1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
21 #include "trace_gfs2.h"
24 * gfs2_update_stats - Update time based stats
25 * @mv: Pointer to mean/variance structure to update
26 * @sample: New data to include
28 * @delta is the difference between the current rtt sample and the
29 * running average srtt. We add 1/8 of that to the srtt in order to
30 * update the current srtt estimate. The variance estimate is a bit
31 * more complicated. We subtract the current variance estimate from
32 * the abs value of the @delta and add 1/4 of that to the running
33 * total. That's equivalent to 3/4 of the current variance
34 * estimate plus 1/4 of the abs of @delta.
36 * Note that the index points at the array entry containing the smoothed
37 * mean value, and the variance is always in the following entry
39 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
40 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
41 * they are not scaled fixed point.
44 static inline void gfs2_update_stats(struct gfs2_lkstats
*s
, unsigned index
,
47 s64 delta
= sample
- s
->stats
[index
];
48 s
->stats
[index
] += (delta
>> 3);
50 s
->stats
[index
] += (s64
)(abs(delta
) - s
->stats
[index
]) >> 2;
54 * gfs2_update_reply_times - Update locking statistics
55 * @gl: The glock to update
57 * This assumes that gl->gl_dstamp has been set earlier.
59 * The rtt (lock round trip time) is an estimate of the time
60 * taken to perform a dlm lock request. We update it on each
63 * The blocking flag is set on the glock for all dlm requests
64 * which may potentially block due to lock requests from other nodes.
65 * DLM requests where the current lock state is exclusive, the
66 * requested state is null (or unlocked) or where the TRY or
67 * TRY_1CB flags are set are classified as non-blocking. All
68 * other DLM requests are counted as (potentially) blocking.
70 static inline void gfs2_update_reply_times(struct gfs2_glock
*gl
)
72 struct gfs2_pcpu_lkstats
*lks
;
73 const unsigned gltype
= gl
->gl_name
.ln_type
;
74 unsigned index
= test_bit(GLF_BLOCKING
, &gl
->gl_flags
) ?
75 GFS2_LKS_SRTTB
: GFS2_LKS_SRTT
;
79 rtt
= ktime_to_ns(ktime_sub(ktime_get_real(), gl
->gl_dstamp
));
80 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
81 gfs2_update_stats(&gl
->gl_stats
, index
, rtt
); /* Local */
82 gfs2_update_stats(&lks
->lkstats
[gltype
], index
, rtt
); /* Global */
85 trace_gfs2_glock_lock_time(gl
, rtt
);
89 * gfs2_update_request_times - Update locking statistics
90 * @gl: The glock to update
92 * The irt (lock inter-request times) measures the average time
93 * between requests to the dlm. It is updated immediately before
97 static inline void gfs2_update_request_times(struct gfs2_glock
*gl
)
99 struct gfs2_pcpu_lkstats
*lks
;
100 const unsigned gltype
= gl
->gl_name
.ln_type
;
105 dstamp
= gl
->gl_dstamp
;
106 gl
->gl_dstamp
= ktime_get_real();
107 irt
= ktime_to_ns(ktime_sub(gl
->gl_dstamp
, dstamp
));
108 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
109 gfs2_update_stats(&gl
->gl_stats
, GFS2_LKS_SIRT
, irt
); /* Local */
110 gfs2_update_stats(&lks
->lkstats
[gltype
], GFS2_LKS_SIRT
, irt
); /* Global */
114 static void gdlm_ast(void *arg
)
116 struct gfs2_glock
*gl
= arg
;
117 unsigned ret
= gl
->gl_state
;
119 gfs2_update_reply_times(gl
);
120 BUG_ON(gl
->gl_lksb
.sb_flags
& DLM_SBF_DEMOTED
);
122 if ((gl
->gl_lksb
.sb_flags
& DLM_SBF_VALNOTVALID
) && gl
->gl_lksb
.sb_lvbptr
)
123 memset(gl
->gl_lksb
.sb_lvbptr
, 0, GDLM_LVB_SIZE
);
125 switch (gl
->gl_lksb
.sb_status
) {
126 case -DLM_EUNLOCK
: /* Unlocked, so glock can be freed */
129 case -DLM_ECANCEL
: /* Cancel while getting lock */
130 ret
|= LM_OUT_CANCELED
;
132 case -EAGAIN
: /* Try lock fails */
133 case -EDEADLK
: /* Deadlock detected */
135 case -ETIMEDOUT
: /* Canceled due to timeout */
138 case 0: /* Success */
140 default: /* Something unexpected */
145 if (gl
->gl_lksb
.sb_flags
& DLM_SBF_ALTMODE
) {
146 if (gl
->gl_req
== LM_ST_SHARED
)
147 ret
= LM_ST_DEFERRED
;
148 else if (gl
->gl_req
== LM_ST_DEFERRED
)
154 set_bit(GLF_INITIAL
, &gl
->gl_flags
);
155 gfs2_glock_complete(gl
, ret
);
158 if (!test_bit(GLF_INITIAL
, &gl
->gl_flags
))
159 gl
->gl_lksb
.sb_lkid
= 0;
160 gfs2_glock_complete(gl
, ret
);
163 static void gdlm_bast(void *arg
, int mode
)
165 struct gfs2_glock
*gl
= arg
;
169 gfs2_glock_cb(gl
, LM_ST_UNLOCKED
);
