drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / nfs / dir.c
blob1320288ff9ec9c7d50d207908d77f3899c7def3b
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
5 * Copyright (C) 1992 Rick Sladkey
7 * nfs directory handling functions
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
47 #include "nfstrace.h"
49 /* #define NFS_DEBUG_VERBOSE 1 */
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
58 const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate_shared = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
67 const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 if (ctx != NULL) {
77 ctx->duped = 0;
78 ctx->attr_gencount = nfsi->attr_gencount;
79 ctx->dir_cookie = 0;
80 ctx->dup_cookie = 0;
81 ctx->cred = get_cred(cred);
82 spin_lock(&dir->i_lock);
83 if (list_empty(&nfsi->open_files) &&
84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 NFS_INO_REVAL_FORCED;
87 list_add(&ctx->list, &nfsi->open_files);
88 spin_unlock(&dir->i_lock);
89 return ctx;
91 return ERR_PTR(-ENOMEM);
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
96 spin_lock(&dir->i_lock);
97 list_del(&ctx->list);
98 spin_unlock(&dir->i_lock);
99 put_cred(ctx->cred);
100 kfree(ctx);
104 * Open file
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
109 int res = 0;
110 struct nfs_open_dir_context *ctx;
112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
114 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
116 ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 if (IS_ERR(ctx)) {
118 res = PTR_ERR(ctx);
119 goto out;
121 filp->private_data = ctx;
122 out:
123 return res;
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
133 struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
140 struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[0];
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 struct file *file;
150 struct page *page;
151 struct dir_context *ctx;
152 unsigned long page_index;
153 u64 *dir_cookie;
154 u64 last_cookie;
155 loff_t current_index;
156 decode_dirent_t decode;
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163 } nfs_readdir_descriptor_t;
165 static
166 void nfs_readdir_init_array(struct page *page)
168 struct nfs_cache_array *array;
170 array = kmap_atomic(page);
171 memset(array, 0, sizeof(struct nfs_cache_array));
172 array->eof_index = -1;
173 kunmap_atomic(array);
177 * we are freeing strings created by nfs_add_to_readdir_array()
179 static
180 void nfs_readdir_clear_array(struct page *page)
182 struct nfs_cache_array *array;
183 int i;
185 array = kmap_atomic(page);
186 for (i = 0; i < array->size; i++)
187 kfree(array->array[i].string.name);
188 array->size = 0;
189 kunmap_atomic(array);
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
197 static
198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
200 string->len = len;
201 string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 if (string->name == NULL)
203 return -ENOMEM;
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
208 kmemleak_not_leak(string->name);
209 string->hash = full_name_hash(NULL, name, len);
210 return 0;
213 static
214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
216 struct nfs_cache_array *array = kmap(page);
217 struct nfs_cache_array_entry *cache_entry;
218 int ret;
220 cache_entry = &array->array[array->size];
222 /* Check that this entry lies within the page bounds */
223 ret = -ENOSPC;
224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 goto out;
227 cache_entry->cookie = entry->prev_cookie;
228 cache_entry->ino = entry->ino;
229 cache_entry->d_type = entry->d_type;
230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 if (ret)
232 goto out;
233 array->last_cookie = entry->cookie;
234 array->size++;
235 if (entry->eof != 0)
236 array->eof_index = array->size;
237 out:
238 kunmap(page);
239 return ret;
242 static
243 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
245 loff_t diff = desc->ctx->pos - desc->current_index;
246 unsigned int index;
248 if (diff < 0)
249 goto out_eof;
250 if (diff >= array->size) {
251 if (array->eof_index >= 0)
252 goto out_eof;
253 return -EAGAIN;
256 index = (unsigned int)diff;
257 *desc->dir_cookie = array->array[index].cookie;
258 desc->cache_entry_index = index;
259 return 0;
260 out_eof:
261 desc->eof = true;
262 return -EBADCOOKIE;
265 static bool
266 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
268 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
269 return false;
270 smp_rmb();
271 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
274 static
275 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277 int i;
278 loff_t new_pos;
279 int status = -EAGAIN;
281 for (i = 0; i < array->size; i++) {
282 if (array->array[i].cookie == *desc->dir_cookie) {
283 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
284 struct nfs_open_dir_context *ctx = desc->file->private_data;
286 new_pos = desc->current_index + i;
287 if (ctx->attr_gencount != nfsi->attr_gencount ||
288 !nfs_readdir_inode_mapping_valid(nfsi)) {
289 ctx->duped = 0;
290 ctx->attr_gencount = nfsi->attr_gencount;
291 } else if (new_pos < desc->ctx->pos) {
292 if (ctx->duped > 0
293 && ctx->dup_cookie == *desc->dir_cookie) {
294 if (printk_ratelimit()) {
295 pr_notice("NFS: directory %pD2 contains a readdir loop."
296 "Please contact your server vendor. "
297 "The file: %.*s has duplicate cookie %llu\n",
298 desc->file, array->array[i].string.len,
299 array->array[i].string.name, *desc->dir_cookie);
301 status = -ELOOP;
302 goto out;
304 ctx->dup_cookie = *desc->dir_cookie;
305 ctx->duped = -1;
307 desc->ctx->pos = new_pos;
308 desc->cache_entry_index = i;
309 return 0;
312 if (array->eof_index >= 0) {
313 status = -EBADCOOKIE;
314 if (*desc->dir_cookie == array->last_cookie)
315 desc->eof = true;
317 out:
318 return status;
321 static
322 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
324 struct nfs_cache_array *array;
325 int status;
327 array = kmap(desc->page);
329 if (*desc->dir_cookie == 0)
330 status = nfs_readdir_search_for_pos(array, desc);
331 else
332 status = nfs_readdir_search_for_cookie(array, desc);
334 if (status == -EAGAIN) {
335 desc->last_cookie = array->last_cookie;
336 desc->current_index += array->size;
337 desc->page_index++;
339 kunmap(desc->page);
340 return status;
343 /* Fill a page with xdr information before transferring to the cache page */
344 static
345 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
346 struct nfs_entry *entry, struct file *file, struct inode *inode)
348 struct nfs_open_dir_context *ctx = file->private_data;
349 const struct cred *cred = ctx->cred;
350 unsigned long timestamp, gencount;
351 int error;
353 again:
354 timestamp = jiffies;
355 gencount = nfs_inc_attr_generation_counter();
356 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
357 NFS_SERVER(inode)->dtsize, desc->plus);
358 if (error < 0) {
359 /* We requested READDIRPLUS, but the server doesn't grok it */
360 if (error == -ENOTSUPP && desc->plus) {
361 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
362 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
363 desc->plus = false;
364 goto again;
366 goto error;
368 desc->timestamp = timestamp;
369 desc->gencount = gencount;
370 error:
371 return error;
374 static int xdr_decode(nfs_readdir_descriptor_t *desc,
375 struct nfs_entry *entry, struct xdr_stream *xdr)
377 int error;
379 error = desc->decode(xdr, entry, desc->plus);
380 if (error)
381 return error;
382 entry->fattr->time_start = desc->timestamp;
383 entry->fattr->gencount = desc->gencount;
384 return 0;
387 /* Match file and dirent using either filehandle or fileid
388 * Note: caller is responsible for checking the fsid
390 static
391 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
393 struct inode *inode;
394 struct nfs_inode *nfsi;
396 if (d_really_is_negative(dentry))
397 return 0;
399 inode = d_inode(dentry);
400 if (is_bad_inode(inode) || NFS_STALE(inode))
401 return 0;
403 nfsi = NFS_I(inode);
404 if (entry->fattr->fileid != nfsi->fileid)
405 return 0;
406 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
407 return 0;
408 return 1;
411 static
412 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
414 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
415 return false;
416 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
417 return true;
418 if (ctx->pos == 0)
419 return true;
420 return false;
424 * This function is called by the lookup and getattr code to request the
425 * use of readdirplus to accelerate any future lookups in the same
426 * directory.
428 void nfs_advise_use_readdirplus(struct inode *dir)
430 struct nfs_inode *nfsi = NFS_I(dir);
432 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
433 !list_empty(&nfsi->open_files))
434 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
438 * This function is mainly for use by nfs_getattr().
