1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
16 #include <linux/mount.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/falloc.h>
20 #include <linux/swap.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/uaccess.h>
24 #include <linux/dlm.h>
25 #include <linux/dlm_plock.h>
26 #include <linux/delay.h>
27 #include <linux/backing-dev.h>
45 * gfs2_llseek - seek to a location in a file
48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
50 * SEEK_END requires the glock for the file because it references the
53 * Returns: The new offset, or errno
56 static loff_t
gfs2_llseek(struct file
*file
, loff_t offset
, int whence
)
58 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
59 struct gfs2_holder i_gh
;
64 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, LM_FLAG_ANY
,
67 error
= generic_file_llseek(file
, offset
, whence
);
68 gfs2_glock_dq_uninit(&i_gh
);
73 error
= gfs2_seek_data(file
, offset
);
77 error
= gfs2_seek_hole(file
, offset
);
83 * These don't reference inode->i_size and don't depend on the
84 * block mapping, so we don't need the glock.
86 error
= generic_file_llseek(file
, offset
, whence
);
96 * gfs2_readdir - Iterator for a directory
97 * @file: The directory to read from
98 * @ctx: What to feed directory entries to
103 static int gfs2_readdir(struct file
*file
, struct dir_context
*ctx
)
105 struct inode
*dir
= file
->f_mapping
->host
;
106 struct gfs2_inode
*dip
= GFS2_I(dir
);
107 struct gfs2_holder d_gh
;
110 error
= gfs2_glock_nq_init(dip
->i_gl
, LM_ST_SHARED
, 0, &d_gh
);
114 error
= gfs2_dir_read(dir
, ctx
, &file
->f_ra
);
116 gfs2_glock_dq_uninit(&d_gh
);
124 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
125 * and to GFS2_DIF_JDATA for non-directories.
130 } fsflag_gfs2flag
[] = {
131 {FS_SYNC_FL
, GFS2_DIF_SYNC
},
132 {FS_IMMUTABLE_FL
, GFS2_DIF_IMMUTABLE
},
133 {FS_APPEND_FL
, GFS2_DIF_APPENDONLY
},
134 {FS_NOATIME_FL
, GFS2_DIF_NOATIME
},
135 {FS_INDEX_FL
, GFS2_DIF_EXHASH
},
136 {FS_TOPDIR_FL
, GFS2_DIF_TOPDIR
},
137 {FS_JOURNAL_DATA_FL
, GFS2_DIF_JDATA
| GFS2_DIF_INHERIT_JDATA
},
140 static inline u32
gfs2_gfsflags_to_fsflags(struct inode
*inode
, u32 gfsflags
)
145 if (S_ISDIR(inode
->i_mode
))
146 gfsflags
&= ~GFS2_DIF_JDATA
;
148 gfsflags
&= ~GFS2_DIF_INHERIT_JDATA
;
150 for (i
= 0; i
< ARRAY_SIZE(fsflag_gfs2flag
); i
++)
151 if (gfsflags
& fsflag_gfs2flag
[i
].gfsflag
)
152 fsflags
|= fsflag_gfs2flag
[i
].fsflag
;
156 static int gfs2_get_flags(struct file
*filp
, u32 __user
*ptr
)
158 struct inode
*inode
= file_inode(filp
);
159 struct gfs2_inode
*ip
= GFS2_I(inode
);
160 struct gfs2_holder gh
;
164 gfs2_holder_init(ip
->i_gl
, LM_ST_SHARED
, 0, &gh
);
165 error
= gfs2_glock_nq(&gh
);
169 fsflags
= gfs2_gfsflags_to_fsflags(inode
, ip
->i_diskflags
);
171 if (put_user(fsflags
, ptr
))
176 gfs2_holder_uninit(&gh
);
180 void gfs2_set_inode_flags(struct inode
*inode
)
182 struct gfs2_inode
*ip
= GFS2_I(inode
);
183 unsigned int flags
= inode
->i_flags
;
185 flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_NOSEC
);
186 if ((ip
->i_eattr
== 0) && !is_sxid(inode
->i_mode
))
188 if (ip
->i_diskflags
& GFS2_DIF_IMMUTABLE
)
189 flags
|= S_IMMUTABLE
;
190 if (ip
->i_diskflags
& GFS2_DIF_APPENDONLY
)
192 if (ip
->i_diskflags
& GFS2_DIF_NOATIME
)
194 if (ip
->i_diskflags
& GFS2_DIF_SYNC
)
196 inode
->i_flags
= flags
;
199 /* Flags that can be set by user space */
200 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
201 GFS2_DIF_IMMUTABLE| \
202 GFS2_DIF_APPENDONLY| \
206 GFS2_DIF_INHERIT_JDATA)
209 * do_gfs2_set_flags - set flags on an inode
210 * @filp: file pointer
211 * @reqflags: The flags to set
212 * @mask: Indicates which flags are valid
213 * @fsflags: The FS_* inode flags passed in
216 static int do_gfs2_set_flags(struct file
*filp
, u32 reqflags
, u32 mask
,
219 struct inode
*inode