172 gfs2_glock_cb(gl
, LM_ST_DEFERRED
);
175 gfs2_glock_cb(gl
, LM_ST_SHARED
);
178 fs_err(gl
->gl_name
.ln_sbd
, "unknown bast mode %d\n", mode
);
183 /* convert gfs lock-state to dlm lock-mode */
185 static int make_mode(struct gfs2_sbd
*sdp
, const unsigned int lmstate
)
190 case LM_ST_EXCLUSIVE
:
197 fs_err(sdp
, "unknown LM state %d\n", lmstate
);
202 static u32
make_flags(struct gfs2_glock
*gl
, const unsigned int gfs_flags
,
207 if (gl
->gl_lksb
.sb_lvbptr
)
208 lkf
|= DLM_LKF_VALBLK
;
210 if (gfs_flags
& LM_FLAG_TRY
)
211 lkf
|= DLM_LKF_NOQUEUE
;
213 if (gfs_flags
& LM_FLAG_TRY_1CB
) {
214 lkf
|= DLM_LKF_NOQUEUE
;
215 lkf
|= DLM_LKF_NOQUEUEBAST
;
218 if (gfs_flags
& LM_FLAG_PRIORITY
) {
219 lkf
|= DLM_LKF_NOORDER
;
220 lkf
|= DLM_LKF_HEADQUE
;
223 if (gfs_flags
& LM_FLAG_ANY
) {
224 if (req
== DLM_LOCK_PR
)
225 lkf
|= DLM_LKF_ALTCW
;
226 else if (req
== DLM_LOCK_CW
)
227 lkf
|= DLM_LKF_ALTPR
;
232 if (gl
->gl_lksb
.sb_lkid
!= 0) {
233 lkf
|= DLM_LKF_CONVERT
;
234 if (test_bit(GLF_BLOCKING
, &gl
->gl_flags
))
235 lkf
|= DLM_LKF_QUECVT
;
241 static void gfs2_reverse_hex(char *c
, u64 value
)
245 *c
-- = hex_asc
[value
& 0x0f];
250 static int gdlm_lock(struct gfs2_glock
*gl
, unsigned int req_state
,
253 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
256 char strname
[GDLM_STRNAME_BYTES
] = "";
258 req
= make_mode(gl
->gl_name
.ln_sbd
, req_state
);
259 lkf
= make_flags(gl
, flags
, req
);
260 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
261 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
262 if (gl
->gl_lksb
.sb_lkid
) {
263 gfs2_update_request_times(gl
);
265 memset(strname
, ' ', GDLM_STRNAME_BYTES
- 1);
266 strname
[GDLM_STRNAME_BYTES
- 1] = '\0';
267 gfs2_reverse_hex(strname
+ 7, gl
->gl_name
.ln_type
);
268 gfs2_reverse_hex(strname
+ 23, gl
->gl_name
.ln_number
);
269 gl
->gl_dstamp
= ktime_get_real();
272 * Submit the actual lock request.
275 return dlm_lock(ls
->ls_dlm
, req
, &gl
->gl_lksb
, lkf
, strname
,
276 GDLM_STRNAME_BYTES
- 1, 0, gdlm_ast
, gl
, gdlm_bast
);
279 static void gdlm_put_lock(struct gfs2_glock
*gl
)
281 struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
282 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
283 int lvb_needs_unlock
= 0;
286 if (gl
->gl_lksb
.sb_lkid
== 0) {
291 clear_bit(GLF_BLOCKING
, &gl
->gl_flags
);
292 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
293 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
294 gfs2_update_request_times(gl
);
296 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
298 if (gl
->gl_lksb
.sb_lvbptr
&& (gl
->gl_state
== LM_ST_EXCLUSIVE
))
299 lvb_needs_unlock
= 1;
301 if (test_bit(SDF_SKIP_DLM_UNLOCK
, &sdp
->sd_flags
) &&
307 error
= dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_VALBLK
,
310 fs_err(sdp
, "gdlm_unlock %x,%llx err=%d\n",
312 (unsigned long long)gl
->gl_name
.ln_number
, error
);
317 static void gdlm_cancel(struct gfs2_glock
*gl
)
319 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
320 dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_CANCEL
, NULL
, gl
);
324 * dlm/gfs2 recovery coordination using dlm_recover callbacks
326 * 1. dlm_controld sees lockspace members change
327 * 2. dlm_controld blocks dlm-kernel locking activity
328 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
329 * 4. dlm_controld starts and finishes its own user level recovery
330 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
331 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
332 * 7. dlm_recoverd does its own lock recovery
333 * 8. dlm_recoverd unblocks dlm-kernel locking activity
334 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
335 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
336 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
337 * 12. gfs2_recover dequeues and recovers journals of failed nodes
338 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
339 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
340 * 15. gfs2_control unblocks normal locking when all journals are recovered
342 * - failures during recovery
344 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
345 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
346 * recovering for a prior failure. gfs2_control needs a way to detect
347 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
348 * the recover_block and recover_start values.
