page
2169 * - set_node_addr
2170 * - f2fs_alloc_nid_done
2171 * - __remove_nid_from_list(PREALLOC_NID)
2172 * - __insert_nid_to_list(FREE_NID)
2174 ne = __lookup_nat_cache(nm_i, nid);
2175 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2176 nat_get_blkaddr(ne) != NULL_ADDR))
2177 goto err_out;
2179 e = __lookup_free_nid_list(nm_i, nid);
2180 if (e) {
2181 if (e->state == FREE_NID)
2182 ret = true;
2183 goto err_out;
2186 ret = true;
2187 err = __insert_free_nid(sbi, i, FREE_NID);
2188 err_out:
2189 if (update) {
2190 update_free_nid_bitmap(sbi, nid, ret, build);
2191 if (!build)
2192 nm_i->available_nids++;
2194 spin_unlock(&nm_i->nid_list_lock);
2195 radix_tree_preload_end();
2197 if (err)
2198 kmem_cache_free(free_nid_slab, i);
2199 return ret;
2202 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2204 struct f2fs_nm_info *nm_i = NM_I(sbi);
2205 struct free_nid *i;
2206 bool need_free = false;
2208 spin_lock(&nm_i->nid_list_lock);
2209 i = __lookup_free_nid_list(nm_i, nid);
2210 if (i && i->state == FREE_NID) {
2211 __remove_free_nid(sbi, i, FREE_NID);
2212 need_free = true;
2214 spin_unlock(&nm_i->nid_list_lock);
2216 if (need_free)
2217 kmem_cache_free(free_nid_slab, i);
2220 static int scan_nat_page(struct f2fs_sb_info *sbi,
2221 struct page *nat_page, nid_t start_nid)
2223 struct f2fs_nm_info *nm_i = NM_I(sbi);
2224 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2225 block_t blk_addr;
2226 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2227 int i;
2229 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2231 i = start_nid % NAT_ENTRY_PER_BLOCK;
2233 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2234 if (unlikely(start_nid >= nm_i->max_nid))
2235 break;
2237 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2239 if (blk_addr == NEW_ADDR)
2240 return -EINVAL;
2242 if (blk_addr == NULL_ADDR) {
2243 add_free_nid(sbi, start_nid, true, true);
2244 } else {
2245 spin_lock(&NM_I(sbi)->nid_list_lock);
2246 update_free_nid_bitmap(sbi, start_nid, false, true);
2247 spin_unlock(&NM_I(sbi)->nid_list_lock);
2251 return 0;
2254 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2256 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2257 struct f2fs_journal *journal = curseg->journal;
2258 int i;
2260 down_read(&curseg->journal_rwsem);
2261 for (i = 0; i < nats_in_cursum(journal); i++) {
2262 block_t addr;
2263 nid_t nid;
2265 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2266 nid = le32_to_cpu(nid_in_journal(journal, i));
2267 if (addr == NULL_ADDR)
2268 add_free_nid(sbi, nid, true, false);
2269 else
2270 remove_free_nid(sbi, nid);
2272 up_read(&curseg->journal_rwsem);
2275 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2277 struct f2fs_nm_info *nm_i = NM_I(sbi);
2278 unsigned int i, idx;
2279 nid_t nid;
2281 down_read(&nm_i->nat_tree_lock);
2283 for (i = 0; i < nm_i->nat_blocks; i++) {
2284 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2285 continue;
2286 if (!nm_i->free_nid_count[i])
2287 continue;
2288 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2289 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2290 NAT_ENTRY_PER_BLOCK, idx);
2291 if (idx >= NAT_ENTRY_PER_BLOCK)
2292 break;
2294 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2295 add_free_nid(sbi, nid, true, false);
2297 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2298 goto out;
2301 out:
2302 scan_curseg_cache(sbi);
2304 up_read(&nm_i->nat_tree_lock);
2307 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2308 bool sync, bool mount)
2310 struct f2fs_nm_info *nm_i = NM_I(sbi);