= file_inode(filp
);
220 struct gfs2_inode
*ip
= GFS2_I(inode
);
221 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
222 struct buffer_head
*bh
;
223 struct gfs2_holder gh
;
225 u32 new_flags
, flags
, oldflags
;
227 error
= mnt_want_write_file(filp
);
231 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
235 oldflags
= gfs2_gfsflags_to_fsflags(inode
, ip
->i_diskflags
);
236 error
= vfs_ioc_setflags_prepare(inode
, oldflags
, fsflags
);
241 if (!inode_owner_or_capable(inode
))
245 flags
= ip
->i_diskflags
;
246 new_flags
= (flags
& ~mask
) | (reqflags
& mask
);
247 if ((new_flags
^ flags
) == 0)
251 if (IS_IMMUTABLE(inode
) && (new_flags
& GFS2_DIF_IMMUTABLE
))
253 if (IS_APPEND(inode
) && (new_flags
& GFS2_DIF_APPENDONLY
))
255 if (((new_flags
^ flags
) & GFS2_DIF_IMMUTABLE
) &&
256 !capable(CAP_LINUX_IMMUTABLE
))
258 if (!IS_IMMUTABLE(inode
)) {
259 error
= gfs2_permission(inode
, MAY_WRITE
);
263 if ((flags
^ new_flags
) & GFS2_DIF_JDATA
) {
264 if (new_flags
& GFS2_DIF_JDATA
)
265 gfs2_log_flush(sdp
, ip
->i_gl
,
266 GFS2_LOG_HEAD_FLUSH_NORMAL
|
268 error
= filemap_fdatawrite(inode
->i_mapping
);
271 error
= filemap_fdatawait(inode
->i_mapping
);
274 if (new_flags
& GFS2_DIF_JDATA
)
275 gfs2_ordered_del_inode(ip
);
277 error
= gfs2_trans_begin(sdp
, RES_DINODE
, 0);
280 error
= gfs2_meta_inode_buffer(ip
, &bh
);
283 inode
->i_ctime
= current_time(inode
);
284 gfs2_trans_add_meta(ip
->i_gl
, bh
);
285 ip
->i_diskflags
= new_flags
;
286 gfs2_dinode_out(ip
, bh
->b_data
);
288 gfs2_set_inode_flags(inode
);
289 gfs2_set_aops(inode
);
293 gfs2_glock_dq_uninit(&gh
);
295 mnt_drop_write_file(filp
);
299 static int gfs2_set_flags(struct file
*filp
, u32 __user
*ptr
)
301 struct inode
*inode
= file_inode(filp
);
302 u32 fsflags
, gfsflags
= 0;
306 if (get_user(fsflags
, ptr
))
309 for (i
= 0; i
< ARRAY_SIZE(fsflag_gfs2flag
); i
++) {
310 if (fsflags
& fsflag_gfs2flag
[i
].fsflag
) {
311 fsflags
&= ~fsflag_gfs2flag
[i
].fsflag
;
312 gfsflags
|= fsflag_gfs2flag
[i
].gfsflag
;
315 if (fsflags
|| gfsflags
& ~GFS2_FLAGS_USER_SET
)
318 mask
= GFS2_FLAGS_USER_SET
;
319 if (S_ISDIR(inode
->i_mode
)) {
320 mask
&= ~GFS2_DIF_JDATA
;
322 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
323 if (gfsflags
& GFS2_DIF_TOPDIR
)
325 mask
&= ~(GFS2_DIF_TOPDIR
| GFS2_DIF_INHERIT_JDATA
);
328 return do_gfs2_set_flags(filp
, gfsflags
, mask
, fsflags
);
331 static int gfs2_getlabel(struct file
*filp
, char __user
*label
)
333 struct inode
*inode
= file_inode(filp
);
334 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
336 if (copy_to_user(label
, sdp
->sd_sb
.sb_locktable
, GFS2_LOCKNAME_LEN
))
342 static long gfs2_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
345 case FS_IOC_GETFLAGS
:
346 return gfs2_get_flags(filp
, (u32 __user
*)arg
);
347 case FS_IOC_SETFLAGS
:
348 return gfs2_set_flags(filp
, (u32 __user
*)arg
);
350 return gfs2_fitrim(filp
, (void __user
*)arg
);
351 case FS_IOC_GETFSLABEL
:
352 return gfs2_getlabel(filp
, (char __user
*)arg
);
359 static long gfs2_compat_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
362 /* These are just misnamed, they actually get/put from/to user an int */
363 case FS_IOC32_GETFLAGS
:
364 cmd
= FS_IOC_GETFLAGS
;
366 case FS_IOC32_SETFLAGS
:
367 cmd
= FS_IOC_SETFLAGS
;
369 /* Keep this list in sync with gfs2_ioctl */
371 case FS_IOC_GETFSLABEL
:
377 return gfs2_ioctl(filp
, cmd
, (unsigned long)compat_ptr(arg
));
380 #define gfs2_compat_ioctl NULL
384 * gfs2_size_hint - Give a hint to the size of a write request
385 * @filep: The struct file
386 * @offset: The file offset of the write
387 * @size: The length of the write
389 * When we are about to do a write, this function records the total
390 * write size in order to provide a suitable hint to the lower layers
391 * about how many blocks will be required.