350 * recover_done() provides a new lockspace generation number each time it
351 * is called (step 9). This generation number is saved as recover_start.
352 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
353 * recover_block = recover_start. So, while recover_block is equal to
354 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
355 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
357 * - more specific gfs2 steps in sequence above
359 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
360 * 6. recover_slot records any failed jids (maybe none)
361 * 9. recover_done sets recover_start = new generation number
362 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
363 * 12. gfs2_recover does journal recoveries for failed jids identified above
364 * 14. gfs2_control clears control_lock lvb bits for recovered jids
365 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
366 * again) then do nothing, otherwise if recover_start > recover_block
367 * then clear BLOCK_LOCKS.
369 * - parallel recovery steps across all nodes
371 * All nodes attempt to update the control_lock lvb with the new generation
372 * number and jid bits, but only the first to get the control_lock EX will
373 * do so; others will see that it's already done (lvb already contains new
374 * generation number.)
376 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
377 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
378 * . One node gets control_lock first and writes the lvb, others see it's done
379 * . All nodes attempt to recover jids for which they see control_lock bits set
380 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
381 * . All nodes will eventually see all lvb bits clear and unblock locks
383 * - is there a problem with clearing an lvb bit that should be set
384 * and missing a journal recovery?
387 * 2. lvb bit set for step 1
388 * 3. jid recovered for step 1
389 * 4. jid taken again (new mount)
390 * 5. jid fails (for step 4)
391 * 6. lvb bit set for step 5 (will already be set)
392 * 7. lvb bit cleared for step 3
394 * This is not a problem because the failure in step 5 does not
395 * require recovery, because the mount in step 4 could not have
396 * progressed far enough to unblock locks and access the fs. The
397 * control_mount() function waits for all recoveries to be complete
398 * for the latest lockspace generation before ever unblocking locks
399 * and returning. The mount in step 4 waits until the recovery in
402 * - special case of first mounter: first node to mount the fs
404 * The first node to mount a gfs2 fs needs to check all the journals
405 * and recover any that need recovery before other nodes are allowed
406 * to mount the fs. (Others may begin mounting, but they must wait
407 * for the first mounter to be done before taking locks on the fs
408 * or accessing the fs.) This has two parts:
410 * 1. The mounted_lock tells a node it's the first to mount the fs.
411 * Each node holds the mounted_lock in PR while it's mounted.
412 * Each node tries to acquire the mounted_lock in EX when it mounts.
413 * If a node is granted the mounted_lock EX it means there are no
414 * other mounted nodes (no PR locks exist), and it is the first mounter.
415 * The mounted_lock is demoted to PR when first recovery is done, so
416 * others will fail to get an EX lock, but will get a PR lock.
418 * 2. The control_lock blocks others in control_mount() while the first
419 * mounter is doing first mount recovery of all journals.
420 * A mounting node needs to acquire control_lock in EX mode before
421 * it can proceed. The first mounter holds control_lock in EX while doing
422 * the first mount recovery, blocking mounts from other nodes, then demotes
423 * control_lock to NL when it's done (others_may_mount/first_done),
424 * allowing other nodes to continue mounting.
427 * control_lock EX/NOQUEUE success
428 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
430 * do first mounter recovery
431 * mounted_lock EX->PR
432 * control_lock EX->NL, write lvb generation
435 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
436 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
437 * mounted_lock PR/NOQUEUE success
438 * read lvb generation
439 * control_lock EX->NL
442 * - mount during recovery
444 * If a node mounts while others are doing recovery (not first mounter),
445 * the mounting node will get its initial recover_done() callback without
446 * having seen any previous failures/callbacks.
448 * It must wait for all recoveries preceding its mount to be finished
449 * before it unblocks locks. It does this by repeating the "other mounter"
450 * steps above until the lvb generation number is >= its mount generation
451 * number (from initial recover_done) and all lvb bits are clear.
453 * - control_lock lvb format
455 * 4 bytes generation number: the latest dlm lockspace generation number
456 * from recover_done callback. Indicates the jid bitmap has been updated
457 * to reflect all slot failures through that generation.
459 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
460 * that jid N needs recovery.