2311 int i = 0, ret;
2312 nid_t nid = nm_i->next_scan_nid;
2314 if (unlikely(nid >= nm_i->max_nid))
2315 nid = 0;
2317 /* Enough entries */
2318 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2319 return 0;
2321 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2322 return 0;
2324 if (!mount) {
2325 /* try to find free nids in free_nid_bitmap */
2326 scan_free_nid_bits(sbi);
2328 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2329 return 0;
2332 /* readahead nat pages to be scanned */
2333 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2334 META_NAT, true);
2336 down_read(&nm_i->nat_tree_lock);
2338 while (1) {
2339 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2340 nm_i->nat_block_bitmap)) {
2341 struct page *page = get_current_nat_page(sbi, nid);
2343 if (IS_ERR(page)) {
2344 ret = PTR_ERR(page);
2345 } else {
2346 ret = scan_nat_page(sbi, page, nid);
2347 f2fs_put_page(page, 1);
2350 if (ret) {
2351 up_read(&nm_i->nat_tree_lock);
2352 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2353 return ret;
2357 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2358 if (unlikely(nid >= nm_i->max_nid))
2359 nid = 0;
2361 if (++i >= FREE_NID_PAGES)
2362 break;
2365 /* go to the next free nat pages to find free nids abundantly */
2366 nm_i->next_scan_nid = nid;
2368 /* find free nids from current sum_pages */
2369 scan_curseg_cache(sbi);
2371 up_read(&nm_i->nat_tree_lock);
2373 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2374 nm_i->ra_nid_pages, META_NAT, false);
2376 return 0;
2379 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2381 int ret;
2383 mutex_lock(&NM_I(sbi)->build_lock);
2384 ret = __f2fs_build_free_nids(sbi, sync, mount);
2385 mutex_unlock(&NM_I(sbi)->build_lock);
2387 return ret;
2391 * If this function returns success, caller can obtain a new nid
2392 * from second parameter of this function.
2393 * The returned nid could be used ino as well as nid when inode is created.
2395 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2397 struct f2fs_nm_info *nm_i = NM_I(sbi);
2398 struct free_nid *i = NULL;
2399 retry:
2400 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2401 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2402 return false;
2405 spin_lock(&nm_i->nid_list_lock);
2407 if (unlikely(nm_i->available_nids == 0)) {
2408 spin_unlock(&nm_i->nid_list_lock);
2409 return false;
2412 /* We should not use stale free nids created by f2fs_build_free_nids */
2413 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2414 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2415 i = list_first_entry(&nm_i->free_nid_list,
2416 struct free_nid, list);
2417 *nid = i->nid;
2419 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2420 nm_i->available_nids--;
2422 update_free_nid_bitmap(sbi, *nid, false, false);
2424 spin_unlock(&nm_i->nid_list_lock);
2425 return true;
2427 spin_unlock(&nm_i->nid_list_lock);
2429 /* Let's scan nat pages and its caches to get free nids */
2430 if (!f2fs_build_free_nids(sbi, true, false))
2431 goto retry;
2432 return false;
2436 * f2fs_alloc_nid() should be called prior to this function.
2438 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2440 struct f2fs_nm_info *nm_i = NM_I(sbi);
2441 struct free_nid *i;
2443 spin_lock(&nm_i->nid_list_lock);
2444 i = __lookup_free_nid_list(nm_i, nid);
2445 f2fs_bug_on(sbi, !i);
2446 __remove_free_nid(sbi, i, PREALLOC_NID);
2447 spin_unlock(&nm_i->nid_list_lock);
2449 kmem_cache_free(free_nid_slab, i);
2453 * f2fs_alloc_nid() should be called prior to this function.