395 static void gfs2_size_hint(struct file
*filep
, loff_t offset
, size_t size
)
397 struct inode
*inode
= file_inode(filep
);
398 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
399 struct gfs2_inode
*ip
= GFS2_I(inode
);
400 size_t blks
= (size
+ sdp
->sd_sb
.sb_bsize
- 1) >> sdp
->sd_sb
.sb_bsize_shift
;
401 int hint
= min_t(size_t, INT_MAX
, blks
);
403 if (hint
> atomic_read(&ip
->i_sizehint
))
404 atomic_set(&ip
->i_sizehint
, hint
);
408 * gfs2_allocate_page_backing - Allocate blocks for a write fault
409 * @page: The (locked) page to allocate backing for
410 * @length: Size of the allocation
412 * We try to allocate all the blocks required for the page in one go. This
413 * might fail for various reasons, so we keep trying until all the blocks to
414 * back this page are allocated. If some of the blocks are already allocated,
417 static int gfs2_allocate_page_backing(struct page
*page
, unsigned int length
)
419 u64 pos
= page_offset(page
);
422 struct iomap iomap
= { };
424 if (gfs2_iomap_get_alloc(page
->mapping
->host
, pos
, length
, &iomap
))
427 if (length
< iomap
.length
)
428 iomap
.length
= length
;
429 length
-= iomap
.length
;
431 } while (length
> 0);
437 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
438 * @vma: The virtual memory area
439 * @vmf: The virtual memory fault containing the page to become writable
441 * When the page becomes writable, we need to ensure that we have
442 * blocks allocated on disk to back that page.
445 static vm_fault_t
gfs2_page_mkwrite(struct vm_fault
*vmf
)
447 struct page
*page
= vmf
->page
;
448 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
449 struct gfs2_inode
*ip
= GFS2_I(inode
);
450 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
451 struct gfs2_alloc_parms ap
= { .aflags
= 0, };
452 u64 offset
= page_offset(page
);
453 unsigned int data_blocks
, ind_blocks
, rblocks
;
454 struct gfs2_holder gh
;
459 sb_start_pagefault(inode
->i_sb
);
461 ret
= gfs2_rsqa_alloc(ip
);
465 gfs2_holder_init(ip
->i_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
466 ret
= gfs2_glock_nq(&gh
);
470 /* Check page index against inode size */
471 size
= i_size_read(inode
);
472 if (offset
>= size
) {
477 /* Update file times before taking page lock */
478 file_update_time(vmf
->vma
->vm_file
);
480 /* page is wholly or partially inside EOF */
481 if (offset
> size
- PAGE_SIZE
)
482 length
= offset_in_page(size
);
486 gfs2_size_hint(vmf
->vma
->vm_file
, offset
, length
);
488 set_bit(GLF_DIRTY
, &ip
->i_gl
->gl_flags
);
489 set_bit(GIF_SW_PAGED
, &ip
->i_flags
);
492 * iomap_writepage / iomap_writepages currently don't support inline
493 * files, so always unstuff here.
496 if (!gfs2_is_stuffed(ip
) &&
497 !gfs2_write_alloc_required(ip
, offset
, length
)) {
499 if (!PageUptodate(page
) || page
->mapping
!= inode
->i_mapping
) {
506 ret
= gfs2_rindex_update(sdp
);
510 gfs2_write_calc_reserv(ip
, length
, &data_blocks
, &ind_blocks
);
511 ap
.target
= data_blocks
+ ind_blocks
;
512 ret
= gfs2_quota_lock_check(ip
, &ap
);
515 ret
= gfs2_inplace_reserve(ip
, &ap
);
517 goto out_quota_unlock
;
519 rblocks
= RES_DINODE
+ ind_blocks
;
520 if (gfs2_is_jdata(ip
))
521 rblocks
+= data_blocks
? data_blocks
: 1;
522 if (ind_blocks
|| data_blocks
) {
523 rblocks
+= RES_STATFS
+ RES_QUOTA
;
524 rblocks
+= gfs2_rg_blocks(ip
, data_blocks
+ ind_blocks
);
526 ret
= gfs2_trans_begin(sdp
, rblocks
, 0);
532 /* If truncated, we must retry the operation, we may have raced
533 * with the glock demotion code.
535 if (!PageUptodate(page
) || page
->mapping
!= inode
->i_mapping
)
538 /* Unstuff, if required, and allocate backing blocks for page */
540 if (gfs2_is_stuffed(ip
))
541 ret
= gfs2_unstuff_dinode(ip
, page
);
543 ret
= gfs2_allocate_page_backing(page
, length
);
550 gfs2_inplace_release(ip
);
552 gfs2_quota_unlock(ip
);
556 gfs2_holder_uninit(&gh
);
558 set_page_dirty(page
);
559 wait_for_stable_page(page
);
562 sb_end_pagefault(inode
->i_sb
);
563 return block_page_mkwrite_return(ret
);
566 static const struct vm_operations_struct gfs2_vm_ops
= {
567 .fault
= filemap_fault
,
568 .map_pages
= filemap_map_pages
,
569 .page_mkwrite
= gfs2_page_mkwrite
,
574 * @file: The file to map
575 * @vma: The VMA which described the mapping
577 * There is no need to get a lock here unless we should be updating
578 * atime. We ignore any locking errors since the only consequence is
579 * a missed atime update (which will just be deferred until later).