463 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
465 static void control_lvb_read(struct lm_lockstruct
*ls
, uint32_t *lvb_gen
,
469 memcpy(lvb_bits
, ls
->ls_control_lvb
, GDLM_LVB_SIZE
);
470 memcpy(&gen
, lvb_bits
, sizeof(__le32
));
471 *lvb_gen
= le32_to_cpu(gen
);
474 static void control_lvb_write(struct lm_lockstruct
*ls
, uint32_t lvb_gen
,
478 memcpy(ls
->ls_control_lvb
, lvb_bits
, GDLM_LVB_SIZE
);
479 gen
= cpu_to_le32(lvb_gen
);
480 memcpy(ls
->ls_control_lvb
, &gen
, sizeof(__le32
));
483 static int all_jid_bits_clear(char *lvb
)
485 return !memchr_inv(lvb
+ JID_BITMAP_OFFSET
, 0,
486 GDLM_LVB_SIZE
- JID_BITMAP_OFFSET
);
489 static void sync_wait_cb(void *arg
)
491 struct lm_lockstruct
*ls
= arg
;
492 complete(&ls
->ls_sync_wait
);
495 static int sync_unlock(struct gfs2_sbd
*sdp
, struct dlm_lksb
*lksb
, char *name
)
497 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
500 error
= dlm_unlock(ls
->ls_dlm
, lksb
->sb_lkid
, 0, lksb
, ls
);
502 fs_err(sdp
, "%s lkid %x error %d\n",
503 name
, lksb
->sb_lkid
, error
);
507 wait_for_completion(&ls
->ls_sync_wait
);
509 if (lksb
->sb_status
!= -DLM_EUNLOCK
) {
510 fs_err(sdp
, "%s lkid %x status %d\n",
511 name
, lksb
->sb_lkid
, lksb
->sb_status
);
517 static int sync_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
,
518 unsigned int num
, struct dlm_lksb
*lksb
, char *name
)
520 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
521 char strname
[GDLM_STRNAME_BYTES
];
524 memset(strname
, 0, GDLM_STRNAME_BYTES
);
525 snprintf(strname
, GDLM_STRNAME_BYTES
, "%8x%16x", LM_TYPE_NONDISK
, num
);
527 error
= dlm_lock(ls
->ls_dlm
, mode
, lksb
, flags
,
528 strname
, GDLM_STRNAME_BYTES
- 1,
529 0, sync_wait_cb
, ls
, NULL
);
531 fs_err(sdp
, "%s lkid %x flags %x mode %d error %d\n",
532 name
, lksb
->sb_lkid
, flags
, mode
, error
);
536 wait_for_completion(&ls
->ls_sync_wait
);
538 status
= lksb
->sb_status
;
540 if (status
&& status
!= -EAGAIN
) {
541 fs_err(sdp
, "%s lkid %x flags %x mode %d status %d\n",
542 name
, lksb
->sb_lkid
, flags
, mode
, status
);
548 static int mounted_unlock(struct gfs2_sbd
*sdp
)
550 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
551 return sync_unlock(sdp
, &ls
->ls_mounted_lksb
, "mounted_lock");
554 static int mounted_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
556 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
557 return sync_lock(sdp
, mode
, flags
, GFS2_MOUNTED_LOCK
,
558 &ls
->ls_mounted_lksb
, "mounted_lock");
561 static int control_unlock(struct gfs2_sbd
*sdp
)
563 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
564 return sync_unlock(sdp
, &ls
->ls_control_lksb
, "control_lock");
567 static int control_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
569 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
570 return sync_lock(sdp
, mode
, flags
, GFS2_CONTROL_LOCK
,
571 &ls
->ls_control_lksb
, "control_lock");
574 static void gfs2_control_func(struct work_struct
*work
)
576 struct gfs2_sbd
*sdp
= container_of(work
, struct gfs2_sbd
, sd_control_work
.work
);
577 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
578 uint32_t block_gen
, start_gen
, lvb_gen
, flags
;
584 spin_lock(&ls
->ls_recover_spin
);
586 * No MOUNT_DONE means we're still mounting; control_mount()
587 * will set this flag, after which this thread will take over
588 * all further clearing of BLOCK_LOCKS.
590 * FIRST_MOUNT means this node is doing first mounter recovery,
591 * for which recovery control is handled by
592 * control_mount()/control_first_done(), not this thread.
594 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
595 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
596 spin_unlock(&ls
->ls_recover_spin
);
599 block_gen
= ls
->ls_recover_block
;
600 start_gen
= ls
->ls_recover_start
;
601 spin_unlock(&ls
->ls_recover_spin
);
604 * Equal block_gen and start_gen implies we are between
605 * recover_prep and recover_done callbacks, which means
606 * dlm recovery is in progress and dlm locking is blocked.
607 * There's no point trying to do any work until recover_done.
610 if (block_gen
== start_gen
)
614 * Propagate recover_submit[] and recover_result[] to lvb:
615 * dlm_recoverd adds to recover_submit[] jids needing recovery
616 * gfs2_recover adds to recover_result[] journal recovery results
618 * set lvb bit for jids in recover_submit[] if the lvb has not
619 * yet been updated for the generation of the failure
621 * clear lvb bit for jids in recover_result[] if the result of
622 * the journal recovery is SUCCESS
625 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
627 fs_err(sdp
, "control lock EX error %d\n", error
);
631 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
633 spin_lock(&ls
->ls_recover_spin
);
634 if (block_gen
!= ls
->ls_recover_block
||
635 start_gen
!= ls
->ls_recover_start
) {
636 fs_info(sdp
, "recover generation %u block1 %u %u\n",
637 start_gen
, block_gen
, ls
->ls_recover_block
);
638 spin_unlock(&ls
->ls_recover_spin
);
639 control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
643 recover_size
= ls
->ls_recover_size
;
645 if (lvb_gen
<= start_gen
) {
647 * Clear lvb bits for jids we've successfully recovered.
