1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*discard_cmd_slab
;
30 static struct kmem_cache
*sit_entry_set_slab
;
31 static struct kmem_cache
*inmem_entry_slab
;
33 static unsigned long __reverse_ulong(unsigned char *str
)
35 unsigned long tmp
= 0;
36 int shift
= 24, idx
= 0;
38 #if BITS_PER_LONG == 64
42 tmp
|= (unsigned long)str
[idx
++] << shift
;
43 shift
-= BITS_PER_BYTE
;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word
)
56 #if BITS_PER_LONG == 64
57 if ((word
& 0xffffffff00000000UL
) == 0)
62 if ((word
& 0xffff0000) == 0)
67 if ((word
& 0xff00) == 0)
72 if ((word
& 0xf0) == 0)
77 if ((word
& 0xc) == 0)
82 if ((word
& 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
97 unsigned long size
, unsigned long offset
)
99 const unsigned long *p
= addr
+ BIT_WORD(offset
);
100 unsigned long result
= size
;
106 size
-= (offset
& ~(BITS_PER_LONG
- 1));
107 offset
%= BITS_PER_LONG
;
113 tmp
= __reverse_ulong((unsigned char *)p
);
115 tmp
&= ~0UL >> offset
;
116 if (size
< BITS_PER_LONG
)
117 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
121 if (size
<= BITS_PER_LONG
)
123 size
-= BITS_PER_LONG
;
129 return result
- size
+ __reverse_ffs(tmp
);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
133 unsigned long size
, unsigned long offset
)
135 const unsigned long *p
= addr
+ BIT_WORD(offset
);
136 unsigned long result
= size
;
142 size
-= (offset
& ~(BITS_PER_LONG
- 1));
143 offset
%= BITS_PER_LONG
;
149 tmp
= __reverse_ulong((unsigned char *)p
);
152 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
153 if (size
< BITS_PER_LONG
)
158 if (size
<= BITS_PER_LONG
)
160 size
-= BITS_PER_LONG
;
166 return result
- size
+ __reverse_ffz(tmp
);
169 bool f2fs_need_SSR(struct f2fs_sb_info
*sbi
)
171 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
172 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
173 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
175 if (test_opt(sbi
, LFS
))
177 if (sbi
->gc_mode
== GC_URGENT
)
179 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
182 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+ imeta_secs
+
183 SM_I(sbi
)->min_ssr_sections
+ reserved_sections(sbi
));
186 void f2fs_register_inmem_page(struct inode
*inode
, struct page
*page
)
188 struct inmem_pages
*new;
190 f2fs_trace_pid(page
);
192 f2fs_set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
196 /* add atomic page indices to the list */
198 INIT_LIST_HEAD(&new->list
);
200 /* increase reference count with clean state */
202 mutex_lock(&F2FS_I(inode
)->inmem_lock
);
203 list_add_tail(&new->list
, &F2FS_I(inode
)->inmem_pages
);
204 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
205 mutex_unlock(&F2FS_I(inode
)->inmem_lock
);
207 trace_f2fs_register_inmem_page(page
, INMEM
);
210 static int __revoke_inmem_pages(struct inode
*inode
,
211 struct list_head
*head
, bool drop
, bool recover
,
214 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
215 struct inmem_pages
*cur
, *tmp
;
218 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
219 struct page
*page
= cur
->page
;
222 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
226 * to avoid deadlock in between page lock and
229 if (!trylock_page(page
))
235 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
238 struct dnode_of_data dn
;
241 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
243 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
244 err
= f2fs_get_dnode_of_data(&dn
, page
->index
,
247 if (err
== -ENOMEM
) {
248 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
256 err
= f2fs_get_node_info(sbi
, dn
.nid
, &ni
);
262 if (cur
->old_addr
== NEW_ADDR
) {
263 f2fs_invalidate_blocks(sbi
, dn
.data_blkaddr
);
264 f2fs_update_data_blkaddr(&dn
, NEW_ADDR
);
266 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
267 cur
->old_addr
, ni
.version
, true, true);
271 /* we don't need to invalidate this in the sccessful status */
272 if (drop
|| recover
) {
273 ClearPageUptodate(page
);
274 clear_cold_data(page
);
276 f2fs_clear_page_private(page
);
277 f2fs_put_page(page
, 1);
279 list_del(&cur
->list
);
280 kmem_cache_free(inmem_entry_slab
, cur
);
281 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
286 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info
*sbi
, bool gc_failure
)
288 struct list_head
*head
= &sbi
->inode_list
[ATOMIC_FILE
];
290 struct f2fs_inode_info
*fi
;
291 unsigned int count
= sbi
->atomic_files
;
292 unsigned int looped
= 0;
294 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
295 if (list_empty(head
)) {
296 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
299 fi
= list_first_entry(head
, struct f2fs_inode_info
, inmem_ilist
);
300 inode
= igrab(&fi
->vfs_inode
);
302 list_move_tail(&fi
->inmem_ilist
, head
);
303 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
307 if (!fi
->i_gc_failures
[GC_FAILURE_ATOMIC
])
310 set_inode_flag(inode
, FI_ATOMIC_REVOKE_REQUEST
);
311 f2fs_drop_inmem_pages(inode
);
315 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
318 if (++looped
>= count
)
324 void f2fs_drop_inmem_pages(struct inode
*inode
)
326 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
327 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
329 while (!list_empty(&fi
->inmem_pages
)) {
330 mutex_lock(&fi
->inmem_lock
);
331 __revoke_inmem_pages(inode
, &fi
->inmem_pages
,
333 mutex_unlock(&fi
->inmem_lock
);
336 fi
->i_gc_failures
[GC_FAILURE_ATOMIC
] = 0;
338 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
339 if (!list_empty(&fi
->inmem_ilist
))
340 list_del_init(&fi
->inmem_ilist
);
341 if (f2fs_is_atomic_file(inode
)) {
342 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
345 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
348 void f2fs_drop_inmem_page(struct inode
*inode
, struct page
*page
)
350 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
351 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
352 struct list_head
*head
= &fi
->inmem_pages
;
353 struct inmem_pages
*cur
= NULL
;
355 f2fs_bug_on(sbi
, !IS_ATOMIC_WRITTEN_PAGE(page
));
357 mutex_lock(&fi
->inmem_lock
);
358 list_for_each_entry(cur
, head
, list
) {
359 if (cur
->page
== page
)
363 f2fs_bug_on(sbi
, list_empty(head
) || cur
->page
!= page
);
364 list_del(&cur
->list
);
365 mutex_unlock(&fi
->inmem_lock
);
367 dec_page_count(sbi
, F2FS_INMEM_PAGES
);
368 kmem_cache_free(inmem_entry_slab
, cur
);
370 ClearPageUptodate(page
);
371 f2fs_clear_page_private(page
);
372 f2fs_put_page(page
, 0);
374 trace_f2fs_commit_inmem_page(page
, INMEM_INVALIDATE
);
377 static int __f2fs_commit_inmem_pages(struct inode
*inode
)
379 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
380 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
381 struct inmem_pages
*cur
, *tmp
;
382 struct f2fs_io_info fio
= {
387 .op_flags
= REQ_SYNC
| REQ_PRIO
,
388 .io_type
= FS_DATA_IO
,
390 struct list_head revoke_list
;
391 bool submit_bio
= false;
394 INIT_LIST_HEAD(&revoke_list
);
396 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
397 struct page
*page
= cur
->page
;
400 if (page
->mapping
== inode
->i_mapping
) {
401 trace_f2fs_commit_inmem_page(page
, INMEM
);
403 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
405 set_page_dirty(page
);
406 if (clear_page_dirty_for_io(page
)) {
407 inode_dec_dirty_pages(inode
);
408 f2fs_remove_dirty_inode(inode
);
412 fio
.old_blkaddr
= NULL_ADDR
;
413 fio
.encrypted_page
= NULL
;
414 fio
.need_lock
= LOCK_DONE
;
415 err
= f2fs_do_write_data_page(&fio
);
417 if (err
== -ENOMEM
) {
418 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
425 /* record old blkaddr for revoking */
426 cur
->old_addr
= fio
.old_blkaddr
;
430 list_move_tail(&cur
->list
, &revoke_list
);
434 f2fs_submit_merged_write_cond(sbi
, inode
, NULL
, 0, DATA
);
438 * try to revoke all committed pages, but still we could fail
439 * due to no memory or other reason, if that happened, EAGAIN
440 * will be returned, which means in such case, transaction is
441 * already not integrity, caller should use journal to do the
442 * recovery or rewrite & commit last transaction. For other
443 * error number, revoking was done by filesystem itself.
445 err
= __revoke_inmem_pages(inode
, &revoke_list
,
448 /* drop all uncommitted pages */
449 __revoke_inmem_pages(inode
, &fi
->inmem_pages
,
452 __revoke_inmem_pages(inode
, &revoke_list
,
453 false, false, false);
459 int f2fs_commit_inmem_pages(struct inode
*inode
)
461 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
462 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
465 f2fs_balance_fs(sbi
, true);
467 down_write(&fi
->i_gc_rwsem
[WRITE
]);
470 set_inode_flag(inode
, FI_ATOMIC_COMMIT
);
472 mutex_lock(&fi
->inmem_lock
);
473 err
= __f2fs_commit_inmem_pages(inode
);
474 mutex_unlock(&fi
->inmem_lock
);
476 clear_inode_flag(inode
, FI_ATOMIC_COMMIT
);
479 up_write(&fi
->i_gc_rwsem
[WRITE
]);
485 * This function balances dirty node and dentry pages.
486 * In addition, it controls garbage collection.
488 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
490 if (time_to_inject(sbi
, FAULT_CHECKPOINT
)) {
491 f2fs_show_injection_info(sbi
, FAULT_CHECKPOINT
);
492 f2fs_stop_checkpoint(sbi
, false);
495 /* balance_fs_bg is able to be pending */
496 if (need
&& excess_cached_nats(sbi
))
497 f2fs_balance_fs_bg(sbi
);
499 if (!f2fs_is_checkpoint_ready(sbi
))
503 * We should do GC or end up with checkpoint, if there are so many dirty
504 * dir/node pages without enough free segments.
506 if (has_not_enough_free_secs(sbi
, 0, 0)) {
507 down_write(&sbi
->gc_lock
);
508 f2fs_gc(sbi
, false, false, NULL_SEGNO
);
512 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
514 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
517 /* try to shrink extent cache when there is no enough memory */
518 if (!f2fs_available_free_memory(sbi
, EXTENT_CACHE
))
519 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
521 /* check the # of cached NAT entries */
522 if (!f2fs_available_free_memory(sbi
, NAT_ENTRIES
))
523 f2fs_try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
525 if (!f2fs_available_free_memory(sbi
, FREE_NIDS
))
526 f2fs_try_to_free_nids(sbi
, MAX_FREE_NIDS
);
528 f2fs_build_free_nids(sbi
, false, false);
530 if (!is_idle(sbi
, REQ_TIME
) &&
531 (!excess_dirty_nats(sbi
) && !excess_dirty_nodes(sbi
)))
534 /* checkpoint is the only way to shrink partial cached entries */
535 if (!f2fs_available_free_memory(sbi
, NAT_ENTRIES
) ||
536 !f2fs_available_free_memory(sbi
, INO_ENTRIES
) ||
537 excess_prefree_segs(sbi
) ||
538 excess_dirty_nats(sbi
) ||
539 excess_dirty_nodes(sbi
) ||
540 f2fs_time_over(sbi
, CP_TIME
)) {
541 if (test_opt(sbi
, DATA_FLUSH
)) {
542 struct blk_plug plug
;
544 mutex_lock(&sbi
->flush_lock
);
546 blk_start_plug(&plug
);
547 f2fs_sync_dirty_inodes(sbi
, FILE_INODE
);
548 blk_finish_plug(&plug
);
550 mutex_unlock(&sbi
->flush_lock
);
552 f2fs_sync_fs(sbi
->sb
, true);
553 stat_inc_bg_cp_count(sbi
->stat_info
);
557 static int __submit_flush_wait(struct f2fs_sb_info
*sbi
,
558 struct block_device
*bdev
)
563 bio
= f2fs_bio_alloc(sbi
, 0, false);
567 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
568 bio_set_dev(bio
, bdev
);
569 ret
= submit_bio_wait(bio
);
572 trace_f2fs_issue_flush(bdev
, test_opt(sbi
, NOBARRIER
),
573 test_opt(sbi
, FLUSH_MERGE
), ret
);
577 static int submit_flush_wait(struct f2fs_sb_info
*sbi
, nid_t ino
)
582 if (!f2fs_is_multi_device(sbi
))
583 return __submit_flush_wait(sbi
, sbi
->sb
->s_bdev
);
585 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
586 if (!f2fs_is_dirty_device(sbi
, ino
, i
, FLUSH_INO
))
588 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
595 static int issue_flush_thread(void *data
)
597 struct f2fs_sb_info
*sbi
= data
;
598 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
599 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
601 if (kthread_should_stop())
604 sb_start_intwrite(sbi
->sb
);
606 if (!llist_empty(&fcc
->issue_list
)) {
607 struct flush_cmd
*cmd
, *next
;
610 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
611 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
613 cmd
= llist_entry(fcc
->dispatch_list
, struct flush_cmd
, llnode
);
615 ret
= submit_flush_wait(sbi
, cmd
->ino
);
616 atomic_inc(&fcc
->issued_flush
);
618 llist_for_each_entry_safe(cmd
, next
,
619 fcc
->dispatch_list
, llnode
) {
621 complete(&cmd
->wait
);
623 fcc
->dispatch_list
= NULL
;
626 sb_end_intwrite(sbi
->sb
);
628 wait_event_interruptible(*q
,
629 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
633 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
, nid_t ino
)
635 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
636 struct flush_cmd cmd
;
639 if (test_opt(sbi
, NOBARRIER
))
642 if (!test_opt(sbi
, FLUSH_MERGE
)) {
643 atomic_inc(&fcc
->queued_flush
);
644 ret
= submit_flush_wait(sbi
, ino
);
645 atomic_dec(&fcc
->queued_flush
);
646 atomic_inc(&fcc
->issued_flush
);
650 if (atomic_inc_return(&fcc
->queued_flush
) == 1 ||
651 f2fs_is_multi_device(sbi
)) {
652 ret
= submit_flush_wait(sbi
, ino
);
653 atomic_dec(&fcc
->queued_flush
);
655 atomic_inc(&fcc
->issued_flush
);
660 init_completion(&cmd
.wait
);
662 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
664 /* update issue_list before we wake up issue_flush thread */
667 if (waitqueue_active(&fcc
->flush_wait_queue
))
668 wake_up(&fcc
->flush_wait_queue
);
670 if (fcc
->f2fs_issue_flush
) {
671 wait_for_completion(&cmd
.wait
);
672 atomic_dec(&fcc
->queued_flush
);
674 struct llist_node
*list
;
676 list
= llist_del_all(&fcc
->issue_list
);
678 wait_for_completion(&cmd
.wait
);
679 atomic_dec(&fcc
->queued_flush
);
681 struct flush_cmd
*tmp
, *next
;
683 ret
= submit_flush_wait(sbi
, ino
);
685 llist_for_each_entry_safe(tmp
, next
, list
, llnode
) {
688 atomic_dec(&fcc
->queued_flush
);
692 complete(&tmp
->wait
);
700 int f2fs_create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
702 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
703 struct flush_cmd_control
*fcc
;
706 if (SM_I(sbi
)->fcc_info
) {
707 fcc
= SM_I(sbi
)->fcc_info
;
708 if (fcc
->f2fs_issue_flush
)
713 fcc
= f2fs_kzalloc(sbi
, sizeof(struct flush_cmd_control
), GFP_KERNEL
);
716 atomic_set(&fcc
->issued_flush
, 0);
717 atomic_set(&fcc
->queued_flush
, 0);
718 init_waitqueue_head(&fcc
->flush_wait_queue
);
719 init_llist_head(&fcc
->issue_list
);
720 SM_I(sbi
)->fcc_info
= fcc
;
721 if (!test_opt(sbi
, FLUSH_MERGE
))
725 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
726 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
727 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
728 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
730 SM_I(sbi
)->fcc_info
= NULL
;
737 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
, bool free
)
739 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
741 if (fcc
&& fcc
->f2fs_issue_flush
) {
742 struct task_struct
*flush_thread
= fcc
->f2fs_issue_flush
;
744 fcc
->f2fs_issue_flush
= NULL
;
745 kthread_stop(flush_thread
);
749 SM_I(sbi
)->fcc_info
= NULL
;
753 int f2fs_flush_device_cache(struct f2fs_sb_info
*sbi
)
757 if (!f2fs_is_multi_device(sbi
))
760 for (i
= 1; i
< sbi
->s_ndevs
; i
++) {
761 if (!f2fs_test_bit(i
, (char *)&sbi
->dirty_device
))
763 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
767 spin_lock(&sbi
->dev_lock
);
768 f2fs_clear_bit(i
, (char *)&sbi
->dirty_device
);
769 spin_unlock(&sbi
->dev_lock
);
775 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
776 enum dirty_type dirty_type
)
778 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
780 /* need not be added */
781 if (IS_CURSEG(sbi
, segno
))
784 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
785 dirty_i
->nr_dirty
[dirty_type
]++;
787 if (dirty_type
== DIRTY
) {
788 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
789 enum dirty_type t
= sentry
->type
;
791 if (unlikely(t
>= DIRTY
)) {
795 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
796 dirty_i
->nr_dirty
[t
]++;
800 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
801 enum dirty_type dirty_type
)
803 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
805 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
806 dirty_i
->nr_dirty
[dirty_type
]--;
808 if (dirty_type
== DIRTY
) {
809 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
810 enum dirty_type t
= sentry
->type
;
812 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
813 dirty_i
->nr_dirty
[t
]--;
815 if (get_valid_blocks(sbi
, segno
, true) == 0) {
816 clear_bit(GET_SEC_FROM_SEG(sbi
, segno
),
817 dirty_i
->victim_secmap
);
818 #ifdef CONFIG_F2FS_CHECK_FS
819 clear_bit(segno
, SIT_I(sbi
)->invalid_segmap
);
826 * Should not occur error such as -ENOMEM.