584 static int gfs2_mmap(struct file
*file
, struct vm_area_struct
*vma
)
586 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
588 if (!(file
->f_flags
& O_NOATIME
) &&
589 !IS_NOATIME(&ip
->i_inode
)) {
590 struct gfs2_holder i_gh
;
593 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, LM_FLAG_ANY
,
597 /* grab lock to update inode */
598 gfs2_glock_dq_uninit(&i_gh
);
601 vma
->vm_ops
= &gfs2_vm_ops
;
607 * gfs2_open_common - This is common to open and atomic_open
608 * @inode: The inode being opened
609 * @file: The file being opened
611 * This maybe called under a glock or not depending upon how it has
612 * been called. We must always be called under a glock for regular
613 * files, however. For other file types, it does not matter whether
614 * we hold the glock or not.
616 * Returns: Error code or 0 for success
619 int gfs2_open_common(struct inode
*inode
, struct file
*file
)
621 struct gfs2_file
*fp
;
624 if (S_ISREG(inode
->i_mode
)) {
625 ret
= generic_file_open(inode
, file
);
630 fp
= kzalloc(sizeof(struct gfs2_file
), GFP_NOFS
);
634 mutex_init(&fp
->f_fl_mutex
);
636 gfs2_assert_warn(GFS2_SB(inode
), !file
->private_data
);
637 file
->private_data
= fp
;
642 * gfs2_open - open a file
643 * @inode: the inode to open
644 * @file: the struct file for this opening
646 * After atomic_open, this function is only used for opening files
647 * which are already cached. We must still get the glock for regular
648 * files to ensure that we have the file size uptodate for the large
649 * file check which is in the common code. That is only an issue for
650 * regular files though.
655 static int gfs2_open(struct inode
*inode
, struct file
*file
)
657 struct gfs2_inode
*ip
= GFS2_I(inode
);
658 struct gfs2_holder i_gh
;
660 bool need_unlock
= false;
662 if (S_ISREG(ip
->i_inode
.i_mode
)) {
663 error
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, LM_FLAG_ANY
,
670 error
= gfs2_open_common(inode
, file
);
673 gfs2_glock_dq_uninit(&i_gh
);
679 * gfs2_release - called to close a struct file
680 * @inode: the inode the struct file belongs to
681 * @file: the struct file being closed
686 static int gfs2_release(struct inode
*inode
, struct file
*file
)
688 struct gfs2_inode
*ip
= GFS2_I(inode
);
690 kfree(file
->private_data
);
691 file
->private_data
= NULL
;
693 if (!(file
->f_mode
& FMODE_WRITE
))
696 gfs2_rsqa_delete(ip
, &inode
->i_writecount
);
701 * gfs2_fsync - sync the dirty data for a file (across the cluster)
702 * @file: the file that points to the dentry
703 * @start: the start position in the file to sync
704 * @end: the end position in the file to sync
705 * @datasync: set if we can ignore timestamp changes
707 * We split the data flushing here so that we don't wait for the data
708 * until after we've also sent the metadata to disk. Note that for
709 * data=ordered, we will write & wait for the data at the log flush
710 * stage anyway, so this is unlikely to make much of a difference
711 * except in the data=writeback case.