648 * Because all nodes attempt to recover failed journals,
649 * a journal can be recovered multiple times successfully
650 * in succession. Only the first will really do recovery,
651 * the others find it clean, but still report a successful
652 * recovery. So, another node may have already recovered
653 * the jid and cleared the lvb bit for it.
655 for (i
= 0; i
< recover_size
; i
++) {
656 if (ls
->ls_recover_result
[i
] != LM_RD_SUCCESS
)
659 ls
->ls_recover_result
[i
] = 0;
661 if (!test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
))
664 __clear_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
669 if (lvb_gen
== start_gen
) {
671 * Failed slots before start_gen are already set in lvb.
673 for (i
= 0; i
< recover_size
; i
++) {
674 if (!ls
->ls_recover_submit
[i
])
676 if (ls
->ls_recover_submit
[i
] < lvb_gen
)
677 ls
->ls_recover_submit
[i
] = 0;
679 } else if (lvb_gen
< start_gen
) {
681 * Failed slots before start_gen are not yet set in lvb.
683 for (i
= 0; i
< recover_size
; i
++) {
684 if (!ls
->ls_recover_submit
[i
])
686 if (ls
->ls_recover_submit
[i
] < start_gen
) {
687 ls
->ls_recover_submit
[i
] = 0;
688 __set_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
691 /* even if there are no bits to set, we need to write the
692 latest generation to the lvb */
696 * we should be getting a recover_done() for lvb_gen soon
699 spin_unlock(&ls
->ls_recover_spin
);
702 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
703 flags
= DLM_LKF_CONVERT
| DLM_LKF_VALBLK
;
705 flags
= DLM_LKF_CONVERT
;
708 error
= control_lock(sdp
, DLM_LOCK_NL
, flags
);
710 fs_err(sdp
, "control lock NL error %d\n", error
);
715 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
716 * and clear a jid bit in the lvb if the recovery is a success.
717 * Eventually all journals will be recovered, all jid bits will
718 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
721 for (i
= 0; i
< recover_size
; i
++) {
722 if (test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
)) {
723 fs_info(sdp
, "recover generation %u jid %d\n",
725 gfs2_recover_set(sdp
, i
);
733 * No more jid bits set in lvb, all recovery is done, unblock locks
734 * (unless a new recover_prep callback has occured blocking locks
735 * again while working above)
738 spin_lock(&ls
->ls_recover_spin
);
739 if (ls
->ls_recover_block
== block_gen
&&
740 ls
->ls_recover_start
== start_gen
) {
741 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
742 spin_unlock(&ls
->ls_recover_spin
);
743 fs_info(sdp
, "recover generation %u done\n", start_gen
);
744 gfs2_glock_thaw(sdp
);
746 fs_info(sdp
, "recover generation %u block2 %u %u\n",
747 start_gen
, block_gen
, ls
->ls_recover_block
);
748 spin_unlock(&ls
->ls_recover_spin
);
752 static int control_mount(struct gfs2_sbd
*sdp
)
754 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
755 uint32_t start_gen
, block_gen
, mount_gen
, lvb_gen
;
760 memset(&ls
->ls_mounted_lksb
, 0, sizeof(struct dlm_lksb
));
761 memset(&ls
->ls_control_lksb
, 0, sizeof(struct dlm_lksb
));
762 memset(&ls
->ls_control_lvb
, 0, GDLM_LVB_SIZE
);
763 ls
->ls_control_lksb
.sb_lvbptr
= ls
->ls_control_lvb
;
764 init_completion(&ls
->ls_sync_wait
);
766 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
768 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_VALBLK
);
770 fs_err(sdp
, "control_mount control_lock NL error %d\n", error
);
774 error
= mounted_lock(sdp
, DLM_LOCK_NL
, 0);
776 fs_err(sdp
, "control_mount mounted_lock NL error %d\n", error
);
780 mounted_mode
= DLM_LOCK_NL
;
783 if (retries
++ && signal_pending(current
)) {
789 * We always start with both locks in NL. control_lock is
790 * demoted to NL below so we don't need to do it here.
793 if (mounted_mode
!= DLM_LOCK_NL
) {
794 error
= mounted_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
797 mounted_mode
= DLM_LOCK_NL
;
801 * Other nodes need to do some work in dlm recovery and gfs2_control
802 * before the recover_done and control_lock will be ready for us below.
803 * A delay here is not required but often avoids having to retry.
806 msleep_interruptible(500);
809 * Acquire control_lock in EX and mounted_lock in either EX or PR.
810 * control_lock lvb keeps track of any pending journal recoveries.
811 * mounted_lock indicates if any other nodes have the fs mounted.
814 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
|DLM_LKF_VALBLK
);
815 if (error
== -EAGAIN
) {
818 fs_err(sdp
, "control_mount control_lock EX error %d\n", error
);
823 * If we're a spectator, we don't want to take the lock in EX because
824 * we cannot do the first-mount responsibility it implies: recovery.