827 * Adding dirty entry into seglist is not critical operation.
828 * If a given segment is one of current working segments, it won't be added.
830 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
832 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
833 unsigned short valid_blocks
, ckpt_valid_blocks
;
835 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
838 mutex_lock(&dirty_i
->seglist_lock
);
840 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
841 ckpt_valid_blocks
= get_ckpt_valid_blocks(sbi
, segno
);
843 if (valid_blocks
== 0 && (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) ||
844 ckpt_valid_blocks
== sbi
->blocks_per_seg
)) {
845 __locate_dirty_segment(sbi
, segno
, PRE
);
846 __remove_dirty_segment(sbi
, segno
, DIRTY
);
847 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
848 __locate_dirty_segment(sbi
, segno
, DIRTY
);
850 /* Recovery routine with SSR needs this */
851 __remove_dirty_segment(sbi
, segno
, DIRTY
);
854 mutex_unlock(&dirty_i
->seglist_lock
);
857 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
858 void f2fs_dirty_to_prefree(struct f2fs_sb_info
*sbi
)
860 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
863 mutex_lock(&dirty_i
->seglist_lock
);
864 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[DIRTY
], MAIN_SEGS(sbi
)) {
865 if (get_valid_blocks(sbi
, segno
, false))
867 if (IS_CURSEG(sbi
, segno
))
869 __locate_dirty_segment(sbi
, segno
, PRE
);
870 __remove_dirty_segment(sbi
, segno
, DIRTY
);
872 mutex_unlock(&dirty_i
->seglist_lock
);
875 block_t
f2fs_get_unusable_blocks(struct f2fs_sb_info
*sbi
)
878 (overprovision_segments(sbi
) - reserved_segments(sbi
));
879 block_t ovp_holes
= ovp_hole_segs
<< sbi
->log_blocks_per_seg
;
880 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
881 block_t holes
[2] = {0, 0}; /* DATA and NODE */
883 struct seg_entry
*se
;
886 mutex_lock(&dirty_i
->seglist_lock
);
887 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[DIRTY
], MAIN_SEGS(sbi
)) {
888 se
= get_seg_entry(sbi
, segno
);
889 if (IS_NODESEG(se
->type
))
890 holes
[NODE
] += sbi
->blocks_per_seg
- se
->valid_blocks
;
892 holes
[DATA
] += sbi
->blocks_per_seg
- se
->valid_blocks
;
894 mutex_unlock(&dirty_i
->seglist_lock
);
896 unusable
= holes
[DATA
] > holes
[NODE
] ? holes
[DATA
] : holes
[NODE
];
897 if (unusable
> ovp_holes
)
898 return unusable
- ovp_holes
;
902 int f2fs_disable_cp_again(struct f2fs_sb_info
*sbi
, block_t unusable
)
905 (overprovision_segments(sbi
) - reserved_segments(sbi
));
906 if (unusable
> F2FS_OPTION(sbi
).unusable_cap
)
908 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED_QUICK
) &&
909 dirty_segments(sbi
) > ovp_hole_segs
)
914 /* This is only used by SBI_CP_DISABLED */
915 static unsigned int get_free_segment(struct f2fs_sb_info
*sbi
)
917 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
918 unsigned int segno
= 0;
920 mutex_lock(&dirty_i
->seglist_lock
);
921 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[DIRTY
], MAIN_SEGS(sbi
)) {
922 if (get_valid_blocks(sbi
, segno
, false))
924 if (get_ckpt_valid_blocks(sbi
, segno
))
926 mutex_unlock(&dirty_i
->seglist_lock
);
929 mutex_unlock(&dirty_i
->seglist_lock
);
933 static struct discard_cmd
*__create_discard_cmd(struct f2fs_sb_info
*sbi
,
934 struct block_device
*bdev
, block_t lstart
,
935 block_t start
, block_t len
)
937 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
938 struct list_head
*pend_list
;
939 struct discard_cmd
*dc
;
941 f2fs_bug_on(sbi
, !len
);
943 pend_list
= &dcc
->pend_list
[plist_idx(len
)];
945 dc
= f2fs_kmem_cache_alloc(discard_cmd_slab
, GFP_NOFS
);
946 INIT_LIST_HEAD(&dc
->list
);
955 init_completion(&dc
->wait
);
956 list_add_tail(&dc
->list
, pend_list
);
957 spin_lock_init(&dc
->lock
);
959 atomic_inc(&dcc
->discard_cmd_cnt
);
960 dcc
->undiscard_blks
+= len
;
965 static struct discard_cmd
*__attach_discard_cmd(struct f2fs_sb_info
*sbi
,
966 struct block_device
*bdev
, block_t lstart
,
967 block_t start
, block_t len
,
968 struct rb_node
*parent
, struct rb_node
**p
,
971 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
972 struct discard_cmd
*dc
;
974 dc
= __create_discard_cmd(sbi
, bdev
, lstart
, start
, len
);
976 rb_link_node(&dc
->rb_node
, parent
, p
);
977 rb_insert_color_cached(&dc
->rb_node
, &dcc
->root
, leftmost
);
982 static void __detach_discard_cmd(struct discard_cmd_control
*dcc
,
983 struct discard_cmd
*dc
)
985 if (dc
->state
== D_DONE
)
986 atomic_sub(dc
->queued
, &dcc
->queued_discard
);
989 rb_erase_cached(&dc
->rb_node
, &dcc
->root
);
990 dcc
->undiscard_blks
-= dc
->len
;
992 kmem_cache_free(discard_cmd_slab
, dc
);
994 atomic_dec(&dcc
->discard_cmd_cnt
);
997 static void __remove_discard_cmd(struct f2fs_sb_info
*sbi
,
998 struct discard_cmd
*dc
)
1000 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1001 unsigned long flags
;
1003 trace_f2fs_remove_discard(dc
->bdev
, dc
->start
, dc
->len
);
1005 spin_lock_irqsave(&dc
->lock
, flags
);
1007 spin_unlock_irqrestore(&dc
->lock
, flags
);
1010 spin_unlock_irqrestore(&dc
->lock
, flags
);
1012 f2fs_bug_on(sbi
, dc
->ref
);
1014 if (dc
->error
== -EOPNOTSUPP
)
1019 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1020 KERN_INFO
, sbi
->sb
->s_id
,
1021 dc
->lstart
, dc
->start
, dc
->len
, dc
->error
);
1022 __detach_discard_cmd(dcc
, dc
);
1025 static void f2fs_submit_discard_endio(struct bio
*bio
)
1027 struct discard_cmd
*dc
= (struct discard_cmd
*)bio
->bi_private
;
1028 unsigned long flags
;
1030 dc
->error
= blk_status_to_errno(bio
->bi_status
);
1032 spin_lock_irqsave(&dc
->lock
, flags
);
1034 if (!dc
->bio_ref
&& dc
->state
== D_SUBMIT
) {
1036 complete_all(&dc
->wait
);
1038 spin_unlock_irqrestore(&dc
->lock
, flags
);
1042 static void __check_sit_bitmap(struct f2fs_sb_info
*sbi
,
1043 block_t start
, block_t end
)
1045 #ifdef CONFIG_F2FS_CHECK_FS
1046 struct seg_entry
*sentry
;
1048 block_t blk
= start
;
1049 unsigned long offset
, size
, max_blocks
= sbi
->blocks_per_seg
;
1053 segno
= GET_SEGNO(sbi
, blk
);
1054 sentry
= get_seg_entry(sbi
, segno
);
1055 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blk
);
1057 if (end
< START_BLOCK(sbi
, segno
+ 1))
1058 size
= GET_BLKOFF_FROM_SEG0(sbi
, end
);
1061 map
= (unsigned long *)(sentry
->cur_valid_map
);
1062 offset
= __find_rev_next_bit(map
, size
, offset
);
1063 f2fs_bug_on(sbi
, offset
!= size
);
1064 blk
= START_BLOCK(sbi
, segno
+ 1);
1069 static void __init_discard_policy(struct f2fs_sb_info
*sbi
,
1070 struct discard_policy
*dpolicy
,
1071 int discard_type
, unsigned int granularity
)
1074 dpolicy
->type
= discard_type
;
1075 dpolicy
->sync
= true;
1076 dpolicy
->ordered
= false;
1077 dpolicy
->granularity
= granularity
;
1079 dpolicy
->max_requests
= DEF_MAX_DISCARD_REQUEST
;
1080 dpolicy
->io_aware_gran
= MAX_PLIST_NUM
;
1081 dpolicy
->timeout
= 0;
1083 if (discard_type
== DPOLICY_BG
) {
1084 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1085 dpolicy
->mid_interval
= DEF_MID_DISCARD_ISSUE_TIME
;
1086 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
1087 dpolicy
->io_aware
= true;
1088 dpolicy
->sync
= false;
1089 dpolicy
->ordered
= true;
1090 if (utilization(sbi
) > DEF_DISCARD_URGENT_UTIL
) {
1091 dpolicy
->granularity
= 1;
1092 dpolicy
->max_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1094 } else if (discard_type
== DPOLICY_FORCE
) {
1095 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1096 dpolicy
->mid_interval
= DEF_MID_DISCARD_ISSUE_TIME
;
1097 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
1098 dpolicy
->io_aware
= false;
1099 } else if (discard_type
== DPOLICY_FSTRIM
) {
1100 dpolicy
->io_aware
= false;
1101 } else if (discard_type
== DPOLICY_UMOUNT
) {
1102 dpolicy
->max_requests
= UINT_MAX
;
1103 dpolicy
->io_aware
= false;
1104 /* we need to issue all to keep CP_TRIMMED_FLAG */
1105 dpolicy
->granularity
= 1;
1109 static void __update_discard_tree_range(struct f2fs_sb_info
*sbi
,
1110 struct block_device
*bdev
, block_t lstart
,
1111 block_t start
, block_t len
);
1112 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1113 static int __submit_discard_cmd(struct f2fs_sb_info
*sbi
,
1114 struct discard_policy
*dpolicy
,
1115 struct discard_cmd
*dc
,
1116 unsigned int *issued
)
1118 struct block_device
*bdev
= dc
->bdev
;
1119 struct request_queue
*q
= bdev_get_queue(bdev
);
1120 unsigned int max_discard_blocks
=
1121 SECTOR_TO_BLOCK(q
->limits
.max_discard_sectors
);
1122 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1123 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
1124 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
1125 int flag
= dpolicy
->sync
? REQ_SYNC
: 0;
1126 block_t lstart
, start
, len
, total_len
;
1129 if (dc
->state
!= D_PREP
)
1132 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1135 trace_f2fs_issue_discard(bdev
, dc
->start
, dc
->len
);
1137 lstart
= dc
->lstart
;
1144 while (total_len
&& *issued
< dpolicy
->max_requests
&& !err
) {
1145 struct bio
*bio
= NULL
;
1146 unsigned long flags
;
1149 if (len
> max_discard_blocks
) {
1150 len
= max_discard_blocks
;
1155 if (*issued
== dpolicy
->max_requests
)
1160 if (time_to_inject(sbi
, FAULT_DISCARD
)) {
1161 f2fs_show_injection_info(sbi
, FAULT_DISCARD
);
1165 err
= __blkdev_issue_discard(bdev
,
1166 SECTOR_FROM_BLOCK(start
),
1167 SECTOR_FROM_BLOCK(len
),
1171 spin_lock_irqsave(&dc
->lock
, flags
);
1172 if (dc
->state
== D_PARTIAL
)
1173 dc
->state
= D_SUBMIT
;
1174 spin_unlock_irqrestore(&dc
->lock
, flags
);
1179 f2fs_bug_on(sbi
, !bio
);
1182 * should keep before submission to avoid D_DONE
1185 spin_lock_irqsave(&dc
->lock
, flags
);
1187 dc
->state
= D_SUBMIT
;
1189 dc
->state
= D_PARTIAL
;
1191 spin_unlock_irqrestore(&dc
->lock
, flags
);
1193 atomic_inc(&dcc
->queued_discard
);
1195 list_move_tail(&dc
->list
, wait_list
);
1197 /* sanity check on discard range */
1198 __check_sit_bitmap(sbi
, lstart
, lstart
+ len
);
1200 bio
->bi_private
= dc
;
1201 bio
->bi_end_io
= f2fs_submit_discard_endio
;
1202 bio
->bi_opf
|= flag
;
1205 atomic_inc(&dcc
->issued_discard
);
1207 f2fs_update_iostat(sbi
, FS_DISCARD
, 1);
1216 __update_discard_tree_range(sbi
, bdev
, lstart
, start
, len
);
1220 static struct discard_cmd
*__insert_discard_tree(struct f2fs_sb_info
*sbi
,
1221 struct block_device
*bdev
, block_t lstart
,
1222 block_t start
, block_t len
,
1223 struct rb_node
**insert_p
,
1224 struct rb_node
*insert_parent
)
1226 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1228 struct rb_node
*parent
= NULL
;
1229 struct discard_cmd
*dc
= NULL
;
1230 bool leftmost
= true;
1232 if (insert_p
&& insert_parent
) {
1233 parent
= insert_parent
;
1238 p
= f2fs_lookup_rb_tree_for_insert(sbi
, &dcc
->root
, &parent
,
1241 dc
= __attach_discard_cmd(sbi
, bdev
, lstart
, start
, len
, parent
,
1249 static void __relocate_discard_cmd(struct discard_cmd_control
*dcc
,
1250 struct discard_cmd
*dc
)
1252 list_move_tail(&dc
->list
, &dcc
->pend_list
[plist_idx(dc
->len
)]);
1255 static void __punch_discard_cmd(struct f2fs_sb_info
*sbi
,
1256 struct discard_cmd
*dc
, block_t blkaddr
)
1258 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1259 struct discard_info di
= dc
->di
;
1260 bool modified
= false;
1262 if (dc
->state
== D_DONE
|| dc
->len
== 1) {
1263 __remove_discard_cmd(sbi
, dc
);
1267 dcc
->undiscard_blks
-= di
.len
;
1269 if (blkaddr
> di
.lstart
) {
1270 dc
->len
= blkaddr
- dc
->lstart
;
1271 dcc
->undiscard_blks
+= dc
->len
;
1272 __relocate_discard_cmd(dcc
, dc
);
1276 if (blkaddr
< di
.lstart
+ di
.len
- 1) {
1278 __insert_discard_tree(sbi
, dc
->bdev
, blkaddr
+ 1,
1279 di
.start
+ blkaddr
+ 1 - di
.lstart
,
1280 di
.lstart
+ di
.len
- 1 - blkaddr
,
1286 dcc
->undiscard_blks
+= dc
->len
;
1287 __relocate_discard_cmd(dcc
, dc
);
1292 static void __update_discard_tree_range(struct f2fs_sb_info
*sbi
,
1293 struct block_device
*bdev
, block_t lstart
,
1294 block_t start
, block_t len
)
1296 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1297 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1298 struct discard_cmd
*dc
;
1299 struct discard_info di
= {0};
1300 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1301 struct request_queue
*q
= bdev_get_queue(bdev
);
1302 unsigned int max_discard_blocks
=
1303 SECTOR_TO_BLOCK(q
->limits
.max_discard_sectors
);
1304 block_t end
= lstart
+ len
;
1306 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
1308 (struct rb_entry
**)&prev_dc
,
1309 (struct rb_entry
**)&next_dc
,
1310 &insert_p
, &insert_parent
, true, NULL
);
1316 di
.len
= next_dc
? next_dc
->lstart
- lstart
: len
;
1317 di
.len
= min(di
.len
, len
);
1322 struct rb_node
*node
;
1323 bool merged
= false;
1324 struct discard_cmd
*tdc
= NULL
;
1327 di
.lstart
= prev_dc
->lstart
+ prev_dc
->len
;
1328 if (di
.lstart
< lstart
)
1330 if (di
.lstart
>= end
)
1333 if (!next_dc
|| next_dc
->lstart
> end
)
1334 di
.len
= end
- di
.lstart
;
1336 di
.len
= next_dc
->lstart
- di
.lstart
;
1337 di
.start
= start
+ di
.lstart
- lstart
;
1343 if (prev_dc
&& prev_dc
->state
== D_PREP
&&
1344 prev_dc
->bdev
== bdev
&&
1345 __is_discard_back_mergeable(&di
, &prev_dc
->di
,
1346 max_discard_blocks
)) {
1347 prev_dc
->di
.len
+= di
.len
;
1348 dcc
->undiscard_blks
+= di
.len
;
1349 __relocate_discard_cmd(dcc
, prev_dc
);
1355 if (next_dc
&& next_dc
->state
== D_PREP
&&
1356 next_dc
->bdev
== bdev
&&
1357 __is_discard_front_mergeable(&di
, &next_dc
->di
,
1358 max_discard_blocks
)) {
1359 next_dc
->di
.lstart
= di
.lstart
;
1360 next_dc
->di
.len
+= di
.len
;
1361 next_dc
->di
.start
= di
.start
;
1362 dcc
->undiscard_blks
+= di
.len
;
1363 __relocate_discard_cmd(dcc
, next_dc
);
1365 __remove_discard_cmd(sbi
, tdc
);
1370 __insert_discard_tree(sbi
, bdev
, di
.lstart
, di
.start
,
1371 di
.len
, NULL
, NULL
);
1378 node
= rb_next(&prev_dc
->rb_node
);
1379 next_dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1383 static int __queue_discard_cmd(struct f2fs_sb_info
*sbi
,
1384 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1386 block_t lblkstart
= blkstart
;
1388 if (!f2fs_bdev_support_discard(bdev