713 * If the fdatawrite fails due to any reason except -EIO, we will
714 * continue the remainder of the fsync, although we'll still report
715 * the error at the end. This is to match filemap_write_and_wait_range()
721 static int gfs2_fsync(struct file
*file
, loff_t start
, loff_t end
,
724 struct address_space
*mapping
= file
->f_mapping
;
725 struct inode
*inode
= mapping
->host
;
726 int sync_state
= inode
->i_state
& I_DIRTY_ALL
;
727 struct gfs2_inode
*ip
= GFS2_I(inode
);
728 int ret
= 0, ret1
= 0;
730 if (mapping
->nrpages
) {
731 ret1
= filemap_fdatawrite_range(mapping
, start
, end
);
736 if (!gfs2_is_jdata(ip
))
737 sync_state
&= ~I_DIRTY_PAGES
;
739 sync_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_TIME
);
742 ret
= sync_inode_metadata(inode
, 1);
745 if (gfs2_is_jdata(ip
))
746 ret
= file_write_and_wait(file
);
749 gfs2_ail_flush(ip
->i_gl
, 1);
752 if (mapping
->nrpages
)
753 ret
= file_fdatawait_range(file
, start
, end
);
755 return ret
? ret
: ret1
;
758 static ssize_t
gfs2_file_direct_read(struct kiocb
*iocb
, struct iov_iter
*to
)
760 struct file
*file
= iocb
->ki_filp
;
761 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
762 size_t count
= iov_iter_count(to
);
763 struct gfs2_holder gh
;
767 return 0; /* skip atime */
769 gfs2_holder_init(ip
->i_gl
, LM_ST_DEFERRED
, 0, &gh
);
770 ret
= gfs2_glock_nq(&gh
);
774 ret
= iomap_dio_rw(iocb
, to
, &gfs2_iomap_ops
, NULL
,
775 is_sync_kiocb(iocb
));
779 gfs2_holder_uninit(&gh
);
783 static ssize_t
gfs2_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
785 struct file
*file
= iocb
->ki_filp
;
786 struct inode
*inode
= file
->f_mapping
->host
;
787 struct gfs2_inode
*ip
= GFS2_I(inode
);
788 size_t len
= iov_iter_count(from
);
789 loff_t offset
= iocb
->ki_pos
;
790 struct gfs2_holder gh
;
794 * Deferred lock, even if its a write, since we do no allocation on
795 * this path. All we need to change is the atime, and this lock mode
796 * ensures that other nodes have flushed their buffered read caches
797 * (i.e. their page cache entries for this inode). We do not,
798 * unfortunately, have the option of only flushing a range like the
801 gfs2_holder_init(ip
->i_gl
, LM_ST_DEFERRED
, 0, &gh
);
802 ret
= gfs2_glock_nq(&gh
);
806 /* Silently fall back to buffered I/O when writing beyond EOF */
807 if (offset
+ len
> i_size_read(&ip
->i_inode
))
810 ret
= iomap_dio_rw(iocb
, from
, &gfs2_iomap_ops
, NULL
,
811 is_sync_kiocb(iocb
));
816 gfs2_holder_uninit(&gh
);
820 static ssize_t
gfs2_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
824 if (iocb
->ki_flags
& IOCB_DIRECT
) {
825 ret
= gfs2_file_direct_read(iocb
, to
);
826 if (likely(ret
!= -ENOTBLK
))
828 iocb
->ki_flags
&= ~IOCB_DIRECT
;
830 return generic_file_read_iter(iocb
, to
);
834 * gfs2_file_write_iter - Perform a write to a file
835 * @iocb: The io context
836 * @from: The data to write
838 * We have to do a lock/unlock here to refresh the inode size for
839 * O_APPEND writes, otherwise we can land up writing at the wrong
840 * offset. There is still a race, but provided the app is using its
841 * own file locking, this will make O_APPEND work as expected.
845 static ssize_t
gfs2_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
847 struct file
*file
= iocb
->ki_filp
;
848 struct inode
*inode
= file_inode(file
);
849 struct gfs2_inode
*ip
= GFS2_I(inode
);
852 ret
= gfs2_rsqa_alloc(ip
);
856 gfs2_size_hint(file
, iocb
->ki_pos
, iov_iter_count(from
));
858 if (iocb
->ki_flags
& IOCB_APPEND
) {
859 struct gfs2_holder gh
;
861 ret
= gfs2_glock_nq_init(ip
->i_gl
, LM_ST_SHARED
, 0, &gh
);
864 gfs2_glock_dq_uninit(&gh
);
868 ret
= generic_write_checks(iocb
, from
);
872 ret
= file_remove_privs(file
);
876 ret
= file_update_time(file
);
880 if (iocb
->ki_flags
& IOCB_DIRECT
) {
881 struct address_space
*mapping
= file
->f_mapping
;
882 ssize_t buffered
, ret2
;
884 ret
= gfs2_file_direct_write(iocb
, from
);
885 if (ret
< 0 || !iov_iter_count(from
))
888 iocb
->ki_flags
|= IOCB_DSYNC
;
889 current
->backing_dev_info
= inode_to_bdi(inode
);
890 buffered
= iomap_file_buffered_write(iocb
, from
, &gfs2_iomap_ops
);
891 current
->backing_dev_info
= NULL
;
892 if (unlikely(buffered
<= 0))
896 * We need to ensure that the page cache pages are written to
897 * disk and invalidated to preserve the expected O_DIRECT
898 * semantics. If the writeback or invalidate fails, only report
899 * the direct I/O range as we don't know if the buffered pages
902 iocb
->ki_pos
+= buffered
;
903 ret2
= generic_write_sync(iocb
, buffered
);
904 invalidate_mapping_pages(mapping
,
905 (iocb
->ki_pos
- buffered
) >> PAGE_SHIFT
,
906 (iocb
->ki_pos
- 1) >> PAGE_SHIFT
);
907 if (!ret
|| ret2
> 0)
910 current
->backing_dev_info
= inode_to_bdi(inode
);
911 ret
= iomap_file_buffered_write(iocb
, from
, &gfs2_iomap_ops
);
912 current
->backing_dev_info
= NULL
;
913 if (likely(ret
> 0)) {
915 ret
= generic_write_sync(iocb
, ret
);
924 static int fallocate_chunk(struct inode
*inode
, loff_t offset
, loff_t len
,
927 struct super_block
*sb
= inode
->i_sb
;
928 struct gfs2_inode
*ip
= GFS2_I(inode
);
929 loff_t end
= offset
+ len
;
930 struct buffer_head
*dibh
;
933 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
937 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
939 if (gfs2_is_stuffed(ip
)) {
940 error
= gfs2_unstuff_dinode(ip
, NULL
);
945 while (offset
< end
) {
946 struct iomap iomap
= { };
948 error
= gfs2_iomap_get_alloc(inode
, offset
, end
- offset
,
952 offset
= iomap
.offset
+ iomap
.length
;
953 if (!(iomap
.flags
& IOMAP_F_NEW
))
955 error
= sb_issue_zeroout(sb
, iomap
.addr
>> inode
->i_blkbits
,
956 iomap
.length
>> inode
->i_blkbits
,
959 fs_err(GFS2_SB(inode
), "Failed to zero data buffers\n");
969 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
970 * blocks, determine how many bytes can be written.