826 if (sdp
->sd_args
.ar_spectator
)
829 error
= mounted_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
831 mounted_mode
= DLM_LOCK_EX
;
833 } else if (error
!= -EAGAIN
) {
834 fs_err(sdp
, "control_mount mounted_lock EX error %d\n", error
);
838 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
840 mounted_mode
= DLM_LOCK_PR
;
843 /* not even -EAGAIN should happen here */
844 fs_err(sdp
, "control_mount mounted_lock PR error %d\n", error
);
850 * If we got both locks above in EX, then we're the first mounter.
851 * If not, then we need to wait for the control_lock lvb to be
852 * updated by other mounted nodes to reflect our mount generation.
854 * In simple first mounter cases, first mounter will see zero lvb_gen,
855 * but in cases where all existing nodes leave/fail before mounting
856 * nodes finish control_mount, then all nodes will be mounting and
857 * lvb_gen will be non-zero.
860 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
862 if (lvb_gen
== 0xFFFFFFFF) {
863 /* special value to force mount attempts to fail */
864 fs_err(sdp
, "control_mount control_lock disabled\n");
869 if (mounted_mode
== DLM_LOCK_EX
) {
870 /* first mounter, keep both EX while doing first recovery */
871 spin_lock(&ls
->ls_recover_spin
);
872 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
873 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
874 set_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
875 spin_unlock(&ls
->ls_recover_spin
);
876 fs_info(sdp
, "first mounter control generation %u\n", lvb_gen
);
880 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
885 * We are not first mounter, now we need to wait for the control_lock
886 * lvb generation to be >= the generation from our first recover_done
887 * and all lvb bits to be clear (no pending journal recoveries.)
890 if (!all_jid_bits_clear(ls
->ls_lvb_bits
)) {
891 /* journals need recovery, wait until all are clear */
892 fs_info(sdp
, "control_mount wait for journal recovery\n");
896 spin_lock(&ls
->ls_recover_spin
);
897 block_gen
= ls
->ls_recover_block
;
898 start_gen
= ls
->ls_recover_start
;
899 mount_gen
= ls
->ls_recover_mount
;
901 if (lvb_gen
< mount_gen
) {
902 /* wait for mounted nodes to update control_lock lvb to our
903 generation, which might include new recovery bits set */
904 if (sdp
->sd_args
.ar_spectator
) {
905 fs_info(sdp
, "Recovery is required. Waiting for a "
906 "non-spectator to mount.\n");
907 msleep_interruptible(1000);
909 fs_info(sdp
, "control_mount wait1 block %u start %u "
910 "mount %u lvb %u flags %lx\n", block_gen
,
911 start_gen
, mount_gen
, lvb_gen
,
912 ls
->ls_recover_flags
);
914 spin_unlock(&ls
->ls_recover_spin
);
918 if (lvb_gen
!= start_gen
) {
919 /* wait for mounted nodes to update control_lock lvb to the
920 latest recovery generation */
921 fs_info(sdp
, "control_mount wait2 block %u start %u mount %u "
922 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
923 lvb_gen
, ls
->ls_recover_flags
);
924 spin_unlock(&ls
->ls_recover_spin
);
928 if (block_gen
== start_gen
) {
929 /* dlm recovery in progress, wait for it to finish */
930 fs_info(sdp
, "control_mount wait3 block %u start %u mount %u "
931 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
932 lvb_gen
, ls
->ls_recover_flags
);
933 spin_unlock(&ls
->ls_recover_spin
);
937 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
938 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
939 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
940 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
941 spin_unlock(&ls
->ls_recover_spin
);
950 static int control_first_done(struct gfs2_sbd
*sdp
)
952 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
953 uint32_t start_gen
, block_gen
;
957 spin_lock(&ls
->ls_recover_spin
);
958 start_gen
= ls
->ls_recover_start
;
959 block_gen
= ls
->ls_recover_block
;
961 if (test_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
) ||
962 !test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
963 !test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
964 /* sanity check, should not happen */
965 fs_err(sdp
, "control_first_done start %u block %u flags %lx\n",
966 start_gen
, block_gen
, ls
->ls_recover_flags
);
967 spin_unlock(&ls
->ls_recover_spin
);
972 if (start_gen
== block_gen
) {
974 * Wait for the end of a dlm recovery cycle to switch from
975 * first mounter recovery. We can ignore any recover_slot
976 * callbacks between the recover_prep and next recover_done
977 * because we are still the first mounter and any failed nodes
978 * have not fully mounted, so they don't need recovery.