))
1391 trace_f2fs_queue_discard(bdev
, blkstart
, blklen
);
1393 if (f2fs_is_multi_device(sbi
)) {
1394 int devi
= f2fs_target_device_index(sbi
, blkstart
);
1396 blkstart
-= FDEV(devi
).start_blk
;
1398 mutex_lock(&SM_I(sbi
)->dcc_info
->cmd_lock
);
1399 __update_discard_tree_range(sbi
, bdev
, lblkstart
, blkstart
, blklen
);
1400 mutex_unlock(&SM_I(sbi
)->dcc_info
->cmd_lock
);
1404 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info
*sbi
,
1405 struct discard_policy
*dpolicy
)
1407 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1408 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1409 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1410 struct discard_cmd
*dc
;
1411 struct blk_plug plug
;
1412 unsigned int pos
= dcc
->next_pos
;
1413 unsigned int issued
= 0;
1414 bool io_interrupted
= false;
1416 mutex_lock(&dcc
->cmd_lock
);
1417 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
1419 (struct rb_entry
**)&prev_dc
,
1420 (struct rb_entry
**)&next_dc
,
1421 &insert_p
, &insert_parent
, true, NULL
);
1425 blk_start_plug(&plug
);
1428 struct rb_node
*node
;
1431 if (dc
->state
!= D_PREP
)
1434 if (dpolicy
->io_aware
&& !is_idle(sbi
, DISCARD_TIME
)) {
1435 io_interrupted
= true;
1439 dcc
->next_pos
= dc
->lstart
+ dc
->len
;
1440 err
= __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
1442 if (issued
>= dpolicy
->max_requests
)
1445 node
= rb_next(&dc
->rb_node
);
1447 __remove_discard_cmd(sbi
, dc
);
1448 dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1451 blk_finish_plug(&plug
);
1456 mutex_unlock(&dcc
->cmd_lock
);
1458 if (!issued
&& io_interrupted
)
1464 static int __issue_discard_cmd(struct f2fs_sb_info
*sbi
,
1465 struct discard_policy
*dpolicy
)
1467 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1468 struct list_head
*pend_list
;
1469 struct discard_cmd
*dc
, *tmp
;
1470 struct blk_plug plug
;
1472 bool io_interrupted
= false;
1474 if (dpolicy
->timeout
!= 0)
1475 f2fs_update_time(sbi
, dpolicy
->timeout
);
1477 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1478 if (dpolicy
->timeout
!= 0 &&
1479 f2fs_time_over(sbi
, dpolicy
->timeout
))
1482 if (i
+ 1 < dpolicy
->granularity
)
1485 if (i
< DEFAULT_DISCARD_GRANULARITY
&& dpolicy
->ordered
)
1486 return __issue_discard_cmd_orderly(sbi
, dpolicy
);
1488 pend_list
= &dcc
->pend_list
[i
];
1490 mutex_lock(&dcc
->cmd_lock
);
1491 if (list_empty(pend_list
))
1493 if (unlikely(dcc
->rbtree_check
))
1494 f2fs_bug_on(sbi
, !f2fs_check_rb_tree_consistence(sbi
,
1496 blk_start_plug(&plug
);
1497 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1498 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1500 if (dpolicy
->timeout
!= 0 &&
1501 f2fs_time_over(sbi
, dpolicy
->timeout
))
1504 if (dpolicy
->io_aware
&& i
< dpolicy
->io_aware_gran
&&
1505 !is_idle(sbi
, DISCARD_TIME
)) {
1506 io_interrupted
= true;
1510 __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
1512 if (issued
>= dpolicy
->max_requests
)
1515 blk_finish_plug(&plug
);
1517 mutex_unlock(&dcc
->cmd_lock
);
1519 if (issued
>= dpolicy
->max_requests
|| io_interrupted
)
1523 if (!issued
&& io_interrupted
)
1529 static bool __drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1531 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1532 struct list_head
*pend_list
;
1533 struct discard_cmd
*dc
, *tmp
;
1535 bool dropped
= false;
1537 mutex_lock(&dcc
->cmd_lock
);
1538 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1539 pend_list
= &dcc
->pend_list
[i
];
1540 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1541 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1542 __remove_discard_cmd(sbi
, dc
);
1546 mutex_unlock(&dcc
->cmd_lock
);
1551 void f2fs_drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1553 __drop_discard_cmd(sbi
);
1556 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info
*sbi
,
1557 struct discard_cmd
*dc
)
1559 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1560 unsigned int len
= 0;
1562 wait_for_completion_io(&dc
->wait
);
1563 mutex_lock(&dcc
->cmd_lock
);
1564 f2fs_bug_on(sbi
, dc
->state
!= D_DONE
);
1569 __remove_discard_cmd(sbi
, dc
);
1571 mutex_unlock(&dcc
->cmd_lock
);
1576 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info
*sbi
,
1577 struct discard_policy
*dpolicy
,
1578 block_t start
, block_t end
)
1580 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1581 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
1582 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
1583 struct discard_cmd
*dc
, *tmp
;
1585 unsigned int trimmed
= 0;
1590 mutex_lock(&dcc
->cmd_lock
);
1591 list_for_each_entry_safe(dc
, tmp
, wait_list
, list
) {
1592 if (dc
->lstart
+ dc
->len
<= start
|| end
<= dc
->lstart
)
1594 if (dc
->len
< dpolicy
->granularity
)
1596 if (dc
->state
== D_DONE
&& !dc
->ref
) {
1597 wait_for_completion_io(&dc
->wait
);
1600 __remove_discard_cmd(sbi
, dc
);
1607 mutex_unlock(&dcc
->cmd_lock
);
1610 trimmed
+= __wait_one_discard_bio(sbi
, dc
);
1617 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info
*sbi
,
1618 struct discard_policy
*dpolicy
)
1620 struct discard_policy dp
;
1621 unsigned int discard_blks
;
1624 return __wait_discard_cmd_range(sbi
, dpolicy
, 0, UINT_MAX
);
1627 __init_discard_policy(sbi
, &dp
, DPOLICY_FSTRIM
, 1);
1628 discard_blks
= __wait_discard_cmd_range(sbi
, &dp
, 0, UINT_MAX
);
1629 __init_discard_policy(sbi
, &dp
, DPOLICY_UMOUNT
, 1);
1630 discard_blks
+= __wait_discard_cmd_range(sbi
, &dp
, 0, UINT_MAX
);
1632 return discard_blks
;
1635 /* This should be covered by global mutex, &sit_i->sentry_lock */
1636 static void f2fs_wait_discard_bio(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1638 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1639 struct discard_cmd
*dc
;
1640 bool need_wait
= false;
1642 mutex_lock(&dcc
->cmd_lock
);
1643 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree(&dcc
->root
,
1646 if (dc
->state
== D_PREP
) {
1647 __punch_discard_cmd(sbi
, dc
, blkaddr
);
1653 mutex_unlock(&dcc
->cmd_lock
);
1656 __wait_one_discard_bio(sbi
, dc
);
1659 void f2fs_stop_discard_thread(struct f2fs_sb_info
*sbi
)
1661 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1663 if (dcc
&& dcc
->f2fs_issue_discard
) {
1664 struct task_struct
*discard_thread
= dcc
->f2fs_issue_discard
;
1666 dcc
->f2fs_issue_discard
= NULL
;
1667 kthread_stop(discard_thread
);
1671 /* This comes from f2fs_put_super */
1672 bool f2fs_issue_discard_timeout(struct f2fs_sb_info
*sbi
)
1674 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1675 struct discard_policy dpolicy
;
1678 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_UMOUNT
,
1679 dcc
->discard_granularity
);
1680 dpolicy
.timeout
= UMOUNT_DISCARD_TIMEOUT
;
1681 __issue_discard_cmd(sbi
, &dpolicy
);
1682 dropped
= __drop_discard_cmd(sbi
);
1684 /* just to make sure there is no pending discard commands */
1685 __wait_all_discard_cmd(sbi
, NULL
);
1687 f2fs_bug_on(sbi
, atomic_read(&dcc
->discard_cmd_cnt
));
1691 static int issue_discard_thread(void *data
)
1693 struct f2fs_sb_info
*sbi
= data
;
1694 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1695 wait_queue_head_t
*q
= &dcc
->discard_wait_queue
;
1696 struct discard_policy dpolicy
;
1697 unsigned int wait_ms
= DEF_MIN_DISCARD_ISSUE_TIME
;
1703 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_BG
,
1704 dcc
->discard_granularity
);
1706 wait_event_interruptible_timeout(*q
,
1707 kthread_should_stop() || freezing(current
) ||
1709 msecs_to_jiffies(wait_ms
));
1711 if (dcc
->discard_wake
)
1712 dcc
->discard_wake
= 0;
1714 /* clean up pending candidates before going to sleep */
1715 if (atomic_read(&dcc
->queued_discard
))
1716 __wait_all_discard_cmd(sbi
, NULL
);
1718 if (try_to_freeze())
1720 if (f2fs_readonly(sbi
->sb
))
1722 if (kthread_should_stop())
1724 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
1725 wait_ms
= dpolicy
.max_interval
;
1729 if (sbi
->gc_mode
== GC_URGENT
)
1730 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_FORCE
, 1);
1732 sb_start_intwrite(sbi
->sb
);
1734 issued
= __issue_discard_cmd(sbi
, &dpolicy
);
1736 __wait_all_discard_cmd(sbi
, &dpolicy
);
1737 wait_ms
= dpolicy
.min_interval
;
1738 } else if (issued
== -1){
1739 wait_ms
= f2fs_time_to_wait(sbi
, DISCARD_TIME
);
1741 wait_ms
= dpolicy
.mid_interval
;
1743 wait_ms
= dpolicy
.max_interval
;
1746 sb_end_intwrite(sbi
->sb
);
1748 } while (!kthread_should_stop());
1752 #ifdef CONFIG_BLK_DEV_ZONED
1753 static int __f2fs_issue_discard_zone(struct f2fs_sb_info
*sbi
,
1754 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1756 sector_t sector
, nr_sects
;
1757 block_t lblkstart
= blkstart
;
1760 if (f2fs_is_multi_device(sbi
)) {
1761 devi
= f2fs_target_device_index(sbi
, blkstart
);
1762 if (blkstart
< FDEV(devi
).start_blk
||
1763 blkstart
> FDEV(devi
).end_blk
) {
1764 f2fs_err(sbi
, "Invalid block %x", blkstart
);
1767 blkstart
-= FDEV(devi
).start_blk
;
1770 /* For sequential zones, reset the zone write pointer */
1771 if (f2fs_blkz_is_seq(sbi
, devi
, blkstart
)) {
1772 sector
= SECTOR_FROM_BLOCK(blkstart
);
1773 nr_sects
= SECTOR_FROM_BLOCK(blklen
);
1775 if (sector
& (bdev_zone_sectors(bdev
) - 1) ||
1776 nr_sects
!= bdev_zone_sectors(bdev
)) {
1777 f2fs_err(sbi
, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1778 devi
, sbi
->s_ndevs
? FDEV(devi
).path
: "",
1782 trace_f2fs_issue_reset_zone(bdev
, blkstart
);
1783 return blkdev_zone_mgmt(bdev
, REQ_OP_ZONE_RESET
,
1784 sector
, nr_sects
, GFP_NOFS
);
1787 /* For conventional zones, use regular discard if supported */
1788 return __queue_discard_cmd(sbi
, bdev
, lblkstart
, blklen
);
1792 static int __issue_discard_async(struct f2fs_sb_info
*sbi
,
1793 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1795 #ifdef CONFIG_BLK_DEV_ZONED
1796 if (f2fs_sb_has_blkzoned(sbi
) && bdev_is_zoned(bdev
))
1797 return __f2fs_issue_discard_zone(sbi
, bdev
, blkstart
, blklen
);
1799 return __queue_discard_cmd(sbi
, bdev
, blkstart
, blklen
);
1802 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
1803 block_t blkstart
, block_t blklen
)
1805 sector_t start
= blkstart
, len
= 0;
1806 struct block_device
*bdev
;
1807 struct seg_entry
*se
;
1808 unsigned int offset
;
1812 bdev
= f2fs_target_device(sbi
, blkstart
, NULL
);
1814 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++, len
++) {
1816 struct block_device
*bdev2
=
1817 f2fs_target_device(sbi
, i
, NULL
);
1819 if (bdev2
!= bdev
) {
1820 err
= __issue_discard_async(sbi
, bdev
,
1830 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
1831 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
1833 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
1834 sbi
->discard_blks
--;
1838 err
= __issue_discard_async(sbi
, bdev
, start
, len
);
1842 static bool add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
,
1845 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1846 int max_blocks
= sbi
->blocks_per_seg
;
1847 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
1848 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1849 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1850 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
1851 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
1852 unsigned int start
= 0, end
= -1;
1853 bool force
= (cpc
->reason
& CP_DISCARD
);
1854 struct discard_entry
*de
= NULL
;
1855 struct list_head
*head
= &SM_I(sbi
)->dcc_info
->entry_list
;
1858 if (se
->valid_blocks
== max_blocks
|| !f2fs_hw_support_discard(sbi
))
1862 if (!f2fs_realtime_discard_enable(sbi
) || !se
->valid_blocks
||
1863 SM_I(sbi
)->dcc_info
->nr_discards
>=
1864 SM_I(sbi
)->dcc_info
->max_discards
)
1868 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1869 for (i
= 0; i
< entries
; i
++)
1870 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
1871 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
1873 while (force
|| SM_I(sbi
)->dcc_info
->nr_discards
<=
1874 SM_I(sbi
)->dcc_info
->max_discards
) {
1875 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
1876 if (start
>= max_blocks
)
1879 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
1880 if (force
&& start
&& end
!= max_blocks
1881 && (end
- start
) < cpc
->trim_minlen
)
1888 de
= f2fs_kmem_cache_alloc(discard_entry_slab
,
1890 de
->start_blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
);
1891 list_add_tail(&de
->list
, head
);
1894 for (i
= start
; i
< end
; i
++)
1895 __set_bit_le(i
, (void *)de
->discard_map
);
1897 SM_I(sbi
)->dcc_info
->nr_discards
+= end
- start
;
1902 static void release_discard_addr(struct discard_entry
*entry
)
1904 list_del(&entry
->list
);
1905 kmem_cache_free(discard_entry_slab
, entry
);
1908 void f2fs_release_discard_addrs(struct f2fs_sb_info
*sbi
)
1910 struct list_head
*head
= &(SM_I(sbi
)->dcc_info
->entry_list
);
1911 struct discard_entry
*entry
, *this;
1914 list_for_each_entry_safe(entry
, this, head
, list
)
1915 release_discard_addr(entry
);
1919 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1921 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
1923 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1926 mutex_lock(&dirty_i
->seglist_lock
);
1927 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
1928 __set_test_and_free(sbi
, segno
);
1929 mutex_unlock(&dirty_i
->seglist_lock
);
1932 void f2fs_clear_prefree_segments(struct f2fs_sb_info
*sbi
,
1933 struct cp_control
*cpc
)
1935 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1936 struct list_head
*head
= &dcc
->entry_list
;
1937 struct discard_entry
*entry
, *this;
1938 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1939 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
1940 unsigned int start
= 0, end
= -1;
1941 unsigned int secno
, start_segno
;
1942 bool force
= (cpc
->reason
& CP_DISCARD
);
1943 bool need_align
= test_opt(sbi
, LFS
) && __is_large_section(sbi
);
1945 mutex_lock(&dirty_i
->seglist_lock
);
1950 if (need_align
&& end
!= -1)
1952 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
1953 if (start
>= MAIN_SEGS(sbi
))
1955 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
