2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
42 static const struct super_operations hugetlbfs_ops
;
43 static const struct address_space_operations hugetlbfs_aops
;
44 const struct file_operations hugetlbfs_file_operations
;
45 static const struct inode_operations hugetlbfs_dir_inode_operations
;
46 static const struct inode_operations hugetlbfs_inode_operations
;
48 enum hugetlbfs_size_type
{ NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
50 struct hugetlbfs_fs_context
{
51 struct hstate
*hstate
;
52 unsigned long long max_size_opt
;
53 unsigned long long min_size_opt
;
57 enum hugetlbfs_size_type max_val_type
;
58 enum hugetlbfs_size_type min_val_type
;
64 int sysctl_hugetlb_shm_group
;
76 static const struct fs_parameter_spec hugetlb_fs_parameters
[] = {
77 fsparam_u32 ("gid", Opt_gid
),
78 fsparam_string("min_size", Opt_min_size
),
79 fsparam_u32 ("mode", Opt_mode
),
80 fsparam_string("nr_inodes", Opt_nr_inodes
),
81 fsparam_string("pagesize", Opt_pagesize
),
82 fsparam_string("size", Opt_size
),
83 fsparam_u32 ("uid", Opt_uid
),
88 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
89 struct inode
*inode
, pgoff_t index
)
91 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
95 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
97 mpol_cond_put(vma
->vm_policy
);
100 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
101 struct inode
*inode
, pgoff_t index
)
105 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
110 static void huge_pagevec_release(struct pagevec
*pvec
)
114 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
115 put_page(pvec
->pages
[i
]);
117 pagevec_reinit(pvec
);
121 * Mask used when checking the page offset value passed in via system
122 * calls. This value will be converted to a loff_t which is signed.
123 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
124 * value. The extra bit (- 1 in the shift value) is to take the sign
127 #define PGOFF_LOFFT_MAX \
128 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
132 struct inode
*inode
= file_inode(file
);
135 struct hstate
*h
= hstate_file(file
);
138 * vma address alignment (but not the pgoff alignment) has
139 * already been checked by prepare_hugepage_range. If you add
140 * any error returns here, do so after setting VM_HUGETLB, so
141 * is_vm_hugetlb_page tests below unmap_region go the right
142 * way when do_mmap_pgoff unwinds (may be important on powerpc
145 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
146 vma
->vm_ops
= &hugetlb_vm_ops
;
149 * page based offset in vm_pgoff could be sufficiently large to
150 * overflow a loff_t when converted to byte offset. This can
151 * only happen on architectures where sizeof(loff_t) ==
152 * sizeof(unsigned long). So, only check in those instances.
154 if (sizeof(unsigned long) == sizeof(loff_t
)) {
155 if (vma
->vm_pgoff
& PGOFF_LOFFT_MAX
)
159 /* must be huge page aligned */
160 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
163 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
164 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
165 /* check for overflow */
173 if (hugetlb_reserve_pages(inode
,
174 vma
->vm_pgoff
>> huge_page_order(h
),
175 len
>> huge_page_shift(h
), vma
,
180 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
181 i_size_write(inode
, len
);
189 * Called under down_write(mmap_sem).
192 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
195 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
197 struct mm_struct
*mm
= current
->mm
;
198 struct vm_area_struct
*vma
;
199 struct hstate
*h
= hstate_file(file
);
200 struct vm_unmapped_area_info info
;
202 if (len
& ~huge_page_mask(h
))
207 if (flags
& MAP_FIXED
) {
208 if (prepare_hugepage_range(file
, addr
, len
))
214 addr
= ALIGN(addr
, huge_page_size(h
));
215 vma
= find_vma(mm
, addr
);
216 if (TASK_SIZE
- len
>= addr
&&
217 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
223 info
.low_limit
= TASK_UNMAPPED_BASE
;
224 info
.high_limit
= TASK_SIZE
;
225 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
226 info
.align_offset
= 0;
227 return vm_unmapped_area(&info
);
232 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
233 struct iov_iter
*to
, unsigned long size
)
238 /* Find which 4k chunk and offset with in that chunk */
239 i
= offset
>> PAGE_SHIFT
;
240 offset
= offset
& ~PAGE_MASK
;
244 chunksize
= PAGE_SIZE
;
247 if (chunksize
> size
)
249 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
261 * Support for read() - Find the page attached to f_mapping and copy out the
262 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
263 * since it has PAGE_SIZE assumptions.