440 * If this is an 'ls -l', we want to force use of readdirplus.
441 * Do this by checking if there is an active file descriptor
442 * and calling nfs_advise_use_readdirplus, then forcing a
443 * cache flush.
445 void nfs_force_use_readdirplus(struct inode *dir)
447 struct nfs_inode *nfsi = NFS_I(dir);
449 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
450 !list_empty(&nfsi->open_files)) {
451 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
452 invalidate_mapping_pages(dir->i_mapping,
453 nfsi->page_index + 1, -1);
457 static
458 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
460 struct qstr filename = QSTR_INIT(entry->name, entry->len);
461 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
462 struct dentry *dentry;
463 struct dentry *alias;
464 struct inode *dir = d_inode(parent);
465 struct inode *inode;
466 int status;
468 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
469 return;
470 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
471 return;
472 if (filename.len == 0)
473 return;
474 /* Validate that the name doesn't contain any illegal '\0' */
475 if (strnlen(filename.name, filename.len) != filename.len)
476 return;
477 /* ...or '/' */
478 if (strnchr(filename.name, filename.len, '/'))
479 return;
480 if (filename.name[0] == '.') {
481 if (filename.len == 1)
482 return;
483 if (filename.len == 2 && filename.name[1] == '.')
484 return;
486 filename.hash = full_name_hash(parent, filename.name, filename.len);
488 dentry = d_lookup(parent, &filename);
489 again:
490 if (!dentry) {
491 dentry = d_alloc_parallel(parent, &filename, &wq);
492 if (IS_ERR(dentry))
493 return;
495 if (!d_in_lookup(dentry)) {
496 /* Is there a mountpoint here? If so, just exit */
497 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
498 &entry->fattr->fsid))
499 goto out;
500 if (nfs_same_file(dentry, entry)) {
501 if (!entry->fh->size)
502 goto out;
503 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
504 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
505 if (!status)
506 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
507 goto out;
508 } else {
509 d_invalidate(dentry);
510 dput(dentry);
511 dentry = NULL;
512 goto again;
515 if (!entry->fh->size) {
516 d_lookup_done(dentry);
517 goto out;
520 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
521 alias = d_splice_alias(inode, dentry);
522 d_lookup_done(dentry);
523 if (alias) {
524 if (IS_ERR(alias))
525 goto out;
526 dput(dentry);
527 dentry = alias;
529 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
530 out:
531 dput(dentry);
534 /* Perform conversion from xdr to cache array */
535 static
536 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
537 struct page **xdr_pages, struct page *page, unsigned int buflen)
539 struct xdr_stream stream;
540 struct xdr_buf buf;
541 struct page *scratch;
542 struct nfs_cache_array *array;
543 unsigned int count = 0;
544 int status;
546 scratch = alloc_page(GFP_KERNEL);
547 if (scratch == NULL)
548 return -ENOMEM;
550 if (buflen == 0)
551 goto out_nopages;
553 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
554 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
556 do {
557 status = xdr_decode(desc, entry, &stream);
558 if (status != 0) {
559 if (status == -EAGAIN)
560 status = 0;
561 break;
564 count++;
566 if (desc->plus)
567 nfs_prime_dcache(file_dentry(desc->file), entry);
569 status = nfs_readdir_add_to_array(entry, page);
570 if (status != 0)
571 break;
572 } while (!entry->eof);
574 out_nopages:
575 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
576 array = kmap(page);
577 array->eof_index = array->size;
578 status = 0;
579 kunmap(page);
582 put_page(scratch);
583 return status;
586 static
587 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
589 unsigned int i;
590 for (i = 0; i < npages; i++)
591 put_page(pages[i]);
595 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
596 * to nfs_readdir_free_pages()
598 static
599 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
601 unsigned int i;
603 for (i = 0; i < npages; i++) {
604 struct page *page = alloc_page(GFP_KERNEL);
605 if (page == NULL)
606 goto out_freepages;
607 pages[i] = page;
609 return 0;
611 out_freepages:
612 nfs_readdir_free_pages(pages, i);
613 return -ENOMEM;
616 static
617 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
619 struct page *pages[NFS_MAX_READDIR_PAGES];
620 struct nfs_entry entry;
621 struct file *file = desc->file;
622 struct nfs_cache_array *array;
623 int status = -ENOMEM;
624 unsigned int array_size = ARRAY_SIZE(pages);
626 nfs_readdir_init_array(page);
628 entry.prev_cookie = 0;
629 entry.cookie = desc->last_cookie;
630 entry.eof = 0;
631 entry.fh = nfs_alloc_fhandle();
632 entry.fattr = nfs_alloc_fattr();
633 entry.server = NFS_SERVER(inode);
634 if (entry.fh == NULL || entry.fattr == NULL)
635 goto out;
637 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
638 if (IS_ERR(entry.label)) {
639 status = PTR_ERR(entry.label);
640 goto out;
643 array = kmap(page);
645 status = nfs_readdir_alloc_pages(pages, array_size);
646 if (status < 0)
647 goto out_release_array;
648 do {
649 unsigned int pglen;
650 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
652 if (status < 0)
653 break;
654 pglen = status;
655 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
656 if (status < 0) {
657 if (status == -ENOSPC)
658 status = 0;
659 break;
661 } while (array->eof_index < 0);
663 nfs_readdir_free_pages(pages, array_size);
664 out_release_array:
665 kunmap(page);
666 nfs4_label_free(entry.label);
667 out:
668 nfs_free_fattr(entry.fattr);
669 nfs_free_fhandle(entry.fh);
670 return status;
674 * Now we cache directories properly, by converting xdr information
675 * to an array that can be used for lookups later. This results in
676 * fewer cache pages, since we can store more information on each page.
677 * We only need to convert from xdr once so future lookups are much simpler
679 static
680 int nfs_readdir_filler(void *data, struct page* page)
682 nfs_readdir_descriptor_t *desc = data;
683 struct inode *inode = file_inode(desc->file);
684 int ret;
686 ret = nfs_readdir_xdr_to_array(desc, page, inode);
687 if (ret < 0)
688 goto error;
689 SetPageUptodate(page);
691 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
692 /* Should never happen */
693 nfs_zap_mapping(inode, inode->i_mapping);
695 unlock_page(page);
696 return 0;
697 error:
698 nfs_readdir_clear_array(page);
699 unlock_page(page);
700 return ret;
703 static
704 void cache_page_release(nfs_readdir_descriptor_t *desc)
706 put_page(desc->page);
707 desc->page = NULL;
710 static
711 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
713 return read_cache_page(desc->file->f_mapping, desc->page_index,
714 nfs_readdir_filler, desc);
718 * Returns 0 if desc->dir_cookie was found on page desc->page_index
719 * and locks the page to prevent removal from the page cache.
721 static
722 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
724 struct inode *inode = file_inode(desc->file);
725 struct nfs_inode *nfsi = NFS_I(inode);
726 int res;
728 desc->page = get_cache_page(desc);
729 if (IS_ERR(desc->page))
730 return PTR_ERR(desc->page);
731 res = lock_page_killable(desc->page);
732 if (res != 0)
733 goto error;
734 res = -EAGAIN;
735 if (desc->page->mapping != NULL) {
736 res = nfs_readdir_search_array(desc);
737 if (res == 0) {
738 nfsi->page_index = desc->page_index;
739 return 0;
742 unlock_page(desc->page);
743 error:
744 cache_page_release(desc);
745 return res;
748 /* Search for desc->dir_cookie from the beginning of the page cache */
749 static inline
750 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
752 int res;
754 if (desc->page_index == 0) {
755 desc->current_index = 0;
756 desc->last_cookie = 0;
758 do {
759 res = find_and_lock_cache_page(desc);
760 } while (res == -EAGAIN);
761 return res;
765 * Once we've found the start of the dirent within a page: fill 'er up...
