1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
33 #include "trace_gfs2.h"
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
40 * These routines are used by the resource group routines (rgrp.c)
41 * to keep track of block allocation. Each block is represented by two
42 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
45 * 1 = Used (not metadata)
46 * 2 = Unlinked (still in use) inode
55 static const char valid_change
[16] = {
63 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
64 const struct gfs2_inode
*ip
, bool nowrap
);
68 * gfs2_setbit - Set a bit in the bitmaps
69 * @rbm: The position of the bit to set
70 * @do_clone: Also set the clone bitmap, if it exists
71 * @new_state: the new state of the block
75 static inline void gfs2_setbit(const struct gfs2_rbm
*rbm
, bool do_clone
,
76 unsigned char new_state
)
78 unsigned char *byte1
, *byte2
, *end
, cur_state
;
79 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
80 unsigned int buflen
= bi
->bi_bytes
;
81 const unsigned int bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
83 byte1
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
84 end
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ buflen
;
88 cur_state
= (*byte1
>> bit
) & GFS2_BIT_MASK
;
90 if (unlikely(!valid_change
[new_state
* 4 + cur_state
])) {
91 struct gfs2_sbd
*sdp
= rbm
->rgd
->rd_sbd
;
93 fs_warn(sdp
, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
94 rbm
->offset
, cur_state
, new_state
);
95 fs_warn(sdp
, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
96 (unsigned long long)rbm
->rgd
->rd_addr
, bi
->bi_start
,
97 (unsigned long long)bi
->bi_bh
->b_blocknr
);
98 fs_warn(sdp
, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
99 bi
->bi_offset
, bi
->bi_bytes
,
100 (unsigned long long)gfs2_rbm_to_block(rbm
));
102 gfs2_consist_rgrpd(rbm
->rgd
);
105 *byte1
^= (cur_state
^ new_state
) << bit
;
107 if (do_clone
&& bi
->bi_clone
) {
108 byte2
= bi
->bi_clone
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
109 cur_state
= (*byte2
>> bit
) & GFS2_BIT_MASK
;
110 *byte2
^= (cur_state
^ new_state
) << bit
;
115 * gfs2_testbit - test a bit in the bitmaps
116 * @rbm: The bit to test
117 * @use_clone: If true, test the clone bitmap, not the official bitmap.
119 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
120 * not the "real" bitmaps, to avoid allocating recently freed blocks.
122 * Returns: The two bit block state of the requested bit
125 static inline u8
gfs2_testbit(const struct gfs2_rbm
*rbm
, bool use_clone
)
127 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
132 if (use_clone
&& bi
->bi_clone
)
133 buffer
= bi
->bi_clone
;
135 buffer
= bi
->bi_bh
->b_data
;
136 buffer
+= bi
->bi_offset
;
137 byte
= buffer
+ (rbm
->offset
/ GFS2_NBBY
);
138 bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
140 return (*byte
>> bit
) & GFS2_BIT_MASK
;
145 * @ptr: Pointer to bitmap data
146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147 * @state: The state we are searching for
149 * We xor the bitmap data with a patter which is the bitwise opposite
150 * of what we are looking for, this gives rise to a pattern of ones
151 * wherever there is a match. Since we have two bits per entry, we
152 * take this pattern, shift it down by one place and then and it with
153 * the original. All the even bit positions (0,2,4, etc) then represent
154 * successful matches, so we mask with 0x55555..... to remove the unwanted
157 * This allows searching of a whole u64 at once (32 blocks) with a
158 * single test (on 64 bit arches).
161 static inline u64
gfs2_bit_search(const __le64
*ptr
, u64 mask
, u8 state
)
164 static const u64 search
[] = {
165 [0] = 0xffffffffffffffffULL
,
166 [1] = 0xaaaaaaaaaaaaaaaaULL
,
167 [2] = 0x5555555555555555ULL
,
168 [3] = 0x0000000000000000ULL
,
170 tmp
= le64_to_cpu(*ptr
) ^ search
[state
];
177 * rs_cmp - multi-block reservation range compare
178 * @blk: absolute file system block number of the new reservation
179 * @len: number of blocks in the new reservation
180 * @rs: existing reservation to compare against
182 * returns: 1 if the block range is beyond the reach of the reservation
183 * -1 if the block range is before the start of the reservation
184 * 0 if the block range overlaps with the reservation
186 static inline int rs_cmp(u64 blk
, u32 len
, struct gfs2_blkreserv
*rs
)
188 u64 startblk
= gfs2_rbm_to_block(&rs
->rs_rbm
);
190 if (blk
>= startblk
+ rs
->rs_free
)
192 if (blk
+ len
- 1 < startblk
)
198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199 * a block in a given allocation state.
200 * @buf: the buffer that holds the bitmaps
201 * @len: the length (in bytes) of the buffer
202 * @goal: start search at this block's bit-pair (within @buffer)
203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
205 * Scope of @goal and returned block number is only within this bitmap buffer,
206 * not entire rgrp or filesystem. @buffer will be offset from the actual
207 * beginning of a bitmap block buffer, skipping any header structures, but
208 * headers are always a multiple of 64 bits long so that the buffer is
209 * always aligned to a 64 bit boundary.
211 * The size of the buffer is in bytes, but is it assumed that it is
212 * always ok to read a complete multiple of 64 bits at the end
213 * of the block in case the end is no aligned to a natural boundary.
215 * Return: the block number (bitmap buffer scope) that was found
218 static u32
gfs2_bitfit(const u8
*buf
, const unsigned int len
,
221 u32 spoint
= (goal
<< 1) & ((8*sizeof(u64
)) - 1);
222 const __le64
*ptr
= ((__le64
*)buf
) + (goal
>> 5);
223 const __le64
*end
= (__le64
*)(buf
+ ALIGN(len
, sizeof(u64
)));
225 u64 mask
= 0x5555555555555555ULL
;
228 /* Mask off bits we don't care about at the start of the search */
230 tmp
= gfs2_bit_search(ptr
, mask
, state
);
232 while(tmp
== 0 && ptr
< end
) {
233 tmp
= gfs2_bit_search(ptr
, 0x5555555555555555ULL
, state
);
236 /* Mask off any bits which are more than len bytes from the start */
237 if (ptr
== end
&& (len
& (sizeof(u64
) - 1)))
238 tmp
&= (((u64
)~0) >> (64 - 8*(len
& (sizeof(u64
) - 1))));
239 /* Didn't find anything, so return */
244 bit
/= 2; /* two bits per entry in the bitmap */
245 return (((const unsigned char *)ptr
- buf
) * GFS2_NBBY
) + bit
;
249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250 * @rbm: The rbm with rgd already set correctly
251 * @block: The block number (filesystem relative)
253 * This sets the bi and offset members of an rbm based on a
254 * resource group and a filesystem relative block number. The
255 * resource group must be set in the rbm on entry, the bi and
256 * offset members will be set by this function.
258 * Returns: 0 on success, or an error code
261 static int gfs2_rbm_from_block(struct gfs2_rbm
*rbm
, u64 block
)
263 if (!rgrp_contains_block(rbm
->rgd
, block
))
266 rbm
->offset
= block
- rbm
->rgd
->rd_data0
;
267 /* Check if the block is within the first block */
268 if (rbm
->offset
< rbm_bi(rbm
)->bi_blocks
)
271 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
272 rbm
->offset
+= (sizeof(struct gfs2_rgrp
) -
273 sizeof(struct gfs2_meta_header
)) * GFS2_NBBY
;
274 rbm
->bii
= rbm
->offset
/ rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
275 rbm
->offset
-= rbm
->bii
* rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
280 * gfs2_rbm_incr - increment an rbm structure
281 * @rbm: The rbm with rgd already set correctly
283 * This function takes an existing rbm structure and increments it to the next
284 * viable block offset.
286 * Returns: If incrementing the offset would cause the rbm to go past the
287 * end of the rgrp, true is returned, otherwise false.