265 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
267 struct file
*file
= iocb
->ki_filp
;
268 struct hstate
*h
= hstate_file(file
);
269 struct address_space
*mapping
= file
->f_mapping
;
270 struct inode
*inode
= mapping
->host
;
271 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
272 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
273 unsigned long end_index
;
277 while (iov_iter_count(to
)) {
281 /* nr is the maximum number of bytes to copy from this page */
282 nr
= huge_page_size(h
);
283 isize
= i_size_read(inode
);
286 end_index
= (isize
- 1) >> huge_page_shift(h
);
287 if (index
> end_index
)
289 if (index
== end_index
) {
290 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
297 page
= find_lock_page(mapping
, index
);
298 if (unlikely(page
== NULL
)) {
300 * We have a HOLE, zero out the user-buffer for the
301 * length of the hole or request.
303 copied
= iov_iter_zero(nr
, to
);
308 * We have the page, copy it to user space buffer.
310 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
315 if (copied
!= nr
&& iov_iter_count(to
)) {
320 index
+= offset
>> huge_page_shift(h
);
321 offset
&= ~huge_page_mask(h
);
323 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
327 static int hugetlbfs_write_begin(struct file
*file
,
328 struct address_space
*mapping
,
329 loff_t pos
, unsigned len
, unsigned flags
,
330 struct page
**pagep
, void **fsdata
)
335 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
336 loff_t pos
, unsigned len
, unsigned copied
,
337 struct page
*page
, void *fsdata
)
343 static void remove_huge_page(struct page
*page
)
345 ClearPageDirty(page
);
346 ClearPageUptodate(page
);
347 delete_from_page_cache(page
);
351 hugetlb_vmdelete_list(struct rb_root_cached
*root
, pgoff_t start
, pgoff_t end
)
353 struct vm_area_struct
*vma
;
356 * end == 0 indicates that the entire range after
357 * start should be unmapped.
359 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
360 unsigned long v_offset
;
364 * Can the expression below overflow on 32-bit arches?
365 * No, because the interval tree returns us only those vmas
366 * which overlap the truncated area starting at pgoff,
367 * and no vma on a 32-bit arch can span beyond the 4GB.
369 if (vma
->vm_pgoff
< start
)
370 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
377 v_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
)
379 if (v_end
> vma
->vm_end
)
383 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, v_end
,
389 * remove_inode_hugepages handles two distinct cases: truncation and hole
390 * punch. There are subtle differences in operation for each case.
392 * truncation is indicated by end of range being LLONG_MAX
393 * In this case, we first scan the range and release found pages.
394 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
395 * maps and global counts. Page faults can not race with truncation
396 * in this routine. hugetlb_no_page() prevents page faults in the
397 * truncated range. It checks i_size before allocation, and again after
398 * with the page table lock for the page held. The same lock must be
399 * acquired to unmap a page.
400 * hole punch is indicated if end is not LLONG_MAX
401 * In the hole punch case we scan the range and release found pages.
402 * Only when releasing a page is the associated region/reserv map
403 * deleted. The region/reserv map for ranges without associated
404 * pages are not modified. Page faults can race with hole punch.
405 * This is indicated if we find a mapped page.
406 * Note: If the passed end of range value is beyond the end of file, but
407 * not LLONG_MAX this routine still performs a hole punch operation.
409 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
412 struct hstate
*h
= hstate_inode(inode
);
413 struct address_space
*mapping
= &inode
->i_data
;
414 const pgoff_t start
= lstart
>> huge_page_shift(h
);
415 const pgoff_t end
= lend
>> huge_page_shift(h
);
416 struct vm_area_struct pseudo_vma
;
420 bool truncate_op
= (lend
== LLONG_MAX
);
422 vma_init(&pseudo_vma
, current
->mm
);
423 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
428 * When no more pages are found, we are done.
430 if (!pagevec_lookup_range(&pvec
, mapping
, &next
, end
- 1))
433 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
434 struct page
*page
= pvec
.pages
[i
];
438 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
439 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
442 * If page is mapped, it was faulted in after being
443 * unmapped in caller. Unmap (again) now after taking
444 * the fault mutex. The mutex will prevent faults
445 * until we finish removing the page.