2455 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2457 struct f2fs_nm_info *nm_i = NM_I(sbi);
2458 struct free_nid *i;
2459 bool need_free = false;
2461 if (!nid)
2462 return;
2464 spin_lock(&nm_i->nid_list_lock);
2465 i = __lookup_free_nid_list(nm_i, nid);
2466 f2fs_bug_on(sbi, !i);
2468 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2469 __remove_free_nid(sbi, i, PREALLOC_NID);
2470 need_free = true;
2471 } else {
2472 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2475 nm_i->available_nids++;
2477 update_free_nid_bitmap(sbi, nid, true, false);
2479 spin_unlock(&nm_i->nid_list_lock);
2481 if (need_free)
2482 kmem_cache_free(free_nid_slab, i);
2485 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2487 struct f2fs_nm_info *nm_i = NM_I(sbi);
2488 struct free_nid *i, *next;
2489 int nr = nr_shrink;
2491 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2492 return 0;
2494 if (!mutex_trylock(&nm_i->build_lock))
2495 return 0;
2497 spin_lock(&nm_i->nid_list_lock);
2498 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2499 if (nr_shrink <= 0 ||
2500 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2501 break;
2503 __remove_free_nid(sbi, i, FREE_NID);
2504 kmem_cache_free(free_nid_slab, i);
2505 nr_shrink--;
2507 spin_unlock(&nm_i->nid_list_lock);
2508 mutex_unlock(&nm_i->build_lock);
2510 return nr - nr_shrink;
2513 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2515 void *src_addr, *dst_addr;
2516 size_t inline_size;
2517 struct page *ipage;
2518 struct f2fs_inode *ri;
2520 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2521 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2523 ri = F2FS_INODE(page);
2524 if (ri->i_inline & F2FS_INLINE_XATTR) {
2525 set_inode_flag(inode, FI_INLINE_XATTR);
2526 } else {
2527 clear_inode_flag(inode, FI_INLINE_XATTR);
2528 goto update_inode;
2531 dst_addr = inline_xattr_addr(inode, ipage);
2532 src_addr = inline_xattr_addr(inode, page);
2533 inline_size = inline_xattr_size(inode);
2535 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2536 memcpy(dst_addr, src_addr, inline_size);
2537 update_inode:
2538 f2fs_update_inode(inode, ipage);
2539 f2fs_put_page(ipage, 1);
2542 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2545 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2546 nid_t new_xnid;
2547 struct dnode_of_data dn;
2548 struct node_info ni;
2549 struct page *xpage;
2550 int err;
2552 if (!prev_xnid)
2553 goto recover_xnid;
2555 /* 1: invalidate the previous xattr nid */
2556 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2557 if (err)
2558 return err;
2560 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2561 dec_valid_node_count(sbi, inode, false);
2562 set_node_addr(sbi, &ni, NULL_ADDR, false);
2564 recover_xnid:
2565 /* 2: update xattr nid in inode */
2566 if (!f2fs_alloc_nid(sbi, &new_xnid))
2567 return -ENOSPC;
2569 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2570 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2571 if (IS_ERR(xpage)) {
2572 f2fs_alloc_nid_failed(sbi, new_xnid);
2573 return PTR_ERR(xpage);
2576 f2fs_alloc_nid_done(sbi, new_xnid);
2577 f2fs_update_inode_page(inode);
2579 /* 3: update and set xattr node page dirty */
2580 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2582 set_page_dirty(xpage);
2583 f2fs_put_page(xpage, 1);
2585 return 0;
2588 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2590 struct f2fs_inode *src, *dst;
2591 nid_t ino = ino_of_node(page);
2592 struct node_info old_ni, new_ni;
2593 struct page *ipage;
2594 int err;
2596 err = f2fs_get_node_info(sbi, ino, &old_ni);
2597 if (err)
2598 return err;
2600 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2601 return -EINVAL;
2602 retry:
2603 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2604 if (!ipage) {
2605 congestion_wait(BLK_RW_ASYNC, HZ/50);
2606 goto retry;
2609 /* Should not use this inode from free nid list */
2610 remove_free_nid(sbi, ino);
2612 if (!PageUptodate(ipage))
2613 SetPageUptodate(ipage);
2614 fill_node_footer(ipage, ino, ino, 0, true);
2615 set_cold_node(ipage, false);
2617 src = F2FS_INODE(page);
2618 dst = F2FS_INODE(ipage);
2620 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2621 dst->i_size = 0;
2622 dst->i_blocks = cpu_to_le64(1);
2623 dst->i_links = cpu_to_le32(1);
2624 dst->i_xattr_nid = 0;
2625 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2626 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2627 dst->i_extra_isize = src->i_extra_isize;
2629 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2630 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2631 i_inline_xattr_size))
