drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / fat / misc.c
blobf1b2a1fc2a6a42b8f802268a8d6c071ff2d25530
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/fat/misc.c
5 * Written 1992,1993 by Werner Almesberger
6 * 22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
7 * and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
8 */
10 #include "fat.h"
11 #include <linux/iversion.h>
14 * fat_fs_error reports a file system problem that might indicate fa data
15 * corruption/inconsistency. Depending on 'errors' mount option the
16 * panic() is called, or error message is printed FAT and nothing is done,
17 * or filesystem is remounted read-only (default behavior).
18 * In case the file system is remounted read-only, it can be made writable
19 * again by remounting it.
21 void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
23 struct fat_mount_options *opts = &MSDOS_SB(sb)->options;
24 va_list args;
25 struct va_format vaf;
27 if (report) {
28 va_start(args, fmt);
29 vaf.fmt = fmt;
30 vaf.va = &args;
31 fat_msg(sb, KERN_ERR, "error, %pV", &vaf);
32 va_end(args);
35 if (opts->errors == FAT_ERRORS_PANIC)
36 panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id);
37 else if (opts->errors == FAT_ERRORS_RO && !sb_rdonly(sb)) {
38 sb->s_flags |= SB_RDONLY;
39 fat_msg(sb, KERN_ERR, "Filesystem has been set read-only");
42 EXPORT_SYMBOL_GPL(__fat_fs_error);
44 /**
45 * fat_msg() - print preformated FAT specific messages. Every thing what is
46 * not fat_fs_error() should be fat_msg().
48 void fat_msg(struct super_block *sb, const char *level, const char *fmt, ...)
50 struct va_format vaf;
51 va_list args;
53 va_start(args, fmt);
54 vaf.fmt = fmt;
55 vaf.va = &args;
56 printk("%sFAT-fs (%s): %pV\n", level, sb->s_id, &vaf);
57 va_end(args);
60 /* Flushes the number of free clusters on FAT32 */
61 /* XXX: Need to write one per FSINFO block. Currently only writes 1 */
62 int fat_clusters_flush(struct super_block *sb)
64 struct msdos_sb_info *sbi = MSDOS_SB(sb);
65 struct buffer_head *bh;
66 struct fat_boot_fsinfo *fsinfo;
68 if (!is_fat32(sbi))
69 return 0;
71 bh = sb_bread(sb, sbi->fsinfo_sector);
72 if (bh == NULL) {
73 fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush");
74 return -EIO;
77 fsinfo = (struct fat_boot_fsinfo *)bh->b_data;
78 /* Sanity check */
79 if (!IS_FSINFO(fsinfo)) {
80 fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: "
81 "0x%08x, 0x%08x (sector = %lu)",
82 le32_to_cpu(fsinfo->signature1),
83 le32_to_cpu(fsinfo->signature2),
84 sbi->fsinfo_sector);
85 } else {
86 if (sbi->free_clusters != -1)
87 fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters);
88 if (sbi->prev_free != -1)
89 fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);
90 mark_buffer_dirty(bh);
92 brelse(bh);
94 return 0;
98 * fat_chain_add() adds a new cluster to the chain of clusters represented
99 * by inode.
101 int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster)
103 struct super_block *sb = inode->i_sb;
104 struct msdos_sb_info *sbi = MSDOS_SB(sb);
105 int ret, new_fclus, last;
108 * We must locate the last cluster of the file to add this new
109 * one (new_dclus) to the end of the link list (the FAT).
111 last = new_fclus = 0;
112 if (MSDOS_I(inode)->i_start) {
113 int fclus, dclus;
115 ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);
116 if (ret < 0)
117 return ret;
118 new_fclus = fclus + 1;
119 last = dclus;
122 /* add new one to the last of the cluster chain */
123 if (last) {
124 struct fat_entry fatent;
126 fatent_init(&fatent);
127 ret = fat_ent_read(inode, &fatent, last);
128 if (ret >= 0) {
129 int wait = inode_needs_sync(inode);
130 ret = fat_ent_write(inode, &fatent, new_dclus, wait);
131 fatent_brelse(&fatent);
133 if (ret < 0)
134 return ret;
136 * FIXME:Although we can add this cache, fat_cache_add() is
137 * assuming to be called after linear search with fat_cache_id.
139 // fat_cache_add(inode, new_fclus, new_dclus);
140 } else {
141 MSDOS_I(inode)->i_start = new_dclus;
142 MSDOS_I(inode)->i_logstart = new_dclus;
144 * Since generic_write_sync() synchronizes regular files later,
145 * we sync here only directories.
147 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {
148 ret = fat_sync_inode(inode);
149 if (ret)
150 return ret;
151 } else
152 mark_inode_dirty(inode);
154 if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) {
155 fat_fs_error(sb, "clusters badly computed (%d != %llu)",
156 new_fclus,
157 (llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));
158 fat_cache_inval_inode(inode);
160 inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);
162 return 0;
166 * The epoch of FAT timestamp is 1980.
167 * : bits : value
168 * date: 0 - 4: day (1 - 31)
169 * date: 5 - 8: month (1 - 12)
170 * date: 9 - 15: year (0 - 127) from 1980
171 * time: 0 - 4: sec (0 - 29) 2sec counts
172 * time: 5 - 10: min (0 - 59)
173 * time: 11 - 15: hour (0 - 23)
175 #define SECS_PER_MIN 60
176 #define SECS_PER_HOUR (60 * 60)
177 #define SECS_PER_DAY (SECS_PER_HOUR * 24)
178 /* days between 1.1.70 and 1.1.80 (2 leap days) */
179 #define DAYS_DELTA (365 * 10 + 2)
180 /* 120 (2100 - 1980) isn't leap year */
181 #define YEAR_2100 120
182 #define IS_LEAP_YEAR(y) (!((y) & 3) && (y) != YEAR_2100)
184 /* Linear day numbers of the respective 1sts in non-leap years. */
185 static long days_in_year[] = {
186 /* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec */
187 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
190 static inline int fat_tz_offset(struct msdos_sb_info *sbi)
192 return (sbi->options.tz_set ?