447 * This race can only happen in the hole punch case.
448 * Getting here in a truncate operation is a bug.
450 if (unlikely(page_mapped(page
))) {
453 i_mmap_lock_write(mapping
);
454 hugetlb_vmdelete_list(&mapping
->i_mmap
,
455 index
* pages_per_huge_page(h
),
456 (index
+ 1) * pages_per_huge_page(h
));
457 i_mmap_unlock_write(mapping
);
462 * We must free the huge page and remove from page
463 * cache (remove_huge_page) BEFORE removing the
464 * region/reserve map (hugetlb_unreserve_pages). In
465 * rare out of memory conditions, removal of the
466 * region/reserve map could fail. Correspondingly,
467 * the subpool and global reserve usage count can need
470 VM_BUG_ON(PagePrivate(page
));
471 remove_huge_page(page
);
474 if (unlikely(hugetlb_unreserve_pages(inode
,
475 index
, index
+ 1, 1)))
476 hugetlb_fix_reserve_counts(inode
);
480 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
482 huge_pagevec_release(&pvec
);
487 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
490 static void hugetlbfs_evict_inode(struct inode
*inode
)
492 struct resv_map
*resv_map
;
494 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
497 * Get the resv_map from the address space embedded in the inode.
498 * This is the address space which points to any resv_map allocated
499 * at inode creation time. If this is a device special inode,
500 * i_mapping may not point to the original address space.
502 resv_map
= (struct resv_map
*)(&inode
->i_data
)->private_data
;
503 /* Only regular and link inodes have associated reserve maps */
505 resv_map_release(&resv_map
->refs
);
509 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
512 struct address_space
*mapping
= inode
->i_mapping
;
513 struct hstate
*h
= hstate_inode(inode
);
515 BUG_ON(offset
& ~huge_page_mask(h
));
516 pgoff
= offset
>> PAGE_SHIFT
;
518 i_size_write(inode
, offset
);
519 i_mmap_lock_write(mapping
);
520 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
521 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
522 i_mmap_unlock_write(mapping
);
523 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
527 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
529 struct hstate
*h
= hstate_inode(inode
);
530 loff_t hpage_size
= huge_page_size(h
);
531 loff_t hole_start
, hole_end
;
534 * For hole punch round up the beginning offset of the hole and
535 * round down the end.
537 hole_start
= round_up(offset
, hpage_size
);
538 hole_end
= round_down(offset
+ len
, hpage_size
);
540 if (hole_end
> hole_start
) {
541 struct address_space
*mapping
= inode
->i_mapping
;
542 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
546 /* protected by i_mutex */
547 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
552 i_mmap_lock_write(mapping
);
553 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
554 hugetlb_vmdelete_list(&mapping
->i_mmap
,
555 hole_start
>> PAGE_SHIFT
,
556 hole_end
>> PAGE_SHIFT
);
557 i_mmap_unlock_write(mapping
);
558 remove_inode_hugepages(inode
, hole_start
, hole_end
);
565 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
568 struct inode
*inode
= file_inode(file
);
569 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
570 struct address_space
*mapping
= inode
->i_mapping
;
571 struct hstate
*h
= hstate_inode(inode
);
572 struct vm_area_struct pseudo_vma
;
573 struct mm_struct
*mm
= current
->mm
;
574 loff_t hpage_size
= huge_page_size(h
);
575 unsigned long hpage_shift
= huge_page_shift(h
);
576 pgoff_t start
, index
, end
;
580 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
583 if (mode
& FALLOC_FL_PUNCH_HOLE
)
584 return hugetlbfs_punch_hole(inode
, offset
, len
);
587 * Default preallocate case.
588 * For this range, start is rounded down and end is rounded up
589 * as well as being converted to page offsets.
591 start
= offset
>> hpage_shift
;
592 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
596 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
597 error
= inode_newsize_ok(inode
, offset
+ len
);
601 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
607 * Initialize a pseudo vma as this is required by the huge page
608 * allocation routines. If NUMA is configured, use page index
609 * as input to create an allocation policy.
611 vma_init(&pseudo_vma
, mm
);
612 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
613 pseudo_vma
.vm_file
= file
;
615 for (index
= start
; index
< end
; index
++) {
617 * This is supposed to be the vaddr where the page is being
618 * faulted in, but we have no vaddr here.