2632 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2634 if (f2fs_sb_has_project_quota(sbi) &&
2635 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2636 i_projid))
2637 dst->i_projid = src->i_projid;
2639 if (f2fs_sb_has_inode_crtime(sbi) &&
2640 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2641 i_crtime_nsec)) {
2642 dst->i_crtime = src->i_crtime;
2643 dst->i_crtime_nsec = src->i_crtime_nsec;
2647 new_ni = old_ni;
2648 new_ni.ino = ino;
2650 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2651 WARN_ON(1);
2652 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2653 inc_valid_inode_count(sbi);
2654 set_page_dirty(ipage);
2655 f2fs_put_page(ipage, 1);
2656 return 0;
2659 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2660 unsigned int segno, struct f2fs_summary_block *sum)
2662 struct f2fs_node *rn;
2663 struct f2fs_summary *sum_entry;
2664 block_t addr;
2665 int i, idx, last_offset, nrpages;
2667 /* scan the node segment */
2668 last_offset = sbi->blocks_per_seg;
2669 addr = START_BLOCK(sbi, segno);
2670 sum_entry = &sum->entries[0];
2672 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2673 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2675 /* readahead node pages */
2676 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2678 for (idx = addr; idx < addr + nrpages; idx++) {
2679 struct page *page = f2fs_get_tmp_page(sbi, idx);
2681 if (IS_ERR(page))
2682 return PTR_ERR(page);
2684 rn = F2FS_NODE(page);
2685 sum_entry->nid = rn->footer.nid;
2686 sum_entry->version = 0;
2687 sum_entry->ofs_in_node = 0;
2688 sum_entry++;
2689 f2fs_put_page(page, 1);
2692 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2693 addr + nrpages);
2695 return 0;
2698 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2700 struct f2fs_nm_info *nm_i = NM_I(sbi);
2701 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2702 struct f2fs_journal *journal = curseg->journal;
2703 int i;
2705 down_write(&curseg->journal_rwsem);
2706 for (i = 0; i < nats_in_cursum(journal); i++) {
2707 struct nat_entry *ne;
2708 struct f2fs_nat_entry raw_ne;
2709 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2711 raw_ne = nat_in_journal(journal, i);
2713 ne = __lookup_nat_cache(nm_i, nid);
2714 if (!ne) {
2715 ne = __alloc_nat_entry(nid, true);
2716 __init_nat_entry(nm_i, ne, &raw_ne, true);
2720 * if a free nat in journal has not been used after last
2721 * checkpoint, we should remove it from available nids,
2722 * since later we will add it again.
2724 if (!get_nat_flag(ne, IS_DIRTY) &&
2725 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2726 spin_lock(&nm_i->nid_list_lock);
2727 nm_i->available_nids--;
2728 spin_unlock(&nm_i->nid_list_lock);
2731 __set_nat_cache_dirty(nm_i, ne);
2733 update_nats_in_cursum(journal, -i);
2734 up_write(&curseg->journal_rwsem);
2737 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2738 struct list_head *head, int max)
2740 struct nat_entry_set *cur;
2742 if (nes->entry_cnt >= max)
2743 goto add_out;
2745 list_for_each_entry(cur, head, set_list) {
2746 if (cur->entry_cnt >= nes->entry_cnt) {
2747 list_add(&nes->set_list, cur->set_list.prev);
2748 return;
2751 add_out:
2752 list_add_tail(&nes->set_list, head);
2755 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2756 struct page *page)
2758 struct f2fs_nm_info *nm_i = NM_I(sbi);
2759 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2760 struct f2fs_nat_block *nat_blk = page_address(page);
2761 int valid = 0;
2762 int i = 0;
2764 if (!enabled_nat_bits(sbi, NULL))
2765 return;
2767 if (nat_index == 0) {
2768 valid = 1;
2769 i = 1;
2771 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2772 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2773 valid++;
2775 if (valid == 0) {
2776 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2777 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2778 return;
2781 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2782 if (valid == NAT_ENTRY_PER_BLOCK)
2783 __set_bit_le(nat_index, nm_i->full_nat_bits);
2784 else
2785 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2788 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2789 struct nat_entry_set *set, struct cp_control *cpc)
2791 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2792 struct f2fs_journal *journal = curseg->journal;
2793 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2794 bool to_journal = true;
2795 struct f2fs_nat_block *nat_blk;
2796 struct nat_entry *ne, *cur;
2797 struct page *page = NULL;
2800 * there are two steps to flush nat entries:
2801 * #1, flush nat entries to journal in current hot data summary block.
2802 * #2, flush nat entries to nat page.