971 * @ip: The inode in question.
972 * @len: Max cap of bytes. What we return in *len must be <= this.
973 * @data_blocks: Compute and return the number of data blocks needed
974 * @ind_blocks: Compute and return the number of indirect blocks needed
975 * @max_blocks: The total blocks available to work with.
977 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
979 static void calc_max_reserv(struct gfs2_inode
*ip
, loff_t
*len
,
980 unsigned int *data_blocks
, unsigned int *ind_blocks
,
981 unsigned int max_blocks
)
984 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
985 unsigned int tmp
, max_data
= max_blocks
- 3 * (sdp
->sd_max_height
- 1);
987 for (tmp
= max_data
; tmp
> sdp
->sd_diptrs
;) {
988 tmp
= DIV_ROUND_UP(tmp
, sdp
->sd_inptrs
);
992 *data_blocks
= max_data
;
993 *ind_blocks
= max_blocks
- max_data
;
994 *len
= ((loff_t
)max_data
- 3) << sdp
->sd_sb
.sb_bsize_shift
;
997 gfs2_write_calc_reserv(ip
, max
, data_blocks
, ind_blocks
);
1001 static long __gfs2_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
1003 struct inode
*inode
= file_inode(file
);
1004 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1005 struct gfs2_inode
*ip
= GFS2_I(inode
);
1006 struct gfs2_alloc_parms ap
= { .aflags
= 0, };
1007 unsigned int data_blocks
= 0, ind_blocks
= 0, rblocks
;
1008 loff_t bytes
, max_bytes
, max_blks
;
1010 const loff_t pos
= offset
;
1011 const loff_t count
= len
;
1012 loff_t bsize_mask
= ~((loff_t
)sdp
->sd_sb
.sb_bsize
- 1);
1013 loff_t next
= (offset
+ len
- 1) >> sdp
->sd_sb
.sb_bsize_shift
;
1014 loff_t max_chunk_size
= UINT_MAX
& bsize_mask
;
1016 next
= (next
+ 1) << sdp
->sd_sb
.sb_bsize_shift
;
1018 offset
&= bsize_mask
;
1020 len
= next
- offset
;
1021 bytes
= sdp
->sd_max_rg_data
* sdp
->sd_sb
.sb_bsize
/ 2;
1024 bytes
&= bsize_mask
;
1026 bytes
= sdp
->sd_sb
.sb_bsize
;
1028 gfs2_size_hint(file
, offset
, len
);
1030 gfs2_write_calc_reserv(ip
, PAGE_SIZE
, &data_blocks
, &ind_blocks
);
1031 ap
.min_target
= data_blocks
+ ind_blocks
;
1036 if (!gfs2_write_alloc_required(ip
, offset
, bytes
)) {
1042 /* We need to determine how many bytes we can actually
1043 * fallocate without exceeding quota or going over the
1044 * end of the fs. We start off optimistically by assuming
1045 * we can write max_bytes */
1046 max_bytes
= (len
> max_chunk_size
) ? max_chunk_size
: len
;
1048 /* Since max_bytes is most likely a theoretical max, we
1049 * calculate a more realistic 'bytes' to serve as a good
1050 * starting point for the number of bytes we may be able
1052 gfs2_write_calc_reserv(ip
, bytes
, &data_blocks
, &ind_blocks
);
1053 ap
.target
= data_blocks
+ ind_blocks
;
1055 error
= gfs2_quota_lock_check(ip
, &ap
);
1058 /* ap.allowed tells us how many blocks quota will allow
1059 * us to write. Check if this reduces max_blks */
1060 max_blks
= UINT_MAX
;
1062 max_blks
= ap
.allowed
;
1064 error
= gfs2_inplace_reserve(ip
, &ap
);
1068 /* check if the selected rgrp limits our max_blks further */
1069 if (ap
.allowed
&& ap
.allowed
< max_blks
)
1070 max_blks
= ap
.allowed
;
1072 /* Almost done. Calculate bytes that can be written using
1073 * max_blks. We also recompute max_bytes, data_blocks and
1075 calc_max_reserv(ip
, &max_bytes
, &data_blocks
,
1076 &ind_blocks
, max_blks
);
1078 rblocks
= RES_DINODE
+ ind_blocks
+ RES_STATFS
+ RES_QUOTA
+
1079 RES_RG_HDR
+ gfs2_rg_blocks(ip
, data_blocks
+ ind_blocks
);
1080 if (gfs2_is_jdata(ip
))
1081 rblocks
+= data_blocks
? data_blocks
: 1;
1083 error
= gfs2_trans_begin(sdp
, rblocks
,