622 int avoid_reserve
= 0;
627 * fallocate(2) manpage permits EINTR; we may have been
628 * interrupted because we are using up too much memory.
630 if (signal_pending(current
)) {
635 /* Set numa allocation policy based on index */
636 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
638 /* addr is the offset within the file (zero based) */
639 addr
= index
* hpage_size
;
641 /* mutex taken here, fault path and hole punch */
642 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
643 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
645 /* See if already present in mapping to avoid alloc/free */
646 page
= find_get_page(mapping
, index
);
649 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
650 hugetlb_drop_vma_policy(&pseudo_vma
);
654 /* Allocate page and add to page cache */
655 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
656 hugetlb_drop_vma_policy(&pseudo_vma
);
658 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
659 error
= PTR_ERR(page
);
662 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
663 __SetPageUptodate(page
);
664 error
= huge_add_to_page_cache(page
, mapping
, index
);
665 if (unlikely(error
)) {
667 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
671 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
674 * unlock_page because locked by add_to_page_cache()
675 * page_put due to reference from alloc_huge_page()
681 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
682 i_size_write(inode
, offset
+ len
);
683 inode
->i_ctime
= current_time(inode
);
689 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
691 struct inode
*inode
= d_inode(dentry
);
692 struct hstate
*h
= hstate_inode(inode
);
694 unsigned int ia_valid
= attr
->ia_valid
;
695 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
699 error
= setattr_prepare(dentry
, attr
);
703 if (ia_valid
& ATTR_SIZE
) {
704 loff_t oldsize
= inode
->i_size
;
705 loff_t newsize
= attr
->ia_size
;
707 if (newsize
& ~huge_page_mask(h
))
709 /* protected by i_mutex */
710 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
711 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
713 error
= hugetlb_vmtruncate(inode
, newsize
);
718 setattr_copy(inode
, attr
);
719 mark_inode_dirty(inode
);
723 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
724 struct hugetlbfs_fs_context
*ctx
)
728 inode
= new_inode(sb
);
730 inode
->i_ino
= get_next_ino();
731 inode
->i_mode
= S_IFDIR
| ctx
->mode
;
732 inode
->i_uid
= ctx
->uid
;
733 inode
->i_gid
= ctx
->gid
;
734 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
735 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
736 inode
->i_fop
= &simple_dir_operations
;
737 /* directory inodes start off with i_nlink == 2 (for "." entry) */
739 lockdep_annotate_inode_mutex_key(inode
);
745 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
746 * be taken from reclaim -- unlike regular filesystems. This needs an
747 * annotation because huge_pmd_share() does an allocation under hugetlb's
750 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
752 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
754 umode_t mode
, dev_t dev
)
757 struct resv_map
*resv_map
= NULL
;
760 * Reserve maps are only needed for inodes that can have associated
763 if (S_ISREG(mode
) || S_ISLNK(mode
)) {
764 resv_map
= resv_map_alloc();
769 inode
= new_inode(sb
);
771 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
773 inode
->i_ino
= get_next_ino();
774 inode_init_owner(inode
, dir
, mode
);
775 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
776 &hugetlbfs_i_mmap_rwsem_key
);
777 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
778 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
779 inode
->i_mapping
->private_data
= resv_map
;
780 info
->seals
= F_SEAL_SEAL
;
781 switch (mode
& S_IFMT
) {
783 init_special_inode(inode
, mode
, dev
);
786 inode
->i_op
= &hugetlbfs_inode_operations
;
787 inode
->i_fop
= &hugetlbfs_file_operations
;
790 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
791 inode
->i_fop
= &simple_dir_operations
;
793 /* directory inodes start off with i_nlink == 2 (for "." entry) */
797 inode
->i_op
= &page_symlink_inode_operations
;
798 inode_nohighmem(inode
);
801 lockdep_annotate_inode_mutex_key(inode
);
804 kref_put(&resv_map
->refs
, resv_map_release
);
811 * File creation. Allocate an inode, and we're done..