193 -sbi->options.time_offset :
194 sys_tz.tz_minuteswest) * SECS_PER_MIN;
197 /* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
198 void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts,
199 __le16 __time, __le16 __date, u8 time_cs)
201 u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date);
202 time64_t second;
203 long day, leap_day, month, year;
205 year = date >> 9;
206 month = max(1, (date >> 5) & 0xf);
207 day = max(1, date & 0x1f) - 1;
209 leap_day = (year + 3) / 4;
210 if (year > YEAR_2100) /* 2100 isn't leap year */
211 leap_day--;
212 if (IS_LEAP_YEAR(year) && month > 2)
213 leap_day++;
215 second = (time & 0x1f) << 1;
216 second += ((time >> 5) & 0x3f) * SECS_PER_MIN;
217 second += (time >> 11) * SECS_PER_HOUR;
218 second += (time64_t)(year * 365 + leap_day
219 + days_in_year[month] + day
220 + DAYS_DELTA) * SECS_PER_DAY;
222 second += fat_tz_offset(sbi);
224 if (time_cs) {
225 ts->tv_sec = second + (time_cs / 100);
226 ts->tv_nsec = (time_cs % 100) * 10000000;
227 } else {
228 ts->tv_sec = second;
229 ts->tv_nsec = 0;
233 /* Convert linear UNIX date to a FAT time/date pair. */
234 void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts,
235 __le16 *time, __le16 *date, u8 *time_cs)
237 struct tm tm;
238 time64_to_tm(ts->tv_sec, -fat_tz_offset(sbi), &tm);
240 /* FAT can only support year between 1980 to 2107 */
241 if (tm.tm_year < 1980 - 1900) {
242 *time = 0;
243 *date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
244 if (time_cs)
245 *time_cs = 0;
246 return;
248 if (tm.tm_year > 2107 - 1900) {
249 *time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
250 *date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
251 if (time_cs)
252 *time_cs = 199;
253 return;
256 /* from 1900 -> from 1980 */
257 tm.tm_year -= 80;
258 /* 0~11 -> 1~12 */
259 tm.tm_mon++;
260 /* 0~59 -> 0~29(2sec counts) */
261 tm.tm_sec >>= 1;
263 *time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec);
264 *date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday);
265 if (time_cs)
266 *time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000;
268 EXPORT_SYMBOL_GPL(fat_time_unix2fat);
270 static inline struct timespec64 fat_timespec64_trunc_2secs(struct timespec64 ts)
272 return (struct timespec64){ ts.tv_sec & ~1ULL, 0 };
275 static inline struct timespec64 fat_timespec64_trunc_10ms(struct timespec64 ts)
277 if (ts.tv_nsec)
278 ts.tv_nsec -= ts.tv_nsec % 10000000UL;
279 return ts;
283 * truncate the various times with appropriate granularity:
284 * root inode:
285 * all times always 0
286 * all other inodes:
287 * mtime - 2 seconds
288 * ctime
289 * msdos - 2 seconds
290 * vfat - 10 milliseconds
291 * atime - 24 hours (00:00:00 in local timezone)
293 int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags)
295 struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
296 struct timespec64 ts;
298 if (inode->i_ino == MSDOS_ROOT_INO)
299 return 0;
301 if (now == NULL) {
302 now = &ts;
303 ts = current_time(inode);
306 if (flags & S_ATIME) {
307 /* to localtime */
308 time64_t seconds = now->tv_sec - fat_tz_offset(sbi);
309 s32 remainder;
311 div_s64_rem(seconds, SECS_PER_DAY, &remainder);
312 /* to day boundary, and back to unix time */
313 seconds = seconds + fat_tz_offset(sbi) - remainder;
315 inode->i_atime = (struct timespec64){ seconds, 0 };
317 if (flags & S_CTIME) {
318 if (sbi->options.isvfat)
319 inode->i_ctime = fat_timespec64_trunc_10ms(*now);
320 else
321 inode->i_ctime = fat_timespec64_trunc_2secs(*now);
323 if (flags & S_MTIME)
324 inode->i_mtime = fat_timespec64_trunc_2secs(*now);
326 return 0;
328 EXPORT_SYMBOL_GPL(fat_truncate_time);
330 int fat_update_time(struct inode *inode, struct timespec64 *now, int flags)
332 int iflags = I_DIRTY_TIME;
333 bool dirty = false;
335 if (inode->i_ino == MSDOS_ROOT_INO)
336 return 0;
338 fat_truncate_time(inode, now, flags);
339 if (flags & S_VERSION)
340 dirty = inode_maybe_inc_iversion(inode, false);
341 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
342 !(inode->i_sb->s_flags & SB_LAZYTIME))
343 dirty = true;
345 if (dirty)
346 iflags |= I_DIRTY_SYNC;
347 __mark_inode_dirty(inode, iflags);
348 return 0;
350 EXPORT_SYMBOL_GPL(fat_update_time);
352 int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
354 int i, err = 0;
356 for (i = 0; i < nr_bhs; i++)
357 write_dirty_buffer(bhs[i], 0);
359 for (i = 0; i < nr_bhs; i++) {
360 wait_on_buffer(bhs[i]);
361 if (!err && !buffer_uptodate(bhs[i]))
362 err = -EIO;
364 return err;