291 static bool gfs2_rbm_incr(struct gfs2_rbm
*rbm
)
293 if (rbm
->offset
+ 1 < rbm_bi(rbm
)->bi_blocks
) { /* in the same bitmap */
297 if (rbm
->bii
== rbm
->rgd
->rd_length
- 1) /* at the last bitmap */
306 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
307 * @rbm: Position to search (value/result)
308 * @n_unaligned: Number of unaligned blocks to check
309 * @len: Decremented for each block found (terminate on zero)
311 * Returns: true if a non-free block is encountered
314 static bool gfs2_unaligned_extlen(struct gfs2_rbm
*rbm
, u32 n_unaligned
, u32
*len
)
319 for (n
= 0; n
< n_unaligned
; n
++) {
320 res
= gfs2_testbit(rbm
, true);
321 if (res
!= GFS2_BLKST_FREE
)
326 if (gfs2_rbm_incr(rbm
))
334 * gfs2_free_extlen - Return extent length of free blocks
335 * @rrbm: Starting position
336 * @len: Max length to check
338 * Starting at the block specified by the rbm, see how many free blocks
339 * there are, not reading more than len blocks ahead. This can be done
340 * using memchr_inv when the blocks are byte aligned, but has to be done
341 * on a block by block basis in case of unaligned blocks. Also this
342 * function can cope with bitmap boundaries (although it must stop on
343 * a resource group boundary)
345 * Returns: Number of free blocks in the extent
348 static u32
gfs2_free_extlen(const struct gfs2_rbm
*rrbm
, u32 len
)
350 struct gfs2_rbm rbm
= *rrbm
;
351 u32 n_unaligned
= rbm
.offset
& 3;
355 u8
*ptr
, *start
, *end
;
357 struct gfs2_bitmap
*bi
;
360 gfs2_unaligned_extlen(&rbm
, 4 - n_unaligned
, &len
))
363 n_unaligned
= len
& 3;
364 /* Start is now byte aligned */
367 start
= bi
->bi_bh
->b_data
;
369 start
= bi
->bi_clone
;
370 start
+= bi
->bi_offset
;
371 end
= start
+ bi
->bi_bytes
;
372 BUG_ON(rbm
.offset
& 3);
373 start
+= (rbm
.offset
/ GFS2_NBBY
);
374 bytes
= min_t(u32
, len
/ GFS2_NBBY
, (end
- start
));
375 ptr
= memchr_inv(start
, 0, bytes
);
376 chunk_size
= ((ptr
== NULL
) ? bytes
: (ptr
- start
));
377 chunk_size
*= GFS2_NBBY
;
378 BUG_ON(len
< chunk_size
);
380 block
= gfs2_rbm_to_block(&rbm
);
381 if (gfs2_rbm_from_block(&rbm
, block
+ chunk_size
)) {
389 n_unaligned
= len
& 3;
392 /* Deal with any bits left over at the end */
394 gfs2_unaligned_extlen(&rbm
, n_unaligned
, &len
);
400 * gfs2_bitcount - count the number of bits in a certain state
401 * @rgd: the resource group descriptor
402 * @buffer: the buffer that holds the bitmaps
403 * @buflen: the length (in bytes) of the buffer
404 * @state: the state of the block we're looking for
406 * Returns: The number of bits
409 static u32
gfs2_bitcount(struct gfs2_rgrpd
*rgd
, const u8
*buffer
,
410 unsigned int buflen
, u8 state
)
412 const u8
*byte
= buffer
;
413 const u8
*end
= buffer
+ buflen
;
414 const u8 state1
= state
<< 2;
415 const u8 state2
= state
<< 4;
416 const u8 state3
= state
<< 6;
419 for (; byte
< end
; byte
++) {
420 if (((*byte
) & 0x03) == state
)
422 if (((*byte
) & 0x0C) == state1
)
424 if (((*byte
) & 0x30) == state2
)
426 if (((*byte
) & 0xC0) == state3
)
434 * gfs2_rgrp_verify - Verify that a resource group is consistent
439 void gfs2_rgrp_verify(struct gfs2_rgrpd
*rgd
)
441 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
442 struct gfs2_bitmap
*bi
= NULL
;
443 u32 length
= rgd
->rd_length
;
447 memset(count
, 0, 4 * sizeof(u32
));
449 /* Count # blocks in each of 4 possible allocation states */
450 for (buf
= 0; buf
< length
; buf
++) {
451 bi
= rgd
->rd_bits
+ buf
;
452 for (x
= 0; x
< 4; x
++)
453 count
[x
] += gfs2_bitcount(rgd
,
459 if (count
[0] != rgd
->rd_free
) {
460 if (gfs2_consist_rgrpd(rgd
))
461 fs_err(sdp
, "free data mismatch: %u != %u\n",
462 count
[0], rgd
->rd_free
);
466 tmp
= rgd
->rd_data
- rgd
->rd_free
- rgd
->rd_dinodes
;
467 if (count
[1] != tmp
) {
468 if (gfs2_consist_rgrpd(rgd
))
469 fs_err(sdp
, "used data mismatch: %u != %u\n",
474 if (count
[2] + count
[3] != rgd
->rd_dinodes
) {
475 if (gfs2_consist_rgrpd(rgd
))
476 fs_err(sdp
, "used metadata mismatch: %u != %u\n",
477 count
[2] + count
[3], rgd
->rd_dinodes
);
483 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
484 * @sdp: The GFS2 superblock
485 * @blk: The data block number
486 * @exact: True if this needs to be an exact match
488 * The @exact argument should be set to true by most callers. The exception
489 * is when we need to match blocks which are not represented by the rgrp
490 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
491 * there for alignment purposes. Another way of looking at it is that @exact
492 * matches only valid data/metadata blocks, but with @exact false, it will
493 * match any block within the extent of the rgrp.
495 * Returns: The resource group, or NULL if not found
498 struct gfs2_rgrpd
*gfs2_blk2rgrpd(struct gfs2_sbd
*sdp
, u64 blk
, bool exact
)
500 struct rb_node
*n
, *next
;
501 struct gfs2_rgrpd
*cur
;
503 spin_lock(&sdp
->sd_rindex_spin
);
504 n
= sdp
->sd_rindex_tree
.rb_node
;
506 cur
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
508 if (blk
< cur
->rd_addr
)
510 else if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
513 spin_unlock(&sdp
->sd_rindex_spin
);
515 if (blk
< cur
->rd_addr
)
517 if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
524 spin_unlock(&sdp
->sd_rindex_spin
);
530 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
531 * @sdp: The GFS2 superblock
533 * Returns: The first rgrp in the filesystem
536 struct gfs2_rgrpd
*gfs2_rgrpd_get_first(struct gfs2_sbd
*sdp
)
538 const struct rb_node
*n
;
539 struct gfs2_rgrpd
*rgd
;
541 spin_lock(&sdp
->sd_rindex_spin
);
542 n
= rb_first(&sdp
->sd_rindex_tree
);
543 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
544 spin_unlock(&sdp
->sd_rindex_spin
);
550 * gfs2_rgrpd_get_next - get the next RG
551 * @rgd: the resource group descriptor
553 * Returns: The next rgrp
556 struct gfs2_rgrpd
*gfs2_rgrpd_get_next(struct gfs2_rgrpd
*rgd
)
558 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
559 const struct rb_node
*n
;
561 spin_lock(&sdp
->sd_rindex_spin
);
562 n
= rb_next(&rgd
->rd_node
);
564 n
= rb_first(&sdp
->sd_rindex_tree
);
566 if (unlikely(&rgd
->rd_node
== n
)) {
567 spin_unlock(&sdp
->sd_rindex_spin
);
570 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
571 spin_unlock(&sdp
->sd_rindex_spin
);
575 void check_and_update_goal(struct gfs2_inode
*ip
)
577 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
578 if (!ip
->i_goal
|| gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1) == NULL
)
579 ip
->i_goal
= ip
->i_no_addr
;
582 void gfs2_free_clones(struct gfs2_rgrpd
*rgd
)
586 for (x
= 0; x
< rgd
->rd_length
; x
++) {
587 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
594 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
595 * plus a quota allocations data structure, if necessary
596 * @ip: the inode for this reservation
598 int gfs2_rsqa_alloc(struct gfs2_inode
*ip
)
600 return gfs2_qa_alloc(ip
);
603 static void dump_rs(struct seq_file
*seq
, const struct gfs2_blkreserv
*rs
,
604 const char *fs_id_buf
)
606 struct gfs2_inode
*ip
= container_of(rs
, struct gfs2_inode
, i_res
);
608 gfs2_print_dbg(seq
, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf
,
609 (unsigned long long)ip
->i_no_addr
,
610 (unsigned long long)gfs2_rbm_to_block(&rs
->rs_rbm
),
611 rs
->rs_rbm
.offset
, rs
->rs_free
);
615 * __rs_deltree - remove a multi-block reservation from the rgd tree
616 * @rs: The reservation to remove
619 static void __rs_deltree(struct gfs2_blkreserv
*rs
)
621 struct gfs2_rgrpd
*rgd
;
623 if (!gfs2_rs_active(rs
))
626 rgd
= rs
->rs_rbm
.rgd
;
627 trace_gfs2_rs(rs
, TRACE_RS_TREEDEL
);
628 rb_erase(&rs
->rs_node
, &rgd
->rd_rstree
);
629 RB_CLEAR_NODE(&rs
->rs_node
);
632 u64 last_block
= gfs2_rbm_to_block(&rs
->rs_rbm
) +
634 struct gfs2_rbm last_rbm
= { .rgd
= rs
->rs_rbm
.rgd
, };
635 struct gfs2_bitmap
*start
, *last
;
637 /* return reserved blocks to the rgrp */
638 BUG_ON(rs
->rs_rbm
.rgd
->rd_reserved
< rs
->rs_free
);
639 rs
->rs_rbm
.rgd
->rd_reserved
-= rs
->rs_free
;
640 /* The rgrp extent failure point is likely not to increase;
641 it will only do so if the freed blocks are somehow
642 contiguous with a span of free blocks that follows. Still,
643 it will force the number to be recalculated later. */
644 rgd
->rd_extfail_pt
+= rs
->rs_free
;
646 if (gfs2_rbm_from_block(&last_rbm
, last_block
))
648 start
= rbm_bi(&rs
->rs_rbm
);
649 last
= rbm_bi(&last_rbm
);
651 clear_bit(GBF_FULL
, &start
->bi_flags
);
652 while (start
++ != last
);
657 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
658 * @rs: The reservation to remove
661 void gfs2_rs_deltree(struct gfs2_blkreserv
*rs
)
663 struct gfs2_rgrpd
*rgd
;
665 rgd
= rs
->rs_rbm
.rgd
;
667 spin_lock(&rgd
->rd_rsspin
);
670 spin_unlock(&rgd
->rd_rsspin
);
675 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
676 * @ip: The inode for this reservation
677 * @wcount: The inode's write count, or NULL
680 void gfs2_rsqa_delete(struct gfs2_inode
*ip
, atomic_t
*wcount
)
682 down_write(&ip
->i_rw_mutex
);
683 if ((wcount
== NULL
) || (atomic_read(wcount
) <= 1))
684 gfs2_rs_deltree(&ip
->i_res
);
685 up_write(&ip
->i_rw_mutex
);
686 gfs2_qa_delete(ip
, wcount
);
690 * return_all_reservations - return all reserved blocks back to the rgrp.
691 * @rgd: the rgrp that needs its space back
693 * We previously reserved a bunch of blocks for allocation. Now we need to
694 * give them back. This leave the reservation structures in tact, but removes
695 * all of their corresponding "no-fly zones".