813 static int do_hugetlbfs_mknod(struct inode
*dir
,
814 struct dentry
*dentry
,
822 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
824 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
826 d_tmpfile(dentry
, inode
);
828 d_instantiate(dentry
, inode
);
829 dget(dentry
);/* Extra count - pin the dentry in core */
836 static int hugetlbfs_mknod(struct inode
*dir
,
837 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
839 return do_hugetlbfs_mknod(dir
, dentry
, mode
, dev
, false);
842 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
844 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
850 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
852 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
855 static int hugetlbfs_tmpfile(struct inode
*dir
,
856 struct dentry
*dentry
, umode_t mode
)
858 return do_hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0, true);
861 static int hugetlbfs_symlink(struct inode
*dir
,
862 struct dentry
*dentry
, const char *symname
)
867 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
869 int l
= strlen(symname
)+1;
870 error
= page_symlink(inode
, symname
, l
);
872 d_instantiate(dentry
, inode
);
877 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
883 * mark the head page dirty
885 static int hugetlbfs_set_page_dirty(struct page
*page
)
887 struct page
*head
= compound_head(page
);
893 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
894 struct page
*newpage
, struct page
*page
,
895 enum migrate_mode mode
)
899 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
900 if (rc
!= MIGRATEPAGE_SUCCESS
)
904 * page_private is subpool pointer in hugetlb pages. Transfer to
905 * new page. PagePrivate is not associated with page_private for
906 * hugetlb pages and can not be set here as only page_huge_active
907 * pages can be migrated.
909 if (page_private(page
)) {
910 set_page_private(newpage
, page_private(page
));
911 set_page_private(page
, 0);
914 if (mode
!= MIGRATE_SYNC_NO_COPY
)
915 migrate_page_copy(newpage
, page
);
917 migrate_page_states(newpage
, page
);
919 return MIGRATEPAGE_SUCCESS
;
922 static int hugetlbfs_error_remove_page(struct address_space
*mapping
,
925 struct inode
*inode
= mapping
->host
;
926 pgoff_t index
= page
->index
;
928 remove_huge_page(page
);
929 if (unlikely(hugetlb_unreserve_pages(inode
, index
, index
+ 1, 1)))
930 hugetlb_fix_reserve_counts(inode
);
936 * Display the mount options in /proc/mounts.
938 static int hugetlbfs_show_options(struct seq_file
*m
, struct dentry
*root
)
940 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(root
->d_sb
);
941 struct hugepage_subpool
*spool
= sbinfo
->spool
;
942 unsigned long hpage_size
= huge_page_size(sbinfo
->hstate
);
943 unsigned hpage_shift
= huge_page_shift(sbinfo
->hstate
);
946 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
947 seq_printf(m
, ",uid=%u",
948 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
949 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
950 seq_printf(m
, ",gid=%u",
951 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
952 if (sbinfo
->mode
!= 0755)
953 seq_printf(m
, ",mode=%o", sbinfo
->mode
);
954 if (sbinfo
->max_inodes
!= -1)
955 seq_printf(m
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
959 if (hpage_size
>= 1024) {
963 seq_printf(m
, ",pagesize=%lu%c", hpage_size
, mod
);
965 if (spool
->max_hpages
!= -1)
966 seq_printf(m
, ",size=%llu",
967 (unsigned long long)spool
->max_hpages
<< hpage_shift
);
968 if (spool
->min_hpages
!= -1)
969 seq_printf(m
, ",min_size=%llu",
970 (unsigned long long)spool
->min_hpages
<< hpage_shift
);
975 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
977 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
978 struct hstate
*h
= hstate_inode(d_inode(dentry
));
980 buf
->f_type
= HUGETLBFS_MAGIC
;
981 buf
->f_bsize
= huge_page_size(h
);
983 spin_lock(&sbinfo
->stat_lock
);
984 /* If no limits set, just report 0 for max/free/used
985 * blocks, like simple_statfs() */
989 spin_lock(&sbinfo
->spool
->lock
);
990 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
991 free_pages
= sbinfo
->spool
->max_hpages
992 - sbinfo
->spool
->used_hpages
;
993 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
994 spin_unlock(&sbinfo
->spool
->lock
);
995 buf
->f_files
= sbinfo
->max_inodes
;
996 buf
->f_ffree
= sbinfo
->free_inodes
;
998 spin_unlock(&sbinfo
->stat_lock
);
1000 buf
->f_namelen
= NAME_MAX
;
1004 static void hugetlbfs_put_super(struct super_block
*sb
)
1006 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
1009 sb
->s_fs_info
= NULL
;
1012 hugepage_put_subpool(sbi
->spool
);
1018 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1020 if (sbinfo
->free_inodes
>= 0) {
1021 spin_lock(&sbinfo
->stat_lock
);
1022 if (unlikely(!sbinfo
->free_inodes
)) {
1023 spin_unlock(&sbinfo
->stat_lock
);
1026 sbinfo
->free_inodes
--;
1027 spin_unlock(&sbinfo
->stat_lock
);
1033 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1035 if (sbinfo
->free_inodes
>= 0) {
1036 spin_lock(&sbinfo
->stat_lock
);
1037 sbinfo
->free_inodes
++;
1038 spin_unlock(&sbinfo
->stat_lock
);
1043 static struct kmem_cache
*hugetlbfs_inode_cachep
;
1045 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
1047 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
1048 struct hugetlbfs_inode_info
*p
;
1050 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
1052 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
1054 hugetlbfs_inc_free_inodes(sbinfo
);
1059 * Any time after allocation, hugetlbfs_destroy_inode can be called
1060 * for the inode. mpol_free_shared_policy is unconditionally called
1061 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1062 * in case of a quick call to destroy.