1959 start
= rounddown(start
, sbi
->segs_per_sec
);
1960 end
= roundup(end
, sbi
->segs_per_sec
);
1963 for (i
= start
; i
< end
; i
++) {
1964 if (test_and_clear_bit(i
, prefree_map
))
1965 dirty_i
->nr_dirty
[PRE
]--;
1968 if (!f2fs_realtime_discard_enable(sbi
))
1971 if (force
&& start
>= cpc
->trim_start
&&
1972 (end
- 1) <= cpc
->trim_end
)
1975 if (!test_opt(sbi
, LFS
) || !__is_large_section(sbi
)) {
1976 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
1977 (end
- start
) << sbi
->log_blocks_per_seg
);
1981 secno
= GET_SEC_FROM_SEG(sbi
, start
);
1982 start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
1983 if (!IS_CURSEC(sbi
, secno
) &&
1984 !get_valid_blocks(sbi
, start
, true))
1985 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
1986 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
1988 start
= start_segno
+ sbi
->segs_per_sec
;
1994 mutex_unlock(&dirty_i
->seglist_lock
);
1996 /* send small discards */
1997 list_for_each_entry_safe(entry
, this, head
, list
) {
1998 unsigned int cur_pos
= 0, next_pos
, len
, total_len
= 0;
1999 bool is_valid
= test_bit_le(0, entry
->discard_map
);
2003 next_pos
= find_next_zero_bit_le(entry
->discard_map
,
2004 sbi
->blocks_per_seg
, cur_pos
);
2005 len
= next_pos
- cur_pos
;
2007 if (f2fs_sb_has_blkzoned(sbi
) ||
2008 (force
&& len
< cpc
->trim_minlen
))
2011 f2fs_issue_discard(sbi
, entry
->start_blkaddr
+ cur_pos
,
2015 next_pos
= find_next_bit_le(entry
->discard_map
,
2016 sbi
->blocks_per_seg
, cur_pos
);
2020 is_valid
= !is_valid
;
2022 if (cur_pos
< sbi
->blocks_per_seg
)
2025 release_discard_addr(entry
);
2026 dcc
->nr_discards
-= total_len
;
2029 wake_up_discard_thread(sbi
, false);
2032 static int create_discard_cmd_control(struct f2fs_sb_info
*sbi
)
2034 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
2035 struct discard_cmd_control
*dcc
;
2038 if (SM_I(sbi
)->dcc_info
) {
2039 dcc
= SM_I(sbi
)->dcc_info
;
2043 dcc
= f2fs_kzalloc(sbi
, sizeof(struct discard_cmd_control
), GFP_KERNEL
);
2047 dcc
->discard_granularity
= DEFAULT_DISCARD_GRANULARITY
;
2048 INIT_LIST_HEAD(&dcc
->entry_list
);
2049 for (i
= 0; i
< MAX_PLIST_NUM
; i
++)
2050 INIT_LIST_HEAD(&dcc
->pend_list
[i
]);
2051 INIT_LIST_HEAD(&dcc
->wait_list
);
2052 INIT_LIST_HEAD(&dcc
->fstrim_list
);
2053 mutex_init(&dcc
->cmd_lock
);
2054 atomic_set(&dcc
->issued_discard
, 0);
2055 atomic_set(&dcc
->queued_discard
, 0);
2056 atomic_set(&dcc
->discard_cmd_cnt
, 0);
2057 dcc
->nr_discards
= 0;
2058 dcc
->max_discards
= MAIN_SEGS(sbi
) << sbi
->log_blocks_per_seg
;
2059 dcc
->undiscard_blks
= 0;
2061 dcc
->root
= RB_ROOT_CACHED
;
2062 dcc
->rbtree_check
= false;
2064 init_waitqueue_head(&dcc
->discard_wait_queue
);
2065 SM_I(sbi
)->dcc_info
= dcc
;
2067 dcc
->f2fs_issue_discard
= kthread_run(issue_discard_thread
, sbi
,
2068 "f2fs_discard-%u:%u", MAJOR(dev
), MINOR(dev
));
2069 if (IS_ERR(dcc
->f2fs_issue_discard
)) {
2070 err
= PTR_ERR(dcc
->f2fs_issue_discard
);
2072 SM_I(sbi
)->dcc_info
= NULL
;
2079 static void destroy_discard_cmd_control(struct f2fs_sb_info
*sbi
)
2081 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
2086 f2fs_stop_discard_thread(sbi
);
2089 * Recovery can cache discard commands, so in error path of
2090 * fill_super(), it needs to give a chance to handle them.
2092 if (unlikely(atomic_read(&dcc
->discard_cmd_cnt
)))
2093 f2fs_issue_discard_timeout(sbi
);
2096 SM_I(sbi
)->dcc_info
= NULL
;
2099 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
2101 struct sit_info
*sit_i
= SIT_I(sbi
);
2103 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
2104 sit_i
->dirty_sentries
++;
2111 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
2112 unsigned int segno
, int modified
)
2114 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
2117 __mark_sit_entry_dirty(sbi
, segno
);
2120 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
2122 struct seg_entry
*se
;
2123 unsigned int segno
, offset
;
2124 long int new_vblocks
;
2126 #ifdef CONFIG_F2FS_CHECK_FS
2130 segno
= GET_SEGNO(sbi
, blkaddr
);
2132 se
= get_seg_entry(sbi
, segno
);
2133 new_vblocks
= se
->valid_blocks
+ del
;
2134 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
2136 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
2137 (new_vblocks
> sbi
->blocks_per_seg
)));
2139 se
->valid_blocks
= new_vblocks
;
2140 se
->mtime
= get_mtime(sbi
, false);
2141 if (se
->mtime
> SIT_I(sbi
)->max_mtime
)
2142 SIT_I(sbi
)->max_mtime
= se
->mtime
;
2144 /* Update valid block bitmap */
2146 exist
= f2fs_test_and_set_bit(offset
, se
->cur_valid_map
);
2147 #ifdef CONFIG_F2FS_CHECK_FS
2148 mir_exist
= f2fs_test_and_set_bit(offset
,
2149 se
->cur_valid_map_mir
);
2150 if (unlikely(exist
!= mir_exist
)) {
2151 f2fs_err(sbi
, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2153 f2fs_bug_on(sbi
, 1);
2156 if (unlikely(exist
)) {
2157 f2fs_err(sbi
, "Bitmap was wrongly set, blk:%u",
2159 f2fs_bug_on(sbi
, 1);
2164 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
2165 sbi
->discard_blks
--;
2168 * SSR should never reuse block which is checkpointed
2169 * or newly invalidated.
2171 if (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)) {
2172 if (!f2fs_test_and_set_bit(offset
, se
->ckpt_valid_map
))
2173 se
->ckpt_valid_blocks
++;
2176 exist
= f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
);
2177 #ifdef CONFIG_F2FS_CHECK_FS
2178 mir_exist
= f2fs_test_and_clear_bit(offset
,
2179 se
->cur_valid_map_mir
);
2180 if (unlikely(exist
!= mir_exist
)) {
2181 f2fs_err(sbi
, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2183 f2fs_bug_on(sbi
, 1);
2186 if (unlikely(!exist
)) {
2187 f2fs_err(sbi
, "Bitmap was wrongly cleared, blk:%u",
2189 f2fs_bug_on(sbi
, 1);
2192 } else if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
2194 * If checkpoints are off, we must not reuse data that
2195 * was used in the previous checkpoint. If it was used
2196 * before, we must track that to know how much space we
2199 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
)) {
2200 spin_lock(&sbi
->stat_lock
);
2201 sbi
->unusable_block_count
++;
2202 spin_unlock(&sbi
->stat_lock
);
2206 if (f2fs_test_and_clear_bit(offset
, se
->discard_map
))
2207 sbi
->discard_blks
++;
2209 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
2210 se
->ckpt_valid_blocks
+= del
;
2212 __mark_sit_entry_dirty(sbi
, segno
);
2214 /* update total number of valid blocks to be written in ckpt area */
2215 SIT_I(sbi
)->written_valid_blocks
+= del
;
2217 if (__is_large_section(sbi
))
2218 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
2221 void f2fs_invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
2223 unsigned int segno
= GET_SEGNO(sbi
, addr
);
2224 struct sit_info
*sit_i
= SIT_I(sbi
);
2226 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
2227 if (addr
== NEW_ADDR
|| addr
== COMPRESS_ADDR
)
2230 invalidate_mapping_pages(META_MAPPING(sbi
), addr
, addr
);
2232 /* add it into sit main buffer */
2233 down_write(&sit_i
->sentry_lock
);
2235 update_sit_entry(sbi
, addr
, -1);
2237 /* add it into dirty seglist */
2238 locate_dirty_segment(sbi
, segno
);
2240 up_write(&sit_i
->sentry_lock
);
2243 bool f2fs_is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
2245 struct sit_info
*sit_i
= SIT_I(sbi
);
2246 unsigned int segno
, offset
;
2247 struct seg_entry
*se
;
2250 if (!__is_valid_data_blkaddr(blkaddr
))
2253 down_read(&sit_i
->sentry_lock
);
2255 segno
= GET_SEGNO(sbi
, blkaddr
);
2256 se
= get_seg_entry(sbi
, segno
);
2257 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
2259 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
2262 up_read(&sit_i
->sentry_lock
);
2268 * This function should be resided under the curseg_mutex lock
2270 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
2271 struct f2fs_summary
*sum
)
2273 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2274 void *addr
= curseg
->sum_blk
;
2275 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
2276 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
2280 * Calculate the number of current summary pages for writing
2282 int f2fs_npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
2284 int valid_sum_count
= 0;
2287 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2288 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
2289 valid_sum_count
+= sbi
->blocks_per_seg
;
2292 valid_sum_count
+= le16_to_cpu(
2293 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
2295 valid_sum_count
+= curseg_blkoff(sbi
, i
);
2299 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
2300 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
2301 if (valid_sum_count
<= sum_in_page
)
2303 else if ((valid_sum_count
- sum_in_page
) <=
2304 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
2310 * Caller should put this summary page
2312 struct page
*f2fs_get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
2314 return f2fs_get_meta_page_nofail(sbi
, GET_SUM_BLOCK(sbi
, segno
));
2317 void f2fs_update_meta_page(struct f2fs_sb_info
*sbi
,
2318 void *src
, block_t blk_addr
)
2320 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
2322 memcpy(page_address(page
), src
, PAGE_SIZE
);
2323 set_page_dirty(page
);
2324 f2fs_put_page(page
, 1);
2327 static void write_sum_page(struct f2fs_sb_info
*sbi
,
2328 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
2330 f2fs_update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
2333 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
2334 int type
, block_t blk_addr
)
2336 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2337 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
2338 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
2339 struct f2fs_summary_block
*dst
;
2341 dst
= (struct f2fs_summary_block
*)page_address(page
);
2342 memset(dst
, 0, PAGE_SIZE
);
2344 mutex_lock(&curseg
->curseg_mutex
);
2346 down_read(&curseg
->journal_rwsem
);
2347 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
2348 up_read(&curseg
->journal_rwsem
);
2350 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
2351 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
2353 mutex_unlock(&curseg
->curseg_mutex
);
2355 set_page_dirty(page
);
2356 f2fs_put_page(page
, 1);
2359 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
2361 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2362 unsigned int segno
= curseg
->segno
+ 1;
2363 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2365 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
2366 return !test_bit(segno
, free_i
->free_segmap
);
2371 * Find a new segment from the free segments bitmap to right order
2372 * This function should be returned with success, otherwise BUG
2374 static void get_new_segment(struct f2fs_sb_info
*sbi
,
2375 unsigned int *newseg
, bool new_sec
, int dir
)
2377 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2378 unsigned int segno
, secno
, zoneno
;
2379 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
2380 unsigned int hint
= GET_SEC_FROM_SEG(sbi
, *newseg
);
2381 unsigned int old_zoneno
= GET_ZONE_FROM_SEG(sbi
, *newseg
);
2382 unsigned int left_start
= hint
;
2387 spin_lock(&free_i
->segmap_lock
);
2389 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
2390 segno
= find_next_zero_bit(free_i
->free_segmap
,
2391 GET_SEG_FROM_SEC(sbi
, hint
+ 1), *newseg
+ 1);
2392 if (segno
< GET_SEG_FROM_SEC(sbi
, hint
+ 1))
2396 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
2397 if (secno
>= MAIN_SECS(sbi
)) {
2398 if (dir
== ALLOC_RIGHT
) {
2399 secno
= find_next_zero_bit(free_i
->free_secmap
,
2401 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
2404 left_start
= hint
- 1;
2410 while (test_bit(left_start
, free_i
->free_secmap
)) {
2411 if (left_start
> 0) {
2415 left_start
= find_next_zero_bit(free_i
->free_secmap
,
2417 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
2422 segno
= GET_SEG_FROM_SEC(sbi
, secno
);
2423 zoneno
= GET_ZONE_FROM_SEC(sbi
, secno
);
2425 /* give up on finding another zone */
2428 if (sbi
->secs_per_zone
== 1)
2430 if (zoneno
== old_zoneno
)
2432 if (dir
== ALLOC_LEFT
) {
2433 if (!go_left
&& zoneno
+ 1 >= total_zones
)
2435 if (go_left
&& zoneno
== 0)
2438 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
2439 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
2442 if (i
< NR_CURSEG_TYPE
) {
2443 /* zone is in user, try another */
2445 hint
= zoneno
* sbi
->secs_per_zone
- 1;
2446 else if (zoneno
+ 1 >= total_zones
)
2449 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
2451 goto find_other_zone
;
2454 /* set it as dirty segment in free segmap */
2455 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
2456 __set_inuse(sbi
, segno
);
2458 spin_unlock(&free_i
->segmap_lock
);
2461 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
2463 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2464 struct summary_footer
*sum_footer
;
2466 curseg
->segno
= curseg
->next_segno
;
2467 curseg
->zone
= GET_ZONE_FROM_SEG(sbi
, curseg
->segno
);
2468 curseg
->next_blkoff
= 0;
2469 curseg
->next_segno
= NULL_SEGNO
;
2471 sum_footer
= &(curseg
->sum_blk
->footer
);
2472 memset(sum_footer
, 0, sizeof(struct summary_footer
));
2473 if (IS_DATASEG(type
))
2474 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
2475 if (IS_NODESEG(type
))
2476 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
2477 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
2480 static unsigned int __get_next_segno(struct f2fs_sb_info
*sbi
, int type
)
2482 /* if segs_per_sec is large than 1, we need to keep original policy. */
2483 if (__is_large_section(sbi
))
2484 return CURSEG_I(sbi
, type
)->segno
;
2486 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
2489 if (test_opt(sbi
, NOHEAP
) &&
2490 (type
== CURSEG_HOT_DATA
|| IS_NODESEG(type
)))
2493 if (SIT_I(sbi
)->last_victim
[ALLOC_NEXT
])
2494 return SIT_I(sbi
)->last_victim
[ALLOC_NEXT
];
2496 /* find segments from 0 to reuse freed segments */
2497 if (F2FS_OPTION(sbi
).alloc_mode
== ALLOC_MODE_REUSE
)
2500 return CURSEG_I(sbi
, type
)->segno
;
2504 * Allocate a current working segment.