697 static void return_all_reservations(struct gfs2_rgrpd
*rgd
)
700 struct gfs2_blkreserv
*rs
;
702 spin_lock(&rgd
->rd_rsspin
);
703 while ((n
= rb_first(&rgd
->rd_rstree
))) {
704 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
707 spin_unlock(&rgd
->rd_rsspin
);
710 void gfs2_clear_rgrpd(struct gfs2_sbd
*sdp
)
713 struct gfs2_rgrpd
*rgd
;
714 struct gfs2_glock
*gl
;
716 while ((n
= rb_first(&sdp
->sd_rindex_tree
))) {
717 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
720 rb_erase(n
, &sdp
->sd_rindex_tree
);
723 glock_clear_object(gl
, rgd
);
724 gfs2_rgrp_brelse(rgd
);
728 gfs2_free_clones(rgd
);
731 return_all_reservations(rgd
);
732 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
736 static void gfs2_rindex_print(const struct gfs2_rgrpd
*rgd
)
738 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
740 fs_info(sdp
, "ri_addr = %llu\n", (unsigned long long)rgd
->rd_addr
);
741 fs_info(sdp
, "ri_length = %u\n", rgd
->rd_length
);
742 fs_info(sdp
, "ri_data0 = %llu\n", (unsigned long long)rgd
->rd_data0
);
743 fs_info(sdp
, "ri_data = %u\n", rgd
->rd_data
);
744 fs_info(sdp
, "ri_bitbytes = %u\n", rgd
->rd_bitbytes
);
748 * gfs2_compute_bitstructs - Compute the bitmap sizes
749 * @rgd: The resource group descriptor
751 * Calculates bitmap descriptors, one for each block that contains bitmap data
756 static int compute_bitstructs(struct gfs2_rgrpd
*rgd
)
758 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
759 struct gfs2_bitmap
*bi
;
760 u32 length
= rgd
->rd_length
; /* # blocks in hdr & bitmap */
761 u32 bytes_left
, bytes
;
767 rgd
->rd_bits
= kcalloc(length
, sizeof(struct gfs2_bitmap
), GFP_NOFS
);
771 bytes_left
= rgd
->rd_bitbytes
;
773 for (x
= 0; x
< length
; x
++) {
774 bi
= rgd
->rd_bits
+ x
;
777 /* small rgrp; bitmap stored completely in header block */
780 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
782 bi
->bi_bytes
= bytes
;
783 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
786 bytes
= sdp
->sd_sb
.sb_bsize
- sizeof(struct gfs2_rgrp
);
787 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
789 bi
->bi_bytes
= bytes
;
790 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
792 } else if (x
+ 1 == length
) {
794 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
795 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
796 bi
->bi_bytes
= bytes
;
797 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
800 bytes
= sdp
->sd_sb
.sb_bsize
-
801 sizeof(struct gfs2_meta_header
);
802 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
803 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
804 bi
->bi_bytes
= bytes
;
805 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
812 gfs2_consist_rgrpd(rgd
);
815 bi
= rgd
->rd_bits
+ (length
- 1);
816 if ((bi
->bi_start
+ bi
->bi_bytes
) * GFS2_NBBY
!= rgd
->rd_data
) {
817 if (gfs2_consist_rgrpd(rgd
)) {
818 gfs2_rindex_print(rgd
);
819 fs_err(sdp
, "start=%u len=%u offset=%u\n",
820 bi
->bi_start
, bi
->bi_bytes
, bi
->bi_offset
);
829 * gfs2_ri_total - Total up the file system space, according to the rindex.
830 * @sdp: the filesystem
833 u64
gfs2_ri_total(struct gfs2_sbd
*sdp
)
836 struct inode
*inode
= sdp
->sd_rindex
;
837 struct gfs2_inode
*ip
= GFS2_I(inode
);
838 char buf
[sizeof(struct gfs2_rindex
)];
841 for (rgrps
= 0;; rgrps
++) {
842 loff_t pos
= rgrps
* sizeof(struct gfs2_rindex
);
844 if (pos
+ sizeof(struct gfs2_rindex
) > i_size_read(inode
))
846 error
= gfs2_internal_read(ip
, buf
, &pos
,
847 sizeof(struct gfs2_rindex
));
848 if (error
!= sizeof(struct gfs2_rindex
))
850 total_data
+= be32_to_cpu(((struct gfs2_rindex
*)buf
)->ri_data
);
855 static int rgd_insert(struct gfs2_rgrpd
*rgd
)
857 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
858 struct rb_node
**newn
= &sdp
->sd_rindex_tree
.rb_node
, *parent
= NULL
;
860 /* Figure out where to put new node */
862 struct gfs2_rgrpd
*cur
= rb_entry(*newn
, struct gfs2_rgrpd
,
866 if (rgd
->rd_addr
< cur
->rd_addr
)
867 newn
= &((*newn
)->rb_left
);
868 else if (rgd
->rd_addr
> cur
->rd_addr
)
869 newn
= &((*newn
)->rb_right
);
874 rb_link_node(&rgd
->rd_node
, parent
, newn
);
875 rb_insert_color(&rgd
->rd_node
, &sdp
->sd_rindex_tree
);
881 * read_rindex_entry - Pull in a new resource index entry from the disk
882 * @ip: Pointer to the rindex inode
884 * Returns: 0 on success, > 0 on EOF, error code otherwise
887 static int read_rindex_entry(struct gfs2_inode
*ip
)
889 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
890 const unsigned bsize
= sdp
->sd_sb
.sb_bsize
;
891 loff_t pos
= sdp
->sd_rgrps
* sizeof(struct gfs2_rindex
);
892 struct gfs2_rindex buf
;
894 struct gfs2_rgrpd
*rgd
;
896 if (pos
>= i_size_read(&ip
->i_inode
))
899 error
= gfs2_internal_read(ip
, (char *)&buf
, &pos
,
900 sizeof(struct gfs2_rindex
));
902 if (error
!= sizeof(struct gfs2_rindex
))
903 return (error
== 0) ? 1 : error
;
905 rgd
= kmem_cache_zalloc(gfs2_rgrpd_cachep
, GFP_NOFS
);
911 rgd
->rd_addr
= be64_to_cpu(buf
.ri_addr
);
912 rgd
->rd_length
= be32_to_cpu(buf
.ri_length
);
913 rgd
->rd_data0
= be64_to_cpu(buf
.ri_data0
);
914 rgd
->rd_data
= be32_to_cpu(buf
.ri_data
);
915 rgd
->rd_bitbytes
= be32_to_cpu(buf
.ri_bitbytes
);
916 spin_lock_init(&rgd
->rd_rsspin
);
918 error
= compute_bitstructs(rgd
);
922 error
= gfs2_glock_get(sdp
, rgd
->rd_addr
,
923 &gfs2_rgrp_glops
, CREATE
, &rgd
->rd_gl
);
927 rgd
->rd_rgl
= (struct gfs2_rgrp_lvb
*)rgd
->rd_gl
->gl_lksb
.sb_lvbptr
;
928 rgd
->rd_flags
&= ~(GFS2_RDF_UPTODATE
| GFS2_RDF_PREFERRED
);
929 if (rgd
->rd_data
> sdp
->sd_max_rg_data
)
930 sdp
->sd_max_rg_data
= rgd
->rd_data
;
931 spin_lock(&sdp
->sd_rindex_spin
);
932 error
= rgd_insert(rgd
);
933 spin_unlock(&sdp
->sd_rindex_spin
);
935 glock_set_object(rgd
->rd_gl
, rgd
);
936 rgd
->rd_gl
->gl_vm
.start
= (rgd
->rd_addr
* bsize
) & PAGE_MASK
;
937 rgd
->rd_gl
->gl_vm
.end
= PAGE_ALIGN((rgd
->rd_addr
+
938 rgd
->rd_length
) * bsize
) - 1;
942 error
= 0; /* someone else read in the rgrp; free it and ignore it */
943 gfs2_glock_put(rgd
->rd_gl
);
948 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
953 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
954 * @sdp: the GFS2 superblock
956 * The purpose of this function is to select a subset of the resource groups
957 * and mark them as PREFERRED. We do it in such a way that each node prefers
958 * to use a unique set of rgrps to minimize glock contention.
960 static void set_rgrp_preferences(struct gfs2_sbd
*sdp
)
962 struct gfs2_rgrpd
*rgd
, *first
;
965 /* Skip an initial number of rgrps, based on this node's journal ID.
966 That should start each node out on its own set. */
967 rgd
= gfs2_rgrpd_get_first(sdp
);
968 for (i
= 0; i
< sdp
->sd_lockstruct
.ls_jid
; i
++)
969 rgd
= gfs2_rgrpd_get_next(rgd
);
973 rgd
->rd_flags
|= GFS2_RDF_PREFERRED
;
974 for (i
= 0; i
< sdp
->sd_journals
; i
++) {
975 rgd
= gfs2_rgrpd_get_next(rgd
);
976 if (!rgd
|| rgd
== first
)
979 } while (rgd
&& rgd
!= first
);
983 * gfs2_ri_update - Pull in a new resource index from the disk
984 * @ip: pointer to the rindex inode
986 * Returns: 0 on successful update, error code otherwise
989 static int gfs2_ri_update(struct gfs2_inode
*ip
)
991 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
995 error
= read_rindex_entry(ip
);
996 } while (error
== 0);
1001 set_rgrp_preferences(sdp
);
1003 sdp
->sd_rindex_uptodate
= 1;
1008 * gfs2_rindex_update - Update the rindex if required
1009 * @sdp: The GFS2 superblock
1011 * We grab a lock on the rindex inode to make sure that it doesn't
1012 * change whilst we are performing an operation. We keep this lock
1013 * for quite long periods of time compared to other locks. This
1014 * doesn't matter, since it is shared and it is very, very rarely
1015 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1017 * This makes sure that we're using the latest copy of the resource index
1018 * special file, which might have been updated if someone expanded the
1019 * filesystem (via gfs2_grow utility), which adds new resource groups.