2804 if (enabled_nat_bits(sbi, cpc) ||
2805 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2806 to_journal = false;
2808 if (to_journal) {
2809 down_write(&curseg->journal_rwsem);
2810 } else {
2811 page = get_next_nat_page(sbi, start_nid);
2812 if (IS_ERR(page))
2813 return PTR_ERR(page);
2815 nat_blk = page_address(page);
2816 f2fs_bug_on(sbi, !nat_blk);
2819 /* flush dirty nats in nat entry set */
2820 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2821 struct f2fs_nat_entry *raw_ne;
2822 nid_t nid = nat_get_nid(ne);
2823 int offset;
2825 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2827 if (to_journal) {
2828 offset = f2fs_lookup_journal_in_cursum(journal,
2829 NAT_JOURNAL, nid, 1);
2830 f2fs_bug_on(sbi, offset < 0);
2831 raw_ne = &nat_in_journal(journal, offset);
2832 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2833 } else {
2834 raw_ne = &nat_blk->entries[nid - start_nid];
2836 raw_nat_from_node_info(raw_ne, &ne->ni);
2837 nat_reset_flag(ne);
2838 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2839 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2840 add_free_nid(sbi, nid, false, true);
2841 } else {
2842 spin_lock(&NM_I(sbi)->nid_list_lock);
2843 update_free_nid_bitmap(sbi, nid, false, false);
2844 spin_unlock(&NM_I(sbi)->nid_list_lock);
2848 if (to_journal) {
2849 up_write(&curseg->journal_rwsem);
2850 } else {
2851 __update_nat_bits(sbi, start_nid, page);
2852 f2fs_put_page(page, 1);
2855 /* Allow dirty nats by node block allocation in write_begin */
2856 if (!set->entry_cnt) {
2857 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2858 kmem_cache_free(nat_entry_set_slab, set);
2860 return 0;
2864 * This function is called during the checkpointing process.
2866 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2868 struct f2fs_nm_info *nm_i = NM_I(sbi);
2869 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2870 struct f2fs_journal *journal = curseg->journal;
2871 struct nat_entry_set *setvec[SETVEC_SIZE];
2872 struct nat_entry_set *set, *tmp;
2873 unsigned int found;
2874 nid_t set_idx = 0;
2875 LIST_HEAD(sets);
2876 int err = 0;
2878 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2879 if (enabled_nat_bits(sbi, cpc)) {
2880 down_write(&nm_i->nat_tree_lock);
2881 remove_nats_in_journal(sbi);
2882 up_write(&nm_i->nat_tree_lock);
2885 if (!nm_i->dirty_nat_cnt)
2886 return 0;
2888 down_write(&nm_i->nat_tree_lock);
2891 * if there are no enough space in journal to store dirty nat
2892 * entries, remove all entries from journal and merge them
2893 * into nat entry set.
2895 if (enabled_nat_bits(sbi, cpc) ||
2896 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2897 remove_nats_in_journal(sbi);
2899 while ((found = __gang_lookup_nat_set(nm_i,
2900 set_idx, SETVEC_SIZE, setvec))) {
2901 unsigned idx;
2902 set_idx = setvec[found - 1]->set + 1;
2903 for (idx = 0; idx < found; idx++)
2904 __adjust_nat_entry_set(setvec[idx], &sets,
2905 MAX_NAT_JENTRIES(journal));
2908 /* flush dirty nats in nat entry set */
2909 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2910 err = __flush_nat_entry_set(sbi, set, cpc);
2911 if (err)
2912 break;
2915 up_write(&nm_i->nat_tree_lock);
2916 /* Allow dirty nats by node block allocation in write_begin */
2918 return err;
2921 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2923 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2924 struct f2fs_nm_info *nm_i = NM_I(sbi);
2925 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2926 unsigned int i;
2927 __u64 cp_ver = cur_cp_version(ckpt);
2928 block_t nat_bits_addr;
2930 if (!enabled_nat_bits(sbi, NULL))
2931 return 0;
2933 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2934 nm_i->nat_bits = f2fs_kzalloc(sbi,
2935 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2936 if (!nm_i->nat_bits)
2937 return -ENOMEM;
2939 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2940 nm_i->nat_bits_blocks;
2941 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2942 struct page *page;