2505 * This function always allocates a free segment in LFS manner.
2507 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
2509 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2510 unsigned int segno
= curseg
->segno
;
2511 int dir
= ALLOC_LEFT
;
2513 write_sum_page(sbi
, curseg
->sum_blk
,
2514 GET_SUM_BLOCK(sbi
, segno
));
2515 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
2518 if (test_opt(sbi
, NOHEAP
))
2521 segno
= __get_next_segno(sbi
, type
);
2522 get_new_segment(sbi
, &segno
, new_sec
, dir
);
2523 curseg
->next_segno
= segno
;
2524 reset_curseg(sbi
, type
, 1);
2525 curseg
->alloc_type
= LFS
;
2528 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
2529 struct curseg_info
*seg
, block_t start
)
2531 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
2532 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
2533 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
2534 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
2535 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
2538 for (i
= 0; i
< entries
; i
++)
2539 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
2541 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
2543 seg
->next_blkoff
= pos
;
2547 * If a segment is written by LFS manner, next block offset is just obtained
2548 * by increasing the current block offset. However, if a segment is written by
2549 * SSR manner, next block offset obtained by calling __next_free_blkoff
2551 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
2552 struct curseg_info
*seg
)
2554 if (seg
->alloc_type
== SSR
)
2555 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
2561 * This function always allocates a used segment(from dirty seglist) by SSR
2562 * manner, so it should recover the existing segment information of valid blocks
2564 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
)
2566 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2567 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2568 unsigned int new_segno
= curseg
->next_segno
;
2569 struct f2fs_summary_block
*sum_node
;
2570 struct page
*sum_page
;
2572 write_sum_page(sbi
, curseg
->sum_blk
,
2573 GET_SUM_BLOCK(sbi
, curseg
->segno
));
2574 __set_test_and_inuse(sbi
, new_segno
);
2576 mutex_lock(&dirty_i
->seglist_lock
);
2577 __remove_dirty_segment(sbi
, new_segno
, PRE
);
2578 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
2579 mutex_unlock(&dirty_i
->seglist_lock
);
2581 reset_curseg(sbi
, type
, 1);
2582 curseg
->alloc_type
= SSR
;
2583 __next_free_blkoff(sbi
, curseg
, 0);
2585 sum_page
= f2fs_get_sum_page(sbi
, new_segno
);
2586 f2fs_bug_on(sbi
, IS_ERR(sum_page
));
2587 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
2588 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
2589 f2fs_put_page(sum_page
, 1);
2592 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
2594 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2595 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
2596 unsigned segno
= NULL_SEGNO
;
2598 bool reversed
= false;
2600 /* f2fs_need_SSR() already forces to do this */
2601 if (v_ops
->get_victim(sbi
, &segno
, BG_GC
, type
, SSR
)) {
2602 curseg
->next_segno
= segno
;
2606 /* For node segments, let's do SSR more intensively */
2607 if (IS_NODESEG(type
)) {
2608 if (type
>= CURSEG_WARM_NODE
) {
2610 i
= CURSEG_COLD_NODE
;
2612 i
= CURSEG_HOT_NODE
;
2614 cnt
= NR_CURSEG_NODE_TYPE
;
2616 if (type
>= CURSEG_WARM_DATA
) {
2618 i
= CURSEG_COLD_DATA
;
2620 i
= CURSEG_HOT_DATA
;
2622 cnt
= NR_CURSEG_DATA_TYPE
;
2625 for (; cnt
-- > 0; reversed
? i
-- : i
++) {
2628 if (v_ops
->get_victim(sbi
, &segno
, BG_GC
, i
, SSR
)) {
2629 curseg
->next_segno
= segno
;
2634 /* find valid_blocks=0 in dirty list */
2635 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
2636 segno
= get_free_segment(sbi
);
2637 if (segno
!= NULL_SEGNO
) {
2638 curseg
->next_segno
= segno
;
2646 * flush out current segment and replace it with new segment
2647 * This function should be returned with success, otherwise BUG
2649 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
2650 int type
, bool force
)
2652 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2655 new_curseg(sbi
, type
, true);
2656 else if (!is_set_ckpt_flags(sbi
, CP_CRC_RECOVERY_FLAG
) &&
2657 type
== CURSEG_WARM_NODE
)
2658 new_curseg(sbi
, type
, false);
2659 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
) &&
2660 likely(!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
2661 new_curseg(sbi
, type
, false);
2662 else if (f2fs_need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
2663 change_curseg(sbi
, type
);
2665 new_curseg(sbi
, type
, false);
2667 stat_inc_seg_type(sbi
, curseg
);
2670 void allocate_segment_for_resize(struct f2fs_sb_info
*sbi
, int type
,
2671 unsigned int start
, unsigned int end
)
2673 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2676 down_read(&SM_I(sbi
)->curseg_lock
);
2677 mutex_lock(&curseg
->curseg_mutex
);
2678 down_write(&SIT_I(sbi
)->sentry_lock
);
2680 segno
= CURSEG_I(sbi
, type
)->segno
;
2681 if (segno
< start
|| segno
> end
)
2684 if (f2fs_need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
2685 change_curseg(sbi
, type
);
2687 new_curseg(sbi
, type
, true);
2689 stat_inc_seg_type(sbi
, curseg
);
2691 locate_dirty_segment(sbi
, segno
);
2693 up_write(&SIT_I(sbi
)->sentry_lock
);
2695 if (segno
!= curseg
->segno
)
2696 f2fs_notice(sbi
, "For resize: curseg of type %d: %u ==> %u",
2697 type
, segno
, curseg
->segno
);
2699 mutex_unlock(&curseg
->curseg_mutex
);
2700 up_read(&SM_I(sbi
)->curseg_lock
);
2703 void f2fs_allocate_new_segments(struct f2fs_sb_info
*sbi
, int type
)
2705 struct curseg_info
*curseg
;
2706 unsigned int old_segno
;
2709 down_write(&SIT_I(sbi
)->sentry_lock
);
2711 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2712 if (type
!= NO_CHECK_TYPE
&& i
!= type
)
2715 curseg
= CURSEG_I(sbi
, i
);
2716 if (type
== NO_CHECK_TYPE
|| curseg
->next_blkoff
||
2717 get_valid_blocks(sbi
, curseg
->segno
, false) ||
2718 get_ckpt_valid_blocks(sbi
, curseg
->segno
)) {
2719 old_segno
= curseg
->segno
;
2720 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, i
, true);
2721 locate_dirty_segment(sbi
, old_segno
);
2725 up_write(&SIT_I(sbi
)->sentry_lock
);
2728 static const struct segment_allocation default_salloc_ops
= {
2729 .allocate_segment
= allocate_segment_by_default
,
2732 bool f2fs_exist_trim_candidates(struct f2fs_sb_info
*sbi
,
2733 struct cp_control
*cpc
)
2735 __u64 trim_start
= cpc
->trim_start
;
2736 bool has_candidate
= false;
2738 down_write(&SIT_I(sbi
)->sentry_lock
);
2739 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++) {
2740 if (add_discard_addrs(sbi
, cpc
, true)) {
2741 has_candidate
= true;
2745 up_write(&SIT_I(sbi
)->sentry_lock
);
2747 cpc
->trim_start
= trim_start
;
2748 return has_candidate
;
2751 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info
*sbi
,
2752 struct discard_policy
*dpolicy
,
2753 unsigned int start
, unsigned int end
)
2755 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
2756 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
2757 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
2758 struct discard_cmd
*dc
;
2759 struct blk_plug plug
;
2761 unsigned int trimmed
= 0;
2766 mutex_lock(&dcc
->cmd_lock
);
2767 if (unlikely(dcc
->rbtree_check
))
2768 f2fs_bug_on(sbi
, !f2fs_check_rb_tree_consistence(sbi
,
2771 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
2773 (struct rb_entry
**)&prev_dc
,
2774 (struct rb_entry
**)&next_dc
,
2775 &insert_p
, &insert_parent
, true, NULL
);
2779 blk_start_plug(&plug
);
2781 while (dc
&& dc
->lstart
<= end
) {
2782 struct rb_node
*node
;
2785 if (dc
->len
< dpolicy
->granularity
)
2788 if (dc
->state
!= D_PREP
) {
2789 list_move_tail(&dc
->list
, &dcc
->fstrim_list
);
2793 err
= __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
2795 if (issued
>= dpolicy
->max_requests
) {
2796 start
= dc
->lstart
+ dc
->len
;
2799 __remove_discard_cmd(sbi
, dc
);
2801 blk_finish_plug(&plug
);
2802 mutex_unlock(&dcc
->cmd_lock
);
2803 trimmed
+= __wait_all_discard_cmd(sbi
, NULL
);
2804 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2808 node
= rb_next(&dc
->rb_node
);
2810 __remove_discard_cmd(sbi
, dc
);
2811 dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
2813 if (fatal_signal_pending(current
))
2817 blk_finish_plug(&plug
);
2818 mutex_unlock(&dcc
->cmd_lock
);
2823 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
2825 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
2826 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
2827 unsigned int start_segno
, end_segno
;
2828 block_t start_block
, end_block
;
2829 struct cp_control cpc
;
2830 struct discard_policy dpolicy
;
2831 unsigned long long trimmed
= 0;
2833 bool need_align
= test_opt(sbi
, LFS
) && __is_large_section(sbi
);
2835 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
2838 if (end
< MAIN_BLKADDR(sbi
))
2841 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
2842 f2fs_warn(sbi
, "Found FS corruption, run fsck to fix.");
2843 return -EFSCORRUPTED
;
2846 /* start/end segment number in main_area */
2847 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
2848 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
2849 GET_SEGNO(sbi
, end
);
2851 start_segno
= rounddown(start_segno
, sbi
->segs_per_sec
);
2852 end_segno
= roundup(end_segno
+ 1, sbi
->segs_per_sec
) - 1;
2855 cpc
.reason
= CP_DISCARD
;
2856 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
2857 cpc
.trim_start
= start_segno
;
2858 cpc
.trim_end
= end_segno
;
2860 if (sbi
->discard_blks
== 0)
2863 down_write(&sbi
->gc_lock
);
2864 err
= f2fs_write_checkpoint(sbi
, &cpc
);
2865 up_write(&sbi
->gc_lock
);
2870 * We filed discard candidates, but actually we don't need to wait for
2871 * all of them, since they'll be issued in idle time along with runtime
2872 * discard option. User configuration looks like using runtime discard
2873 * or periodic fstrim instead of it.
2875 if (f2fs_realtime_discard_enable(sbi
))
2878 start_block
= START_BLOCK(sbi
, start_segno
);
2879 end_block
= START_BLOCK(sbi
, end_segno
+ 1);
2881 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_FSTRIM
, cpc
.trim_minlen
);
2882 trimmed
= __issue_discard_cmd_range(sbi
, &dpolicy
,
2883 start_block
, end_block
);
2885 trimmed
+= __wait_discard_cmd_range(sbi
, &dpolicy
,
2886 start_block
, end_block
);
2889 range
->len
= F2FS_BLK_TO_BYTES(trimmed
);
2893 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
2895 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2896 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
2901 int f2fs_rw_hint_to_seg_type(enum rw_hint hint
)
2904 case WRITE_LIFE_SHORT
:
2905 return CURSEG_HOT_DATA
;
2906 case WRITE_LIFE_EXTREME
:
2907 return CURSEG_COLD_DATA
;
2909 return CURSEG_WARM_DATA
;
2913 /* This returns write hints for each segment type. This hints will be
2914 * passed down to block layer. There are mapping tables which depend on
2915 * the mount option 'whint_mode'.
2917 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2919 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2923 * META WRITE_LIFE_NOT_SET
2927 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2928 * extension list " "
2931 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2932 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2933 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2934 * WRITE_LIFE_NONE " "
2935 * WRITE_LIFE_MEDIUM " "
2936 * WRITE_LIFE_LONG " "
2939 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2940 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2941 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2942 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2943 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2944 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2946 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2950 * META WRITE_LIFE_MEDIUM;
2951 * HOT_NODE WRITE_LIFE_NOT_SET
2953 * COLD_NODE WRITE_LIFE_NONE
2954 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2955 * extension list " "
2958 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2959 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2960 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2961 * WRITE_LIFE_NONE " "
2962 * WRITE_LIFE_MEDIUM " "
2963 * WRITE_LIFE_LONG " "
2966 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2967 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2968 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2969 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2970 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2971 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2974 enum rw_hint
f2fs_io_type_to_rw_hint(struct f2fs_sb_info
*sbi
,
2975 enum page_type type
, enum temp_type temp
)
2977 if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_USER
) {
2980 return WRITE_LIFE_NOT_SET
;
2981 else if (temp
== HOT
)
2982 return WRITE_LIFE_SHORT
;
2983 else if (temp
== COLD
)
2984 return WRITE_LIFE_EXTREME
;
2986 return WRITE_LIFE_NOT_SET
;
2988 } else if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_FS
) {
2991 return WRITE_LIFE_LONG
;
2992 else if (temp
== HOT
)
2993 return WRITE_LIFE_SHORT
;
2994 else if (temp
== COLD
)
2995 return WRITE_LIFE_EXTREME
;
2996 } else if (type
== NODE
) {
2997 if (temp
== WARM
|| temp
== HOT
)
2998 return WRITE_LIFE_NOT_SET
;
2999 else if (temp
== COLD
)
3000 return WRITE_LIFE_NONE
;
3001 } else if (type
== META
) {
3002 return WRITE_LIFE_MEDIUM
;
3005 return WRITE_LIFE_NOT_SET
;
3008 static int __get_segment_type_2(struct f2fs_io_info
*fio
)
3010 if (fio
->type
== DATA
)
3011 return CURSEG_HOT_DATA
;
3013 return CURSEG_HOT_NODE
;
3016 static int __get_segment_type_4(struct f2fs_io_info
*fio
)
3018 if (fio
->type
== DATA
) {
3019 struct inode
*inode
= fio
->page
->mapping
->host
;
3021 if (S_ISDIR(inode
->i_mode
))
3022 return CURSEG_HOT_DATA
;
3024 return CURSEG_COLD_DATA
;
3026 if (IS_DNODE(fio
->page
) && is_cold_node(fio
->page
))
3027 return CURSEG_WARM_NODE
;
3029 return CURSEG_COLD_NODE
;
3033 static int __get_segment_type_6(struct f2fs_io_info
*fio
)
3035 if (fio
->type
== DATA
) {
3036 struct inode
*inode
= fio
->page
->mapping
->host
;
3038 if (is_cold_data(fio
->page
) || file_is_cold(inode
) ||
3039 f2fs_compressed_file(inode
))
3040 return CURSEG_COLD_DATA
;
3041 if (file_is_hot(inode
) ||
3042 is_inode_flag_set(inode
, FI_HOT_DATA
) ||
3043 f2fs_is_atomic_file(inode
) ||
3044 f2fs_is_volatile_file(inode
))
3045 return CURSEG_HOT_DATA
;
3046 return f2fs_rw_hint_to_seg_type(inode
->i_write_hint
);
3048 if (IS_DNODE(fio
->page
))
3049 return is_cold_node(fio
->page
) ? CURSEG_WARM_NODE
:
3051 return CURSEG_COLD_NODE
;
3055 static int __get_segment_type(struct f2fs_io_info
*fio
)
3059 switch (F2FS_OPTION(fio
->sbi
).active_logs
) {
3061 type
= __get_segment_type_2(fio
);
3064 type
= __get_segment_type_4(fio
);
3067 type
= __get_segment_type_6(fio
);
3070 f2fs_bug_on(fio
->sbi
, true);
3075 else if (IS_WARM(type
))
3082 void f2fs_allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
3083 block_t old_blkaddr
, block_t
*new_blkaddr
,
3084 struct f2fs_summary
*sum
, int type
,
3085 struct f2fs_io_info
*fio
, bool add_list
)
3087 struct sit_info
*sit_i
= SIT_I(sbi
);
3088 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
3089 bool put_pin_sem
= false;
3091 if (type
== CURSEG_COLD_DATA
) {
3092 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3093 if (down_read_trylock(&sbi
->pin_sem
)) {
3096 type
= CURSEG_WARM_DATA
;
3097 curseg
= CURSEG_I(sbi
, type
);
3099 } else if (type
== CURSEG_COLD_DATA_PINNED
) {
3100 type
= CURSEG_COLD_DATA
;
3103 down_read(&SM_I(sbi
)->curseg_lock
);
3105 mutex_lock(&curseg
->curseg_mutex
);
3106 down_write(&sit_i
->sentry_lock
);
3108 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
3110 f2fs_wait_discard_bio(sbi
, *new_blkaddr
);
3113 * __add_sum_entry should be resided under the curseg_mutex
3114 * because, this function updates a summary entry in the
3115 * current summary block.