980 spin_unlock(&ls
->ls_recover_spin
);
981 fs_info(sdp
, "control_first_done wait gen %u\n", start_gen
);
983 wait_on_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
,
984 TASK_UNINTERRUPTIBLE
);
988 clear_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
989 set_bit(DFL_FIRST_MOUNT_DONE
, &ls
->ls_recover_flags
);
990 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
991 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
992 spin_unlock(&ls
->ls_recover_spin
);
994 memset(ls
->ls_lvb_bits
, 0, GDLM_LVB_SIZE
);
995 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
997 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
);
999 fs_err(sdp
, "control_first_done mounted PR error %d\n", error
);
1001 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
1003 fs_err(sdp
, "control_first_done control NL error %d\n", error
);
1009 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1010 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1011 * gfs2 jids start at 0, so jid = slot - 1)
1014 #define RECOVER_SIZE_INC 16
1016 static int set_recover_size(struct gfs2_sbd
*sdp
, struct dlm_slot
*slots
,
1019 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1020 uint32_t *submit
= NULL
;
1021 uint32_t *result
= NULL
;
1022 uint32_t old_size
, new_size
;
1025 if (!ls
->ls_lvb_bits
) {
1026 ls
->ls_lvb_bits
= kzalloc(GDLM_LVB_SIZE
, GFP_NOFS
);
1027 if (!ls
->ls_lvb_bits
)
1032 for (i
= 0; i
< num_slots
; i
++) {
1033 if (max_jid
< slots
[i
].slot
- 1)
1034 max_jid
= slots
[i
].slot
- 1;
1037 old_size
= ls
->ls_recover_size
;
1038 new_size
= old_size
;
1039 while (new_size
< max_jid
+ 1)
1040 new_size
+= RECOVER_SIZE_INC
;
1041 if (new_size
== old_size
)
1044 submit
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1045 result
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1046 if (!submit
|| !result
) {
1052 spin_lock(&ls
->ls_recover_spin
);
1053 memcpy(submit
, ls
->ls_recover_submit
, old_size
* sizeof(uint32_t));
1054 memcpy(result
, ls
->ls_recover_result
, old_size
* sizeof(uint32_t));
1055 kfree(ls
->ls_recover_submit
);
1056 kfree(ls
->ls_recover_result
);
1057 ls
->ls_recover_submit
= submit
;
1058 ls
->ls_recover_result
= result
;
1059 ls
->ls_recover_size
= new_size
;
1060 spin_unlock(&ls
->ls_recover_spin
);
1064 static void free_recover_size(struct lm_lockstruct
*ls
)
1066 kfree(ls
->ls_lvb_bits
);
1067 kfree(ls
->ls_recover_submit
);
1068 kfree(ls
->ls_recover_result
);
1069 ls
->ls_recover_submit
= NULL
;
1070 ls
->ls_recover_result
= NULL
;
1071 ls
->ls_recover_size
= 0;
1072 ls
->ls_lvb_bits
= NULL
;
1075 /* dlm calls before it does lock recovery */
1077 static void gdlm_recover_prep(void *arg
)
1079 struct gfs2_sbd
*sdp
= arg
;
1080 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1082 spin_lock(&ls
->ls_recover_spin
);
1083 ls
->ls_recover_block
= ls
->ls_recover_start
;
1084 set_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1086 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
1087 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1088 spin_unlock(&ls
->ls_recover_spin
);
1091 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
1092 spin_unlock(&ls
->ls_recover_spin
);
1095 /* dlm calls after recover_prep has been completed on all lockspace members;
1096 identifies slot/jid of failed member */
1098 static void gdlm_recover_slot(void *arg
, struct dlm_slot
*slot
)
1100 struct gfs2_sbd
*sdp
= arg
;
1101 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1102 int jid
= slot
->slot
- 1;
1104 spin_lock(&ls
->ls_recover_spin
);
1105 if (ls
->ls_recover_size
< jid
+ 1) {
1106 fs_err(sdp
, "recover_slot jid %d gen %u short size %d\n",
1107 jid
, ls
->ls_recover_block
, ls
->ls_recover_size
);
1108 spin_unlock(&ls
->ls_recover_spin
);
1112 if (ls
->ls_recover_submit
[jid
]) {
1113 fs_info(sdp
, "recover_slot jid %d gen %u prev %u\n",
1114 jid
, ls
->ls_recover_block
, ls
->ls_recover_submit
[jid
]);
1116 ls
->ls_recover_submit
[jid
] = ls
->ls_recover_block
;
1117 spin_unlock(&ls
->ls_recover_spin
);
1120 /* dlm calls after recover_slot and after it completes lock recovery */
1122 static void gdlm_recover_done(void *arg
, struct dlm_slot
*slots
, int num_slots
,
1123 int our_slot
, uint32_t generation
)
1125 struct gfs2_sbd
*sdp
= arg
;
1126 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1128 /* ensure the ls jid arrays are large enough */
1129 set_recover_size(sdp
, slots
, num_slots
);
1131 spin_lock(&ls
->ls_recover_spin
);
1132 ls
->ls_recover_start
= generation
;
1134 if (!ls
->ls_recover_mount
) {
1135 ls
->ls_recover_mount
= generation
;
1136 ls
->ls_jid
= our_slot
- 1;
1139 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1140 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
, 0);
1142 clear_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1143 smp_mb__after_atomic();
1144 wake_up_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