1064 * Note that the policy is initialized even if we are creating a
1065 * private inode. This simplifies hugetlbfs_destroy_inode.
1067 mpol_shared_policy_init(&p
->policy
, NULL
);
1069 return &p
->vfs_inode
;
1072 static void hugetlbfs_free_inode(struct inode
*inode
)
1074 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
1077 static void hugetlbfs_destroy_inode(struct inode
*inode
)
1079 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
1080 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
1083 static const struct address_space_operations hugetlbfs_aops
= {
1084 .write_begin
= hugetlbfs_write_begin
,
1085 .write_end
= hugetlbfs_write_end
,
1086 .set_page_dirty
= hugetlbfs_set_page_dirty
,
1087 .migratepage
= hugetlbfs_migrate_page
,
1088 .error_remove_page
= hugetlbfs_error_remove_page
,
1092 static void init_once(void *foo
)
1094 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
1096 inode_init_once(&ei
->vfs_inode
);
1099 const struct file_operations hugetlbfs_file_operations
= {
1100 .read_iter
= hugetlbfs_read_iter
,
1101 .mmap
= hugetlbfs_file_mmap
,
1102 .fsync
= noop_fsync
,
1103 .get_unmapped_area
= hugetlb_get_unmapped_area
,
1104 .llseek
= default_llseek
,
1105 .fallocate
= hugetlbfs_fallocate
,
1108 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
1109 .create
= hugetlbfs_create
,
1110 .lookup
= simple_lookup
,
1111 .link
= simple_link
,
1112 .unlink
= simple_unlink
,
1113 .symlink
= hugetlbfs_symlink
,
1114 .mkdir
= hugetlbfs_mkdir
,
1115 .rmdir
= simple_rmdir
,
1116 .mknod
= hugetlbfs_mknod
,
1117 .rename
= simple_rename
,
1118 .setattr
= hugetlbfs_setattr
,
1119 .tmpfile
= hugetlbfs_tmpfile
,
1122 static const struct inode_operations hugetlbfs_inode_operations
= {
1123 .setattr
= hugetlbfs_setattr
,
1126 static const struct super_operations hugetlbfs_ops
= {
1127 .alloc_inode
= hugetlbfs_alloc_inode
,
1128 .free_inode
= hugetlbfs_free_inode
,
1129 .destroy_inode
= hugetlbfs_destroy_inode
,
1130 .evict_inode
= hugetlbfs_evict_inode
,
1131 .statfs
= hugetlbfs_statfs
,
1132 .put_super
= hugetlbfs_put_super
,
1133 .show_options
= hugetlbfs_show_options
,
1137 * Convert size option passed from command line to number of huge pages
1138 * in the pool specified by hstate. Size option could be in bytes
1139 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1142 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1143 enum hugetlbfs_size_type val_type
)
1145 if (val_type
== NO_SIZE
)
1148 if (val_type
== SIZE_PERCENT
) {
1149 size_opt
<<= huge_page_shift(h
);
1150 size_opt
*= h
->max_huge_pages
;
1151 do_div(size_opt
, 100);
1154 size_opt
>>= huge_page_shift(h
);
1159 * Parse one mount parameter.