1084 PAGE_SIZE
>> inode
->i_blkbits
);
1086 goto out_trans_fail
;
1088 error
= fallocate_chunk(inode
, offset
, max_bytes
, mode
);
1089 gfs2_trans_end(sdp
);
1092 goto out_trans_fail
;
1095 offset
+= max_bytes
;
1096 gfs2_inplace_release(ip
);
1097 gfs2_quota_unlock(ip
);
1100 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && (pos
+ count
) > inode
->i_size
)
1101 i_size_write(inode
, pos
+ count
);
1102 file_update_time(file
);
1103 mark_inode_dirty(inode
);
1105 if ((file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
))
1106 return vfs_fsync_range(file
, pos
, pos
+ count
- 1,
1107 (file
->f_flags
& __O_SYNC
) ? 0 : 1);
1111 gfs2_inplace_release(ip
);
1113 gfs2_quota_unlock(ip
);
1117 static long gfs2_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
1119 struct inode
*inode
= file_inode(file
);
1120 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1121 struct gfs2_inode
*ip
= GFS2_I(inode
);
1122 struct gfs2_holder gh
;
1125 if (mode
& ~(FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
))
1127 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1128 if (gfs2_is_jdata(ip
) && inode
!= sdp
->sd_rindex
)
1133 gfs2_holder_init(ip
->i_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
1134 ret
= gfs2_glock_nq(&gh
);
1138 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
1139 (offset
+ len
) > inode
->i_size
) {
1140 ret
= inode_newsize_ok(inode
, offset
+ len
);
1145 ret
= get_write_access(inode
);
1149 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1150 ret
= __gfs2_punch_hole(file
, offset
, len
);
1152 ret
= gfs2_rsqa_alloc(ip
);
1156 ret
= __gfs2_fallocate(file
, mode
, offset
, len
);
1159 gfs2_rs_deltree(&ip
->i_res
);
1163 put_write_access(inode
);
1167 gfs2_holder_uninit(&gh
);
1168 inode_unlock(inode
);
1172 static ssize_t
gfs2_file_splice_write(struct pipe_inode_info
*pipe
,
1173 struct file
*out
, loff_t
*ppos
,
1174 size_t len
, unsigned int flags
)
1177 struct gfs2_inode
*ip
= GFS2_I(out
->f_mapping
->host
);
1179 error
= gfs2_rsqa_alloc(ip
);
1181 return (ssize_t
)error
;
1183 gfs2_size_hint(out
, *ppos
, len
);
1185 return iter_file_splice_write(pipe
, out
, ppos
, len
, flags
);
1188 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1191 * gfs2_lock - acquire/release a posix lock on a file
1192 * @file: the file pointer
1193 * @cmd: either modify or retrieve lock state, possibly wait
1194 * @fl: type and range of lock
1199 static int gfs2_lock(struct file
*file
, int cmd
, struct file_lock
*fl
)
1201 struct gfs2_inode
*ip
= GFS2_I(file
->f_mapping
->host
);
1202 struct gfs2_sbd
*sdp
= GFS2_SB(file
->f_mapping
->host
);
1203 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1205 if (!(fl
->fl_flags
& FL_POSIX
))
1207 if (__mandatory_lock(&ip
->i_inode
) && fl
->fl_type
!= F_UNLCK
)
1210 if (cmd
== F_CANCELLK
) {
1213 fl
->fl_type
= F_UNLCK
;
1215 if (unlikely(gfs2_withdrawn(sdp
))) {
1216 if (fl
->fl_type
== F_UNLCK
)
1217 locks_lock_file_wait(file
, fl
);
1221 return dlm_posix_get(ls
->ls_dlm
, ip
->i_no_addr
, file
, fl
);
1222 else if (fl
->fl_type
== F_UNLCK
)
1223 return dlm_posix_unlock(ls
->ls_dlm
, ip
->i_no_addr
, file
, fl
);
1225 return dlm_posix_lock(ls
->ls_dlm
, ip
->i_no_addr
, file
, cmd
, fl
);
1228 static int do_flock(struct file
*file
, int cmd
, struct file_lock
*fl
)
1230 struct gfs2_file
*fp
= file
->private_data
;
1231 struct gfs2_holder
*fl_gh
= &fp
->f_fl_gh
;
1232 struct gfs2_inode
*ip
= GFS2_I(file_inode(file
));
1233 struct gfs2_glock
*gl
;
1239 state
= (fl
->fl_type
== F_WRLCK