);
1145 spin_unlock(&ls
->ls_recover_spin
);
1148 /* gfs2_recover thread has a journal recovery result */
1150 static void gdlm_recovery_result(struct gfs2_sbd
*sdp
, unsigned int jid
,
1151 unsigned int result
)
1153 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1155 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1158 /* don't care about the recovery of own journal during mount */
1159 if (jid
== ls
->ls_jid
)
1162 spin_lock(&ls
->ls_recover_spin
);
1163 if (test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1164 spin_unlock(&ls
->ls_recover_spin
);
1167 if (ls
->ls_recover_size
< jid
+ 1) {
1168 fs_err(sdp
, "recovery_result jid %d short size %d\n",
1169 jid
, ls
->ls_recover_size
);
1170 spin_unlock(&ls
->ls_recover_spin
);
1174 fs_info(sdp
, "recover jid %d result %s\n", jid
,
1175 result
== LM_RD_GAVEUP
? "busy" : "success");
1177 ls
->ls_recover_result
[jid
] = result
;
1179 /* GAVEUP means another node is recovering the journal; delay our
1180 next attempt to recover it, to give the other node a chance to
1181 finish before trying again */
1183 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1184 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
,
1185 result
== LM_RD_GAVEUP
? HZ
: 0);
1186 spin_unlock(&ls
->ls_recover_spin
);
1189 static const struct dlm_lockspace_ops gdlm_lockspace_ops
= {
1190 .recover_prep
= gdlm_recover_prep
,
1191 .recover_slot
= gdlm_recover_slot
,
1192 .recover_done
= gdlm_recover_done
,
1195 static int gdlm_mount(struct gfs2_sbd
*sdp
, const char *table
)
1197 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1198 char cluster
[GFS2_LOCKNAME_LEN
];
1201 int error
, ops_result
;
1204 * initialize everything
1207 INIT_DELAYED_WORK(&sdp
->sd_control_work
, gfs2_control_func
);
1208 spin_lock_init(&ls
->ls_recover_spin
);
1209 ls
->ls_recover_flags
= 0;
1210 ls
->ls_recover_mount
= 0;
1211 ls
->ls_recover_start
= 0;
1212 ls
->ls_recover_block
= 0;
1213 ls
->ls_recover_size
= 0;
1214 ls
->ls_recover_submit
= NULL
;
1215 ls
->ls_recover_result
= NULL
;
1216 ls
->ls_lvb_bits
= NULL
;
1218 error
= set_recover_size(sdp
, NULL
, 0);
1223 * prepare dlm_new_lockspace args
1226 fsname
= strchr(table
, ':');
1228 fs_info(sdp
, "no fsname found\n");
1232 memset(cluster
, 0, sizeof(cluster
));
1233 memcpy(cluster
, table
, strlen(table
) - strlen(fsname
));
1236 flags
= DLM_LSFL_FS
| DLM_LSFL_NEWEXCL
;
1239 * create/join lockspace
1242 error
= dlm_new_lockspace(fsname
, cluster
, flags
, GDLM_LVB_SIZE
,
1243 &gdlm_lockspace_ops
, sdp
, &ops_result
,
1246 fs_err(sdp
, "dlm_new_lockspace error %d\n", error
);
1250 if (ops_result
< 0) {
1252 * dlm does not support ops callbacks,
1253 * old dlm_controld/gfs_controld are used, try without ops.
1255 fs_info(sdp
, "dlm lockspace ops not used\n");
1256 free_recover_size(ls
);
1257 set_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
);
1261 if (!test_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
)) {
1262 fs_err(sdp
, "dlm lockspace ops disallow jid preset\n");
1268 * control_mount() uses control_lock to determine first mounter,
1269 * and for later mounts, waits for any recoveries to be cleared.
1272 error
= control_mount(sdp
);
1274 fs_err(sdp
, "mount control error %d\n", error
);
1278 ls
->ls_first
= !!test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1279 clear_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
);
1280 smp_mb__after_atomic();
1281 wake_up_bit(&sdp
->sd_flags
, SDF_NOJOURNALID
);
1285 dlm_release_lockspace(ls
->ls_dlm
, 2);
1287 free_recover_size(ls
);
1292 static void gdlm_first_done(struct gfs2_sbd
*sdp
)
1294 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1297 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1300 error
= control_first_done(sdp
);
1302 fs_err(sdp
, "mount first_done error %d\n", error
);
1305 static void gdlm_unmount(struct gfs2_sbd
*sdp
)
1307 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1309 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1312 /* wait for gfs2_control_wq to be done with this mount */
1314 spin_lock(&ls
->ls_recover_spin
);
1315 set_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
);
1316 spin_unlock(&ls
->ls_recover_spin
);
1317 flush_delayed_work(&sdp
->sd_control_work
);
1319 /* mounted_lock and control_lock will be purged in dlm recovery */
1322 dlm_release_lockspace(ls
->ls_dlm
, 2);
1326 free_recover_size(ls
);
1329 static const match_table_t dlm_tokens
= {
1330 { Opt_jid
, "jid=%d"},
1332 { Opt_first
, "first=%d"},
1333 { Opt_nodir
, "nodir=%d"},
1337 const struct lm_lockops gfs2_dlm_ops
= {
1338 .lm_proto_name
= "lock_dlm",
1339 .lm_mount
= gdlm_mount
,
1340 .lm_first_done
= gdlm_first_done
,
1341 .lm_recovery_result
= gdlm_recovery_result
,
1342 .lm_unmount
= gdlm_unmount
,
1343 .lm_put_lock
= gdlm_put_lock
,
1344 .lm_lock
= gdlm_lock
,
1345 .lm_cancel
= gdlm_cancel
,
1346 .lm_tokens
= &dlm_tokens
,