1161 static int hugetlbfs_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1163 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1164 struct fs_parse_result result
;
1169 opt
= fs_parse(fc
, hugetlb_fs_parameters
, param
, &result
);
1175 ctx
->uid
= make_kuid(current_user_ns(), result
.uint_32
);
1176 if (!uid_valid(ctx
->uid
))
1181 ctx
->gid
= make_kgid(current_user_ns(), result
.uint_32
);
1182 if (!gid_valid(ctx
->gid
))
1187 ctx
->mode
= result
.uint_32
& 01777U;
1191 /* memparse() will accept a K/M/G without a digit */
1192 if (!isdigit(param
->string
[0]))
1194 ctx
->max_size_opt
= memparse(param
->string
, &rest
);
1195 ctx
->max_val_type
= SIZE_STD
;
1197 ctx
->max_val_type
= SIZE_PERCENT
;
1201 /* memparse() will accept a K/M/G without a digit */
1202 if (!isdigit(param
->string
[0]))
1204 ctx
->nr_inodes
= memparse(param
->string
, &rest
);
1208 ps
= memparse(param
->string
, &rest
);
1209 ctx
->hstate
= size_to_hstate(ps
);
1211 pr_err("Unsupported page size %lu MB\n", ps
>> 20);
1217 /* memparse() will accept a K/M/G without a digit */
1218 if (!isdigit(param
->string
[0]))
1220 ctx
->min_size_opt
= memparse(param
->string
, &rest
);
1221 ctx
->min_val_type
= SIZE_STD
;
1223 ctx
->min_val_type
= SIZE_PERCENT
;
1231 return invalfc(fc
, "Bad value '%s' for mount option '%s'\n",
1232 param
->string
, param
->key
);
1236 * Validate the parsed options.
1238 static int hugetlbfs_validate(struct fs_context
*fc
)
1240 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1243 * Use huge page pool size (in hstate) to convert the size
1244 * options to number of huge pages. If NO_SIZE, -1 is returned.
1246 ctx
->max_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1249 ctx
->min_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1254 * If max_size was specified, then min_size must be smaller
1256 if (ctx
->max_val_type
> NO_SIZE
&&
1257 ctx
->min_hpages
> ctx
->max_hpages
) {
1258 pr_err("Minimum size can not be greater than maximum size\n");
1266 hugetlbfs_fill_super(struct super_block
*sb
, struct fs_context
*fc
)
1268 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1269 struct hugetlbfs_sb_info
*sbinfo
;
1271 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1274 sb
->s_fs_info
= sbinfo
;
1275 spin_lock_init(&sbinfo
->stat_lock
);
1276 sbinfo
->hstate
= ctx
->hstate
;
1277 sbinfo
->max_inodes
= ctx
->nr_inodes
;
1278 sbinfo
->free_inodes
= ctx
->nr_inodes
;
1279 sbinfo
->spool
= NULL
;
1280 sbinfo
->uid
= ctx
->uid
;
1281 sbinfo
->gid
= ctx
->gid
;
1282 sbinfo
->mode
= ctx
->mode
;
1285 * Allocate and initialize subpool if maximum or minimum size is
1286 * specified. Any needed reservations (for minimim size) are taken
1287 * taken when the subpool is created.