3117 __add_sum_entry(sbi
, type
, sum
);
3119 __refresh_next_blkoff(sbi
, curseg
);
3121 stat_inc_block_count(sbi
, curseg
);
3124 * SIT information should be updated before segment allocation,
3125 * since SSR needs latest valid block information.
3127 update_sit_entry(sbi
, *new_blkaddr
, 1);
3128 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
3129 update_sit_entry(sbi
, old_blkaddr
, -1);
3131 if (!__has_curseg_space(sbi
, type
))
3132 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
3135 * segment dirty status should be updated after segment allocation,
3136 * so we just need to update status only one time after previous
3137 * segment being closed.
3139 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
3140 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, *new_blkaddr
));
3142 up_write(&sit_i
->sentry_lock
);
3144 if (page
&& IS_NODESEG(type
)) {
3145 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
3147 f2fs_inode_chksum_set(sbi
, page
);
3150 if (F2FS_IO_ALIGNED(sbi
))
3154 struct f2fs_bio_info
*io
;
3156 INIT_LIST_HEAD(&fio
->list
);
3157 fio
->in_list
= true;
3158 io
= sbi
->write_io
[fio
->type
] + fio
->temp
;
3159 spin_lock(&io
->io_lock
);
3160 list_add_tail(&fio
->list
, &io
->io_list
);
3161 spin_unlock(&io
->io_lock
);
3164 mutex_unlock(&curseg
->curseg_mutex
);
3166 up_read(&SM_I(sbi
)->curseg_lock
);
3169 up_read(&sbi
->pin_sem
);
3172 static void update_device_state(struct f2fs_io_info
*fio
)
3174 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3175 unsigned int devidx
;
3177 if (!f2fs_is_multi_device(sbi
))
3180 devidx
= f2fs_target_device_index(sbi
, fio
->new_blkaddr
);
3182 /* update device state for fsync */
3183 f2fs_set_dirty_device(sbi
, fio
->ino
, devidx
, FLUSH_INO
);
3185 /* update device state for checkpoint */
3186 if (!f2fs_test_bit(devidx
, (char *)&sbi
->dirty_device
)) {
3187 spin_lock(&sbi
->dev_lock
);
3188 f2fs_set_bit(devidx
, (char *)&sbi
->dirty_device
);
3189 spin_unlock(&sbi
->dev_lock
);
3193 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
3195 int type
= __get_segment_type(fio
);
3196 bool keep_order
= (test_opt(fio
->sbi
, LFS
) && type
== CURSEG_COLD_DATA
);
3199 down_read(&fio
->sbi
->io_order_lock
);
3201 f2fs_allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
3202 &fio
->new_blkaddr
, sum
, type
, fio
, true);
3203 if (GET_SEGNO(fio
->sbi
, fio
->old_blkaddr
) != NULL_SEGNO
)
3204 invalidate_mapping_pages(META_MAPPING(fio
->sbi
),
3205 fio
->old_blkaddr
, fio
->old_blkaddr
);
3207 /* writeout dirty page into bdev */
3208 f2fs_submit_page_write(fio
);
3210 fio
->old_blkaddr
= fio
->new_blkaddr
;
3214 update_device_state(fio
);
3217 up_read(&fio
->sbi
->io_order_lock
);
3220 void f2fs_do_write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
3221 enum iostat_type io_type
)
3223 struct f2fs_io_info fio
= {
3228 .op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
,
3229 .old_blkaddr
= page
->index
,
3230 .new_blkaddr
= page
->index
,
3232 .encrypted_page
= NULL
,
3236 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
3237 fio
.op_flags
&= ~REQ_META
;
3239 set_page_writeback(page
);
3240 ClearPageError(page
);
3241 f2fs_submit_page_write(&fio
);
3243 stat_inc_meta_count(sbi
, page
->index
);
3244 f2fs_update_iostat(sbi
, io_type
, F2FS_BLKSIZE
);
3247 void f2fs_do_write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
3249 struct f2fs_summary sum
;
3251 set_summary(&sum
, nid
, 0, 0);
3252 do_write_page(&sum
, fio
);
3254 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3257 void f2fs_outplace_write_data(struct dnode_of_data
*dn
,
3258 struct f2fs_io_info
*fio
)
3260 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3261 struct f2fs_summary sum
;
3263 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
3264 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, fio
->version
);
3265 do_write_page(&sum
, fio
);
3266 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
3268 f2fs_update_iostat(sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3271 int f2fs_inplace_write_data(struct f2fs_io_info
*fio
)
3274 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3277 fio
->new_blkaddr
= fio
->old_blkaddr
;
3278 /* i/o temperature is needed for passing down write hints */
3279 __get_segment_type(fio
);
3281 segno
= GET_SEGNO(sbi
, fio
->new_blkaddr
);
3283 if (!IS_DATASEG(get_seg_entry(sbi
, segno
)->type
)) {
3284 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
3285 f2fs_warn(sbi
, "%s: incorrect segment(%u) type, run fsck to fix.",
3287 return -EFSCORRUPTED
;
3290 stat_inc_inplace_blocks(fio
->sbi
);
3292 if (fio
->bio
&& !(SM_I(sbi
)->ipu_policy
& (1 << F2FS_IPU_NOCACHE
)))
3293 err
= f2fs_merge_page_bio(fio
);
3295 err
= f2fs_submit_page_bio(fio
);
3297 update_device_state(fio
);
3298 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3304 static inline int __f2fs_get_curseg(struct f2fs_sb_info
*sbi
,
3309 for (i
= CURSEG_HOT_DATA
; i
< NO_CHECK_TYPE
; i
++) {
3310 if (CURSEG_I(sbi
, i
)->segno
== segno
)
3316 void f2fs_do_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
3317 block_t old_blkaddr
, block_t new_blkaddr
,
3318 bool recover_curseg
, bool recover_newaddr
)
3320 struct sit_info
*sit_i
= SIT_I(sbi
);
3321 struct curseg_info
*curseg
;
3322 unsigned int segno
, old_cursegno
;
3323 struct seg_entry
*se
;
3325 unsigned short old_blkoff
;
3327 segno
= GET_SEGNO(sbi
, new_blkaddr
);
3328 se
= get_seg_entry(sbi
, segno
);
3331 down_write(&SM_I(sbi
)->curseg_lock
);
3333 if (!recover_curseg
) {
3334 /* for recovery flow */
3335 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
3336 if (old_blkaddr
== NULL_ADDR
)
3337 type
= CURSEG_COLD_DATA
;
3339 type
= CURSEG_WARM_DATA
;
3342 if (IS_CURSEG(sbi
, segno
)) {
3343 /* se->type is volatile as SSR allocation */
3344 type
= __f2fs_get_curseg(sbi
, segno
);
3345 f2fs_bug_on(sbi
, type
== NO_CHECK_TYPE
);
3347 type
= CURSEG_WARM_DATA
;
3351 f2fs_bug_on(sbi
, !IS_DATASEG(type
));
3352 curseg
= CURSEG_I(sbi
, type
);
3354 mutex_lock(&curseg
->curseg_mutex
);
3355 down_write(&sit_i
->sentry_lock
);
3357 old_cursegno
= curseg
->segno
;
3358 old_blkoff
= curseg
->next_blkoff
;
3360 /* change the current segment */
3361 if (segno
!= curseg
->segno
) {
3362 curseg
->next_segno
= segno
;
3363 change_curseg(sbi
, type
);
3366 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
3367 __add_sum_entry(sbi
, type
, sum
);
3369 if (!recover_curseg
|| recover_newaddr
)
3370 update_sit_entry(sbi
, new_blkaddr
, 1);
3371 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
) {
3372 invalidate_mapping_pages(META_MAPPING(sbi
),
3373 old_blkaddr
, old_blkaddr
);
3374 update_sit_entry(sbi
, old_blkaddr
, -1);
3377 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
3378 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
3380 locate_dirty_segment(sbi
, old_cursegno
);
3382 if (recover_curseg
) {
3383 if (old_cursegno
!= curseg
->segno
) {
3384 curseg
->next_segno
= old_cursegno
;
3385 change_curseg(sbi
, type
);
3387 curseg
->next_blkoff
= old_blkoff
;
3390 up_write(&sit_i
->sentry_lock
);
3391 mutex_unlock(&curseg
->curseg_mutex
);
3392 up_write(&SM_I(sbi
)->curseg_lock
);
3395 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
3396 block_t old_addr
, block_t new_addr
,
3397 unsigned char version
, bool recover_curseg
,
3398 bool recover_newaddr
)
3400 struct f2fs_summary sum
;
3402 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
3404 f2fs_do_replace_block(sbi
, &sum
, old_addr
, new_addr
,
3405 recover_curseg
, recover_newaddr
);
3407 f2fs_update_data_blkaddr(dn
, new_addr
);
3410 void f2fs_wait_on_page_writeback(struct page
*page
,
3411 enum page_type type
, bool ordered
, bool locked
)
3413 if (PageWriteback(page
)) {
3414 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
3416 /* submit cached LFS IO */
3417 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, type
);
3418 /* sbumit cached IPU IO */
3419 f2fs_submit_merged_ipu_write(sbi
, NULL
, page
);
3421 wait_on_page_writeback(page
);
3422 f2fs_bug_on(sbi
, locked
&& PageWriteback(page
));
3424 wait_for_stable_page(page
);
3429 void f2fs_wait_on_block_writeback(struct inode
*inode
, block_t blkaddr
)
3431 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
3434 if (!f2fs_post_read_required(inode
))
3437 if (!__is_valid_data_blkaddr(blkaddr
))
3440 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
3442 f2fs_wait_on_page_writeback(cpage
, DATA
, true, true);
3443 f2fs_put_page(cpage
, 1);
3447 void f2fs_wait_on_block_writeback_range(struct inode
*inode
, block_t blkaddr
,
3452 for (i
= 0; i
< len
; i
++)
3453 f2fs_wait_on_block_writeback(inode
, blkaddr
+ i
);
3456 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
3458 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
3459 struct curseg_info
*seg_i
;
3460 unsigned char *kaddr
;
3465 start
= start_sum_block(sbi
);
3467 page
= f2fs_get_meta_page(sbi
, start
++);
3469 return PTR_ERR(page
);
3470 kaddr
= (unsigned char *)page_address(page
);
3472 /* Step 1: restore nat cache */
3473 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
3474 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
3476 /* Step 2: restore sit cache */
3477 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3478 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
3479 offset
= 2 * SUM_JOURNAL_SIZE
;
3481 /* Step 3: restore summary entries */
3482 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
3483 unsigned short blk_off
;
3486 seg_i
= CURSEG_I(sbi
, i
);
3487 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
3488 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
3489 seg_i
->next_segno
= segno
;
3490 reset_curseg(sbi
, i
, 0);
3491 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
3492 seg_i
->next_blkoff
= blk_off
;
3494 if (seg_i
->alloc_type
== SSR
)
3495 blk_off
= sbi
->blocks_per_seg
;
3497 for (j
= 0; j
< blk_off
; j
++) {
3498 struct f2fs_summary
*s
;
3499 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
3500 seg_i
->sum_blk
->entries
[j
] = *s
;
3501 offset
+= SUMMARY_SIZE
;
3502 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
3506 f2fs_put_page(page
, 1);
3509 page
= f2fs_get_meta_page(sbi
, start
++);
3511 return PTR_ERR(page
);
3512 kaddr
= (unsigned char *)page_address(page
);
3516 f2fs_put_page(page
, 1);
3520 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
3522 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
3523 struct f2fs_summary_block
*sum
;
3524 struct curseg_info
*curseg
;
3526 unsigned short blk_off
;
3527 unsigned int segno
= 0;
3528 block_t blk_addr
= 0;
3531 /* get segment number and block addr */
3532 if (IS_DATASEG(type
)) {
3533 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
3534 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
3536 if (__exist_node_summaries(sbi
))
3537 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
3539 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
3541 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
3543 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
3545 if (__exist_node_summaries(sbi
))
3546 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
3547 type
- CURSEG_HOT_NODE
);
3549 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
3552 new = f2fs_get_meta_page(sbi
, blk_addr
);
3554 return PTR_ERR(new);
3555 sum
= (struct f2fs_summary_block
*)page_address(new);
3557 if (IS_NODESEG(type
)) {
3558 if (__exist_node_summaries(sbi
)) {
3559 struct f2fs_summary
*ns
= &sum
->entries
[0];
3561 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
3563 ns
->ofs_in_node
= 0;
3566 err
= f2fs_restore_node_summary(sbi
, segno
, sum
);
3572 /* set uncompleted segment to curseg */
3573 curseg
= CURSEG_I(sbi
, type
);
3574 mutex_lock(&curseg
->curseg_mutex
);
3576 /* update journal info */
3577 down_write(&curseg
->journal_rwsem
);
3578 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
3579 up_write(&curseg
->journal_rwsem
);
3581 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
3582 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
3583 curseg
->next_segno
= segno
;
3584 reset_curseg(sbi
, type
, 0);
3585 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
3586 curseg
->next_blkoff
= blk_off
;
3587 mutex_unlock(&curseg
->curseg_mutex
);
3589 f2fs_put_page(new, 1);
3593 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
3595 struct f2fs_journal
*sit_j
= CURSEG_I(sbi
, CURSEG_COLD_DATA
)->journal
;
3596 struct f2fs_journal
*nat_j
= CURSEG_I(sbi
, CURSEG_HOT_DATA
)->journal
;
3597 int type
= CURSEG_HOT_DATA
;
3600 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
)) {
3601 int npages
= f2fs_npages_for_summary_flush(sbi
, true);
3604 f2fs_ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
3607 /* restore for compacted data summary */
3608 err
= read_compacted_summaries(sbi
);
3611 type
= CURSEG_HOT_NODE
;
3614 if (__exist_node_summaries(sbi
))
3615 f2fs_ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
3616 NR_CURSEG_TYPE
- type
, META_CP
, true);
3618 for (; type
<= CURSEG_COLD_NODE
; type
++) {
3619 err
= read_normal_summaries(sbi
, type
);
3624 /* sanity check for summary blocks */
3625 if (nats_in_cursum(nat_j
) > NAT_JOURNAL_ENTRIES
||
3626 sits_in_cursum(sit_j
) > SIT_JOURNAL_ENTRIES
) {
3627 f2fs_err(sbi
, "invalid journal entries nats %u sits %u\n",
3628 nats_in_cursum(nat_j
), sits_in_cursum(sit_j
));
3635 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
3638 unsigned char *kaddr
;
3639 struct f2fs_summary
*summary
;
3640 struct curseg_info
*seg_i
;
3641 int written_size
= 0;
3644 page
= f2fs_grab_meta_page(sbi
, blkaddr
++);
3645 kaddr
= (unsigned char *)page_address(page
);
3646 memset(kaddr
, 0, PAGE_SIZE
);
3648 /* Step 1: write nat cache */
3649 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
3650 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3651 written_size
+= SUM_JOURNAL_SIZE
;
3653 /* Step 2: write sit cache */
3654 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3655 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3656 written_size
+= SUM_JOURNAL_SIZE
;
3658 /* Step 3: write summary entries */
3659 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
3660 unsigned short blkoff
;
3661 seg_i
= CURSEG_I(sbi
, i
);
3662 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
3663 blkoff
= sbi
->blocks_per_seg
;
3665 blkoff
= curseg_blkoff(sbi
, i
);
3667 for (j
= 0; j
< blkoff
; j
++) {
3669 page
= f2fs_grab_meta_page(sbi
, blkaddr
++);
3670 kaddr
= (unsigned char *)page_address(page
);
3671 memset(kaddr
, 0, PAGE_SIZE
);
3674 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
3675 *summary
= seg_i
->sum_blk
->entries
[j
];
3676 written_size
+= SUMMARY_SIZE
;
3678 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
3682 set_page_dirty(page
);
3683 f2fs_put_page(page
, 1);
3688 set_page_dirty(page
);
3689 f2fs_put_page(page
, 1);
3693 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
3694 block_t blkaddr
, int type
)
3697 if (IS_DATASEG(type
))
3698 end
= type
+ NR_CURSEG_DATA_TYPE
;
3700 end
= type
+ NR_CURSEG_NODE_TYPE
;
3702 for (i
= type
; i
< end
; i
++)
3703 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
3706 void f2fs_write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
3708 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
))
3709 write_compacted_summaries(sbi
, start_blk
);
3711 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
3714 void f2fs_write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
3716 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
3719 int f2fs_lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
3720 unsigned int val
, int alloc
)
3724 if (type
== NAT_JOURNAL
) {
3725 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
3726 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
3729 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
3730 return update_nats_in_cursum(journal
, 1);
3731 } else if (type
== SIT_JOURNAL
) {
3732 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
3733 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
3735 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
3736 return update_sits_in_cursum(journal
, 1);
3741 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
3744 return f2fs_get_meta_page_nofail(sbi
, current_sit_addr(sbi
, segno
));
3747 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
3750 struct sit_info
*sit_i
= SIT_I(sbi
);
3752 pgoff_t src_off
, dst_off
;
3754 src_off
= current_sit_addr(sbi
, start
);
3755 dst_off
= next_sit_addr(sbi
, src_off
);
3757 page
= f2fs_grab_meta_page(sbi
, dst_off
);
3758 seg_info_to_sit_page(sbi
, page
, start
);
3760 set_page_dirty(page
);
3761 set_to_next_sit(sit_i
, start
);
3766 static struct sit_entry_set
*grab_sit_entry_set(void)
3768 struct sit_entry_set
*ses
=
3769 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
3772 INIT_LIST_HEAD(&ses
->set_list
);
3776 static void release_sit_entry_set(struct sit_entry_set
*ses
)
3778 list_del(&ses
->set_list
);
3779 kmem_cache_free(sit_entry_set_slab
, ses
);
3782 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
3783 struct list_head
*head
)
3785 struct sit_entry_set
*next
= ses
;
3787 if (list_is_last(&ses
->set_list
, head
))
3790 list_for_each_entry_continue(next
, head
, set_list
)
3791 if (ses
->entry_cnt
<= next
->entry_cnt
)
3794 list_move_tail(&ses
->set_list
, &next
->set_list
);
3797 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
3799 struct sit_entry_set
*ses
;
3800 unsigned int start_segno
= START_SEGNO(segno
);
3802 list_for_each_entry(ses
, head
, set_list
) {
3803 if (ses
->start_segno
== start_segno
) {
3805 adjust_sit_entry_set(ses
, head
);
3810 ses
= grab_sit_entry_set();
3812 ses
->start_segno
= start_segno
;
3814 list_add(&ses
->set_list
, head
);
3817 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
3819 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
3820 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
3821 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
3824 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
3825 add_sit_entry(segno
, set_list
);
3828 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
3830 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3831 struct f2fs_journal
*journal
= curseg
->journal
;
3834 down_write(&curseg
->journal_rwsem
);
3835 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
3839 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
3840 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
3843 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
3845 update_sits_in_cursum(journal
, -i
);
3846 up_write(&curseg
->journal_rwsem
);
3850 * CP calls this function, which flushes SIT entries including sit_journal,
3851 * and moves prefree segs to free segs.