1021 * Returns: 0 on succeess, error code otherwise
1024 int gfs2_rindex_update(struct gfs2_sbd
*sdp
)
1026 struct gfs2_inode
*ip
= GFS2_I(sdp
->sd_rindex
);
1027 struct gfs2_glock
*gl
= ip
->i_gl
;
1028 struct gfs2_holder ri_gh
;
1030 int unlock_required
= 0;
1032 /* Read new copy from disk if we don't have the latest */
1033 if (!sdp
->sd_rindex_uptodate
) {
1034 if (!gfs2_glock_is_locked_by_me(gl
)) {
1035 error
= gfs2_glock_nq_init(gl
, LM_ST_SHARED
, 0, &ri_gh
);
1038 unlock_required
= 1;
1040 if (!sdp
->sd_rindex_uptodate
)
1041 error
= gfs2_ri_update(ip
);
1042 if (unlock_required
)
1043 gfs2_glock_dq_uninit(&ri_gh
);
1049 static void gfs2_rgrp_in(struct gfs2_rgrpd
*rgd
, const void *buf
)
1051 const struct gfs2_rgrp
*str
= buf
;
1054 rg_flags
= be32_to_cpu(str
->rg_flags
);
1055 rg_flags
&= ~GFS2_RDF_MASK
;
1056 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1057 rgd
->rd_flags
|= rg_flags
;
1058 rgd
->rd_free
= be32_to_cpu(str
->rg_free
);
1059 rgd
->rd_dinodes
= be32_to_cpu(str
->rg_dinodes
);
1060 rgd
->rd_igeneration
= be64_to_cpu(str
->rg_igeneration
);
1061 /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1064 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb
*rgl
, const void *buf
)
1066 const struct gfs2_rgrp
*str
= buf
;
1068 rgl
->rl_magic
= cpu_to_be32(GFS2_MAGIC
);
1069 rgl
->rl_flags
= str
->rg_flags
;
1070 rgl
->rl_free
= str
->rg_free
;
1071 rgl
->rl_dinodes
= str
->rg_dinodes
;
1072 rgl
->rl_igeneration
= str
->rg_igeneration
;
1076 static void gfs2_rgrp_out(struct gfs2_rgrpd
*rgd
, void *buf
)
1078 struct gfs2_rgrpd
*next
= gfs2_rgrpd_get_next(rgd
);
1079 struct gfs2_rgrp
*str
= buf
;
1082 str
->rg_flags
= cpu_to_be32(rgd
->rd_flags
& ~GFS2_RDF_MASK
);
1083 str
->rg_free
= cpu_to_be32(rgd
->rd_free
);
1084 str
->rg_dinodes
= cpu_to_be32(rgd
->rd_dinodes
);
1087 else if (next
->rd_addr
> rgd
->rd_addr
)
1088 str
->rg_skip
= cpu_to_be32(next
->rd_addr
- rgd
->rd_addr
);
1089 str
->rg_igeneration
= cpu_to_be64(rgd
->rd_igeneration
);
1090 str
->rg_data0
= cpu_to_be64(rgd
->rd_data0
);
1091 str
->rg_data
= cpu_to_be32(rgd
->rd_data
);
1092 str
->rg_bitbytes
= cpu_to_be32(rgd
->rd_bitbytes
);
1094 crc
= gfs2_disk_hash(buf
, sizeof(struct gfs2_rgrp
));
1095 str
->rg_crc
= cpu_to_be32(crc
);
1097 memset(&str
->rg_reserved
, 0, sizeof(str
->rg_reserved
));
1098 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, buf
);
1101 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd
*rgd
)
1103 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1104 struct gfs2_rgrp
*str
= (struct gfs2_rgrp
*)rgd
->rd_bits
[0].bi_bh
->b_data
;
1105 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1108 if (rgl
->rl_flags
!= str
->rg_flags
) {
1109 fs_warn(sdp
, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1110 (unsigned long long)rgd
->rd_addr
,
1111 be32_to_cpu(rgl
->rl_flags
), be32_to_cpu(str
->rg_flags
));
1114 if (rgl
->rl_free
!= str
->rg_free
) {
1115 fs_warn(sdp
, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1116 (unsigned long long)rgd
->rd_addr
,
1117 be32_to_cpu(rgl
->rl_free
), be32_to_cpu(str
->rg_free
));
1120 if (rgl
->rl_dinodes
!= str
->rg_dinodes
) {
1121 fs_warn(sdp
, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1122 (unsigned long long)rgd
->rd_addr
,
1123 be32_to_cpu(rgl
->rl_dinodes
),
1124 be32_to_cpu(str
->rg_dinodes
));
1127 if (rgl
->rl_igeneration
!= str
->rg_igeneration
) {
1128 fs_warn(sdp
, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1129 (unsigned long long)rgd
->rd_addr
,
1130 (unsigned long long)be64_to_cpu(rgl
->rl_igeneration
),
1131 (unsigned long long)be64_to_cpu(str
->rg_igeneration
));
1137 static u32
count_unlinked(struct gfs2_rgrpd
*rgd
)
1139 struct gfs2_bitmap
*bi
;
1140 const u32 length
= rgd
->rd_length
;
1141 const u8
*buffer
= NULL
;
1142 u32 i
, goal
, count
= 0;
1144 for (i
= 0, bi
= rgd
->rd_bits
; i
< length
; i
++, bi
++) {
1146 buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
1147 WARN_ON(!buffer_uptodate(bi
->bi_bh
));
1148 while (goal
< bi
->bi_blocks
) {
1149 goal
= gfs2_bitfit(buffer
, bi
->bi_bytes
, goal
,
1150 GFS2_BLKST_UNLINKED
);
1151 if (goal
== BFITNOENT
)
1163 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1164 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1166 * Read in all of a Resource Group's header and bitmap blocks.
1167 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1172 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd
*rgd
)
1174 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1175 struct gfs2_glock
*gl
= rgd
->rd_gl
;
1176 unsigned int length
= rgd
->rd_length
;
1177 struct gfs2_bitmap
*bi
;
1181 if (rgd
->rd_bits
[0].bi_bh
!= NULL
)
1184 for (x
= 0; x
< length
; x
++) {
1185 bi
= rgd
->rd_bits
+ x
;
1186 error
= gfs2_meta_read(gl
, rgd
->rd_addr
+ x
, 0, 0, &bi
->bi_bh
);
1191 for (y
= length
; y
--;) {
1192 bi
= rgd
->rd_bits
+ y
;
1193 error
= gfs2_meta_wait(sdp
, bi
->bi_bh
);
1196 if (gfs2_metatype_check(sdp
, bi
->bi_bh
, y
? GFS2_METATYPE_RB
:
1197 GFS2_METATYPE_RG
)) {
1203 if (!(rgd
->rd_flags
& GFS2_RDF_UPTODATE
)) {
1204 for (x
= 0; x
< length
; x
++)
1205 clear_bit(GBF_FULL
, &rgd
->rd_bits
[x
].bi_flags
);
1206 gfs2_rgrp_in(rgd
, (rgd
->rd_bits
[0].bi_bh
)->b_data
);
1207 rgd
->rd_flags
|= (GFS2_RDF_UPTODATE
| GFS2_RDF_CHECK
);
1208 rgd
->rd_free_clone
= rgd
->rd_free
;
1209 /* max out the rgrp allocation failure point */
1210 rgd
->rd_extfail_pt
= rgd
->rd_free
;
1212 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
) {
1213 rgd
->rd_rgl
->rl_unlinked
= cpu_to_be32(count_unlinked(rgd
));
1214 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
,
1215 rgd
->rd_bits
[0].bi_bh
->b_data
);
1217 else if (sdp
->sd_args
.ar_rgrplvb
) {
1218 if (!gfs2_rgrp_lvb_valid(rgd
)){
1219 gfs2_consist_rgrpd(rgd
);
1223 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1224 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1230 bi
= rgd
->rd_bits
+ x
;
1233 gfs2_assert_warn(sdp
, !bi
->bi_clone
);
1239 static int update_rgrp_lvb(struct gfs2_rgrpd
*rgd
)
1243 if (rgd
->rd_flags
& GFS2_RDF_UPTODATE
)
1246 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
)
1247 return gfs2_rgrp_bh_get(rgd
);
1249 rl_flags
= be32_to_cpu(rgd
->rd_rgl
->rl_flags
);
1250 rl_flags
&= ~GFS2_RDF_MASK
;
1251 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1252 rgd
->rd_flags
|= (rl_flags
| GFS2_RDF_CHECK
);
1253 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1254 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1255 rgd
->rd_free
= be32_to_cpu(rgd
->rd_rgl
->rl_free
);
1256 rgd
->rd_free_clone
= rgd
->rd_free
;
1257 rgd
->rd_dinodes
= be32_to_cpu(rgd
->rd_rgl
->rl_dinodes
);
1258 rgd
->rd_igeneration
= be64_to_cpu(rgd
->rd_rgl
->rl_igeneration
);
1262 int gfs2_rgrp_go_lock(struct gfs2_holder
*gh
)
1264 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1265 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1267 if (gh
->gh_flags
& GL_SKIP
&& sdp
->sd_args
.ar_rgrplvb
)
1269 return gfs2_rgrp_bh_get(rgd
);
1273 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1274 * @rgd: The resource group
1278 void gfs2_rgrp_brelse(struct gfs2_rgrpd
*rgd
)
1280 int x
, length
= rgd
->rd_length
;
1282 for (x
= 0; x
< length
; x
++) {
1283 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1293 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1294 * @gh: The glock holder for the resource group
1298 void gfs2_rgrp_go_unlock(struct gfs2_holder
*gh
)
1300 struct gfs2_rgrpd
*rgd
= gh
->gh_gl
->gl_object
;
1301 int demote_requested
= test_bit(GLF_DEMOTE
, &gh
->gh_gl
->gl_flags
) |
1302 test_bit(GLF_PENDING_DEMOTE
, &gh
->gh_gl
->gl_flags
);
1304 if (rgd
&& demote_requested
)
1305 gfs2_rgrp_brelse(rgd
);
1308 int gfs2_rgrp_send_discards(struct gfs2_sbd
*sdp
, u64 offset
,
1309 struct buffer_head
*bh
,
1310 const struct gfs2_bitmap
*bi
, unsigned minlen
, u64
*ptrimmed
)
1312 struct super_block
*sb
= sdp
->sd_vfs
;
1315 sector_t nr_blks
= 0;
1321 for (x
= 0; x
< bi
->bi_bytes
; x
++) {
1322 const u8
*clone
= bi
->bi_clone
? bi
->bi_clone
: bi
->bi_bh
->b_data
;
1323 clone
+= bi
->bi_offset
;
1326 const u8
*orig
= bh
->b_data
+ bi
->bi_offset
+ x
;
1327 diff
= ~(*orig
| (*orig
>> 1)) & (*clone
| (*clone
>> 1));
1329 diff
= ~(*clone
| (*clone
>> 1));
1334 blk
= offset
+ ((bi
->bi_start
+ x
) * GFS2_NBBY
);
1338 goto start_new_extent
;
1339 if ((start
+ nr_blks
) != blk
) {
1340 if (nr_blks
>= minlen
) {
1341 rv
= sb_issue_discard(sb
,
1358 if (nr_blks
>= minlen
) {
1359 rv
= sb_issue_discard(sb
, start
, nr_blks
, GFP_NOFS
, 0);
1365 *ptrimmed
= trimmed
;
1369 if (sdp
->sd_args
.ar_discard
)
1370 fs_warn(sdp
, "error %d on discard request, turning discards off for this filesystem\n", rv
);
1371 sdp
->sd_args
.ar_discard
= 0;
1376 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1377 * @filp: Any file on the filesystem