1289 if (ctx
->max_hpages
!= -1 || ctx
->min_hpages
!= -1) {
1290 sbinfo
->spool
= hugepage_new_subpool(ctx
->hstate
,
1296 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1297 sb
->s_blocksize
= huge_page_size(ctx
->hstate
);
1298 sb
->s_blocksize_bits
= huge_page_shift(ctx
->hstate
);
1299 sb
->s_magic
= HUGETLBFS_MAGIC
;
1300 sb
->s_op
= &hugetlbfs_ops
;
1301 sb
->s_time_gran
= 1;
1302 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, ctx
));
1307 kfree(sbinfo
->spool
);
1312 static int hugetlbfs_get_tree(struct fs_context
*fc
)
1314 int err
= hugetlbfs_validate(fc
);
1317 return get_tree_nodev(fc
, hugetlbfs_fill_super
);
1320 static void hugetlbfs_fs_context_free(struct fs_context
*fc
)
1322 kfree(fc
->fs_private
);
1325 static const struct fs_context_operations hugetlbfs_fs_context_ops
= {
1326 .free
= hugetlbfs_fs_context_free
,
1327 .parse_param
= hugetlbfs_parse_param
,
1328 .get_tree
= hugetlbfs_get_tree
,
1331 static int hugetlbfs_init_fs_context(struct fs_context
*fc
)
1333 struct hugetlbfs_fs_context
*ctx
;
1335 ctx
= kzalloc(sizeof(struct hugetlbfs_fs_context
), GFP_KERNEL
);
1339 ctx
->max_hpages
= -1; /* No limit on size by default */
1340 ctx
->nr_inodes
= -1; /* No limit on number of inodes by default */
1341 ctx
->uid
= current_fsuid();
1342 ctx
->gid
= current_fsgid();
1344 ctx
->hstate
= &default_hstate
;
1345 ctx
->min_hpages
= -1; /* No default minimum size */
1346 ctx
->max_val_type
= NO_SIZE
;
1347 ctx
->min_val_type
= NO_SIZE
;
1348 fc
->fs_private
= ctx
;
1349 fc
->ops
= &hugetlbfs_fs_context_ops
;
1353 static struct file_system_type hugetlbfs_fs_type
= {
1354 .name
= "hugetlbfs",
1355 .init_fs_context
= hugetlbfs_init_fs_context
,
1356 .parameters
= hugetlb_fs_parameters
,
1357 .kill_sb
= kill_litter_super
,
1360 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1362 static int can_do_hugetlb_shm(void)
1365 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1366 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1369 static int get_hstate_idx(int page_size_log
)
1371 struct hstate
*h
= hstate_sizelog(page_size_log
);
1379 * Note that size should be aligned to proper hugepage size in caller side,
1380 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1382 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1383 vm_flags_t acctflag
, struct user_struct
**user
,
1384 int creat_flags
, int page_size_log
)
1386 struct inode
*inode
;
1387 struct vfsmount
*mnt
;
1391 hstate_idx
= get_hstate_idx(page_size_log
);
1393 return ERR_PTR(-ENODEV
);
1396 mnt
= hugetlbfs_vfsmount
[hstate_idx
];
1398 return ERR_PTR(-ENOENT
);
1400 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1401 *user
= current_user();
1402 if (user_shm_lock(size
, *user
)) {
1404 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1405 current
->comm
, current
->pid
);
1406 task_unlock(current
);
1409 return ERR_PTR(-EPERM
);
1413 file
= ERR_PTR(-ENOSPC
);
1414 inode
= hugetlbfs_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1417 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1418 inode
->i_flags
|= S_PRIVATE
;
1420 inode
->i_size
= size
;
1423 if (hugetlb_reserve_pages(inode
, 0,
1424 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1426 file
= ERR_PTR(-ENOMEM
);
1428 file
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
1429 &hugetlbfs_file_operations
);
1436 user_shm_unlock(size
, *user
);
1442 static struct vfsmount
*__init
mount_one_hugetlbfs(struct hstate
*h
)
1444 struct fs_context
*fc
;
1445 struct vfsmount
*mnt
;
1447 fc
= fs_context_for_mount(&hugetlbfs_fs_type
, SB_KERNMOUNT
);
1451 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1457 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1458 1U << (h
->order
+ PAGE_SHIFT
- 10));
1462 static int __init
init_hugetlbfs_fs(void)
1464 struct vfsmount
*mnt
;
1469 if (!hugepages_supported()) {
1470 pr_info("disabling because there are no supported hugepage sizes\n");
1475 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1476 sizeof(struct hugetlbfs_inode_info
),
1477 0, SLAB_ACCOUNT
, init_once
);
1478 if (hugetlbfs_inode_cachep
== NULL
)
1481 error
= register_filesystem(&hugetlbfs_fs_type
);
1485 /* default hstate mount is required */
1486 mnt
= mount_one_hugetlbfs(&hstates
[default_hstate_idx
]);
1488 error
= PTR_ERR(mnt
);
1491 hugetlbfs_vfsmount
[default_hstate_idx
] = mnt
;
1493 /* other hstates are optional */
1495 for_each_hstate(h
) {
1496 if (i
== default_hstate_idx
) {
1501 mnt
= mount_one_hugetlbfs(h
);
1503 hugetlbfs_vfsmount
[i
] = NULL
;
1505 hugetlbfs_vfsmount
[i
] = mnt
;
1512 (void)unregister_filesystem(&hugetlbfs_fs_type
);
1514 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1518 fs_initcall(init_hugetlbfs_fs
)