) ? LM_ST_EXCLUSIVE
: LM_ST_SHARED
;
1240 flags
= (IS_SETLKW(cmd
) ? 0 : LM_FLAG_TRY_1CB
) | GL_EXACT
;
1242 mutex_lock(&fp
->f_fl_mutex
);
1244 if (gfs2_holder_initialized(fl_gh
)) {
1245 struct file_lock request
;
1246 if (fl_gh
->gh_state
== state
)
1248 locks_init_lock(&request
);
1249 request
.fl_type
= F_UNLCK
;
1250 request
.fl_flags
= FL_FLOCK
;
1251 locks_lock_file_wait(file
, &request
);
1252 gfs2_glock_dq(fl_gh
);
1253 gfs2_holder_reinit(state
, flags
, fl_gh
);
1255 error
= gfs2_glock_get(GFS2_SB(&ip
->i_inode
), ip
->i_no_addr
,
1256 &gfs2_flock_glops
, CREATE
, &gl
);
1259 gfs2_holder_init(gl
, state
, flags
, fl_gh
);
1262 for (sleeptime
= 1; sleeptime
<= 4; sleeptime
<<= 1) {
1263 error
= gfs2_glock_nq(fl_gh
);
1264 if (error
!= GLR_TRYFAILED
)
1266 fl_gh
->gh_flags
= LM_FLAG_TRY
| GL_EXACT
;
1267 fl_gh
->gh_error
= 0;
1271 gfs2_holder_uninit(fl_gh
);
1272 if (error
== GLR_TRYFAILED
)
1275 error
= locks_lock_file_wait(file
, fl
);
1276 gfs2_assert_warn(GFS2_SB(&ip
->i_inode
), !error
);
1280 mutex_unlock(&fp
->f_fl_mutex
);
1284 static void do_unflock(struct file
*file
, struct file_lock
*fl
)
1286 struct gfs2_file
*fp
= file
->private_data
;
1287 struct gfs2_holder
*fl_gh
= &fp
->f_fl_gh
;
1289 mutex_lock(&fp
->f_fl_mutex
);
1290 locks_lock_file_wait(file
, fl
);
1291 if (gfs2_holder_initialized(fl_gh
)) {
1292 gfs2_glock_dq(fl_gh
);
1293 gfs2_holder_uninit(fl_gh
);
1295 mutex_unlock(&fp
->f_fl_mutex
);
1299 * gfs2_flock - acquire/release a flock lock on a file
1300 * @file: the file pointer
1301 * @cmd: either modify or retrieve lock state, possibly wait
1302 * @fl: type and range of lock
1307 static int gfs2_flock(struct file
*file
, int cmd
, struct file_lock
*fl
)
1309 if (!(fl
->fl_flags
& FL_FLOCK
))
1311 if (fl
->fl_type
& LOCK_MAND
)
1314 if (fl
->fl_type
== F_UNLCK
) {
1315 do_unflock(file
, fl
);
1318 return do_flock(file
, cmd
, fl
);
1322 const struct file_operations gfs2_file_fops
= {
1323 .llseek
= gfs2_llseek
,
1324 .read_iter
= gfs2_file_read_iter
,
1325 .write_iter
= gfs2_file_write_iter
,
1326 .iopoll
= iomap_dio_iopoll
,
1327 .unlocked_ioctl
= gfs2_ioctl
,
1328 .compat_ioctl
= gfs2_compat_ioctl
,
1331 .release
= gfs2_release
,
1332 .fsync
= gfs2_fsync
,
1334 .flock
= gfs2_flock
,
1335 .splice_read
= generic_file_splice_read
,
1336 .splice_write
= gfs2_file_splice_write
,
1337 .setlease
= simple_nosetlease
,
1338 .fallocate
= gfs2_fallocate
,
1341 const struct file_operations gfs2_dir_fops
= {
1342 .iterate_shared
= gfs2_readdir
,
1343 .unlocked_ioctl
= gfs2_ioctl
,
1344 .compat_ioctl
= gfs2_compat_ioctl
,
1346 .release
= gfs2_release
,
1347 .fsync
= gfs2_fsync
,
1349 .flock
= gfs2_flock
,
1350 .llseek
= default_llseek
,
1353 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1355 const struct file_operations gfs2_file_fops_nolock
= {
1356 .llseek
= gfs2_llseek
,
1357 .read_iter
= gfs2_file_read_iter
,
1358 .write_iter
= gfs2_file_write_iter
,
1359 .iopoll
= iomap_dio_iopoll
,
1360 .unlocked_ioctl
= gfs2_ioctl
,
1361 .compat_ioctl
= gfs2_compat_ioctl
,
1364 .release
= gfs2_release
,
1365 .fsync
= gfs2_fsync
,
1366 .splice_read
= generic_file_splice_read
,
1367 .splice_write
= gfs2_file_splice_write
,
1368 .setlease
= generic_setlease
,
1369 .fallocate
= gfs2_fallocate
,
1372 const struct file_operations gfs2_dir_fops_nolock
= {
1373 .iterate_shared
= gfs2_readdir
,
1374 .unlocked_ioctl
= gfs2_ioctl
,
1375 .compat_ioctl
= gfs2_compat_ioctl
,
1377 .release
= gfs2_release
,
1378 .fsync
= gfs2_fsync
,
1379 .llseek
= default_llseek
,