2944 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2945 if (IS_ERR(page))
2946 return PTR_ERR(page);
2948 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2949 page_address(page), F2FS_BLKSIZE);
2950 f2fs_put_page(page, 1);
2953 cp_ver |= (cur_cp_crc(ckpt) << 32);
2954 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2955 disable_nat_bits(sbi, true);
2956 return 0;
2959 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2960 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2962 f2fs_notice(sbi, "Found nat_bits in checkpoint");
2963 return 0;
2966 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2968 struct f2fs_nm_info *nm_i = NM_I(sbi);
2969 unsigned int i = 0;
2970 nid_t nid, last_nid;
2972 if (!enabled_nat_bits(sbi, NULL))
2973 return;
2975 for (i = 0; i < nm_i->nat_blocks; i++) {
2976 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2977 if (i >= nm_i->nat_blocks)
2978 break;
2980 __set_bit_le(i, nm_i->nat_block_bitmap);
2982 nid = i * NAT_ENTRY_PER_BLOCK;
2983 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2985 spin_lock(&NM_I(sbi)->nid_list_lock);
2986 for (; nid < last_nid; nid++)
2987 update_free_nid_bitmap(sbi, nid, true, true);
2988 spin_unlock(&NM_I(sbi)->nid_list_lock);
2991 for (i = 0; i < nm_i->nat_blocks; i++) {
2992 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2993 if (i >= nm_i->nat_blocks)
2994 break;
2996 __set_bit_le(i, nm_i->nat_block_bitmap);
3000 static int init_node_manager(struct f2fs_sb_info *sbi)
3002 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3003 struct f2fs_nm_info *nm_i = NM_I(sbi);
3004 unsigned char *version_bitmap;
3005 unsigned int nat_segs;
3006 int err;
3008 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3010 /* segment_count_nat includes pair segment so divide to 2. */
3011 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3012 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3013 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3015 /* not used nids: 0, node, meta, (and root counted as valid node) */
3016 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3017 F2FS_RESERVED_NODE_NUM;
3018 nm_i->nid_cnt[FREE_NID] = 0;
3019 nm_i->nid_cnt[PREALLOC_NID] = 0;
3020 nm_i->nat_cnt = 0;
3021 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3022 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3023 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3025 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3026 INIT_LIST_HEAD(&nm_i->free_nid_list);
3027 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3028 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3029 INIT_LIST_HEAD(&nm_i->nat_entries);
3030 spin_lock_init(&nm_i->nat_list_lock);
3032 mutex_init(&nm_i->build_lock);
3033 spin_lock_init(&nm_i->nid_list_lock);
3034 init_rwsem(&nm_i->nat_tree_lock);
3036 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3037 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3038 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3039 if (!version_bitmap)
3040 return -EFAULT;
3042 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3043 GFP_KERNEL);
3044 if (!nm_i->nat_bitmap)
3045 return -ENOMEM;
3047 err = __get_nat_bitmaps(sbi);
3048 if (err)
3049 return err;
3051 #ifdef CONFIG_F2FS_CHECK_FS
3052 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3053 GFP_KERNEL);
3054 if (!nm_i->nat_bitmap_mir)
3055 return -ENOMEM;
3056 #endif
3058 return 0;
3061 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3063 struct f2fs_nm_info *nm_i = NM_I(sbi);
3064 int i;
3066 nm_i->free_nid_bitmap =
3067 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3068 nm_i->nat_blocks),
3069 GFP_KERNEL);
3070 if (!nm_i->free_nid_bitmap)
3071 return -ENOMEM;
3073 for (i = 0; i < nm_i->nat_blocks; i++) {
3074 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3075 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3076 if (!nm_i->free_nid_bitmap[i])
3077 return -ENOMEM;
3080 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3081 GFP_KERNEL);