1378 * @argp: Pointer to the arguments (also used to pass result)
1380 * Returns: 0 on success, otherwise error code
1383 int gfs2_fitrim(struct file
*filp
, void __user
*argp
)
1385 struct inode
*inode
= file_inode(filp
);
1386 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1387 struct request_queue
*q
= bdev_get_queue(sdp
->sd_vfs
->s_bdev
);
1388 struct buffer_head
*bh
;
1389 struct gfs2_rgrpd
*rgd
;
1390 struct gfs2_rgrpd
*rgd_end
;
1391 struct gfs2_holder gh
;
1392 struct fstrim_range r
;
1396 u64 start
, end
, minlen
;
1398 unsigned bs_shift
= sdp
->sd_sb
.sb_bsize_shift
;
1400 if (!capable(CAP_SYS_ADMIN
))
1403 if (!blk_queue_discard(q
))
1406 if (copy_from_user(&r
, argp
, sizeof(r
)))
1409 ret
= gfs2_rindex_update(sdp
);
1413 start
= r
.start
>> bs_shift
;
1414 end
= start
+ (r
.len
>> bs_shift
);
1415 minlen
= max_t(u64
, r
.minlen
,
1416 q
->limits
.discard_granularity
) >> bs_shift
;
1418 if (end
<= start
|| minlen
> sdp
->sd_max_rg_data
)
1421 rgd
= gfs2_blk2rgrpd(sdp
, start
, 0);
1422 rgd_end
= gfs2_blk2rgrpd(sdp
, end
, 0);
1424 if ((gfs2_rgrpd_get_first(sdp
) == gfs2_rgrpd_get_next(rgd_end
))
1425 && (start
> rgd_end
->rd_data0
+ rgd_end
->rd_data
))
1426 return -EINVAL
; /* start is beyond the end of the fs */
1430 ret
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_EXCLUSIVE
, 0, &gh
);
1434 if (!(rgd
->rd_flags
& GFS2_RGF_TRIMMED
)) {
1435 /* Trim each bitmap in the rgrp */
1436 for (x
= 0; x
< rgd
->rd_length
; x
++) {
1437 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1438 ret
= gfs2_rgrp_send_discards(sdp
,
1439 rgd
->rd_data0
, NULL
, bi
, minlen
,
1442 gfs2_glock_dq_uninit(&gh
);
1448 /* Mark rgrp as having been trimmed */
1449 ret
= gfs2_trans_begin(sdp
, RES_RG_HDR
, 0);
1451 bh
= rgd
->rd_bits
[0].bi_bh
;
1452 rgd
->rd_flags
|= GFS2_RGF_TRIMMED
;
1453 gfs2_trans_add_meta(rgd
->rd_gl
, bh
);
1454 gfs2_rgrp_out(rgd
, bh
->b_data
);
1455 gfs2_trans_end(sdp
);
1458 gfs2_glock_dq_uninit(&gh
);
1463 rgd
= gfs2_rgrpd_get_next(rgd
);
1467 r
.len
= trimmed
<< bs_shift
;
1468 if (copy_to_user(argp
, &r
, sizeof(r
)))
1475 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1476 * @ip: the inode structure
1479 static void rs_insert(struct gfs2_inode
*ip
)
1481 struct rb_node
**newn
, *parent
= NULL
;
1483 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
1484 struct gfs2_rgrpd
*rgd
= rs
->rs_rbm
.rgd
;
1485 u64 fsblock
= gfs2_rbm_to_block(&rs
->rs_rbm
);
1487 BUG_ON(gfs2_rs_active(rs
));
1489 spin_lock(&rgd
->rd_rsspin
);
1490 newn
= &rgd
->rd_rstree
.rb_node
;
1492 struct gfs2_blkreserv
*cur
=
1493 rb_entry(*newn
, struct gfs2_blkreserv
, rs_node
);
1496 rc
= rs_cmp(fsblock
, rs
->rs_free
, cur
);
1498 newn
= &((*newn
)->rb_right
);
1500 newn
= &((*newn
)->rb_left
);
1502 spin_unlock(&rgd
->rd_rsspin
);
1508 rb_link_node(&rs
->rs_node
, parent
, newn
);
1509 rb_insert_color(&rs
->rs_node
, &rgd
->rd_rstree
);
1511 /* Do our rgrp accounting for the reservation */
1512 rgd
->rd_reserved
+= rs
->rs_free
; /* blocks reserved */
1513 spin_unlock(&rgd
->rd_rsspin
);
1514 trace_gfs2_rs(rs
, TRACE_RS_INSERT
);
1518 * rgd_free - return the number of free blocks we can allocate.
1519 * @rgd: the resource group
1521 * This function returns the number of free blocks for an rgrp.
1522 * That's the clone-free blocks (blocks that are free, not including those
1523 * still being used for unlinked files that haven't been deleted.)
1525 * It also subtracts any blocks reserved by someone else, but does not
1526 * include free blocks that are still part of our current reservation,
1527 * because obviously we can (and will) allocate them.
1529 static inline u32
rgd_free(struct gfs2_rgrpd
*rgd
, struct gfs2_blkreserv
*rs
)
1531 u32 tot_reserved
, tot_free
;
1533 if (WARN_ON_ONCE(rgd
->rd_reserved
< rs
->rs_free
))
1535 tot_reserved
= rgd
->rd_reserved
- rs
->rs_free
;
1537 if (rgd
->rd_free_clone
< tot_reserved
)
1540 tot_free
= rgd
->rd_free_clone
- tot_reserved
;
1546 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1547 * @rgd: the resource group descriptor
1548 * @ip: pointer to the inode for which we're reserving blocks
1549 * @ap: the allocation parameters
1553 static void rg_mblk_search(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
,
1554 const struct gfs2_alloc_parms
*ap
)
1556 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
1558 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
1560 u32 free_blocks
= rgd_free(rgd
, rs
);
1562 struct inode
*inode
= &ip
->i_inode
;
1564 if (S_ISDIR(inode
->i_mode
))
1567 extlen
= max_t(u32
, atomic_read(&ip
->i_sizehint
), ap
->target
);
1568 extlen
= clamp(extlen
, (u32
)RGRP_RSRV_MINBLKS
, free_blocks
);
1570 if ((rgd
->rd_free_clone
< rgd
->rd_reserved
) || (free_blocks
< extlen
))
1573 /* Find bitmap block that contains bits for goal block */
1574 if (rgrp_contains_block(rgd
, ip
->i_goal
))
1577 goal
= rgd
->rd_last_alloc
+ rgd
->rd_data0
;
1579 if (WARN_ON(gfs2_rbm_from_block(&rbm
, goal
)))
1582 ret
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, &extlen
, ip
, true);
1585 rs
->rs_free
= extlen
;
1588 if (goal
== rgd
->rd_last_alloc
+ rgd
->rd_data0
)
1589 rgd
->rd_last_alloc
= 0;
1594 * gfs2_next_unreserved_block - Return next block that is not reserved
1595 * @rgd: The resource group
1596 * @block: The starting block
1597 * @length: The required length
1598 * @ip: Ignore any reservations for this inode
1600 * If the block does not appear in any reservation, then return the
1601 * block number unchanged. If it does appear in the reservation, then
1602 * keep looking through the tree of reservations in order to find the
1603 * first block number which is not reserved.
1606 static u64
gfs2_next_unreserved_block(struct gfs2_rgrpd
*rgd
, u64 block
,
1608 const struct gfs2_inode
*ip
)
1610 struct gfs2_blkreserv
*rs
;
1614 spin_lock(&rgd
->rd_rsspin
);
1615 n
= rgd
->rd_rstree
.rb_node
;
1617 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1618 rc
= rs_cmp(block
, length
, rs
);
1628 while ((rs_cmp(block
, length
, rs
) == 0) && (&ip
->i_res
!= rs
)) {
1629 block
= gfs2_rbm_to_block(&rs
->rs_rbm
) + rs
->rs_free
;
1633 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1637 spin_unlock(&rgd
->rd_rsspin
);
1642 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1643 * @rbm: The current position in the resource group
1644 * @ip: The inode for which we are searching for blocks
1645 * @minext: The minimum extent length
1646 * @maxext: A pointer to the maximum extent structure
1648 * This checks the current position in the rgrp to see whether there is
1649 * a reservation covering this block. If not then this function is a
1650 * no-op. If there is, then the position is moved to the end of the
1651 * contiguous reservation(s) so that we are pointing at the first
1652 * non-reserved block.
1654 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1657 static int gfs2_reservation_check_and_update(struct gfs2_rbm
*rbm
,
1658 const struct gfs2_inode
*ip
,
1660 struct gfs2_extent
*maxext
)
1662 u64 block
= gfs2_rbm_to_block(rbm
);
1668 * If we have a minimum extent length, then skip over any extent
1669 * which is less than the min extent length in size.
1672 extlen
= gfs2_free_extlen(rbm
, minext
);
1673 if (extlen
<= maxext
->len
)
1678 * Check the extent which has been found against the reservations
1679 * and skip if parts of it are already reserved
1681 nblock
= gfs2_next_unreserved_block(rbm
->rgd
, block
, extlen
, ip
);
1682 if (nblock
== block
) {
1683 if (!minext
|| extlen
>= minext
)
1686 if (extlen
> maxext
->len
) {
1687 maxext
->len
= extlen
;
1691 nblock
= block
+ extlen
;
1693 ret
= gfs2_rbm_from_block(rbm
, nblock
);
1700 * gfs2_rbm_find - Look for blocks of a particular state
1701 * @rbm: Value/result starting position and final position
1702 * @state: The state which we want to find
1703 * @minext: Pointer to the requested extent length (NULL for a single block)
1704 * This is updated to be the actual reservation size.
1705 * @ip: If set, check for reservations
1706 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1707 * around until we've reached the starting point.
1710 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1711 * has no free blocks in it.
1712 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1713 * has come up short on a free block search.
1715 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1718 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
1719 const struct gfs2_inode
*ip
, bool nowrap
)
1721 bool scan_from_start
= rbm
->bii
== 0 && rbm
->offset
== 0;
1722 struct buffer_head
*bh
;
1726 bool wrapped
= false;
1728 struct gfs2_bitmap
*bi
;
1729 struct gfs2_extent maxext
= { .rbm
.rgd
= rbm
->rgd
, };
1732 * Determine the last bitmap to search. If we're not starting at the
1733 * beginning of a bitmap, we need to search that bitmap twice to scan
1734 * the entire resource group.