767 static
768 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
770 struct file *file = desc->file;
771 int i = 0;
772 int res = 0;
773 struct nfs_cache_array *array = NULL;
774 struct nfs_open_dir_context *ctx = file->private_data;
776 array = kmap(desc->page);
777 for (i = desc->cache_entry_index; i < array->size; i++) {
778 struct nfs_cache_array_entry *ent;
780 ent = &array->array[i];
781 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
782 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
783 desc->eof = true;
784 break;
786 desc->ctx->pos++;
787 if (i < (array->size-1))
788 *desc->dir_cookie = array->array[i+1].cookie;
789 else
790 *desc->dir_cookie = array->last_cookie;
791 if (ctx->duped != 0)
792 ctx->duped = 1;
794 if (array->eof_index >= 0)
795 desc->eof = true;
797 kunmap(desc->page);
798 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
799 (unsigned long long)*desc->dir_cookie, res);
800 return res;
804 * If we cannot find a cookie in our cache, we suspect that this is
805 * because it points to a deleted file, so we ask the server to return
806 * whatever it thinks is the next entry. We then feed this to filldir.
807 * If all goes well, we should then be able to find our way round the
808 * cache on the next call to readdir_search_pagecache();
810 * NOTE: we cannot add the anonymous page to the pagecache because
811 * the data it contains might not be page aligned. Besides,
812 * we should already have a complete representation of the
813 * directory in the page cache by the time we get here.
815 static inline
816 int uncached_readdir(nfs_readdir_descriptor_t *desc)
818 struct page *page = NULL;
819 int status;
820 struct inode *inode = file_inode(desc->file);
821 struct nfs_open_dir_context *ctx = desc->file->private_data;
823 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
824 (unsigned long long)*desc->dir_cookie);
826 page = alloc_page(GFP_HIGHUSER);
827 if (!page) {
828 status = -ENOMEM;
829 goto out;
832 desc->page_index = 0;
833 desc->last_cookie = *desc->dir_cookie;
834 desc->page = page;
835 ctx->duped = 0;
837 status = nfs_readdir_xdr_to_array(desc, page, inode);
838 if (status < 0)
839 goto out_release;
841 status = nfs_do_filldir(desc);
843 out_release:
844 nfs_readdir_clear_array(desc->page);
845 cache_page_release(desc);
846 out:
847 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
848 __func__, status);
849 return status;
852 /* The file offset position represents the dirent entry number. A
853 last cookie cache takes care of the common case of reading the
854 whole directory.
856 static int nfs_readdir(struct file *file, struct dir_context *ctx)
858 struct dentry *dentry = file_dentry(file);
859 struct inode *inode = d_inode(dentry);
860 nfs_readdir_descriptor_t my_desc,
861 *desc = &my_desc;
862 struct nfs_open_dir_context *dir_ctx = file->private_data;
863 int res = 0;
865 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
866 file, (long long)ctx->pos);
867 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
870 * ctx->pos points to the dirent entry number.
871 * *desc->dir_cookie has the cookie for the next entry. We have
872 * to either find the entry with the appropriate number or
873 * revalidate the cookie.
875 memset(desc, 0, sizeof(*desc));
877 desc->file = file;
878 desc->ctx = ctx;
879 desc->dir_cookie = &dir_ctx->dir_cookie;
880 desc->decode = NFS_PROTO(inode)->decode_dirent;
881 desc->plus = nfs_use_readdirplus(inode, ctx);
883 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
884 res = nfs_revalidate_mapping(inode, file->f_mapping);
885 if (res < 0)
886 goto out;
888 do {
889 res = readdir_search_pagecache(desc);
891 if (res == -EBADCOOKIE) {
892 res = 0;
893 /* This means either end of directory */
894 if (*desc->dir_cookie && !desc->eof) {
895 /* Or that the server has 'lost' a cookie */
896 res = uncached_readdir(desc);
897 if (res == 0)
898 continue;
900 break;
902 if (res == -ETOOSMALL && desc->plus) {
903 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
904 nfs_zap_caches(inode);
905 desc->page_index = 0;
906 desc->plus = false;
907 desc->eof = false;
908 continue;
910 if (res < 0)
911 break;
913 res = nfs_do_filldir(desc);
914 unlock_page(desc->page);
915 cache_page_release(desc);
916 if (res < 0)
917 break;
918 } while (!desc->eof);
919 out:
920 if (res > 0)
921 res = 0;
922 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
923 return res;
926 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
928 struct inode *inode = file_inode(filp);
929 struct nfs_open_dir_context *dir_ctx = filp->private_data;
931 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
932 filp, offset, whence);
934 switch (whence) {
935 default:
936 return -EINVAL;
937 case SEEK_SET:
938 if (offset < 0)
939 return -EINVAL;
940 inode_lock(inode);
941 break;
942 case SEEK_CUR:
943 if (offset == 0)
944 return filp->f_pos;
945 inode_lock(inode);
946 offset += filp->f_pos;
947 if (offset < 0) {
948 inode_unlock(inode);
949 return -EINVAL;
952 if (offset != filp->f_pos) {
953 filp->f_pos = offset;
954 dir_ctx->dir_cookie = 0;
955 dir_ctx->duped = 0;
957 inode_unlock(inode);
958 return offset;
962 * All directory operations under NFS are synchronous, so fsync()
963 * is a dummy operation.
965 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
966 int datasync)
968 struct inode *inode = file_inode(filp);
970 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
972 inode_lock(inode);
973 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
974 inode_unlock(inode);
975 return 0;
979 * nfs_force_lookup_revalidate - Mark the directory as having changed
980 * @dir: pointer to directory inode
982 * This forces the revalidation code in nfs_lookup_revalidate() to do a
983 * full lookup on all child dentries of 'dir' whenever a change occurs
984 * on the server that might have invalidated our dcache.
986 * The caller should be holding dir->i_lock
988 void nfs_force_lookup_revalidate(struct inode *dir)
990 NFS_I(dir)->cache_change_attribute++;
992 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
995 * A check for whether or not the parent directory has changed.
996 * In the case it has, we assume that the dentries are untrustworthy
997 * and may need to be looked up again.
998 * If rcu_walk prevents us from performing a full check, return 0.
1000 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1001 int rcu_walk)
1003 if (IS_ROOT(dentry))
1004 return 1;
1005 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1006 return 0;
1007 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1008 return 0;
1009 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1010 if (nfs_mapping_need_revalidate_inode(dir)) {
1011 if (rcu_walk)
1012 return 0;
1013 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1014 return 0;
1016 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1017 return 0;
1018 return 1;
1022 * Use intent information to check whether or not we're going to do
1023 * an O_EXCL create using this path component.
1025 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1027 if (NFS_PROTO(dir)->version == 2)
1028 return 0;
1029 return flags & LOOKUP_EXCL;
1033 * Inode and filehandle revalidation for lookups.
1035 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1036 * or if the intent information indicates that we're about to open this
1037 * particular file and the "nocto" mount flag is not set.
1040 static
1041 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1043 struct nfs_server *server = NFS_SERVER(inode);
1044 int ret;
1046 if (IS_AUTOMOUNT(inode))
1047 return 0;
1049 if (flags & LOOKUP_OPEN) {
1050 switch (inode->i_mode & S_IFMT) {
1051 case S_IFREG:
1052 /* A NFSv4 OPEN will revalidate later */
1053 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1054 goto out;
1055 /* Fallthrough */
1056 case S_IFDIR:
1057 if (server->flags & NFS_MOUNT_NOCTO)
1058 break;
1059 /* NFS close-to-open cache consistency validation */
1060 goto out_force;
1064 /* VFS wants an on-the-wire revalidation */
1065 if (flags & LOOKUP_REVAL)
1066 goto out_force;
1067 out:
1068 return (inode->i_nlink == 0) ? -ESTALE : 0;
1069 out_force:
1070 if (flags & LOOKUP_RCU)
1071 return -ECHILD;
1072 ret = __nfs_revalidate_inode(server, inode);
1073 if (ret != 0)
1074 return ret;
1075 goto out;
1079 * We judge how long we want to trust negative
1080 * dentries by looking at the parent inode mtime.
1082 * If parent mtime has changed, we revalidate, else we wait for a
1083 * period corresponding to the parent's attribute cache timeout value.
1085 * If LOOKUP_RCU prevents us from performing a full check, return 1
1086 * suggesting a reval is needed.
1088 * Note that when creating a new file, or looking up a rename target,
1089 * then it shouldn't be necessary to revalidate a negative dentry.