3853 void f2fs_flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
3855 struct sit_info
*sit_i
= SIT_I(sbi
);
3856 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
3857 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3858 struct f2fs_journal
*journal
= curseg
->journal
;
3859 struct sit_entry_set
*ses
, *tmp
;
3860 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
3861 bool to_journal
= !is_sbi_flag_set(sbi
, SBI_IS_RESIZEFS
);
3862 struct seg_entry
*se
;
3864 down_write(&sit_i
->sentry_lock
);
3866 if (!sit_i
->dirty_sentries
)
3870 * add and account sit entries of dirty bitmap in sit entry
3873 add_sits_in_set(sbi
);
3876 * if there are no enough space in journal to store dirty sit
3877 * entries, remove all entries from journal and add and account
3878 * them in sit entry set.
3880 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
) ||
3882 remove_sits_in_journal(sbi
);
3885 * there are two steps to flush sit entries:
3886 * #1, flush sit entries to journal in current cold data summary block.
3887 * #2, flush sit entries to sit page.
3889 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
3890 struct page
*page
= NULL
;
3891 struct f2fs_sit_block
*raw_sit
= NULL
;
3892 unsigned int start_segno
= ses
->start_segno
;
3893 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
3894 (unsigned long)MAIN_SEGS(sbi
));
3895 unsigned int segno
= start_segno
;
3898 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
3902 down_write(&curseg
->journal_rwsem
);
3904 page
= get_next_sit_page(sbi
, start_segno
);
3905 raw_sit
= page_address(page
);
3908 /* flush dirty sit entries in region of current sit set */
3909 for_each_set_bit_from(segno
, bitmap
, end
) {
3910 int offset
, sit_offset
;
3912 se
= get_seg_entry(sbi
, segno
);
3913 #ifdef CONFIG_F2FS_CHECK_FS
3914 if (memcmp(se
->cur_valid_map
, se
->cur_valid_map_mir
,
3915 SIT_VBLOCK_MAP_SIZE
))
3916 f2fs_bug_on(sbi
, 1);
3919 /* add discard candidates */
3920 if (!(cpc
->reason
& CP_DISCARD
)) {
3921 cpc
->trim_start
= segno
;
3922 add_discard_addrs(sbi
, cpc
, false);
3926 offset
= f2fs_lookup_journal_in_cursum(journal
,
3927 SIT_JOURNAL
, segno
, 1);
3928 f2fs_bug_on(sbi
, offset
< 0);
3929 segno_in_journal(journal
, offset
) =
3931 seg_info_to_raw_sit(se
,
3932 &sit_in_journal(journal
, offset
));
3933 check_block_count(sbi
, segno
,
3934 &sit_in_journal(journal
, offset
));
3936 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
3937 seg_info_to_raw_sit(se
,
3938 &raw_sit
->entries
[sit_offset
]);
3939 check_block_count(sbi
, segno
,
3940 &raw_sit
->entries
[sit_offset
]);
3943 __clear_bit(segno
, bitmap
);
3944 sit_i
->dirty_sentries
--;
3949 up_write(&curseg
->journal_rwsem
);
3951 f2fs_put_page(page
, 1);
3953 f2fs_bug_on(sbi
, ses
->entry_cnt
);
3954 release_sit_entry_set(ses
);
3957 f2fs_bug_on(sbi
, !list_empty(head
));
3958 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
3960 if (cpc
->reason
& CP_DISCARD
) {
3961 __u64 trim_start
= cpc
->trim_start
;
3963 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
3964 add_discard_addrs(sbi
, cpc
, false);
3966 cpc
->trim_start
= trim_start
;
3968 up_write(&sit_i
->sentry_lock
);
3970 set_prefree_as_free_segments(sbi
);
3973 static int build_sit_info(struct f2fs_sb_info
*sbi
)
3975 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
3976 struct sit_info
*sit_i
;
3977 unsigned int sit_segs
, start
;
3978 char *src_bitmap
, *bitmap
;
3979 unsigned int bitmap_size
, main_bitmap_size
, sit_bitmap_size
;
3981 /* allocate memory for SIT information */
3982 sit_i
= f2fs_kzalloc(sbi
, sizeof(struct sit_info
), GFP_KERNEL
);
3986 SM_I(sbi
)->sit_info
= sit_i
;
3989 f2fs_kvzalloc(sbi
, array_size(sizeof(struct seg_entry
),
3992 if (!sit_i
->sentries
)
3995 main_bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
3996 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(sbi
, main_bitmap_size
,
3998 if (!sit_i
->dirty_sentries_bitmap
)
4001 #ifdef CONFIG_F2FS_CHECK_FS
4002 bitmap_size
= MAIN_SEGS(sbi
) * SIT_VBLOCK_MAP_SIZE
* 4;
4004 bitmap_size
= MAIN_SEGS(sbi
) * SIT_VBLOCK_MAP_SIZE
* 3;
4006 sit_i
->bitmap
= f2fs_kvzalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4010 bitmap
= sit_i
->bitmap
;
4012 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
4013 sit_i
->sentries
[start
].cur_valid_map
= bitmap
;
4014 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4016 sit_i
->sentries
[start
].ckpt_valid_map
= bitmap
;
4017 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4019 #ifdef CONFIG_F2FS_CHECK_FS
4020 sit_i
->sentries
[start
].cur_valid_map_mir
= bitmap
;
4021 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4024 sit_i
->sentries
[start
].discard_map
= bitmap
;
4025 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4028 sit_i
->tmp_map
= f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
4029 if (!sit_i
->tmp_map
)
4032 if (__is_large_section(sbi
)) {
4033 sit_i
->sec_entries
=
4034 f2fs_kvzalloc(sbi
, array_size(sizeof(struct sec_entry
),
4037 if (!sit_i
->sec_entries
)
4041 /* get information related with SIT */
4042 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
4044 /* setup SIT bitmap from ckeckpoint pack */
4045 sit_bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
4046 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
4048 sit_i
->sit_bitmap
= kmemdup(src_bitmap
, sit_bitmap_size
, GFP_KERNEL
);
4049 if (!sit_i
->sit_bitmap
)
4052 #ifdef CONFIG_F2FS_CHECK_FS
4053 sit_i
->sit_bitmap_mir
= kmemdup(src_bitmap
,
4054 sit_bitmap_size
, GFP_KERNEL
);
4055 if (!sit_i
->sit_bitmap_mir
)
4058 sit_i
->invalid_segmap
= f2fs_kvzalloc(sbi
,
4059 main_bitmap_size
, GFP_KERNEL
);
4060 if (!sit_i
->invalid_segmap
)
4064 /* init SIT information */
4065 sit_i
->s_ops
= &default_salloc_ops
;
4067 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
4068 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
4069 sit_i
->written_valid_blocks
= 0;
4070 sit_i
->bitmap_size
= sit_bitmap_size
;
4071 sit_i
->dirty_sentries
= 0;
4072 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
4073 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
4074 sit_i
->mounted_time
= ktime_get_real_seconds();
4075 init_rwsem(&sit_i
->sentry_lock
);
4079 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
4081 struct free_segmap_info
*free_i
;
4082 unsigned int bitmap_size
, sec_bitmap_size
;
4084 /* allocate memory for free segmap information */
4085 free_i
= f2fs_kzalloc(sbi
, sizeof(struct free_segmap_info
), GFP_KERNEL
);
4089 SM_I(sbi
)->free_info
= free_i
;
4091 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
4092 free_i
->free_segmap
= f2fs_kvmalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4093 if (!free_i
->free_segmap
)
4096 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
4097 free_i
->free_secmap
= f2fs_kvmalloc(sbi
, sec_bitmap_size
, GFP_KERNEL
);
4098 if (!free_i
->free_secmap
)
4101 /* set all segments as dirty temporarily */
4102 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
4103 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
4105 /* init free segmap information */
4106 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
4107 free_i
->free_segments
= 0;
4108 free_i
->free_sections
= 0;
4109 spin_lock_init(&free_i
->segmap_lock
);
4113 static int build_curseg(struct f2fs_sb_info
*sbi
)
4115 struct curseg_info
*array
;
4118 array
= f2fs_kzalloc(sbi
, array_size(NR_CURSEG_TYPE
, sizeof(*array
)),
4123 SM_I(sbi
)->curseg_array
= array
;
4125 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
4126 mutex_init(&array
[i
].curseg_mutex
);
4127 array
[i
].sum_blk
= f2fs_kzalloc(sbi
, PAGE_SIZE
, GFP_KERNEL
);
4128 if (!array
[i
].sum_blk
)
4130 init_rwsem(&array
[i
].journal_rwsem
);
4131 array
[i
].journal
= f2fs_kzalloc(sbi
,
4132 sizeof(struct f2fs_journal
), GFP_KERNEL
);
4133 if (!array
[i
].journal
)
4135 array
[i
].segno
= NULL_SEGNO
;
4136 array
[i
].next_blkoff
= 0;
4138 return restore_curseg_summaries(sbi
);
4141 static int build_sit_entries(struct f2fs_sb_info
*sbi
)
4143 struct sit_info
*sit_i
= SIT_I(sbi
);
4144 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
4145 struct f2fs_journal
*journal
= curseg
->journal
;
4146 struct seg_entry
*se
;
4147 struct f2fs_sit_entry sit
;
4148 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
4149 unsigned int i
, start
, end
;
4150 unsigned int readed
, start_blk
= 0;
4152 block_t total_node_blocks
= 0;
4155 readed
= f2fs_ra_meta_pages(sbi
, start_blk
, BIO_MAX_PAGES
,
4158 start
= start_blk
* sit_i
->sents_per_block
;
4159 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
4161 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
4162 struct f2fs_sit_block
*sit_blk
;
4165 se
= &sit_i
->sentries
[start
];
4166 page
= get_current_sit_page(sbi
, start
);
4168 return PTR_ERR(page
);
4169 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
4170 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
4171 f2fs_put_page(page
, 1);
4173 err
= check_block_count(sbi
, start
, &sit
);
4176 seg_info_from_raw_sit(se
, &sit
);
4177 if (IS_NODESEG(se
->type
))
4178 total_node_blocks
+= se
->valid_blocks
;
4180 /* build discard map only one time */
4181 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
4182 memset(se
->discard_map
, 0xff,
4183 SIT_VBLOCK_MAP_SIZE
);
4185 memcpy(se
->discard_map
,
4187 SIT_VBLOCK_MAP_SIZE
);
4188 sbi
->discard_blks
+=
4189 sbi
->blocks_per_seg
-
4193 if (__is_large_section(sbi
))
4194 get_sec_entry(sbi
, start
)->valid_blocks
+=
4197 start_blk
+= readed
;
4198 } while (start_blk
< sit_blk_cnt
);
4200 down_read(&curseg
->journal_rwsem
);
4201 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
4202 unsigned int old_valid_blocks
;
4204 start
= le32_to_cpu(segno_in_journal(journal
, i
));
4205 if (start
>= MAIN_SEGS(sbi
)) {
4206 f2fs_err(sbi
, "Wrong journal entry on segno %u",
4208 err
= -EFSCORRUPTED
;
4212 se
= &sit_i
->sentries
[start
];
4213 sit
= sit_in_journal(journal
, i
);
4215 old_valid_blocks
= se
->valid_blocks
;
4216 if (IS_NODESEG(se
->type
))
4217 total_node_blocks
-= old_valid_blocks
;
4219 err
= check_block_count(sbi
, start
, &sit
);
4222 seg_info_from_raw_sit(se
, &sit
);
4223 if (IS_NODESEG(se
->type
))
4224 total_node_blocks
+= se
->valid_blocks
;
4226 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
4227 memset(se
->discard_map
, 0xff, SIT_VBLOCK_MAP_SIZE
);
4229 memcpy(se
->discard_map
, se
->cur_valid_map
,
4230 SIT_VBLOCK_MAP_SIZE
);
4231 sbi
->discard_blks
+= old_valid_blocks
;
4232 sbi
->discard_blks
-= se
->valid_blocks
;
4235 if (__is_large_section(sbi
)) {
4236 get_sec_entry(sbi
, start
)->valid_blocks
+=
4238 get_sec_entry(sbi
, start
)->valid_blocks
-=
4242 up_read(&curseg
->journal_rwsem
);
4244 if (!err
&& total_node_blocks
!= valid_node_count(sbi
)) {
4245 f2fs_err(sbi
, "SIT is corrupted node# %u vs %u",
4246 total_node_blocks
, valid_node_count(sbi
));
4247 err
= -EFSCORRUPTED
;
4253 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
4258 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
4259 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
4260 if (!sentry
->valid_blocks
)
4261 __set_free(sbi
, start
);
4263 SIT_I(sbi
)->written_valid_blocks
+=
4264 sentry
->valid_blocks
;
4267 /* set use the current segments */
4268 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
4269 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
4270 __set_test_and_inuse(sbi
, curseg_t
->segno
);
4274 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
4276 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4277 struct free_segmap_info
*free_i
= FREE_I(sbi
);
4278 unsigned int segno
= 0, offset
= 0;
4279 unsigned short valid_blocks
;
4282 /* find dirty segment based on free segmap */
4283 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
4284 if (segno
>= MAIN_SEGS(sbi
))
4287 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
4288 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
4290 if (valid_blocks
> sbi
->blocks_per_seg
) {
4291 f2fs_bug_on(sbi
, 1);
4294 mutex_lock(&dirty_i
->seglist_lock
);
4295 __locate_dirty_segment(sbi
, segno
, DIRTY
);
4296 mutex_unlock(&dirty_i
->seglist_lock
);
4300 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
4302 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4303 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
4305 dirty_i
->victim_secmap
= f2fs_kvzalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4306 if (!dirty_i
->victim_secmap
)
4311 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
4313 struct dirty_seglist_info
*dirty_i
;
4314 unsigned int bitmap_size
, i
;
4316 /* allocate memory for dirty segments list information */
4317 dirty_i
= f2fs_kzalloc(sbi
, sizeof(struct dirty_seglist_info
),
4322 SM_I(sbi
)->dirty_info
= dirty_i
;
4323 mutex_init(&dirty_i
->seglist_lock
);
4325 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
4327 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
4328 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(sbi
, bitmap_size
,
4330 if (!dirty_i
->dirty_segmap
[i
])
4334 init_dirty_segmap(sbi
);
4335 return init_victim_secmap(sbi
);
4338 static int sanity_check_curseg(struct f2fs_sb_info
*sbi
)
4343 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4344 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4346 for (i
= 0; i
< NO_CHECK_TYPE
; i
++) {
4347 struct curseg_info
*curseg
= CURSEG_I(sbi
, i
);
4348 struct seg_entry
*se
= get_seg_entry(sbi
, curseg
->segno
);
4349 unsigned int blkofs
= curseg
->next_blkoff
;
4351 if (f2fs_test_bit(blkofs
, se
->cur_valid_map
))
4354 if (curseg
->alloc_type
== SSR
)
4357 for (blkofs
+= 1; blkofs
< sbi
->blocks_per_seg
; blkofs
++) {
4358 if (!f2fs_test_bit(blkofs
, se
->cur_valid_map
))
4362 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4363 i
, curseg
->segno
, curseg
->alloc_type
,
4364 curseg
->next_blkoff
, blkofs
);
4365 return -EFSCORRUPTED
;
4371 #ifdef CONFIG_BLK_DEV_ZONED
4373 static int check_zone_write_pointer(struct f2fs_sb_info
*sbi
,
4374 struct f2fs_dev_info
*fdev
,
4375 struct blk_zone
*zone
)
4377 unsigned int wp_segno
, wp_blkoff
, zone_secno
, zone_segno
, segno
;
4378 block_t zone_block
, wp_block
, last_valid_block
;
4379 unsigned int log_sectors_per_block
= sbi
->log_blocksize
- SECTOR_SHIFT
;
4381 struct seg_entry
*se
;
4383 if (zone
->type
!= BLK_ZONE_TYPE_SEQWRITE_REQ
)
4386 wp_block
= fdev
->start_blk
+ (zone
->wp
>> log_sectors_per_block
);
4387 wp_segno
= GET_SEGNO(sbi
, wp_block
);
4388 wp_blkoff
= wp_block
- START_BLOCK(sbi
, wp_segno
);
4389 zone_block
= fdev
->start_blk
+ (zone
->start
>> log_sectors_per_block
);
4390 zone_segno
= GET_SEGNO(sbi
, zone_block
);
4391 zone_secno
= GET_SEC_FROM_SEG(sbi
, zone_segno
);
4393 if (zone_segno
>= MAIN_SEGS(sbi
))
4397 * Skip check of zones cursegs point to, since
4398 * fix_curseg_write_pointer() checks them.
4400 for (i
= 0; i
< NO_CHECK_TYPE
; i
++)
4401 if (zone_secno
== GET_SEC_FROM_SEG(sbi
,
4402 CURSEG_I(sbi
, i
)->segno
))
4406 * Get last valid block of the zone.
4408 last_valid_block
= zone_block
- 1;
4409 for (s
= sbi
->segs_per_sec
- 1; s
>= 0; s
--) {
4410 segno
= zone_segno
+ s
;
4411 se
= get_seg_entry(sbi
, segno
);
4412 for (b
= sbi
->blocks_per_seg
- 1; b
>= 0; b
--)
4413 if (f2fs_test_bit(b
, se
->cur_valid_map
)) {
4414 last_valid_block
= START_BLOCK(sbi
, segno
) + b
;
4417 if (last_valid_block
>= zone_block
)
4422 * If last valid block is beyond the write pointer, report the
4423 * inconsistency. This inconsistency does not cause write error
4424 * because the zone will not be selected for write operation until
4425 * it get discarded. Just report it.
4427 if (last_valid_block
>= wp_block
) {
4428 f2fs_notice(sbi
, "Valid block beyond write pointer: "
4429 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4430 GET_SEGNO(sbi
, last_valid_block
),
4431 GET_BLKOFF_FROM_SEG0(sbi
, last_valid_block
),
4432 wp_segno
, wp_blkoff
);
4437 * If there is no valid block in the zone and if write pointer is
4438 * not at zone start, reset the write pointer.
4440 if (last_valid_block
+ 1 == zone_block
&& zone
->wp
!= zone
->start
) {
4442 "Zone without valid block has non-zero write "
4443 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4444 wp_segno
, wp_blkoff
);
4445 ret
= __f2fs_issue_discard_zone(sbi
, fdev
->bdev
, zone_block
,
4446 zone
->len
>> log_sectors_per_block
);
4448 f2fs_err(sbi
, "Discard zone failed: %s (errno=%d)",
4457 static struct f2fs_dev_info
*get_target_zoned_dev(struct f2fs_sb_info
*sbi
,
4458 block_t zone_blkaddr
)
4462 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
4463 if (!bdev_is_zoned(FDEV(i
).bdev
))
4465 if (sbi
->s_ndevs
== 1 || (FDEV(i
).start_blk
<= zone_blkaddr
&&
4466 zone_blkaddr
<= FDEV(i
).end_blk
))
4473 static int report_one_zone_cb(struct blk_zone
*zone
, unsigned int idx
,
4475 memcpy(data
, zone
, sizeof(struct blk_zone
));
4479 static int fix_curseg_write_pointer(struct f2fs_sb_info
*sbi
, int type
)
4481 struct curseg_info
*cs
= CURSEG_I(sbi
, type
);
4482 struct f2fs_dev_info
*zbd
;
4483 struct blk_zone zone
;
4484 unsigned int cs_section
, wp_segno
, wp_blkoff
, wp_sector_off
;
4485 block_t cs_zone_block
, wp_block
;
4486 unsigned int log_sectors_per_block
= sbi
->log_blocksize
- SECTOR_SHIFT
;
4487 sector_t zone_sector
;
4490 cs_section
= GET_SEC_FROM_SEG(sbi
, cs
->segno
);
4491 cs_zone_block
= START_BLOCK(sbi
, GET_SEG_FROM_SEC(sbi
, cs_section
));
4493 zbd
= get_target_zoned_dev(sbi
, cs_zone_block
);
4497 /* report zone for the sector the curseg points to */
4498 zone_sector
= (sector_t
)(cs_zone_block
- zbd
->start_blk
)
4499 << log_sectors_per_block
;
4500 err
= blkdev_report_zones(zbd
->bdev
, zone_sector
, 1,
4501 report_one_zone_cb
, &zone
);
4503 f2fs_err(sbi
, "Report zone failed: %s errno=(%d)",
4508 if (zone
.type
!= BLK_ZONE_TYPE_SEQWRITE_REQ
)
4511 wp_block
= zbd
->start_blk
+ (zone
.wp
>> log_sectors_per_block
);
4512 wp_segno
= GET_SEGNO(sbi
, wp_block
);
4513 wp_blkoff
= wp_block
- START_BLOCK(sbi
, wp_segno
);
4514 wp_sector_off
= zone
.wp
& GENMASK(log_sectors_per_block
- 1, 0);
4516 if (cs
->segno
== wp_segno
&& cs
->next_blkoff
== wp_blkoff
&&
4520 f2fs_notice(sbi
, "Unaligned curseg[%d] with write pointer: "
4521 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4522 type
, cs
->segno
, cs
->next_blkoff
, wp_segno
, wp_blkoff
);
4524 f2fs_notice(sbi
, "Assign new section to curseg[%d]: "
4525 "curseg[0x%x,0x%x]", type
, cs
->segno
, cs
->next_blkoff
);
4526 allocate_segment_by_default(sbi
, type
, true);
4528 /* check consistency of the zone curseg pointed to */
4529 if (check_zone_write_pointer(sbi
, zbd
, &zone
))
4532 /* check newly assigned zone */
4533 cs_section
= GET_SEC_FROM_SEG(sbi
, cs
->segno
);
4534 cs_zone_block
= START_BLOCK(sbi
, GET_SEG_FROM_SEC(sbi
, cs_section
));
4536 zbd
= get_target_zoned_dev(sbi
, cs_zone_block
);
4540 zone_sector
= (sector_t
)(cs_zone_block
- zbd
->start_blk
)
4541 << log_sectors_per_block
;
4542 err
= blkdev_report_zones(zbd
->bdev
, zone_sector
, 1,
4543 report_one_zone_cb
, &zone
);
4545 f2fs_err(sbi
, "Report zone failed: %s errno=(%d)",
4550 if (zone
.type
!= BLK_ZONE_TYPE_SEQWRITE_REQ
)
4553 if (zone
.wp
!= zone
.start
) {
4555 "New zone for curseg[%d] is not yet discarded. "
4556 "Reset the zone: curseg[0x%x,0x%x]",
4557 type
, cs
->segno
, cs
->next_blkoff
);
4558 err
= __f2fs_issue_discard_zone(sbi
, zbd
->bdev
,
4559 zone_sector
>> log_sectors_per_block
,
4560 zone
.len
>> log_sectors_per_block
);
4562 f2fs_err(sbi
, "Discard zone failed: %s (errno=%d)",
4571 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info
*sbi
)
4575 for (i
= 0; i
< NO_CHECK_TYPE
; i
++) {
4576 ret
= fix_curseg_write_pointer(sbi
, i
);
4584 struct check_zone_write_pointer_args
{
4585 struct f2fs_sb_info
*sbi
;
4586 struct f2fs_dev_info
*fdev
;
4589 static int check_zone_write_pointer_cb(struct blk_zone
*zone
, unsigned int idx
,
4591 struct check_zone_write_pointer_args
*args
;
4592 args
= (struct check_zone_write_pointer_args
*)data
;
4594 return check_zone_write_pointer(args
->sbi
, args
->fdev
, zone
);
4597 int f2fs_check_write_pointer(struct f2fs_sb_info
*sbi
)
4600 struct check_zone_write_pointer_args args
;
4602 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
4603 if (!bdev_is_zoned(FDEV(i
).bdev
))
4607 args
.fdev
= &FDEV(i
);
4608 ret
= blkdev_report_zones(FDEV(i
).bdev
, 0, BLK_ALL_ZONES
,
4609 check_zone_write_pointer_cb
, &args
);
4617 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info
*sbi
)
4622 int f2fs_check_write_pointer(struct f2fs_sb_info
*sbi
)
4629 * Update min, max modified time for cost-benefit GC algorithm
4631 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
4633 struct sit_info
*sit_i
= SIT_I(sbi
);
4636 down_write(&sit_i
->sentry_lock
);
4638 sit_i
->min_mtime
= ULLONG_MAX
;
4640 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
4642 unsigned long long mtime
= 0;
4644 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
4645 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
4647 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
4649 if (sit_i
->min_mtime
> mtime
)
4650 sit_i
->min_mtime
= mtime
;
4652 sit_i
->max_mtime
= get_mtime(sbi
, false);
4653 up_write(&sit_i
->sentry_lock
);
4656 int f2fs_build_segment_manager(struct f2fs_sb_info
*sbi
)
4658 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
4659 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
4660 struct f2fs_sm_info
*sm_info
;
4663 sm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
4668 sbi
->sm_info
= sm_info
;
4669 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
4670 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
4671 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
4672 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
4673 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
4674 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
4675 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
4676 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
4677 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
4678 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
4679 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
4681 if (!test_opt(sbi
, LFS
))
4682 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
4683 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
4684 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
4685 sm_info
->min_seq_blocks
= sbi
->blocks_per_seg
* sbi
->segs_per_sec
;
4686 sm_info
->min_hot_blocks
= DEF_MIN_HOT_BLOCKS
;
4687 sm_info
->min_ssr_sections
= reserved_sections(sbi
);
4689 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
4691 init_rwsem(&sm_info
->curseg_lock
);
4693 if (!f2fs_readonly(sbi
->sb
)) {
4694 err
= f2fs_create_flush_cmd_control(sbi
);
4699 err
= create_discard_cmd_control(sbi
);
4703 err
= build_sit_info(sbi
);
4706 err
= build_free_segmap(sbi
);
4709 err
= build_curseg(sbi
);
4713 /* reinit free segmap based on SIT */
4714 err
= build_sit_entries(sbi
);
4718 init_free_segmap(sbi
);
4719 err
= build_dirty_segmap(sbi
);
4723 err
= sanity_check_curseg(sbi
);
4727 init_min_max_mtime(sbi
);
4731 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
4732 enum dirty_type dirty_type
)
4734 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4736 mutex_lock(&dirty_i
->seglist_lock
);
4737 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
4738 dirty_i
->nr_dirty
[dirty_type
] = 0;
4739 mutex_unlock(&dirty_i
->seglist_lock
);
4742 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
4744 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4745 kvfree(dirty_i
->victim_secmap
);
4748 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
4750 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4756 /* discard pre-free/dirty segments list */
4757 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
4758 discard_dirty_segmap(sbi
, i
);
4760 destroy_victim_secmap(sbi
);
4761 SM_I(sbi
)->dirty_info
= NULL
;
4765 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
4767 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
4772 SM_I(sbi
)->curseg_array
= NULL
;
4773 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
4774 kvfree(array
[i
].sum_blk
);
4775 kvfree(array
[i
].journal
);
4780 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
4782 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
4785 SM_I(sbi
)->free_info
= NULL
;
4786 kvfree(free_i
->free_segmap
);
4787 kvfree(free_i
->free_secmap
);
4791 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
4793 struct sit_info
*sit_i
= SIT_I(sbi
);
4798 if (sit_i
->sentries
)
4799 kvfree(sit_i
->bitmap
);
4800 kvfree(sit_i
->tmp_map
);
4802 kvfree(sit_i
->sentries
);
4803 kvfree(sit_i
->sec_entries
);
4804 kvfree(sit_i
->dirty_sentries_bitmap
);
4806 SM_I(sbi
)->sit_info
= NULL
;
4807 kvfree(sit_i
->sit_bitmap
);
4808 #ifdef CONFIG_F2FS_CHECK_FS
4809 kvfree(sit_i
->sit_bitmap_mir
);
4810 kvfree(sit_i
->invalid_segmap
);
4815 void f2fs_destroy_segment_manager(struct f2fs_sb_info
*sbi
)
4817 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
4821 f2fs_destroy_flush_cmd_control(sbi
, true);
4822 destroy_discard_cmd_control(sbi
);
4823 destroy_dirty_segmap(sbi
);
4824 destroy_curseg(sbi
);
4825 destroy_free_segmap(sbi
);
4826 destroy_sit_info(sbi
);
4827 sbi
->sm_info
= NULL
;
4831 int __init
f2fs_create_segment_manager_caches(void)
4833 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
4834 sizeof(struct discard_entry
));
4835 if (!discard_entry_slab
)
4838 discard_cmd_slab
= f2fs_kmem_cache_create("discard_cmd",
4839 sizeof(struct discard_cmd
));
4840 if (!discard_cmd_slab
)
4841 goto destroy_discard_entry
;
4843 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
4844 sizeof(struct sit_entry_set
));
4845 if (!sit_entry_set_slab
)
4846 goto destroy_discard_cmd
;
4848 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
4849 sizeof(struct inmem_pages
));
4850 if (!inmem_entry_slab
)
4851 goto destroy_sit_entry_set
;
4854 destroy_sit_entry_set
:
4855 kmem_cache_destroy(sit_entry_set_slab
);
4856 destroy_discard_cmd
:
4857 kmem_cache_destroy(discard_cmd_slab
);
4858 destroy_discard_entry
:
4859 kmem_cache_destroy(discard_entry_slab
);
4864 void f2fs_destroy_segment_manager_caches(void)
4866 kmem_cache_destroy(sit_entry_set_slab
);
4867 kmem_cache_destroy(discard_cmd_slab
);
4868 kmem_cache_destroy(discard_entry_slab
);
4869 kmem_cache_destroy(inmem_entry_slab
);