1736 last_bii
= rbm
->bii
- (rbm
->offset
== 0);
1740 if ((ip
== NULL
|| !gfs2_rs_active(&ip
->i_res
)) &&
1741 test_bit(GBF_FULL
, &bi
->bi_flags
) &&
1742 (state
== GFS2_BLKST_FREE
))
1746 buffer
= bh
->b_data
+ bi
->bi_offset
;
1747 WARN_ON(!buffer_uptodate(bh
));
1748 if (state
!= GFS2_BLKST_UNLINKED
&& bi
->bi_clone
)
1749 buffer
= bi
->bi_clone
+ bi
->bi_offset
;
1750 offset
= gfs2_bitfit(buffer
, bi
->bi_bytes
, rbm
->offset
, state
);
1751 if (offset
== BFITNOENT
) {
1752 if (state
== GFS2_BLKST_FREE
&& rbm
->offset
== 0)
1753 set_bit(GBF_FULL
, &bi
->bi_flags
);
1756 rbm
->offset
= offset
;
1760 ret
= gfs2_reservation_check_and_update(rbm
, ip
,
1761 minext
? *minext
: 0,
1767 if (ret
== -E2BIG
) {
1770 goto res_covered_end_of_rgrp
;
1774 next_bitmap
: /* Find next bitmap in the rgrp */
1777 if (rbm
->bii
== rbm
->rgd
->rd_length
)
1779 res_covered_end_of_rgrp
:
1780 if (rbm
->bii
== 0) {
1788 /* Have we scanned the entire resource group? */
1789 if (wrapped
&& rbm
->bii
> last_bii
)
1793 if (minext
== NULL
|| state
!= GFS2_BLKST_FREE
)
1796 /* If the extent was too small, and it's smaller than the smallest
1797 to have failed before, remember for future reference that it's
1798 useless to search this rgrp again for this amount or more. */
1799 if (wrapped
&& (scan_from_start
|| rbm
->bii
> last_bii
) &&
1800 *minext
< rbm
->rgd
->rd_extfail_pt
)
1801 rbm
->rgd
->rd_extfail_pt
= *minext
;
1803 /* If the maximum extent we found is big enough to fulfill the
1804 minimum requirements, use it anyway. */
1807 *minext
= maxext
.len
;
1815 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1817 * @last_unlinked: block address of the last dinode we unlinked
1818 * @skip: block address we should explicitly not unlink
1820 * Returns: 0 if no error
1821 * The inode, if one has been found, in inode.
1824 static void try_rgrp_unlink(struct gfs2_rgrpd
*rgd
, u64
*last_unlinked
, u64 skip
)
1827 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1828 struct gfs2_glock
*gl
;
1829 struct gfs2_inode
*ip
;
1832 struct gfs2_rbm rbm
= { .rgd
= rgd
, .bii
= 0, .offset
= 0 };
1835 down_write(&sdp
->sd_log_flush_lock
);
1836 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_UNLINKED
, NULL
, NULL
,
1838 up_write(&sdp
->sd_log_flush_lock
);
1839 if (error
== -ENOSPC
)
1841 if (WARN_ON_ONCE(error
))
1844 block
= gfs2_rbm_to_block(&rbm
);
1845 if (gfs2_rbm_from_block(&rbm
, block
+ 1))
1847 if (*last_unlinked
!= NO_BLOCK
&& block
<= *last_unlinked
)
1851 *last_unlinked
= block
;
1853 error
= gfs2_glock_get(sdp
, block
, &gfs2_iopen_glops
, CREATE
, &gl
);
1857 /* If the inode is already in cache, we can ignore it here
1858 * because the existing inode disposal code will deal with
1859 * it when all refs have gone away. Accessing gl_object like
1860 * this is not safe in general. Here it is ok because we do
1861 * not dereference the pointer, and we only need an approx
1862 * answer to whether it is NULL or not.
1866 if (ip
|| queue_work(gfs2_delete_workqueue
, &gl
->gl_delete
) == 0)
1871 /* Limit reclaim to sensible number of tasks */
1872 if (found
> NR_CPUS
)
1876 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1881 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1882 * @rgd: The rgrp in question
1883 * @loops: An indication of how picky we can be (0=very, 1=less so)
1885 * This function uses the recently added glock statistics in order to
1886 * figure out whether a parciular resource group is suffering from
1887 * contention from multiple nodes. This is done purely on the basis
1888 * of timings, since this is the only data we have to work with and
1889 * our aim here is to reject a resource group which is highly contended
1890 * but (very important) not to do this too often in order to ensure that
1891 * we do not land up introducing fragmentation by changing resource
1892 * groups when not actually required.
1894 * The calculation is fairly simple, we want to know whether the SRTTB
1895 * (i.e. smoothed round trip time for blocking operations) to acquire
1896 * the lock for this rgrp's glock is significantly greater than the
1897 * time taken for resource groups on average. We introduce a margin in
1898 * the form of the variable @var which is computed as the sum of the two
1899 * respective variences, and multiplied by a factor depending on @loops
1900 * and whether we have a lot of data to base the decision on. This is
1901 * then tested against the square difference of the means in order to
1902 * decide whether the result is statistically significant or not.
1904 * Returns: A boolean verdict on the congestion status
1907 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd
*rgd
, int loops
)
1909 const struct gfs2_glock
*gl
= rgd
->rd_gl
;
1910 const struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
1911 struct gfs2_lkstats
*st
;
1912 u64 r_dcount
, l_dcount
;
1913 u64 l_srttb
, a_srttb
= 0;
1917 int cpu
, nonzero
= 0;
1920 for_each_present_cpu(cpu
) {
1921 st
= &per_cpu_ptr(sdp
->sd_lkstats
, cpu
)->lkstats
[LM_TYPE_RGRP
];
1922 if (st
->stats
[GFS2_LKS_SRTTB
]) {
1923 a_srttb
+= st
->stats
[GFS2_LKS_SRTTB
];
1927 st
= &this_cpu_ptr(sdp
->sd_lkstats
)->lkstats
[LM_TYPE_RGRP
];
1929 do_div(a_srttb
, nonzero
);
1930 r_dcount
= st
->stats
[GFS2_LKS_DCOUNT
];
1931 var
= st
->stats
[GFS2_LKS_SRTTVARB
] +
1932 gl
->gl_stats
.stats
[GFS2_LKS_SRTTVARB
];
1935 l_srttb
= gl
->gl_stats
.stats
[GFS2_LKS_SRTTB
];
1936 l_dcount
= gl
->gl_stats
.stats
[GFS2_LKS_DCOUNT
];
1938 if ((l_dcount
< 1) || (r_dcount
< 1) || (a_srttb
== 0))
1941 srttb_diff
= a_srttb
- l_srttb
;
1942 sqr_diff
= srttb_diff
* srttb_diff
;
1945 if (l_dcount
< 8 || r_dcount
< 8)
1950 return ((srttb_diff
< 0) && (sqr_diff
> var
));
1954 * gfs2_rgrp_used_recently
1955 * @rs: The block reservation with the rgrp to test
1956 * @msecs: The time limit in milliseconds
1958 * Returns: True if the rgrp glock has been used within the time limit
1960 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv
*rs
,
1965 tdiff
= ktime_to_ns(ktime_sub(ktime_get_real(),
1966 rs
->rs_rbm
.rgd
->rd_gl
->gl_dstamp
));
1968 return tdiff
> (msecs
* 1000 * 1000);
1971 static u32
gfs2_orlov_skip(const struct gfs2_inode
*ip
)
1973 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1976 get_random_bytes(&skip
, sizeof(skip
));
1977 return skip
% sdp
->sd_rgrps
;
1980 static bool gfs2_select_rgrp(struct gfs2_rgrpd
**pos
, const struct gfs2_rgrpd
*begin
)
1982 struct gfs2_rgrpd
*rgd
= *pos
;
1983 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1985 rgd
= gfs2_rgrpd_get_next(rgd
);
1987 rgd
= gfs2_rgrpd_get_first(sdp
);
1989 if (rgd
!= begin
) /* If we didn't wrap */
1995 * fast_to_acquire - determine if a resource group will be fast to acquire
1997 * If this is one of our preferred rgrps, it should be quicker to acquire,
1998 * because we tried to set ourselves up as dlm lock master.
2000 static inline int fast_to_acquire(struct gfs2_rgrpd
*rgd
)
2002 struct gfs2_glock
*gl
= rgd
->rd_gl
;
2004 if (gl
->gl_state
!= LM_ST_UNLOCKED
&& list_empty(&gl
->gl_holders
) &&
2005 !test_bit(GLF_DEMOTE_IN_PROGRESS
, &gl
->gl_flags
) &&
2006 !test_bit(GLF_DEMOTE
, &gl
->gl_flags
))
2008 if (rgd
->rd_flags
& GFS2_RDF_PREFERRED
)
2014 * gfs2_inplace_reserve - Reserve space in the filesystem
2015 * @ip: the inode to reserve space for
2016 * @ap: the allocation parameters
2018 * We try our best to find an rgrp that has at least ap->target blocks
2019 * available. After a couple of passes (loops == 2), the prospects of finding
2020 * such an rgrp diminish. At this stage, we return the first rgrp that has
2021 * at least ap->min_target blocks available. Either way, we set ap->allowed to
2022 * the number of blocks available in the chosen rgrp.