1091 static inline
1092 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1093 unsigned int flags)
1095 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1096 return 0;
1097 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1098 return 1;
1099 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1102 static int
1103 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1104 struct inode *inode, int error)
1106 switch (error) {
1107 case 1:
1108 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1109 __func__, dentry);
1110 return 1;
1111 case 0:
1112 nfs_mark_for_revalidate(dir);
1113 if (inode && S_ISDIR(inode->i_mode)) {
1114 /* Purge readdir caches. */
1115 nfs_zap_caches(inode);
1117 * We can't d_drop the root of a disconnected tree:
1118 * its d_hash is on the s_anon list and d_drop() would hide
1119 * it from shrink_dcache_for_unmount(), leading to busy
1120 * inodes on unmount and further oopses.
1122 if (IS_ROOT(dentry))
1123 return 1;
1125 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1126 __func__, dentry);
1127 return 0;
1129 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1130 __func__, dentry, error);
1131 return error;
1134 static int
1135 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1136 unsigned int flags)
1138 int ret = 1;
1139 if (nfs_neg_need_reval(dir, dentry, flags)) {
1140 if (flags & LOOKUP_RCU)
1141 return -ECHILD;
1142 ret = 0;
1144 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1147 static int
1148 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1149 struct inode *inode)
1151 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1152 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1155 static int
1156 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1157 struct inode *inode)
1159 struct nfs_fh *fhandle;
1160 struct nfs_fattr *fattr;
1161 struct nfs4_label *label;
1162 int ret;
1164 ret = -ENOMEM;
1165 fhandle = nfs_alloc_fhandle();
1166 fattr = nfs_alloc_fattr();
1167 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1168 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1169 goto out;
1171 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1172 if (ret < 0) {
1173 switch (ret) {
1174 case -ESTALE:
1175 case -ENOENT:
1176 ret = 0;
1177 break;
1178 case -ETIMEDOUT:
1179 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1180 ret = 1;
1182 goto out;
1184 ret = 0;
1185 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1186 goto out;
1187 if (nfs_refresh_inode(inode, fattr) < 0)
1188 goto out;
1190 nfs_setsecurity(inode, fattr, label);
1191 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1193 /* set a readdirplus hint that we had a cache miss */
1194 nfs_force_use_readdirplus(dir);
1195 ret = 1;
1196 out:
1197 nfs_free_fattr(fattr);
1198 nfs_free_fhandle(fhandle);
1199 nfs4_label_free(label);
1200 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1204 * This is called every time the dcache has a lookup hit,
1205 * and we should check whether we can really trust that
1206 * lookup.
1208 * NOTE! The hit can be a negative hit too, don't assume
1209 * we have an inode!
1211 * If the parent directory is seen to have changed, we throw out the
1212 * cached dentry and do a new lookup.
1214 static int
1215 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1216 unsigned int flags)
1218 struct inode *inode;
1219 int error;
1221 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1222 inode = d_inode(dentry);
1224 if (!inode)
1225 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1227 if (is_bad_inode(inode)) {
1228 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1229 __func__, dentry);
1230 goto out_bad;
1233 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1234 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1236 /* Force a full look up iff the parent directory has changed */
1237 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1238 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1239 error = nfs_lookup_verify_inode(inode, flags);
1240 if (error) {
1241 if (error == -ESTALE)
1242 nfs_zap_caches(dir);
1243 goto out_bad;
1245 nfs_advise_use_readdirplus(dir);
1246 goto out_valid;
1249 if (flags & LOOKUP_RCU)
1250 return -ECHILD;
1252 if (NFS_STALE(inode))
1253 goto out_bad;
1255 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1256 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1257 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1258 return error;
1259 out_valid:
1260 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1261 out_bad:
1262 if (flags & LOOKUP_RCU)
1263 return -ECHILD;
1264 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1267 static int
1268 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1269 int (*reval)(struct inode *, struct dentry *, unsigned int))
1271 struct dentry *parent;
1272 struct inode *dir;
1273 int ret;
1275 if (flags & LOOKUP_RCU) {
1276 parent = READ_ONCE(dentry->d_parent);
1277 dir = d_inode_rcu(parent);
1278 if (!dir)
1279 return -ECHILD;
1280 ret = reval(dir, dentry, flags);
1281 if (parent != READ_ONCE(dentry->d_parent))
1282 return -ECHILD;
1283 } else {
1284 parent = dget_parent(dentry);
1285 ret = reval(d_inode(parent), dentry, flags);
1286 dput(parent);
1288 return ret;
1291 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1293 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1297 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1298 * when we don't really care about the dentry name. This is called when a
1299 * pathwalk ends on a dentry that was not found via a normal lookup in the
1300 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1302 * In this situation, we just want to verify that the inode itself is OK
1303 * since the dentry might have changed on the server.
1305 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1307 struct inode *inode = d_inode(dentry);
1308 int error = 0;
1311 * I believe we can only get a negative dentry here in the case of a
1312 * procfs-style symlink. Just assume it's correct for now, but we may
1313 * eventually need to do something more here.
1315 if (!inode) {
1316 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1317 __func__, dentry);
1318 return 1;
1321 if (is_bad_inode(inode)) {
1322 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1323 __func__, dentry);
1324 return 0;
1327 error = nfs_lookup_verify_inode(inode, flags);
1328 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1329 __func__, inode->i_ino, error ? "invalid" : "valid");
1330 return !error;
1334 * This is called from dput() when d_count is going to 0.
1336 static int nfs_dentry_delete(const struct dentry *dentry)
1338 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1339 dentry, dentry->d_flags);
1341 /* Unhash any dentry with a stale inode */
1342 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1343 return 1;
1345 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1346 /* Unhash it, so that ->d_iput() would be called */
1347 return 1;
1349 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1350 /* Unhash it, so that ancestors of killed async unlink
1351 * files will be cleaned up during umount */
1352 return 1;
1354 return 0;
1358 /* Ensure that we revalidate inode->i_nlink */
1359 static void nfs_drop_nlink(struct inode *inode)
1361 spin_lock(&inode->i_lock);
1362 /* drop the inode if we're reasonably sure this is the last link */
1363 if (inode->i_nlink > 0)
1364 drop_nlink(inode);
1365 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1366 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1367 | NFS_INO_INVALID_CTIME
1368 | NFS_INO_INVALID_OTHER
1369 | NFS_INO_REVAL_FORCED;
1370 spin_unlock(&inode->i_lock);
1374 * Called when the dentry loses inode.
1375 * We use it to clean up silly-renamed files.
1377 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1379 if (S_ISDIR(inode->i_mode))
1380 /* drop any readdir cache as it could easily be old */
1381 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1383 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1384 nfs_complete_unlink(dentry, inode);
1385 nfs_drop_nlink(inode);
1387 iput(inode);
1390 static void nfs_d_release(struct dentry *dentry)
1392 /* free cached devname value, if it survived that far */
1393 if (unlikely(dentry->d_fsdata)) {
1394 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1395 WARN_ON(1);
1396 else
1397 kfree(dentry->d_fsdata);
1401 const struct dentry_operations nfs_dentry_operations = {
1402 .d_revalidate = nfs_lookup_revalidate,
1403 .d_weak_revalidate = nfs_weak_revalidate,
1404 .d_delete = nfs_dentry_delete,
1405 .d_iput = nfs_dentry_iput,
1406 .d_automount = nfs_d_automount,
1407 .d_release = nfs_d_release,
1409 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1411 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1413 struct dentry *res;
1414 struct inode *inode = NULL;
1415 struct nfs_fh *fhandle = NULL;
1416 struct nfs_fattr *fattr = NULL;
1417 struct nfs4_label *label = NULL;
1418 int error;
1420 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1421 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1423 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1424 return ERR_PTR(-ENAMETOOLONG);
1427 * If we're doing an exclusive create, optimize away the lookup
1428 * but don't hash the dentry.