3082 if (!nm_i->nat_block_bitmap)
3083 return -ENOMEM;
3085 nm_i->free_nid_count =
3086 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3087 nm_i->nat_blocks),
3088 GFP_KERNEL);
3089 if (!nm_i->free_nid_count)
3090 return -ENOMEM;
3091 return 0;
3094 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3096 int err;
3098 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3099 GFP_KERNEL);
3100 if (!sbi->nm_info)
3101 return -ENOMEM;
3103 err = init_node_manager(sbi);
3104 if (err)
3105 return err;
3107 err = init_free_nid_cache(sbi);
3108 if (err)
3109 return err;
3111 /* load free nid status from nat_bits table */
3112 load_free_nid_bitmap(sbi);
3114 return f2fs_build_free_nids(sbi, true, true);
3117 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3119 struct f2fs_nm_info *nm_i = NM_I(sbi);
3120 struct free_nid *i, *next_i;
3121 struct nat_entry *natvec[NATVEC_SIZE];
3122 struct nat_entry_set *setvec[SETVEC_SIZE];
3123 nid_t nid = 0;
3124 unsigned int found;
3126 if (!nm_i)
3127 return;
3129 /* destroy free nid list */
3130 spin_lock(&nm_i->nid_list_lock);
3131 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3132 __remove_free_nid(sbi, i, FREE_NID);
3133 spin_unlock(&nm_i->nid_list_lock);
3134 kmem_cache_free(free_nid_slab, i);
3135 spin_lock(&nm_i->nid_list_lock);
3137 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3138 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3139 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3140 spin_unlock(&nm_i->nid_list_lock);
3142 /* destroy nat cache */
3143 down_write(&nm_i->nat_tree_lock);
3144 while ((found = __gang_lookup_nat_cache(nm_i,
3145 nid, NATVEC_SIZE, natvec))) {
3146 unsigned idx;
3148 nid = nat_get_nid(natvec[found - 1]) + 1;
3149 for (idx = 0; idx < found; idx++) {
3150 spin_lock(&nm_i->nat_list_lock);
3151 list_del(&natvec[idx]->list);
3152 spin_unlock(&nm_i->nat_list_lock);
3154 __del_from_nat_cache(nm_i, natvec[idx]);
3157 f2fs_bug_on(sbi, nm_i->nat_cnt);
3159 /* destroy nat set cache */
3160 nid = 0;
3161 while ((found = __gang_lookup_nat_set(nm_i,
3162 nid, SETVEC_SIZE, setvec))) {
3163 unsigned idx;
3165 nid = setvec[found - 1]->set + 1;
3166 for (idx = 0; idx < found; idx++) {
3167 /* entry_cnt is not zero, when cp_error was occurred */
3168 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3169 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3170 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3173 up_write(&nm_i->nat_tree_lock);
3175 kvfree(nm_i->nat_block_bitmap);
3176 if (nm_i->free_nid_bitmap) {
3177 int i;
3179 for (i = 0; i < nm_i->nat_blocks; i++)
3180 kvfree(nm_i->free_nid_bitmap[i]);
3181 kvfree(nm_i->free_nid_bitmap);
3183 kvfree(nm_i->free_nid_count);
3185 kvfree(nm_i->nat_bitmap);
3186 kvfree(nm_i->nat_bits);
3187 #ifdef CONFIG_F2FS_CHECK_FS
3188 kvfree(nm_i->nat_bitmap_mir);
3189 #endif
3190 sbi->nm_info = NULL;
3191 kvfree(nm_i);
3194 int __init f2fs_create_node_manager_caches(void)
3196 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3197 sizeof(struct nat_entry));
3198 if (!nat_entry_slab)
3199 goto fail;
3201 free_nid_slab = f2fs_kmem_cache_create("free_nid",
3202 sizeof(struct free_nid));
3203 if (!free_nid_slab)
3204 goto destroy_nat_entry;
3206 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3207 sizeof(struct nat_entry_set));
3208 if (!nat_entry_set_slab)
3209 goto destroy_free_nid;
3211 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3212 sizeof(struct fsync_node_entry));
3213 if (!fsync_node_entry_slab)
3214 goto destroy_nat_entry_set;
3215 return 0;
3217 destroy_nat_entry_set:
3218 kmem_cache_destroy(nat_entry_set_slab);
3219 destroy_free_nid:
3220 kmem_cache_destroy(free_nid_slab);
3221 destroy_nat_entry:
3222 kmem_cache_destroy(nat_entry_slab);
3223 fail:
3224 return -ENOMEM;
3227 void f2fs_destroy_node_manager_caches(void)
3229 kmem_cache_destroy(fsync_node_entry_slab);
3230 kmem_cache_destroy(nat_entry_set_slab);
3231 kmem_cache_destroy(free_nid_slab);
3232 kmem_cache_destroy(nat_entry_slab);