2024 * Returns: 0 on success,
2025 * -ENOMEM if a suitable rgrp can't be found
2029 int gfs2_inplace_reserve(struct gfs2_inode
*ip
, struct gfs2_alloc_parms
*ap
)
2031 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2032 struct gfs2_rgrpd
*begin
= NULL
;
2033 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
2034 int error
= 0, rg_locked
, flags
= 0;
2035 u64 last_unlinked
= NO_BLOCK
;
2037 u32 free_blocks
, skip
= 0;
2039 if (sdp
->sd_args
.ar_rgrplvb
)
2041 if (gfs2_assert_warn(sdp
, ap
->target
))
2043 if (gfs2_rs_active(rs
)) {
2044 begin
= rs
->rs_rbm
.rgd
;
2045 } else if (rs
->rs_rbm
.rgd
&&
2046 rgrp_contains_block(rs
->rs_rbm
.rgd
, ip
->i_goal
)) {
2047 begin
= rs
->rs_rbm
.rgd
;
2049 check_and_update_goal(ip
);
2050 rs
->rs_rbm
.rgd
= begin
= gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1);
2052 if (S_ISDIR(ip
->i_inode
.i_mode
) && (ap
->aflags
& GFS2_AF_ORLOV
))
2053 skip
= gfs2_orlov_skip(ip
);
2054 if (rs
->rs_rbm
.rgd
== NULL
)
2060 if (!gfs2_glock_is_locked_by_me(rs
->rs_rbm
.rgd
->rd_gl
)) {
2064 if (!gfs2_rs_active(rs
)) {
2066 !fast_to_acquire(rs
->rs_rbm
.rgd
))
2069 gfs2_rgrp_used_recently(rs
, 1000) &&
2070 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
2073 error
= gfs2_glock_nq_init(rs
->rs_rbm
.rgd
->rd_gl
,
2074 LM_ST_EXCLUSIVE
, flags
,
2076 if (unlikely(error
))
2078 if (!gfs2_rs_active(rs
) && (loops
< 2) &&
2079 gfs2_rgrp_congested(rs
->rs_rbm
.rgd
, loops
))
2081 if (sdp
->sd_args
.ar_rgrplvb
) {
2082 error
= update_rgrp_lvb(rs
->rs_rbm
.rgd
);
2083 if (unlikely(error
)) {
2084 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2090 /* Skip unusable resource groups */
2091 if ((rs
->rs_rbm
.rgd
->rd_flags
& (GFS2_RGF_NOALLOC
|
2093 (loops
== 0 && ap
->target
> rs
->rs_rbm
.rgd
->rd_extfail_pt
))
2096 if (sdp
->sd_args
.ar_rgrplvb
)
2097 gfs2_rgrp_bh_get(rs
->rs_rbm
.rgd
);
2099 /* Get a reservation if we don't already have one */
2100 if (!gfs2_rs_active(rs
))
2101 rg_mblk_search(rs
->rs_rbm
.rgd
, ip
, ap
);
2103 /* Skip rgrps when we can't get a reservation on first pass */
2104 if (!gfs2_rs_active(rs
) && (loops
< 1))
2107 /* If rgrp has enough free space, use it */
2108 free_blocks
= rgd_free(rs
->rs_rbm
.rgd
, rs
);
2109 if (free_blocks
>= ap
->target
||
2110 (loops
== 2 && ap
->min_target
&&
2111 free_blocks
>= ap
->min_target
)) {
2112 ap
->allowed
= free_blocks
;
2116 /* Check for unlinked inodes which can be reclaimed */
2117 if (rs
->rs_rbm
.rgd
->rd_flags
& GFS2_RDF_CHECK
)
2118 try_rgrp_unlink(rs
->rs_rbm
.rgd
, &last_unlinked
,
2121 /* Drop reservation, if we couldn't use reserved rgrp */
2122 if (gfs2_rs_active(rs
))
2123 gfs2_rs_deltree(rs
);
2125 /* Unlock rgrp if required */
2127 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2129 /* Find the next rgrp, and continue looking */
2130 if (gfs2_select_rgrp(&rs
->rs_rbm
.rgd
, begin
))
2135 /* If we've scanned all the rgrps, but found no free blocks
2136 * then this checks for some less likely conditions before
2140 /* Check that fs hasn't grown if writing to rindex */
2141 if (ip
== GFS2_I(sdp
->sd_rindex
) && !sdp
->sd_rindex_uptodate
) {
2142 error
= gfs2_ri_update(ip
);
2146 /* Flushing the log may release space */
2148 gfs2_log_flush(sdp
, NULL
, GFS2_LOG_HEAD_FLUSH_NORMAL
|
2149 GFS2_LFC_INPLACE_RESERVE
);
2156 * gfs2_inplace_release - release an inplace reservation
2157 * @ip: the inode the reservation was taken out on
2159 * Release a reservation made by gfs2_inplace_reserve().
2162 void gfs2_inplace_release(struct gfs2_inode
*ip
)
2164 if (gfs2_holder_initialized(&ip
->i_rgd_gh
))
2165 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2169 * gfs2_alloc_extent - allocate an extent from a given bitmap
2170 * @rbm: the resource group information
2171 * @dinode: TRUE if the first block we allocate is for a dinode
2172 * @n: The extent length (value/result)
2174 * Add the bitmap buffer to the transaction.
2175 * Set the found bits to @new_state to change block's allocation state.
2177 static void gfs2_alloc_extent(const struct gfs2_rbm
*rbm
, bool dinode
,
2180 struct gfs2_rbm pos
= { .rgd
= rbm
->rgd
, };
2181 const unsigned int elen
= *n
;
2186 block
= gfs2_rbm_to_block(rbm
);
2187 gfs2_trans_add_meta(rbm
->rgd
->rd_gl
, rbm_bi(rbm
)->bi_bh
);
2188 gfs2_setbit(rbm
, true, dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2191 ret
= gfs2_rbm_from_block(&pos
, block
);
2192 if (ret
|| gfs2_testbit(&pos
, true) != GFS2_BLKST_FREE
)
2194 gfs2_trans_add_meta(pos
.rgd
->rd_gl
, rbm_bi(&pos
)->bi_bh
);
2195 gfs2_setbit(&pos
, true, GFS2_BLKST_USED
);
2202 * rgblk_free - Change alloc state of given block(s)
2203 * @sdp: the filesystem
2204 * @rgd: the resource group the blocks are in
2205 * @bstart: the start of a run of blocks to free
2206 * @blen: the length of the block run (all must lie within ONE RG!)
2207 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2210 static void rgblk_free(struct gfs2_sbd
*sdp
, struct gfs2_rgrpd
*rgd
,
2211 u64 bstart
, u32 blen
, unsigned char new_state
)
2213 struct gfs2_rbm rbm
;
2214 struct gfs2_bitmap
*bi
, *bi_prev
= NULL
;
2217 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm
, bstart
)))
2221 if (bi
!= bi_prev
) {
2222 if (!bi
->bi_clone
) {
2223 bi
->bi_clone
= kmalloc(bi
->bi_bh
->b_size
,
2224 GFP_NOFS
| __GFP_NOFAIL
);
2225 memcpy(bi
->bi_clone
+ bi
->bi_offset
,
2226 bi
->bi_bh
->b_data
+ bi
->bi_offset
,
2229 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, bi
->bi_bh
);
2232 gfs2_setbit(&rbm
, false, new_state
);
2233 gfs2_rbm_incr(&rbm
);
2238 * gfs2_rgrp_dump - print out an rgrp
2239 * @seq: The iterator
2240 * @gl: The glock in question
2241 * @fs_id_buf: pointer to file system id (if requested)
2245 void gfs2_rgrp_dump(struct seq_file
*seq
, struct gfs2_glock
*gl
,
2246 const char *fs_id_buf
)
2248 struct gfs2_rgrpd
*rgd
= gl
->gl_object
;
2249 struct gfs2_blkreserv
*trs
;
2250 const struct rb_node
*n
;
2254 gfs2_print_dbg(seq
, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2256 (unsigned long long)rgd
->rd_addr
, rgd
->rd_flags
,
2257 rgd
->rd_free
, rgd
->rd_free_clone
, rgd
->rd_dinodes
,
2258 rgd
->rd_reserved
, rgd
->rd_extfail_pt
);
2259 if (rgd
->rd_sbd
->sd_args
.ar_rgrplvb
) {
2260 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
2262 gfs2_print_dbg(seq
, "%s L: f:%02x b:%u i:%u\n", fs_id_buf
,
2263 be32_to_cpu(rgl
->rl_flags
),
2264 be32_to_cpu(rgl
->rl_free
),
2265 be32_to_cpu(rgl
->rl_dinodes
));
2267 spin_lock(&rgd
->rd_rsspin
);
2268 for (n
= rb_first(&rgd
->rd_rstree
); n
; n
= rb_next(&trs
->rs_node
)) {
2269 trs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
2270 dump_rs(seq
, trs
, fs_id_buf
);
2272 spin_unlock(&rgd
->rd_rsspin
);
2275 static void gfs2_rgrp_error(struct gfs2_rgrpd
*rgd
)
2277 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2278 char fs_id_buf
[sizeof(sdp
->sd_fsname
) + 7];
2280 fs_warn(sdp
, "rgrp %llu has an error, marking it readonly until umount\n",
2281 (unsigned long long)rgd
->rd_addr
);
2282 fs_warn(sdp
, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2283 sprintf(fs_id_buf
, "fsid=%s: ", sdp
->sd_fsname
);
2284 gfs2_rgrp_dump(NULL
, rgd
->rd_gl
, fs_id_buf
);
2285 rgd
->rd_flags
|= GFS2_RDF_ERROR
;
2289 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2290 * @ip: The inode we have just allocated blocks for
2291 * @rbm: The start of the allocated blocks
2292 * @len: The extent length
2294 * Adjusts a reservation after an allocation has taken place. If the
2295 * reservation does not match the allocation, or if it is now empty
2296 * then it is removed.
2299 static void gfs2_adjust_reservation(struct gfs2_inode
*ip
,
2300 const struct gfs2_rbm
*rbm
, unsigned len
)
2302 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
2303 struct gfs2_rgrpd
*rgd
= rbm
->rgd
;
2308 spin_lock(&rgd
->rd_rsspin
);
2309 if (gfs2_rs_active(rs
)) {
2310 if (gfs2_rbm_eq(&rs
->rs_rbm
, rbm
)) {
2311 block
= gfs2_rbm_to_block(rbm
);
2312 ret
= gfs2_rbm_from_block(&rs
->rs_rbm
, block
+ len
);
2313 rlen
= min(rs
->rs_free
, len
);
2314 rs
->rs_free
-= rlen
;
2315 rgd
->rd_reserved
-= rlen
;
2316 trace_gfs2_rs(rs
, TRACE_RS_CLAIM
);
2317 if (rs
->rs_free
&& !ret
)
2319 /* We used up our block reservation, so we should
2320 reserve more blocks next time. */
2321 atomic_add(RGRP_RSRV_ADDBLKS
, &ip
->i_sizehint
);
2326 spin_unlock(&rgd
->rd_rsspin
);
2330 * gfs2_set_alloc_start - Set starting point for block allocation
2331 * @rbm: The rbm which will be set to the required location
2332 * @ip: The gfs2 inode
2333 * @dinode: Flag to say if allocation includes a new inode
2335 * This sets the starting point from the reservation if one is active
2336 * otherwise it falls back to guessing a start point based on the
2337 * inode's goal block or the last allocation point in the rgrp.