1430 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1431 return NULL;
1433 res = ERR_PTR(-ENOMEM);
1434 fhandle = nfs_alloc_fhandle();
1435 fattr = nfs_alloc_fattr();
1436 if (fhandle == NULL || fattr == NULL)
1437 goto out;
1439 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1440 if (IS_ERR(label))
1441 goto out;
1443 trace_nfs_lookup_enter(dir, dentry, flags);
1444 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1445 if (error == -ENOENT)
1446 goto no_entry;
1447 if (error < 0) {
1448 res = ERR_PTR(error);
1449 goto out_label;
1451 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1452 res = ERR_CAST(inode);
1453 if (IS_ERR(res))
1454 goto out_label;
1456 /* Notify readdir to use READDIRPLUS */
1457 nfs_force_use_readdirplus(dir);
1459 no_entry:
1460 res = d_splice_alias(inode, dentry);
1461 if (res != NULL) {
1462 if (IS_ERR(res))
1463 goto out_label;
1464 dentry = res;
1466 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1467 out_label:
1468 trace_nfs_lookup_exit(dir, dentry, flags, error);
1469 nfs4_label_free(label);
1470 out:
1471 nfs_free_fattr(fattr);
1472 nfs_free_fhandle(fhandle);
1473 return res;
1475 EXPORT_SYMBOL_GPL(nfs_lookup);
1477 #if IS_ENABLED(CONFIG_NFS_V4)
1478 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1480 const struct dentry_operations nfs4_dentry_operations = {
1481 .d_revalidate = nfs4_lookup_revalidate,
1482 .d_weak_revalidate = nfs_weak_revalidate,
1483 .d_delete = nfs_dentry_delete,
1484 .d_iput = nfs_dentry_iput,
1485 .d_automount = nfs_d_automount,
1486 .d_release = nfs_d_release,
1488 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1490 static fmode_t flags_to_mode(int flags)
1492 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1493 if ((flags & O_ACCMODE) != O_WRONLY)
1494 res |= FMODE_READ;
1495 if ((flags & O_ACCMODE) != O_RDONLY)
1496 res |= FMODE_WRITE;
1497 return res;
1500 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1502 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1505 static int do_open(struct inode *inode, struct file *filp)
1507 nfs_fscache_open_file(inode, filp);
1508 return 0;
1511 static int nfs_finish_open(struct nfs_open_context *ctx,
1512 struct dentry *dentry,
1513 struct file *file, unsigned open_flags)
1515 int err;
1517 err = finish_open(file, dentry, do_open);
1518 if (err)
1519 goto out;
1520 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1521 nfs_file_set_open_context(file, ctx);
1522 else
1523 err = -EOPENSTALE;
1524 out:
1525 return err;
1528 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1529 struct file *file, unsigned open_flags,
1530 umode_t mode)
1532 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1533 struct nfs_open_context *ctx;
1534 struct dentry *res;
1535 struct iattr attr = { .ia_valid = ATTR_OPEN };
1536 struct inode *inode;
1537 unsigned int lookup_flags = 0;
1538 bool switched = false;
1539 int created = 0;
1540 int err;
1542 /* Expect a negative dentry */
1543 BUG_ON(d_inode(dentry));
1545 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1546 dir->i_sb->s_id, dir->i_ino, dentry);
1548 err = nfs_check_flags(open_flags);
1549 if (err)
1550 return err;
1552 /* NFS only supports OPEN on regular files */
1553 if ((open_flags & O_DIRECTORY)) {
1554 if (!d_in_lookup(dentry)) {
1556 * Hashed negative dentry with O_DIRECTORY: dentry was
1557 * revalidated and is fine, no need to perform lookup
1558 * again
1560 return -ENOENT;
1562 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1563 goto no_open;
1566 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1567 return -ENAMETOOLONG;
1569 if (open_flags & O_CREAT) {
1570 struct nfs_server *server = NFS_SERVER(dir);
1572 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1573 mode &= ~current_umask();
1575 attr.ia_valid |= ATTR_MODE;
1576 attr.ia_mode = mode;
1578 if (open_flags & O_TRUNC) {
1579 attr.ia_valid |= ATTR_SIZE;
1580 attr.ia_size = 0;
1583 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1584 d_drop(dentry);
1585 switched = true;
1586 dentry = d_alloc_parallel(dentry->d_parent,
1587 &dentry->d_name, &wq);
1588 if (IS_ERR(dentry))
1589 return PTR_ERR(dentry);
1590 if (unlikely(!d_in_lookup(dentry)))
1591 return finish_no_open(file, dentry);
1594 ctx = create_nfs_open_context(dentry, open_flags, file);
1595 err = PTR_ERR(ctx);
1596 if (IS_ERR(ctx))
1597 goto out;
1599 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1600 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1601 if (created)
1602 file->f_mode |= FMODE_CREATED;
1603 if (IS_ERR(inode)) {
1604 err = PTR_ERR(inode);
1605 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1606 put_nfs_open_context(ctx);
1607 d_drop(dentry);
1608 switch (err) {
1609 case -ENOENT:
1610 d_splice_alias(NULL, dentry);
1611 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1612 break;
1613 case -EISDIR:
1614 case -ENOTDIR:
1615 goto no_open;
1616 case -ELOOP:
1617 if (!(open_flags & O_NOFOLLOW))
1618 goto no_open;
1619 break;
1620 /* case -EINVAL: */
1621 default:
1622 break;
1624 goto out;
1627 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1628 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1629 put_nfs_open_context(ctx);
1630 out:
1631 if (unlikely(switched)) {
1632 d_lookup_done(dentry);
1633 dput(dentry);
1635 return err;
1637 no_open:
1638 res = nfs_lookup(dir, dentry, lookup_flags);
1639 if (switched) {
1640 d_lookup_done(dentry);
1641 if (!res)
1642 res = dentry;
1643 else
1644 dput(dentry);
1646 if (IS_ERR(res))
1647 return PTR_ERR(res);
1648 return finish_no_open(file, res);
1650 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1652 static int
1653 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1654 unsigned int flags)
1656 struct inode *inode;
1658 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1659 goto full_reval;
1660 if (d_mountpoint(dentry))
1661 goto full_reval;
1663 inode = d_inode(dentry);
1665 /* We can't create new files in nfs_open_revalidate(), so we
1666 * optimize away revalidation of negative dentries.
1668 if (inode == NULL)
1669 goto full_reval;
1671 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1672 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1674 /* NFS only supports OPEN on regular files */
1675 if (!S_ISREG(inode->i_mode))
1676 goto full_reval;
1678 /* We cannot do exclusive creation on a positive dentry */
1679 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1680 goto reval_dentry;
1682 /* Check if the directory changed */
1683 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1684 goto reval_dentry;
1686 /* Let f_op->open() actually open (and revalidate) the file */
1687 return 1;
1688 reval_dentry:
1689 if (flags & LOOKUP_RCU)
1690 return -ECHILD;
1691 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1693 full_reval:
1694 return nfs_do_lookup_revalidate(dir, dentry, flags);
1697 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1699 return __nfs_lookup_revalidate(dentry, flags,
1700 nfs4_do_lookup_revalidate);
1703 #endif /* CONFIG_NFSV4 */
1705 struct dentry *
1706 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1707 struct nfs_fattr *fattr,
1708 struct nfs4_label *label)
1710 struct dentry *parent = dget_parent(dentry);
1711 struct inode *dir = d_inode(parent);
1712 struct inode *inode;
1713 struct dentry *d;
1714 int error;
1716 d_drop(dentry);
1718 if (fhandle->size == 0) {
1719 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1720 if (error)
1721 goto out_error;
1723 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1724 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1725 struct nfs_server *server = NFS_SB(dentry->d_sb);
1726 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1727 fattr, NULL, NULL);
1728 if (error < 0)
1729 goto out_error;
1731 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1732 d = d_splice_alias(inode, dentry);
1733 out:
1734 dput(parent);
1735 return d;
1736 out_error:
1737 nfs_mark_for_revalidate(dir);
1738 d = ERR_PTR(error);
1739 goto out;
1741 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1744 * Code common to create, mkdir, and mknod.
1746 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1747 struct nfs_fattr *fattr,
1748 struct nfs4_label *label)
1750 struct dentry *d;
1752 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1753 if (IS_ERR(d))
1754 return PTR_ERR(d);
1756 /* Callers don't care */
1757 dput(d);
1758 return 0;
1760 EXPORT_SYMBOL_GPL(nfs_instantiate);
1763 * Following a failed create operation, we drop the dentry rather
1764 * than retain a negative dentry. This avoids a problem in the event
1765 * that the operation succeeded on the server, but an error in the
1766 * reply path made it appear to have failed.
1768 int nfs_create(struct inode *dir, struct dentry *dentry,
1769 umode_t mode, bool excl)
1771 struct iattr attr;
1772 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1773 int error;
1775 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1776 dir->i_sb->s_id, dir->i_ino, dentry);
1778 attr.ia_mode = mode;
1779 attr.ia_valid = ATTR_MODE;
1781 trace_nfs_create_enter(dir, dentry, open_flags);
1782 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1783 trace_nfs_create_exit(dir, dentry, open_flags, error);
1784 if (error != 0)
1785 goto out_err;
1786 return 0;
1787 out_err:
1788 d_drop(dentry);
1789 return error;
1791 EXPORT_SYMBOL_GPL(nfs_create);
1794 * See comments for nfs_proc_create regarding failed operations.
1797 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1799 struct iattr attr;
1800 int status;
1802 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1803 dir->i_sb->s_id, dir->i_ino, dentry);
1805 attr.ia_mode = mode;
1806 attr.ia_valid = ATTR_MODE;
1808 trace_nfs_mknod_enter(dir, dentry);
1809 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1810 trace_nfs_mknod_exit(dir, dentry, status);
1811 if (status != 0)
1812 goto out_err;
1813 return 0;
1814 out_err:
1815 d_drop(dentry);
1816 return status;
1818 EXPORT_SYMBOL_GPL(nfs_mknod);
1821 * See comments for nfs_proc_create regarding failed operations.
1823 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1825 struct iattr attr;
1826 int error;
1828 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1829 dir->i_sb->s_id, dir->i_ino, dentry);
1831 attr.ia_valid = ATTR_MODE;
1832 attr.ia_mode = mode | S_IFDIR;
1834 trace_nfs_mkdir_enter(dir, dentry);
1835 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1836 trace_nfs_mkdir_exit(dir, dentry, error);
1837 if (error != 0)
1838 goto out_err;
1839 return 0;
1840 out_err:
1841 d_drop(dentry);
1842 return error;
1844 EXPORT_SYMBOL_GPL(nfs_mkdir);
1846 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1848 if (simple_positive(dentry))
1849 d_delete(dentry);
1852 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1854 int error;
1856 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1857 dir->i_sb->s_id, dir->i_ino, dentry);
1859 trace_nfs_rmdir_enter(dir, dentry);
1860 if (d_really_is_positive(dentry)) {
1861 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1862 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1863 /* Ensure the VFS deletes this inode */
1864 switch (error) {
1865 case 0:
1866 clear_nlink(d_inode(dentry));
1867 break;
1868 case -ENOENT:
1869 nfs_dentry_handle_enoent(dentry);
1871 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1872 } else
1873 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1874 trace_nfs_rmdir_exit(dir, dentry, error);
1876 return error;
1878 EXPORT_SYMBOL_GPL(nfs_rmdir);
1881 * Remove a file after making sure there are no pending writes,
1882 * and after checking that the file has only one user.
1884 * We invalidate the attribute cache and free the inode prior to the operation
1885 * to avoid possible races if the server reuses the inode.
1887 static int nfs_safe_remove(struct dentry *dentry)
1889 struct inode *dir = d_inode(dentry->d_parent);
1890 struct inode *inode = d_inode(dentry);
1891 int error = -EBUSY;
1893 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1895 /* If the dentry was sillyrenamed, we simply call d_delete() */
1896 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1897 error = 0;
1898 goto out;
1901 trace_nfs_remove_enter(dir, dentry);
1902 if (inode != NULL) {
1903 error = NFS_PROTO(dir)->remove(dir, dentry);
1904 if (error == 0)
1905 nfs_drop_nlink(inode);
1906 } else
1907 error = NFS_PROTO(dir)->remove(dir, dentry);
1908 if (error == -ENOENT)
1909 nfs_dentry_handle_enoent(dentry);
1910 trace_nfs_remove_exit(dir, dentry, error);
1911 out:
1912 return error;
1915 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1916 * belongs to an active ".nfs..." file and we return -EBUSY.
1918 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1920 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1922 int error;
1923 int need_rehash = 0;
1925 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1926 dir->i_ino, dentry);
1928 trace_nfs_unlink_enter(dir, dentry);
1929 spin_lock(&dentry->d_lock);
1930 if (d_count(dentry) > 1) {
1931 spin_unlock(&dentry->d_lock);
1932 /* Start asynchronous writeout of the inode */
1933 write_inode_now(d_inode(dentry), 0);
1934 error = nfs_sillyrename(dir, dentry);
1935 goto out;
1937 if (!d_unhashed(dentry)) {
1938 __d_drop(dentry);
1939 need_rehash = 1;
1941 spin_unlock(&dentry->d_lock);
1942 error = nfs_safe_remove(dentry);
1943 if (!error || error == -ENOENT) {
1944 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1945 } else if (need_rehash)
1946 d_rehash(dentry);
1947 out:
1948 trace_nfs_unlink_exit(dir, dentry, error);
1949 return error;
1951 EXPORT_SYMBOL_GPL(nfs_unlink);
1954 * To create a symbolic link, most file systems instantiate a new inode,
1955 * add a page to it containing the path, then write it out to the disk
1956 * using prepare_write/commit_write.
1958 * Unfortunately the NFS client can't create the in-core inode first
1959 * because it needs a file handle to create an in-core inode (see
1960 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1961 * symlink request has completed on the server.
1963 * So instead we allocate a raw page, copy the symname into it, then do
1964 * the SYMLINK request with the page as the buffer. If it succeeds, we
1965 * now have a new file handle and can instantiate an in-core NFS inode
1966 * and move the raw page into its mapping.
1968 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1970 struct page *page;
1971 char *kaddr;
1972 struct iattr attr;
1973 unsigned int pathlen = strlen(symname);
1974 int error;
1976 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1977 dir->i_ino, dentry, symname);
1979 if (pathlen > PAGE_SIZE)
1980 return -ENAMETOOLONG;
1982 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1983 attr.ia_valid = ATTR_MODE;
1985 page = alloc_page(GFP_USER);
1986 if (!page)
1987 return -ENOMEM;
1989 kaddr = page_address(page);
1990 memcpy(kaddr, symname, pathlen);
1991 if (pathlen < PAGE_SIZE)
1992 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1994 trace_nfs_symlink_enter(dir, dentry);
1995 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1996 trace_nfs_symlink_exit(dir, dentry, error);
1997 if (error != 0) {
1998 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1999 dir->i_sb->s_id, dir->i_ino,
2000 dentry, symname, error);
2001 d_drop(dentry);
2002 __free_page(page);
2003 return error;
2007 * No big deal if we can't add this page to the page cache here.
2008 * READLINK will get the missing page from the server if needed.
2010 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2011 GFP_KERNEL)) {
2012 SetPageUptodate(page);
2013 unlock_page(page);
2015 * add_to_page_cache_lru() grabs an extra page refcount.
2016 * Drop it here to avoid leaking this page later.
2018 put_page(page);
2019 } else
2020 __free_page(page);
2022 return 0;
2024 EXPORT_SYMBOL_GPL(nfs_symlink);
2027 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2029 struct inode *inode = d_inode(old_dentry);
2030 int error;
2032 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2033 old_dentry, dentry);
2035 trace_nfs_link_enter(inode, dir, dentry);
2036 d_drop(dentry);
2037 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2038 if (error == 0) {
2039 ihold(inode);
2040 d_add(dentry, inode);
2042 trace_nfs_link_exit(inode, dir, dentry, error);
2043 return error;
2045 EXPORT_SYMBOL_GPL(nfs_link);
2048 * RENAME
2049 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2050 * different file handle for the same inode after a rename (e.g. when
2051 * moving to a different directory). A fail-safe method to do so would
2052 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2053 * rename the old file using the sillyrename stuff. This way, the original
2054 * file in old_dir will go away when the last process iput()s the inode.
2056 * FIXED.