2340 static void gfs2_set_alloc_start(struct gfs2_rbm
*rbm
,
2341 const struct gfs2_inode
*ip
, bool dinode
)
2345 if (gfs2_rs_active(&ip
->i_res
)) {
2346 *rbm
= ip
->i_res
.rs_rbm
;
2350 if (!dinode
&& rgrp_contains_block(rbm
->rgd
, ip
->i_goal
))
2353 goal
= rbm
->rgd
->rd_last_alloc
+ rbm
->rgd
->rd_data0
;
2355 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm
, goal
))) {
2362 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2363 * @ip: the inode to allocate the block for
2364 * @bn: Used to return the starting block number
2365 * @nblocks: requested number of blocks/extent length (value/result)
2366 * @dinode: 1 if we're allocating a dinode block, else 0
2367 * @generation: the generation number of the inode
2369 * Returns: 0 or error
2372 int gfs2_alloc_blocks(struct gfs2_inode
*ip
, u64
*bn
, unsigned int *nblocks
,
2373 bool dinode
, u64
*generation
)
2375 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2376 struct buffer_head
*dibh
;
2377 struct gfs2_rbm rbm
= { .rgd
= ip
->i_res
.rs_rbm
.rgd
, };
2379 u64 block
; /* block, within the file system scope */
2382 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2383 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, ip
, false);
2385 if (error
== -ENOSPC
) {
2386 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2387 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, NULL
, NULL
, false);
2390 /* Since all blocks are reserved in advance, this shouldn't happen */
2392 fs_warn(sdp
, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2393 (unsigned long long)ip
->i_no_addr
, error
, *nblocks
,
2394 test_bit(GBF_FULL
, &rbm
.rgd
->rd_bits
->bi_flags
),
2395 rbm
.rgd
->rd_extfail_pt
);
2399 gfs2_alloc_extent(&rbm
, dinode
, nblocks
);
2400 block
= gfs2_rbm_to_block(&rbm
);
2401 rbm
.rgd
->rd_last_alloc
= block
- rbm
.rgd
->rd_data0
;
2402 if (gfs2_rs_active(&ip
->i_res
))
2403 gfs2_adjust_reservation(ip
, &rbm
, *nblocks
);
2409 ip
->i_goal
= block
+ ndata
- 1;
2410 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
2412 struct gfs2_dinode
*di
=
2413 (struct gfs2_dinode
*)dibh
->b_data
;
2414 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
2415 di
->di_goal_meta
= di
->di_goal_data
=
2416 cpu_to_be64(ip
->i_goal
);
2420 if (rbm
.rgd
->rd_free
< *nblocks
) {
2421 fs_warn(sdp
, "nblocks=%u\n", *nblocks
);
2425 rbm
.rgd
->rd_free
-= *nblocks
;
2427 rbm
.rgd
->rd_dinodes
++;
2428 *generation
= rbm
.rgd
->rd_igeneration
++;
2429 if (*generation
== 0)
2430 *generation
= rbm
.rgd
->rd_igeneration
++;
2433 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_bits
[0].bi_bh
);
2434 gfs2_rgrp_out(rbm
.rgd
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2436 gfs2_statfs_change(sdp
, 0, -(s64
)*nblocks
, dinode
? 1 : 0);
2438 gfs2_trans_remove_revoke(sdp
, block
, *nblocks
);
2440 gfs2_quota_change(ip
, *nblocks
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2442 rbm
.rgd
->rd_free_clone
-= *nblocks
;
2443 trace_gfs2_block_alloc(ip
, rbm
.rgd
, block
, *nblocks
,
2444 dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2449 gfs2_rgrp_error(rbm
.rgd
);
2454 * __gfs2_free_blocks - free a contiguous run of block(s)
2455 * @ip: the inode these blocks are being freed from
2456 * @rgd: the resource group the blocks are in
2457 * @bstart: first block of a run of contiguous blocks
2458 * @blen: the length of the block run
2459 * @meta: 1 if the blocks represent metadata
2463 void __gfs2_free_blocks(struct gfs2_inode
*ip
, struct gfs2_rgrpd
*rgd
,
2464 u64 bstart
, u32 blen
, int meta
)
2466 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2468 rgblk_free(sdp
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2469 trace_gfs2_block_alloc(ip
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2470 rgd
->rd_free
+= blen
;
2471 rgd
->rd_flags
&= ~GFS2_RGF_TRIMMED
;
2472 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2473 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2475 /* Directories keep their data in the metadata address space */
2476 if (meta
|| ip
->i_depth
)
2477 gfs2_meta_wipe(ip
, bstart
, blen
);
2481 * gfs2_free_meta - free a contiguous run of data block(s)
2482 * @ip: the inode these blocks are being freed from
2483 * @rgd: the resource group the blocks are in
2484 * @bstart: first block of a run of contiguous blocks
2485 * @blen: the length of the block run
2489 void gfs2_free_meta(struct gfs2_inode
*ip
, struct gfs2_rgrpd
*rgd
,
2490 u64 bstart
, u32 blen
)
2492 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2494 __gfs2_free_blocks(ip
, rgd
, bstart
, blen
, 1);
2495 gfs2_statfs_change(sdp
, 0, +blen
, 0);
2496 gfs2_quota_change(ip
, -(s64
)blen
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2499 void gfs2_unlink_di(struct inode
*inode
)
2501 struct gfs2_inode
*ip
= GFS2_I(inode
);
2502 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
2503 struct gfs2_rgrpd
*rgd
;
2504 u64 blkno
= ip
->i_no_addr
;
2506 rgd
= gfs2_blk2rgrpd(sdp
, blkno
, true);
2509 rgblk_free(sdp
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2510 trace_gfs2_block_alloc(ip
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2511 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2512 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2513 be32_add_cpu(&rgd
->rd_rgl
->rl_unlinked
, 1);
2516 void gfs2_free_di(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
)
2518 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2520 rgblk_free(sdp
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2521 if (!rgd
->rd_dinodes
)
2522 gfs2_consist_rgrpd(rgd
);
2526 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2527 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2528 be32_add_cpu(&rgd
->rd_rgl
->rl_unlinked
, -1);
2530 gfs2_statfs_change(sdp
, 0, +1, -1);
2531 trace_gfs2_block_alloc(ip
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2532 gfs2_quota_change(ip
, -1, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2533 gfs2_meta_wipe(ip
, ip
->i_no_addr
, 1);
2537 * gfs2_check_blk_type - Check the type of a block
2538 * @sdp: The superblock
2539 * @no_addr: The block number to check
2540 * @type: The block type we are looking for
2542 * Returns: 0 if the block type matches the expected type
2543 * -ESTALE if it doesn't match
2544 * or -ve errno if something went wrong while checking
2547 int gfs2_check_blk_type(struct gfs2_sbd
*sdp
, u64 no_addr
, unsigned int type
)
2549 struct gfs2_rgrpd
*rgd
;
2550 struct gfs2_holder rgd_gh
;
2551 struct gfs2_rbm rbm
;
2552 int error
= -EINVAL
;
2554 rgd
= gfs2_blk2rgrpd(sdp
, no_addr
, 1);
2558 error
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_SHARED
, 0, &rgd_gh
);
2563 error
= gfs2_rbm_from_block(&rbm
, no_addr
);
2564 if (WARN_ON_ONCE(error
))
2567 if (gfs2_testbit(&rbm
, false) != type
)
2570 gfs2_glock_dq_uninit(&rgd_gh
);
2576 * gfs2_rlist_add - add a RG to a list of RGs
2578 * @rlist: the list of resource groups
2581 * Figure out what RG a block belongs to and add that RG to the list
2583 * FIXME: Don't use NOFAIL
2587 void gfs2_rlist_add(struct gfs2_inode
*ip
, struct gfs2_rgrp_list
*rlist
,
2590 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2591 struct gfs2_rgrpd
*rgd
;
2592 struct gfs2_rgrpd
**tmp
;
2593 unsigned int new_space
;
2596 if (gfs2_assert_warn(sdp
, !rlist
->rl_ghs
))
2600 * The resource group last accessed is kept in the last position.
2603 if (rlist
->rl_rgrps
) {
2604 rgd
= rlist
->rl_rgd
[rlist
->rl_rgrps
- 1];
2605 if (rgrp_contains_block(rgd
, block
))
2607 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2609 rgd
= ip
->i_res
.rs_rbm
.rgd
;
2610 if (!rgd
|| !rgrp_contains_block(rgd
, block
))
2611 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2615 fs_err(sdp
, "rlist_add: no rgrp for block %llu\n",
2616 (unsigned long long)block
);
2620 for (x
= 0; x
< rlist
->rl_rgrps
; x
++) {
2621 if (rlist
->rl_rgd
[x
] == rgd
) {
2622 swap(rlist
->rl_rgd
[x
],
2623 rlist
->rl_rgd
[rlist
->rl_rgrps
- 1]);
2628 if (rlist
->rl_rgrps
== rlist
->rl_space
) {
2629 new_space
= rlist
->rl_space
+ 10;
2631 tmp
= kcalloc(new_space
, sizeof(struct gfs2_rgrpd
*),
2632 GFP_NOFS
| __GFP_NOFAIL
);
2634 if (rlist
->rl_rgd
) {
2635 memcpy(tmp
, rlist
->rl_rgd
,
2636 rlist
->rl_space
* sizeof(struct gfs2_rgrpd
*));
2637 kfree(rlist
->rl_rgd
);
2640 rlist
->rl_space
= new_space
;
2641 rlist
->rl_rgd
= tmp
;
2644 rlist
->rl_rgd
[rlist
->rl_rgrps
++] = rgd
;
2648 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2649 * and initialize an array of glock holders for them
2650 * @rlist: the list of resource groups
2652 * FIXME: Don't use NOFAIL
2656 void gfs2_rlist_alloc(struct gfs2_rgrp_list
*rlist
)
2660 rlist
->rl_ghs
= kmalloc_array(rlist
->rl_rgrps
,
2661 sizeof(struct gfs2_holder
),
2662 GFP_NOFS
| __GFP_NOFAIL
);
2663 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2664 gfs2_holder_init(rlist
->rl_rgd
[x
]->rd_gl
,
2670 * gfs2_rlist_free - free a resource group list
2671 * @rlist: the list of resource groups
2675 void gfs2_rlist_free(struct gfs2_rgrp_list
*rlist
)
2679 kfree(rlist
->rl_rgd
);
2681 if (rlist
->rl_ghs
) {
2682 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2683 gfs2_holder_uninit(&rlist
->rl_ghs
[x
]);
2684 kfree(rlist
->rl_ghs
);
2685 rlist
->rl_ghs
= NULL
;