2058 * It actually works quite well. One needs to have the possibility for
2059 * at least one ".nfs..." file in each directory the file ever gets
2060 * moved or linked to which happens automagically with the new
2061 * implementation that only depends on the dcache stuff instead of
2062 * using the inode layer
2064 * Unfortunately, things are a little more complicated than indicated
2065 * above. For a cross-directory move, we want to make sure we can get
2066 * rid of the old inode after the operation. This means there must be
2067 * no pending writes (if it's a file), and the use count must be 1.
2068 * If these conditions are met, we can drop the dentries before doing
2069 * the rename.
2071 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2072 struct inode *new_dir, struct dentry *new_dentry,
2073 unsigned int flags)
2075 struct inode *old_inode = d_inode(old_dentry);
2076 struct inode *new_inode = d_inode(new_dentry);
2077 struct dentry *dentry = NULL, *rehash = NULL;
2078 struct rpc_task *task;
2079 int error = -EBUSY;
2081 if (flags)
2082 return -EINVAL;
2084 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2085 old_dentry, new_dentry,
2086 d_count(new_dentry));
2088 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2090 * For non-directories, check whether the target is busy and if so,
2091 * make a copy of the dentry and then do a silly-rename. If the
2092 * silly-rename succeeds, the copied dentry is hashed and becomes
2093 * the new target.
2095 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2097 * To prevent any new references to the target during the
2098 * rename, we unhash the dentry in advance.
2100 if (!d_unhashed(new_dentry)) {
2101 d_drop(new_dentry);
2102 rehash = new_dentry;
2105 if (d_count(new_dentry) > 2) {
2106 int err;
2108 /* copy the target dentry's name */
2109 dentry = d_alloc(new_dentry->d_parent,
2110 &new_dentry->d_name);
2111 if (!dentry)
2112 goto out;
2114 /* silly-rename the existing target ... */
2115 err = nfs_sillyrename(new_dir, new_dentry);
2116 if (err)
2117 goto out;
2119 new_dentry = dentry;
2120 rehash = NULL;
2121 new_inode = NULL;
2125 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2126 if (IS_ERR(task)) {
2127 error = PTR_ERR(task);
2128 goto out;
2131 error = rpc_wait_for_completion_task(task);
2132 if (error != 0) {
2133 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2134 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2135 smp_wmb();
2136 } else
2137 error = task->tk_status;
2138 rpc_put_task(task);
2139 /* Ensure the inode attributes are revalidated */
2140 if (error == 0) {
2141 spin_lock(&old_inode->i_lock);
2142 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2143 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2144 | NFS_INO_INVALID_CTIME
2145 | NFS_INO_REVAL_FORCED;
2146 spin_unlock(&old_inode->i_lock);
2148 out:
2149 if (rehash)
2150 d_rehash(rehash);
2151 trace_nfs_rename_exit(old_dir, old_dentry,
2152 new_dir, new_dentry, error);
2153 if (!error) {
2154 if (new_inode != NULL)
2155 nfs_drop_nlink(new_inode);
2157 * The d_move() should be here instead of in an async RPC completion
2158 * handler because we need the proper locks to move the dentry. If
2159 * we're interrupted by a signal, the async RPC completion handler
2160 * should mark the directories for revalidation.
2162 d_move(old_dentry, new_dentry);
2163 nfs_set_verifier(old_dentry,
2164 nfs_save_change_attribute(new_dir));
2165 } else if (error == -ENOENT)
2166 nfs_dentry_handle_enoent(old_dentry);
2168 /* new dentry created? */
2169 if (dentry)
2170 dput(dentry);
2171 return error;
2173 EXPORT_SYMBOL_GPL(nfs_rename);
2175 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2176 static LIST_HEAD(nfs_access_lru_list);
2177 static atomic_long_t nfs_access_nr_entries;
2179 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2180 module_param(nfs_access_max_cachesize, ulong, 0644);
2181 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2183 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2185 put_cred(entry->cred);
2186 kfree_rcu(entry, rcu_head);
2187 smp_mb__before_atomic();
2188 atomic_long_dec(&nfs_access_nr_entries);
2189 smp_mb__after_atomic();
2192 static void nfs_access_free_list(struct list_head *head)
2194 struct nfs_access_entry *cache;
2196 while (!list_empty(head)) {
2197 cache = list_entry(head->next, struct nfs_access_entry, lru);
2198 list_del(&cache->lru);
2199 nfs_access_free_entry(cache);
2203 static unsigned long
2204 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2206 LIST_HEAD(head);
2207 struct nfs_inode *nfsi, *next;
2208 struct nfs_access_entry *cache;
2209 long freed = 0;
2211 spin_lock(&nfs_access_lru_lock);
2212 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2213 struct inode *inode;
2215 if (nr_to_scan-- == 0)
2216 break;
2217 inode = &nfsi->vfs_inode;
2218 spin_lock(&inode->i_lock);
2219 if (list_empty(&nfsi->access_cache_entry_lru))
2220 goto remove_lru_entry;
2221 cache = list_entry(nfsi->access_cache_entry_lru.next,
2222 struct nfs_access_entry, lru);
2223 list_move(&cache->lru, &head);
2224 rb_erase(&cache->rb_node, &nfsi->access_cache);
2225 freed++;
2226 if (!list_empty(&nfsi->access_cache_entry_lru))
2227 list_move_tail(&nfsi->access_cache_inode_lru,
2228 &nfs_access_lru_list);
2229 else {
2230 remove_lru_entry:
2231 list_del_init(&nfsi->access_cache_inode_lru);
2232 smp_mb__before_atomic();
2233 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2234 smp_mb__after_atomic();
2236 spin_unlock(&inode->i_lock);
2238 spin_unlock(&nfs_access_lru_lock);
2239 nfs_access_free_list(&head);
2240 return freed;
2243 unsigned long
2244 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2246 int nr_to_scan = sc->nr_to_scan;
2247 gfp_t gfp_mask = sc->gfp_mask;
2249 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2250 return SHRINK_STOP;
2251 return nfs_do_access_cache_scan(nr_to_scan);
2255 unsigned long
2256 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2258 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2261 static void
2262 nfs_access_cache_enforce_limit(void)
2264 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2265 unsigned long diff;
2266 unsigned int nr_to_scan;
2268 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2269 return;
2270 nr_to_scan = 100;
2271 diff = nr_entries - nfs_access_max_cachesize;
2272 if (diff < nr_to_scan)
2273 nr_to_scan = diff;
2274 nfs_do_access_cache_scan(nr_to_scan);
2277 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2279 struct rb_root *root_node = &nfsi->access_cache;
2280 struct rb_node *n;
2281 struct nfs_access_entry *entry;
2283 /* Unhook entries from the cache */
2284 while ((n = rb_first(root_node)) != NULL) {
2285 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2286 rb_erase(n, root_node);
2287 list_move(&entry->lru, head);
2289 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2292 void nfs_access_zap_cache(struct inode *inode)
2294 LIST_HEAD(head);
2296 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2297 return;
2298 /* Remove from global LRU init */
2299 spin_lock(&nfs_access_lru_lock);
2300 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2301 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2303 spin_lock(&inode->i_lock);
2304 __nfs_access_zap_cache(NFS_I(inode), &head);
2305 spin_unlock(&inode->i_lock);
2306 spin_unlock(&nfs_access_lru_lock);
2307 nfs_access_free_list(&head);
2309 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2311 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2313 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2315 while (n != NULL) {
2316 struct nfs_access_entry *entry =
2317 rb_entry(n, struct nfs_access_entry, rb_node);
2318 int cmp = cred_fscmp(cred, entry->cred);
2320 if (cmp < 0)
2321 n = n->rb_left;
2322 else if (cmp > 0)
2323 n = n->rb_right;
2324 else
2325 return entry;
2327 return NULL;
2330 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2332 struct nfs_inode *nfsi = NFS_I(inode);
2333 struct nfs_access_entry *cache;
2334 bool retry = true;
2335 int err;
2337 spin_lock(&inode->i_lock);
2338 for(;;) {
2339 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2340 goto out_zap;
2341 cache = nfs_access_search_rbtree(inode, cred);
2342 err = -ENOENT;
2343 if (cache == NULL)
2344 goto out;
2345 /* Found an entry, is our attribute cache valid? */
2346 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2347 break;
2348 if (!retry)
2349 break;
2350 err = -ECHILD;
2351 if (!may_block)
2352 goto out;
2353 spin_unlock(&inode->i_lock);
2354 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2355 if (err)
2356 return err;
2357 spin_lock(&inode->i_lock);
2358 retry = false;
2360 res->cred = cache->cred;
2361 res->mask = cache->mask;
2362 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2363 err = 0;
2364 out:
2365 spin_unlock(&inode->i_lock);
2366 return err;
2367 out_zap:
2368 spin_unlock(&inode->i_lock);
2369 nfs_access_zap_cache(inode);
2370 return -ENOENT;
2373 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2375 /* Only check the most recently returned cache entry,
2376 * but do it without locking.
2378 struct nfs_inode *nfsi = NFS_I(inode);
2379 struct nfs_access_entry *cache;
2380 int err = -ECHILD;
2381 struct list_head *lh;
2383 rcu_read_lock();
2384 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2385 goto out;
2386 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2387 cache = list_entry(lh, struct nfs_access_entry, lru);
2388 if (lh == &nfsi->access_cache_entry_lru ||
2389 cred_fscmp(cred, cache->cred) != 0)
2390 cache = NULL;
2391 if (cache == NULL)
2392 goto out;
2393 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2394 goto out;
2395 res->cred = cache->cred;
2396 res->mask = cache->mask;
2397 err = 0;
2398 out:
2399 rcu_read_unlock();
2400 return err;
2403 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2405 struct nfs_inode *nfsi = NFS_I(inode);
2406 struct rb_root *root_node = &nfsi->access_cache;
2407 struct rb_node **p = &root_node->rb_node;
2408 struct rb_node *parent = NULL;
2409 struct nfs_access_entry *entry;
2410 int cmp;
2412 spin_lock(&inode->i_lock);
2413 while (*p != NULL) {
2414 parent = *p;
2415 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2416 cmp = cred_fscmp(set->cred, entry->cred);
2418 if (cmp < 0)
2419 p = &parent->rb_left;
2420 else if (cmp > 0)
2421 p = &parent->rb_right;
2422 else
2423 goto found;
2425 rb_link_node(&set->rb_node, parent, p);
2426 rb_insert_color(&set->rb_node, root_node);
2427 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2428 spin_unlock(&inode->i_lock);
2429 return;
2430 found:
2431 rb_replace_node(parent, &set->rb_node, root_node);
2432 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2433 list_del(&entry->lru);
2434 spin_unlock(&inode->i_lock);
2435 nfs_access_free_entry(entry);
2438 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2440 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2441 if (cache == NULL)
2442 return;
2443 RB_CLEAR_NODE(&cache->rb_node);
2444 cache->cred = get_cred(set->cred);
2445 cache->mask = set->mask;
2447 /* The above field assignments must be visible
2448 * before this item appears on the lru. We cannot easily
2449 * use rcu_assign_pointer, so just force the memory barrier.
2451 smp_wmb();
2452 nfs_access_add_rbtree(inode, cache);
2454 /* Update accounting */
2455 smp_mb__before_atomic();
2456 atomic_long_inc(&nfs_access_nr_entries);
2457 smp_mb__after_atomic();
2459 /* Add inode to global LRU list */
2460 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2461 spin_lock(&nfs_access_lru_lock);
2462 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2463 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2464 &nfs_access_lru_list);
2465 spin_unlock(&nfs_access_lru_lock);
2467 nfs_access_cache_enforce_limit();
2469 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2471 #define NFS_MAY_READ (NFS_ACCESS_READ)
2472 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2473 NFS_ACCESS_EXTEND | \
2474 NFS_ACCESS_DELETE)
2475 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2476 NFS_ACCESS_EXTEND)
2477 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2478 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2479 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2480 static int
2481 nfs_access_calc_mask(u32 access_result, umode_t umode)
2483 int mask = 0;
2485 if (access_result & NFS_MAY_READ)
2486 mask |= MAY_READ;
2487 if (S_ISDIR(umode)) {
2488 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2489 mask |= MAY_WRITE;
2490 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2491 mask |= MAY_EXEC;
2492 } else if (S_ISREG(umode)) {
2493 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2494 mask |= MAY_WRITE;
2495 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2496 mask |= MAY_EXEC;
2497 } else if (access_result & NFS_MAY_WRITE)
2498 mask |= MAY_WRITE;
2499 return mask;
2502 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2504 entry->mask = access_result;
2506 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2508 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2510 struct nfs_access_entry cache;
2511 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2512 int cache_mask = -1;
2513 int status;
2515 trace_nfs_access_enter(inode);
2517 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2518 if (status != 0)
2519 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2520 if (status == 0)
2521 goto out_cached;
2523 status = -ECHILD;
2524 if (!may_block)
2525 goto out;
2528 * Determine which access bits we want to ask for...
2530 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2531 if (S_ISDIR(inode->i_mode))
2532 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2533 else
2534 cache.mask |= NFS_ACCESS_EXECUTE;
2535 cache.cred = cred;
2536 status = NFS_PROTO(inode)->access(inode, &cache);
2537 if (status != 0) {
2538 if (status == -ESTALE) {
2539 nfs_zap_caches(inode);
2540 if (!S_ISDIR(inode->i_mode))
2541 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2543 goto out;
2545 nfs_access_add_cache(inode, &cache);
2546 out_cached:
2547 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2548 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2549 status = -EACCES;
2550 out:
2551 trace_nfs_access_exit(inode, mask, cache_mask, status);
2552 return status;
2555 static int nfs_open_permission_mask(int openflags)
2557 int mask = 0;
2559 if (openflags & __FMODE_EXEC) {
2560 /* ONLY check exec rights */
2561 mask = MAY_EXEC;
2562 } else {
2563 if ((openflags & O_ACCMODE) != O_WRONLY)
2564 mask |= MAY_READ;
2565 if ((openflags & O_ACCMODE) != O_RDONLY)
2566 mask |= MAY_WRITE;
2569 return mask;
2572 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2574 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2576 EXPORT_SYMBOL_GPL(nfs_may_open);
2578 static int nfs_execute_ok(struct inode *inode, int mask)
2580 struct nfs_server *server = NFS_SERVER(inode);
2581 int ret = 0;
2583 if (S_ISDIR(inode->i_mode))
2584 return 0;
2585 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2586 if (mask & MAY_NOT_BLOCK)
2587 return -ECHILD;
2588 ret = __nfs_revalidate_inode(server, inode);
2590 if (ret == 0 && !execute_ok(inode))
2591 ret = -EACCES;
2592 return ret;
2595 int nfs_permission(struct inode *inode, int mask)
2597 const struct cred *cred = current_cred();
2598 int res = 0;
2600 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2602 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2603 goto out;
2604 /* Is this sys_access() ? */
2605 if (mask & (MAY_ACCESS | MAY_CHDIR))
2606 goto force_lookup;
2608 switch (inode->i_mode & S_IFMT) {
2609 case S_IFLNK:
2610 goto out;
2611 case S_IFREG:
2612 if ((mask & MAY_OPEN) &&
2613 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2614 return 0;
2615 break;
2616 case S_IFDIR:
2618 * Optimize away all write operations, since the server
2619 * will check permissions when we perform the op.
2621 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2622 goto out;
2625 force_lookup:
2626 if (!NFS_PROTO(inode)->access)
2627 goto out_notsup;
2629 /* Always try fast lookups first */
2630 rcu_read_lock();
2631 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2632 rcu_read_unlock();
2633 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2634 /* Fast lookup failed, try the slow way */
2635 res = nfs_do_access(inode, cred, mask);
2637 out:
2638 if (!res && (mask & MAY_EXEC))
2639 res = nfs_execute_ok(inode, mask);
2641 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2642 inode->i_sb->s_id, inode->i_ino, mask, res);
2643 return res;
2644 out_notsup:
2645 if (mask & MAY_NOT_BLOCK)
2646 return -ECHILD;
2648 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2649 if (res == 0)
2650 res = generic_permission(inode, mask);
2651 goto out;
2653 EXPORT_SYMBOL_GPL(nfs_permission);
2656 * Local variables:
2657 * version-control: t
2658 * kept-new-versions: 5
2659 * End: