1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1992 Rick Sladkey
7 * nfs directory handling functions
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
42 #include "delegation.h"
49 /* #define NFS_DEBUG_VERBOSE 1 */
51 static int nfs_opendir(struct inode
*, struct file
*);
52 static int nfs_closedir(struct inode
*, struct file
*);
53 static int nfs_readdir(struct file
*, struct dir_context
*);
54 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
55 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
56 static void nfs_readdir_clear_array(struct page
*);
58 const struct file_operations nfs_dir_operations
= {
59 .llseek
= nfs_llseek_dir
,
60 .read
= generic_read_dir
,
61 .iterate_shared
= nfs_readdir
,
63 .release
= nfs_closedir
,
64 .fsync
= nfs_fsync_dir
,
67 const struct address_space_operations nfs_dir_aops
= {
68 .freepage
= nfs_readdir_clear_array
,
71 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, const struct cred
*cred
)
73 struct nfs_inode
*nfsi
= NFS_I(dir
);
74 struct nfs_open_dir_context
*ctx
;
75 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
78 ctx
->attr_gencount
= nfsi
->attr_gencount
;
81 ctx
->cred
= get_cred(cred
);
82 spin_lock(&dir
->i_lock
);
83 if (list_empty(&nfsi
->open_files
) &&
84 (nfsi
->cache_validity
& NFS_INO_DATA_INVAL_DEFER
))
85 nfsi
->cache_validity
|= NFS_INO_INVALID_DATA
|
87 list_add(&ctx
->list
, &nfsi
->open_files
);
88 spin_unlock(&dir
->i_lock
);
91 return ERR_PTR(-ENOMEM
);
94 static void put_nfs_open_dir_context(struct inode
*dir
, struct nfs_open_dir_context
*ctx
)
96 spin_lock(&dir
->i_lock
);
98 spin_unlock(&dir
->i_lock
);
107 nfs_opendir(struct inode
*inode
, struct file
*filp
)
110 struct nfs_open_dir_context
*ctx
;
112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
114 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
116 ctx
= alloc_nfs_open_dir_context(inode
, current_cred());
121 filp
->private_data
= ctx
;
127 nfs_closedir(struct inode
*inode
, struct file
*filp
)
129 put_nfs_open_dir_context(file_inode(filp
), filp
->private_data
);
133 struct nfs_cache_array_entry
{
137 unsigned char d_type
;
140 struct nfs_cache_array
{
144 struct nfs_cache_array_entry array
[0];
147 typedef int (*decode_dirent_t
)(struct xdr_stream
*, struct nfs_entry
*, bool);
151 struct dir_context
*ctx
;
152 unsigned long page_index
;
155 loff_t current_index
;
156 decode_dirent_t decode
;
158 unsigned long timestamp
;
159 unsigned long gencount
;
160 unsigned int cache_entry_index
;
163 } nfs_readdir_descriptor_t
;
166 void nfs_readdir_init_array(struct page
*page
)
168 struct nfs_cache_array
*array
;
170 array
= kmap_atomic(page
);
171 memset(array
, 0, sizeof(struct nfs_cache_array
));
172 array
->eof_index
= -1;
173 kunmap_atomic(array
);
177 * we are freeing strings created by nfs_add_to_readdir_array()
180 void nfs_readdir_clear_array(struct page
*page
)
182 struct nfs_cache_array
*array
;
185 array
= kmap_atomic(page
);
186 for (i
= 0; i
< array
->size
; i
++)
187 kfree(array
->array
[i
].string
.name
);
189 kunmap_atomic(array
);
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
198 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
201 string
->name
= kmemdup_nul(name
, len
, GFP_KERNEL
);
202 if (string
->name
== NULL
)
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
208 kmemleak_not_leak(string
->name
);
209 string
->hash
= full_name_hash(NULL
, name
, len
);
214 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
216 struct nfs_cache_array
*array
= kmap(page
);
217 struct nfs_cache_array_entry
*cache_entry
;
220 cache_entry
= &array
->array
[array
->size
];
222 /* Check that this entry lies within the page bounds */
224 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
227 cache_entry
->cookie
= entry
->prev_cookie
;
228 cache_entry
->ino
= entry
->ino
;
229 cache_entry
->d_type
= entry
->d_type
;
230 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
233 array
->last_cookie
= entry
->cookie
;
236 array
->eof_index
= array
->size
;
243 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
245 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
250 if (diff
>= array
->size
) {
251 if (array
->eof_index
>= 0)
256 index
= (unsigned int)diff
;
257 *desc
->dir_cookie
= array
->array
[index
].cookie
;
258 desc
->cache_entry_index
= index
;
266 nfs_readdir_inode_mapping_valid(struct nfs_inode
*nfsi
)
268 if (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))
271 return !test_bit(NFS_INO_INVALIDATING
, &nfsi
->flags
);
275 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
279 int status
= -EAGAIN
;
281 for (i
= 0; i
< array
->size
; i
++) {
282 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
283 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
284 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
286 new_pos
= desc
->current_index
+ i
;
287 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
||
288 !nfs_readdir_inode_mapping_valid(nfsi
)) {
290 ctx
->attr_gencount
= nfsi
->attr_gencount
;
291 } else if (new_pos
< desc
->ctx
->pos
) {
293 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
294 if (printk_ratelimit()) {
295 pr_notice("NFS: directory %pD2 contains a readdir loop."
296 "Please contact your server vendor. "
297 "The file: %.*s has duplicate cookie %llu\n",
298 desc
->file
, array
->array
[i
].string
.len
,
299 array
->array
[i
].string
.name
, *desc
->dir_cookie
);
304 ctx
->dup_cookie
= *desc
->dir_cookie
;
307 desc
->ctx
->pos
= new_pos
;
308 desc
->cache_entry_index
= i
;
312 if (array
->eof_index
>= 0) {
313 status
= -EBADCOOKIE
;
314 if (*desc
->dir_cookie
== array
->last_cookie
)
322 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
324 struct nfs_cache_array
*array
;
327 array
= kmap(desc
->page
);
329 if (*desc
->dir_cookie
== 0)
330 status
= nfs_readdir_search_for_pos(array
, desc
);
332 status
= nfs_readdir_search_for_cookie(array
, desc
);
334 if (status
== -EAGAIN
) {
335 desc
->last_cookie
= array
->last_cookie
;
336 desc
->current_index
+= array
->size
;
343 /* Fill a page with xdr information before transferring to the cache page */
345 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
346 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
348 struct nfs_open_dir_context
*ctx
= file
->private_data
;
349 const struct cred
*cred
= ctx
->cred
;
350 unsigned long timestamp
, gencount
;
355 gencount
= nfs_inc_attr_generation_counter();
356 error
= NFS_PROTO(inode
)->readdir(file_dentry(file
), cred
, entry
->cookie
, pages
,
357 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
359 /* We requested READDIRPLUS, but the server doesn't grok it */
360 if (error
== -ENOTSUPP
&& desc
->plus
) {
361 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
362 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
368 desc
->timestamp
= timestamp
;
369 desc
->gencount
= gencount
;
374 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
375 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
379 error
= desc
->decode(xdr
, entry
, desc
->plus
);
382 entry
->fattr
->time_start
= desc
->timestamp
;
383 entry
->fattr
->gencount
= desc
->gencount
;
387 /* Match file and dirent using either filehandle or fileid
388 * Note: caller is responsible for checking the fsid
391 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
394 struct nfs_inode
*nfsi
;
396 if (d_really_is_negative(dentry
))
399 inode
= d_inode(dentry
);
400 if (is_bad_inode(inode
) || NFS_STALE(inode
))
404 if (entry
->fattr
->fileid
!= nfsi
->fileid
)
406 if (entry
->fh
->size
&& nfs_compare_fh(entry
->fh
, &nfsi
->fh
) != 0)
412 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
414 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
416 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
424 * This function is called by the lookup and getattr code to request the
425 * use of readdirplus to accelerate any future lookups in the same
428 void nfs_advise_use_readdirplus(struct inode
*dir
)
430 struct nfs_inode
*nfsi
= NFS_I(dir
);
432 if (nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
) &&
433 !list_empty(&nfsi
->open_files
))
434 set_bit(NFS_INO_ADVISE_RDPLUS
, &nfsi
->flags
);
438 * This function is mainly for use by nfs_getattr().
440 * If this is an 'ls -l', we want to force use of readdirplus.
441 * Do this by checking if there is an active file descriptor
442 * and calling nfs_advise_use_readdirplus, then forcing a
445 void nfs_force_use_readdirplus(struct inode
*dir
)
447 struct nfs_inode
*nfsi
= NFS_I(dir
);
449 if (nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
) &&
450 !list_empty(&nfsi
->open_files
)) {
451 set_bit(NFS_INO_ADVISE_RDPLUS
, &nfsi
->flags
);
452 invalidate_mapping_pages(dir
->i_mapping
,
453 nfsi
->page_index
+ 1, -1);
458 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
)
460 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
461 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
462 struct dentry
*dentry
;
463 struct dentry
*alias
;
464 struct inode
*dir
= d_inode(parent
);
468 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FILEID
))
470 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FSID
))
472 if (filename
.len
== 0)
474 /* Validate that the name doesn't contain any illegal '\0' */
475 if (strnlen(filename
.name
, filename
.len
) != filename
.len
)
478 if (strnchr(filename
.name
, filename
.len
, '/'))
480 if (filename
.name
[0] == '.') {
481 if (filename
.len
== 1)
483 if (filename
.len
== 2 && filename
.name
[1] == '.')
486 filename
.hash
= full_name_hash(parent
, filename
.name
, filename
.len
);
488 dentry
= d_lookup(parent
, &filename
);
491 dentry
= d_alloc_parallel(parent
, &filename
, &wq
);
495 if (!d_in_lookup(dentry
)) {
496 /* Is there a mountpoint here? If so, just exit */
497 if (!nfs_fsid_equal(&NFS_SB(dentry
->d_sb
)->fsid
,
498 &entry
->fattr
->fsid
))
500 if (nfs_same_file(dentry
, entry
)) {
501 if (!entry
->fh
->size
)
503 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
504 status
= nfs_refresh_inode(d_inode(dentry
), entry
->fattr
);
506 nfs_setsecurity(d_inode(dentry
), entry
->fattr
, entry
->label
);
509 d_invalidate(dentry
);
515 if (!entry
->fh
->size
) {
516 d_lookup_done(dentry
);
520 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
521 alias
= d_splice_alias(inode
, dentry
);
522 d_lookup_done(dentry
);
529 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
534 /* Perform conversion from xdr to cache array */
536 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
537 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
539 struct xdr_stream stream
;
541 struct page
*scratch
;
542 struct nfs_cache_array
*array
;
543 unsigned int count
= 0;
546 scratch
= alloc_page(GFP_KERNEL
);
553 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
554 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
557 status
= xdr_decode(desc
, entry
, &stream
);
559 if (status
== -EAGAIN
)
567 nfs_prime_dcache(file_dentry(desc
->file
), entry
);
569 status
= nfs_readdir_add_to_array(entry
, page
);
572 } while (!entry
->eof
);
575 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
577 array
->eof_index
= array
->size
;
587 void nfs_readdir_free_pages(struct page
**pages
, unsigned int npages
)
590 for (i
= 0; i
< npages
; i
++)
595 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
596 * to nfs_readdir_free_pages()
599 int nfs_readdir_alloc_pages(struct page
**pages
, unsigned int npages
)
603 for (i
= 0; i
< npages
; i
++) {
604 struct page
*page
= alloc_page(GFP_KERNEL
);
612 nfs_readdir_free_pages(pages
, i
);
617 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
619 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
620 struct nfs_entry entry
;
621 struct file
*file
= desc
->file
;
622 struct nfs_cache_array
*array
;
623 int status
= -ENOMEM
;
624 unsigned int array_size
= ARRAY_SIZE(pages
);
626 nfs_readdir_init_array(page
);
628 entry
.prev_cookie
= 0;
629 entry
.cookie
= desc
->last_cookie
;
631 entry
.fh
= nfs_alloc_fhandle();
632 entry
.fattr
= nfs_alloc_fattr();
633 entry
.server
= NFS_SERVER(inode
);
634 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
637 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
638 if (IS_ERR(entry
.label
)) {
639 status
= PTR_ERR(entry
.label
);
645 status
= nfs_readdir_alloc_pages(pages
, array_size
);
647 goto out_release_array
;
650 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
655 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
657 if (status
== -ENOSPC
)
661 } while (array
->eof_index
< 0);
663 nfs_readdir_free_pages(pages
, array_size
);
666 nfs4_label_free(entry
.label
);
668 nfs_free_fattr(entry
.fattr
);
669 nfs_free_fhandle(entry
.fh
);
674 * Now we cache directories properly, by converting xdr information
675 * to an array that can be used for lookups later. This results in
676 * fewer cache pages, since we can store more information on each page.
677 * We only need to convert from xdr once so future lookups are much simpler
680 int nfs_readdir_filler(void *data
, struct page
* page
)
682 nfs_readdir_descriptor_t
*desc
= data
;
683 struct inode
*inode
= file_inode(desc
->file
);
686 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
689 SetPageUptodate(page
);
691 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
692 /* Should never happen */
693 nfs_zap_mapping(inode
, inode
->i_mapping
);
698 nfs_readdir_clear_array(page
);
704 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
706 put_page(desc
->page
);
711 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
713 return read_cache_page(desc
->file
->f_mapping
, desc
->page_index
,
714 nfs_readdir_filler
, desc
);
718 * Returns 0 if desc->dir_cookie was found on page desc->page_index
719 * and locks the page to prevent removal from the page cache.
722 int find_and_lock_cache_page(nfs_readdir_descriptor_t
*desc
)
724 struct inode
*inode
= file_inode(desc
->file
);
725 struct nfs_inode
*nfsi
= NFS_I(inode
);
728 desc
->page
= get_cache_page(desc
);
729 if (IS_ERR(desc
->page
))
730 return PTR_ERR(desc
->page
);
731 res
= lock_page_killable(desc
->page
);
735 if (desc
->page
->mapping
!= NULL
) {
736 res
= nfs_readdir_search_array(desc
);
738 nfsi
->page_index
= desc
->page_index
;
742 unlock_page(desc
->page
);
744 cache_page_release(desc
);
748 /* Search for desc->dir_cookie from the beginning of the page cache */
750 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
754 if (desc
->page_index
== 0) {
755 desc
->current_index
= 0;
756 desc
->last_cookie
= 0;
759 res
= find_and_lock_cache_page(desc
);
760 } while (res
== -EAGAIN
);
765 * Once we've found the start of the dirent within a page: fill 'er up...
768 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
770 struct file
*file
= desc
->file
;
773 struct nfs_cache_array
*array
= NULL
;
774 struct nfs_open_dir_context
*ctx
= file
->private_data
;
776 array
= kmap(desc
->page
);
777 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
778 struct nfs_cache_array_entry
*ent
;
780 ent
= &array
->array
[i
];
781 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
782 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
787 if (i
< (array
->size
-1))
788 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
790 *desc
->dir_cookie
= array
->last_cookie
;
794 if (array
->eof_index
>= 0)
798 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
799 (unsigned long long)*desc
->dir_cookie
, res
);
804 * If we cannot find a cookie in our cache, we suspect that this is
805 * because it points to a deleted file, so we ask the server to return
806 * whatever it thinks is the next entry. We then feed this to filldir.
807 * If all goes well, we should then be able to find our way round the
808 * cache on the next call to readdir_search_pagecache();
810 * NOTE: we cannot add the anonymous page to the pagecache because
811 * the data it contains might not be page aligned. Besides,
812 * we should already have a complete representation of the
813 * directory in the page cache by the time we get here.
816 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
818 struct page
*page
= NULL
;
820 struct inode
*inode
= file_inode(desc
->file
);
821 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
823 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
824 (unsigned long long)*desc
->dir_cookie
);
826 page
= alloc_page(GFP_HIGHUSER
);
832 desc
->page_index
= 0;
833 desc
->last_cookie
= *desc
->dir_cookie
;
837 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
841 status
= nfs_do_filldir(desc
);
844 nfs_readdir_clear_array(desc
->page
);
845 cache_page_release(desc
);
847 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
852 /* The file offset position represents the dirent entry number. A
853 last cookie cache takes care of the common case of reading the
856 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
858 struct dentry
*dentry
= file_dentry(file
);
859 struct inode
*inode
= d_inode(dentry
);
860 nfs_readdir_descriptor_t my_desc
,
862 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
865 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
866 file
, (long long)ctx
->pos
);
867 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
870 * ctx->pos points to the dirent entry number.
871 * *desc->dir_cookie has the cookie for the next entry. We have
872 * to either find the entry with the appropriate number or
873 * revalidate the cookie.
875 memset(desc
, 0, sizeof(*desc
));
879 desc
->dir_cookie
= &dir_ctx
->dir_cookie
;
880 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
881 desc
->plus
= nfs_use_readdirplus(inode
, ctx
);
883 if (ctx
->pos
== 0 || nfs_attribute_cache_expired(inode
))
884 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
889 res
= readdir_search_pagecache(desc
);
891 if (res
== -EBADCOOKIE
) {
893 /* This means either end of directory */
894 if (*desc
->dir_cookie
&& !desc
->eof
) {
895 /* Or that the server has 'lost' a cookie */
896 res
= uncached_readdir(desc
);
902 if (res
== -ETOOSMALL
&& desc
->plus
) {
903 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
904 nfs_zap_caches(inode
);
905 desc
->page_index
= 0;
913 res
= nfs_do_filldir(desc
);
914 unlock_page(desc
->page
);
915 cache_page_release(desc
);
918 } while (!desc
->eof
);
922 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
926 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
928 struct inode
*inode
= file_inode(filp
);
929 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
931 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
932 filp
, offset
, whence
);
946 offset
+= filp
->f_pos
;
952 if (offset
!= filp
->f_pos
) {
953 filp
->f_pos
= offset
;
954 dir_ctx
->dir_cookie
= 0;
962 * All directory operations under NFS are synchronous, so fsync()
963 * is a dummy operation.
965 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
968 struct inode
*inode
= file_inode(filp
);
970 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
973 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
979 * nfs_force_lookup_revalidate - Mark the directory as having changed
980 * @dir: pointer to directory inode
982 * This forces the revalidation code in nfs_lookup_revalidate() to do a
983 * full lookup on all child dentries of 'dir' whenever a change occurs
984 * on the server that might have invalidated our dcache.
986 * The caller should be holding dir->i_lock
988 void nfs_force_lookup_revalidate(struct inode
*dir
)
990 NFS_I(dir
)->cache_change_attribute
++;
992 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
995 * A check for whether or not the parent directory has changed.
996 * In the case it has, we assume that the dentries are untrustworthy
997 * and may need to be looked up again.
998 * If rcu_walk prevents us from performing a full check, return 0.
1000 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
,
1003 if (IS_ROOT(dentry
))
1005 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
1007 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1009 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1010 if (nfs_mapping_need_revalidate_inode(dir
)) {
1013 if (__nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
1016 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1022 * Use intent information to check whether or not we're going to do
1023 * an O_EXCL create using this path component.
1025 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
1027 if (NFS_PROTO(dir
)->version
== 2)
1029 return flags
& LOOKUP_EXCL
;
1033 * Inode and filehandle revalidation for lookups.
1035 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1036 * or if the intent information indicates that we're about to open this
1037 * particular file and the "nocto" mount flag is not set.
1041 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
1043 struct nfs_server
*server
= NFS_SERVER(inode
);
1046 if (IS_AUTOMOUNT(inode
))
1049 if (flags
& LOOKUP_OPEN
) {
1050 switch (inode
->i_mode
& S_IFMT
) {
1052 /* A NFSv4 OPEN will revalidate later */
1053 if (server
->caps
& NFS_CAP_ATOMIC_OPEN
)
1057 if (server
->flags
& NFS_MOUNT_NOCTO
)
1059 /* NFS close-to-open cache consistency validation */
1064 /* VFS wants an on-the-wire revalidation */
1065 if (flags
& LOOKUP_REVAL
)
1068 return (inode
->i_nlink
== 0) ? -ESTALE
: 0;
1070 if (flags
& LOOKUP_RCU
)
1072 ret
= __nfs_revalidate_inode(server
, inode
);
1079 * We judge how long we want to trust negative
1080 * dentries by looking at the parent inode mtime.
1082 * If parent mtime has changed, we revalidate, else we wait for a
1083 * period corresponding to the parent's attribute cache timeout value.
1085 * If LOOKUP_RCU prevents us from performing a full check, return 1
1086 * suggesting a reval is needed.
1088 * Note that when creating a new file, or looking up a rename target,
1089 * then it shouldn't be necessary to revalidate a negative dentry.
1092 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1095 if (flags
& (LOOKUP_CREATE
| LOOKUP_RENAME_TARGET
))
1097 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1099 return !nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
);
1103 nfs_lookup_revalidate_done(struct inode
*dir
, struct dentry
*dentry
,
1104 struct inode
*inode
, int error
)
1108 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1112 nfs_mark_for_revalidate(dir
);
1113 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1114 /* Purge readdir caches. */
1115 nfs_zap_caches(inode
);
1117 * We can't d_drop the root of a disconnected tree:
1118 * its d_hash is on the s_anon list and d_drop() would hide
1119 * it from shrink_dcache_for_unmount(), leading to busy
1120 * inodes on unmount and further oopses.
1122 if (IS_ROOT(dentry
))
1125 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1129 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1130 __func__
, dentry
, error
);
1135 nfs_lookup_revalidate_negative(struct inode
*dir
, struct dentry
*dentry
,
1139 if (nfs_neg_need_reval(dir
, dentry
, flags
)) {
1140 if (flags
& LOOKUP_RCU
)
1144 return nfs_lookup_revalidate_done(dir
, dentry
, NULL
, ret
);
1148 nfs_lookup_revalidate_delegated(struct inode
*dir
, struct dentry
*dentry
,
1149 struct inode
*inode
)
1151 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1152 return nfs_lookup_revalidate_done(dir
, dentry
, inode
, 1);
1156 nfs_lookup_revalidate_dentry(struct inode
*dir
, struct dentry
*dentry
,
1157 struct inode
*inode
)
1159 struct nfs_fh
*fhandle
;
1160 struct nfs_fattr
*fattr
;
1161 struct nfs4_label
*label
;
1165 fhandle
= nfs_alloc_fhandle();
1166 fattr
= nfs_alloc_fattr();
1167 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_KERNEL
);
1168 if (fhandle
== NULL
|| fattr
== NULL
|| IS_ERR(label
))
1171 ret
= NFS_PROTO(dir
)->lookup(dir
, dentry
, fhandle
, fattr
, label
);
1179 if (NFS_SERVER(inode
)->flags
& NFS_MOUNT_SOFTREVAL
)
1185 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1187 if (nfs_refresh_inode(inode
, fattr
) < 0)
1190 nfs_setsecurity(inode
, fattr
, label
);
1191 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1193 /* set a readdirplus hint that we had a cache miss */
1194 nfs_force_use_readdirplus(dir
);
1197 nfs_free_fattr(fattr
);
1198 nfs_free_fhandle(fhandle
);
1199 nfs4_label_free(label
);
1200 return nfs_lookup_revalidate_done(dir
, dentry
, inode
, ret
);
1204 * This is called every time the dcache has a lookup hit,
1205 * and we should check whether we can really trust that
1208 * NOTE! The hit can be a negative hit too, don't assume
1211 * If the parent directory is seen to have changed, we throw out the
1212 * cached dentry and do a new lookup.
1215 nfs_do_lookup_revalidate(struct inode
*dir
, struct dentry
*dentry
,
1218 struct inode
*inode
;
1221 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1222 inode
= d_inode(dentry
);
1225 return nfs_lookup_revalidate_negative(dir
, dentry
, flags
);
1227 if (is_bad_inode(inode
)) {
1228 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1233 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1234 return nfs_lookup_revalidate_delegated(dir
, dentry
, inode
);
1236 /* Force a full look up iff the parent directory has changed */
1237 if (!(flags
& (LOOKUP_EXCL
| LOOKUP_REVAL
)) &&
1238 nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
)) {
1239 error
= nfs_lookup_verify_inode(inode
, flags
);
1241 if (error
== -ESTALE
)
1242 nfs_zap_caches(dir
);
1245 nfs_advise_use_readdirplus(dir
);
1249 if (flags
& LOOKUP_RCU
)
1252 if (NFS_STALE(inode
))
1255 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1256 error
= nfs_lookup_revalidate_dentry(dir
, dentry
, inode
);
1257 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1260 return nfs_lookup_revalidate_done(dir
, dentry
, inode
, 1);
1262 if (flags
& LOOKUP_RCU
)
1264 return nfs_lookup_revalidate_done(dir
, dentry
, inode
, 0);
1268 __nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
,
1269 int (*reval
)(struct inode
*, struct dentry
*, unsigned int))
1271 struct dentry
*parent
;
1275 if (flags
& LOOKUP_RCU
) {
1276 parent
= READ_ONCE(dentry
->d_parent
);
1277 dir
= d_inode_rcu(parent
);
1280 ret
= reval(dir
, dentry
, flags
);
1281 if (parent
!= READ_ONCE(dentry
->d_parent
))
1284 parent
= dget_parent(dentry
);
1285 ret
= reval(d_inode(parent
), dentry
, flags
);
1291 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1293 return __nfs_lookup_revalidate(dentry
, flags
, nfs_do_lookup_revalidate
);
1297 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1298 * when we don't really care about the dentry name. This is called when a
1299 * pathwalk ends on a dentry that was not found via a normal lookup in the
1300 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1302 * In this situation, we just want to verify that the inode itself is OK
1303 * since the dentry might have changed on the server.
1305 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1307 struct inode
*inode
= d_inode(dentry
);
1311 * I believe we can only get a negative dentry here in the case of a
1312 * procfs-style symlink. Just assume it's correct for now, but we may
1313 * eventually need to do something more here.
1316 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1321 if (is_bad_inode(inode
)) {
1322 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1327 error
= nfs_lookup_verify_inode(inode
, flags
);
1328 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1329 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1334 * This is called from dput() when d_count is going to 0.
1336 static int nfs_dentry_delete(const struct dentry
*dentry
)
1338 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1339 dentry
, dentry
->d_flags
);
1341 /* Unhash any dentry with a stale inode */
1342 if (d_really_is_positive(dentry
) && NFS_STALE(d_inode(dentry
)))
1345 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1346 /* Unhash it, so that ->d_iput() would be called */
1349 if (!(dentry
->d_sb
->s_flags
& SB_ACTIVE
)) {
1350 /* Unhash it, so that ancestors of killed async unlink
1351 * files will be cleaned up during umount */
1358 /* Ensure that we revalidate inode->i_nlink */
1359 static void nfs_drop_nlink(struct inode
*inode
)
1361 spin_lock(&inode
->i_lock
);
1362 /* drop the inode if we're reasonably sure this is the last link */
1363 if (inode
->i_nlink
> 0)
1365 NFS_I(inode
)->attr_gencount
= nfs_inc_attr_generation_counter();
1366 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_CHANGE
1367 | NFS_INO_INVALID_CTIME
1368 | NFS_INO_INVALID_OTHER
1369 | NFS_INO_REVAL_FORCED
;
1370 spin_unlock(&inode
->i_lock
);
1374 * Called when the dentry loses inode.
1375 * We use it to clean up silly-renamed files.
1377 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1379 if (S_ISDIR(inode
->i_mode
))
1380 /* drop any readdir cache as it could easily be old */
1381 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1383 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1384 nfs_complete_unlink(dentry
, inode
);
1385 nfs_drop_nlink(inode
);
1390 static void nfs_d_release(struct dentry
*dentry
)
1392 /* free cached devname value, if it survived that far */
1393 if (unlikely(dentry
->d_fsdata
)) {
1394 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1397 kfree(dentry
->d_fsdata
);
1401 const struct dentry_operations nfs_dentry_operations
= {
1402 .d_revalidate
= nfs_lookup_revalidate
,
1403 .d_weak_revalidate
= nfs_weak_revalidate
,
1404 .d_delete
= nfs_dentry_delete
,
1405 .d_iput
= nfs_dentry_iput
,
1406 .d_automount
= nfs_d_automount
,
1407 .d_release
= nfs_d_release
,
1409 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1411 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1414 struct inode
*inode
= NULL
;
1415 struct nfs_fh
*fhandle
= NULL
;
1416 struct nfs_fattr
*fattr
= NULL
;
1417 struct nfs4_label
*label
= NULL
;
1420 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1421 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1423 if (unlikely(dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
))
1424 return ERR_PTR(-ENAMETOOLONG
);
1427 * If we're doing an exclusive create, optimize away the lookup
1428 * but don't hash the dentry.
1430 if (nfs_is_exclusive_create(dir
, flags
) || flags
& LOOKUP_RENAME_TARGET
)
1433 res
= ERR_PTR(-ENOMEM
);
1434 fhandle
= nfs_alloc_fhandle();
1435 fattr
= nfs_alloc_fattr();
1436 if (fhandle
== NULL
|| fattr
== NULL
)
1439 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1443 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1444 error
= NFS_PROTO(dir
)->lookup(dir
, dentry
, fhandle
, fattr
, label
);
1445 if (error
== -ENOENT
)
1448 res
= ERR_PTR(error
);
1451 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1452 res
= ERR_CAST(inode
);
1456 /* Notify readdir to use READDIRPLUS */
1457 nfs_force_use_readdirplus(dir
);
1460 res
= d_splice_alias(inode
, dentry
);
1466 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1468 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1469 nfs4_label_free(label
);
1471 nfs_free_fattr(fattr
);
1472 nfs_free_fhandle(fhandle
);
1475 EXPORT_SYMBOL_GPL(nfs_lookup
);
1477 #if IS_ENABLED(CONFIG_NFS_V4)
1478 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1480 const struct dentry_operations nfs4_dentry_operations
= {
1481 .d_revalidate
= nfs4_lookup_revalidate
,
1482 .d_weak_revalidate
= nfs_weak_revalidate
,
1483 .d_delete
= nfs_dentry_delete
,
1484 .d_iput
= nfs_dentry_iput
,
1485 .d_automount
= nfs_d_automount
,
1486 .d_release
= nfs_d_release
,
1488 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1490 static fmode_t
flags_to_mode(int flags
)
1492 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1493 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1495 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1500 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
, struct file
*filp
)
1502 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
), filp
);
1505 static int do_open(struct inode
*inode
, struct file
*filp
)
1507 nfs_fscache_open_file(inode
, filp
);
1511 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1512 struct dentry
*dentry
,
1513 struct file
*file
, unsigned open_flags
)
1517 err
= finish_open(file
, dentry
, do_open
);
1520 if (S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
1521 nfs_file_set_open_context(file
, ctx
);
1528 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1529 struct file
*file
, unsigned open_flags
,
1532 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1533 struct nfs_open_context
*ctx
;
1535 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1536 struct inode
*inode
;
1537 unsigned int lookup_flags
= 0;
1538 bool switched
= false;
1542 /* Expect a negative dentry */
1543 BUG_ON(d_inode(dentry
));
1545 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1546 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1548 err
= nfs_check_flags(open_flags
);
1552 /* NFS only supports OPEN on regular files */
1553 if ((open_flags
& O_DIRECTORY
)) {
1554 if (!d_in_lookup(dentry
)) {
1556 * Hashed negative dentry with O_DIRECTORY: dentry was
1557 * revalidated and is fine, no need to perform lookup
1562 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1566 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1567 return -ENAMETOOLONG
;
1569 if (open_flags
& O_CREAT
) {
1570 struct nfs_server
*server
= NFS_SERVER(dir
);
1572 if (!(server
->attr_bitmask
[2] & FATTR4_WORD2_MODE_UMASK
))
1573 mode
&= ~current_umask();
1575 attr
.ia_valid
|= ATTR_MODE
;
1576 attr
.ia_mode
= mode
;
1578 if (open_flags
& O_TRUNC
) {
1579 attr
.ia_valid
|= ATTR_SIZE
;
1583 if (!(open_flags
& O_CREAT
) && !d_in_lookup(dentry
)) {
1586 dentry
= d_alloc_parallel(dentry
->d_parent
,
1587 &dentry
->d_name
, &wq
);
1589 return PTR_ERR(dentry
);
1590 if (unlikely(!d_in_lookup(dentry
)))
1591 return finish_no_open(file
, dentry
);
1594 ctx
= create_nfs_open_context(dentry
, open_flags
, file
);
1599 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1600 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, &created
);
1602 file
->f_mode
|= FMODE_CREATED
;
1603 if (IS_ERR(inode
)) {
1604 err
= PTR_ERR(inode
);
1605 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1606 put_nfs_open_context(ctx
);
1610 d_splice_alias(NULL
, dentry
);
1611 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1617 if (!(open_flags
& O_NOFOLLOW
))
1627 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
);
1628 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1629 put_nfs_open_context(ctx
);
1631 if (unlikely(switched
)) {
1632 d_lookup_done(dentry
);
1638 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1640 d_lookup_done(dentry
);
1647 return PTR_ERR(res
);
1648 return finish_no_open(file
, res
);
1650 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1653 nfs4_do_lookup_revalidate(struct inode
*dir
, struct dentry
*dentry
,
1656 struct inode
*inode
;
1658 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1660 if (d_mountpoint(dentry
))
1663 inode
= d_inode(dentry
);
1665 /* We can't create new files in nfs_open_revalidate(), so we
1666 * optimize away revalidation of negative dentries.
1671 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1672 return nfs_lookup_revalidate_delegated(dir
, dentry
, inode
);
1674 /* NFS only supports OPEN on regular files */
1675 if (!S_ISREG(inode
->i_mode
))
1678 /* We cannot do exclusive creation on a positive dentry */
1679 if (flags
& (LOOKUP_EXCL
| LOOKUP_REVAL
))
1682 /* Check if the directory changed */
1683 if (!nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
))
1686 /* Let f_op->open() actually open (and revalidate) the file */
1689 if (flags
& LOOKUP_RCU
)
1691 return nfs_lookup_revalidate_dentry(dir
, dentry
, inode
);
1694 return nfs_do_lookup_revalidate(dir
, dentry
, flags
);
1697 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1699 return __nfs_lookup_revalidate(dentry
, flags
,
1700 nfs4_do_lookup_revalidate
);
1703 #endif /* CONFIG_NFSV4 */
1706 nfs_add_or_obtain(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1707 struct nfs_fattr
*fattr
,
1708 struct nfs4_label
*label
)
1710 struct dentry
*parent
= dget_parent(dentry
);
1711 struct inode
*dir
= d_inode(parent
);
1712 struct inode
*inode
;
1718 if (fhandle
->size
== 0) {
1719 error
= NFS_PROTO(dir
)->lookup(dir
, dentry
, fhandle
, fattr
, NULL
);
1723 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1724 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1725 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1726 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
,
1731 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1732 d
= d_splice_alias(inode
, dentry
);
1737 nfs_mark_for_revalidate(dir
);
1741 EXPORT_SYMBOL_GPL(nfs_add_or_obtain
);
1744 * Code common to create, mkdir, and mknod.
1746 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1747 struct nfs_fattr
*fattr
,
1748 struct nfs4_label
*label
)
1752 d
= nfs_add_or_obtain(dentry
, fhandle
, fattr
, label
);
1756 /* Callers don't care */
1760 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1763 * Following a failed create operation, we drop the dentry rather
1764 * than retain a negative dentry. This avoids a problem in the event
1765 * that the operation succeeded on the server, but an error in the
1766 * reply path made it appear to have failed.
1768 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1769 umode_t mode
, bool excl
)
1772 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1775 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1776 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1778 attr
.ia_mode
= mode
;
1779 attr
.ia_valid
= ATTR_MODE
;
1781 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1782 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1783 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1791 EXPORT_SYMBOL_GPL(nfs_create
);
1794 * See comments for nfs_proc_create regarding failed operations.
1797 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1802 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1803 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1805 attr
.ia_mode
= mode
;
1806 attr
.ia_valid
= ATTR_MODE
;
1808 trace_nfs_mknod_enter(dir
, dentry
);
1809 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1810 trace_nfs_mknod_exit(dir
, dentry
, status
);
1818 EXPORT_SYMBOL_GPL(nfs_mknod
);
1821 * See comments for nfs_proc_create regarding failed operations.
1823 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1828 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1829 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1831 attr
.ia_valid
= ATTR_MODE
;
1832 attr
.ia_mode
= mode
| S_IFDIR
;
1834 trace_nfs_mkdir_enter(dir
, dentry
);
1835 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1836 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1844 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1846 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1848 if (simple_positive(dentry
))
1852 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1856 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1857 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1859 trace_nfs_rmdir_enter(dir
, dentry
);
1860 if (d_really_is_positive(dentry
)) {
1861 down_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1862 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1863 /* Ensure the VFS deletes this inode */
1866 clear_nlink(d_inode(dentry
));
1869 nfs_dentry_handle_enoent(dentry
);
1871 up_write(&NFS_I(d_inode(dentry
))->rmdir_sem
);
1873 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1874 trace_nfs_rmdir_exit(dir
, dentry
, error
);
1878 EXPORT_SYMBOL_GPL(nfs_rmdir
);
1881 * Remove a file after making sure there are no pending writes,
1882 * and after checking that the file has only one user.
1884 * We invalidate the attribute cache and free the inode prior to the operation
1885 * to avoid possible races if the server reuses the inode.
1887 static int nfs_safe_remove(struct dentry
*dentry
)
1889 struct inode
*dir
= d_inode(dentry
->d_parent
);
1890 struct inode
*inode
= d_inode(dentry
);
1893 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
1895 /* If the dentry was sillyrenamed, we simply call d_delete() */
1896 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1901 trace_nfs_remove_enter(dir
, dentry
);
1902 if (inode
!= NULL
) {
1903 error
= NFS_PROTO(dir
)->remove(dir
, dentry
);
1905 nfs_drop_nlink(inode
);
1907 error
= NFS_PROTO(dir
)->remove(dir
, dentry
);
1908 if (error
== -ENOENT
)
1909 nfs_dentry_handle_enoent(dentry
);
1910 trace_nfs_remove_exit(dir
, dentry
, error
);
1915 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1916 * belongs to an active ".nfs..." file and we return -EBUSY.
1918 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1920 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1923 int need_rehash
= 0;
1925 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
1926 dir
->i_ino
, dentry
);
1928 trace_nfs_unlink_enter(dir
, dentry
);
1929 spin_lock(&dentry
->d_lock
);
1930 if (d_count(dentry
) > 1) {
1931 spin_unlock(&dentry
->d_lock
);
1932 /* Start asynchronous writeout of the inode */
1933 write_inode_now(d_inode(dentry
), 0);
1934 error
= nfs_sillyrename(dir
, dentry
);
1937 if (!d_unhashed(dentry
)) {
1941 spin_unlock(&dentry
->d_lock
);
1942 error
= nfs_safe_remove(dentry
);
1943 if (!error
|| error
== -ENOENT
) {
1944 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1945 } else if (need_rehash
)
1948 trace_nfs_unlink_exit(dir
, dentry
, error
);
1951 EXPORT_SYMBOL_GPL(nfs_unlink
);
1954 * To create a symbolic link, most file systems instantiate a new inode,
1955 * add a page to it containing the path, then write it out to the disk
1956 * using prepare_write/commit_write.
1958 * Unfortunately the NFS client can't create the in-core inode first
1959 * because it needs a file handle to create an in-core inode (see
1960 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1961 * symlink request has completed on the server.
1963 * So instead we allocate a raw page, copy the symname into it, then do
1964 * the SYMLINK request with the page as the buffer. If it succeeds, we
1965 * now have a new file handle and can instantiate an in-core NFS inode
1966 * and move the raw page into its mapping.
1968 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1973 unsigned int pathlen
= strlen(symname
);
1976 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
1977 dir
->i_ino
, dentry
, symname
);
1979 if (pathlen
> PAGE_SIZE
)
1980 return -ENAMETOOLONG
;
1982 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1983 attr
.ia_valid
= ATTR_MODE
;
1985 page
= alloc_page(GFP_USER
);
1989 kaddr
= page_address(page
);
1990 memcpy(kaddr
, symname
, pathlen
);
1991 if (pathlen
< PAGE_SIZE
)
1992 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1994 trace_nfs_symlink_enter(dir
, dentry
);
1995 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1996 trace_nfs_symlink_exit(dir
, dentry
, error
);
1998 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1999 dir
->i_sb
->s_id
, dir
->i_ino
,
2000 dentry
, symname
, error
);
2007 * No big deal if we can't add this page to the page cache here.
2008 * READLINK will get the missing page from the server if needed.
2010 if (!add_to_page_cache_lru(page
, d_inode(dentry
)->i_mapping
, 0,
2012 SetPageUptodate(page
);
2015 * add_to_page_cache_lru() grabs an extra page refcount.
2016 * Drop it here to avoid leaking this page later.
2024 EXPORT_SYMBOL_GPL(nfs_symlink
);
2027 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2029 struct inode
*inode
= d_inode(old_dentry
);
2032 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
2033 old_dentry
, dentry
);
2035 trace_nfs_link_enter(inode
, dir
, dentry
);
2037 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
2040 d_add(dentry
, inode
);
2042 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
2045 EXPORT_SYMBOL_GPL(nfs_link
);
2049 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2050 * different file handle for the same inode after a rename (e.g. when
2051 * moving to a different directory). A fail-safe method to do so would
2052 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2053 * rename the old file using the sillyrename stuff. This way, the original
2054 * file in old_dir will go away when the last process iput()s the inode.
2058 * It actually works quite well. One needs to have the possibility for
2059 * at least one ".nfs..." file in each directory the file ever gets
2060 * moved or linked to which happens automagically with the new
2061 * implementation that only depends on the dcache stuff instead of
2062 * using the inode layer
2064 * Unfortunately, things are a little more complicated than indicated
2065 * above. For a cross-directory move, we want to make sure we can get
2066 * rid of the old inode after the operation. This means there must be
2067 * no pending writes (if it's a file), and the use count must be 1.
2068 * If these conditions are met, we can drop the dentries before doing
2071 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2072 struct inode
*new_dir
, struct dentry
*new_dentry
,
2075 struct inode
*old_inode
= d_inode(old_dentry
);
2076 struct inode
*new_inode
= d_inode(new_dentry
);
2077 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
2078 struct rpc_task
*task
;
2084 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2085 old_dentry
, new_dentry
,
2086 d_count(new_dentry
));
2088 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
2090 * For non-directories, check whether the target is busy and if so,
2091 * make a copy of the dentry and then do a silly-rename. If the
2092 * silly-rename succeeds, the copied dentry is hashed and becomes
2095 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
2097 * To prevent any new references to the target during the
2098 * rename, we unhash the dentry in advance.
2100 if (!d_unhashed(new_dentry
)) {
2102 rehash
= new_dentry
;
2105 if (d_count(new_dentry
) > 2) {
2108 /* copy the target dentry's name */
2109 dentry
= d_alloc(new_dentry
->d_parent
,
2110 &new_dentry
->d_name
);
2114 /* silly-rename the existing target ... */
2115 err
= nfs_sillyrename(new_dir
, new_dentry
);
2119 new_dentry
= dentry
;
2125 task
= nfs_async_rename(old_dir
, new_dir
, old_dentry
, new_dentry
, NULL
);
2127 error
= PTR_ERR(task
);
2131 error
= rpc_wait_for_completion_task(task
);
2133 ((struct nfs_renamedata
*)task
->tk_calldata
)->cancelled
= 1;
2134 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2137 error
= task
->tk_status
;
2139 /* Ensure the inode attributes are revalidated */
2141 spin_lock(&old_inode
->i_lock
);
2142 NFS_I(old_inode
)->attr_gencount
= nfs_inc_attr_generation_counter();
2143 NFS_I(old_inode
)->cache_validity
|= NFS_INO_INVALID_CHANGE
2144 | NFS_INO_INVALID_CTIME
2145 | NFS_INO_REVAL_FORCED
;
2146 spin_unlock(&old_inode
->i_lock
);
2151 trace_nfs_rename_exit(old_dir
, old_dentry
,
2152 new_dir
, new_dentry
, error
);
2154 if (new_inode
!= NULL
)
2155 nfs_drop_nlink(new_inode
);
2157 * The d_move() should be here instead of in an async RPC completion
2158 * handler because we need the proper locks to move the dentry. If
2159 * we're interrupted by a signal, the async RPC completion handler
2160 * should mark the directories for revalidation.
2162 d_move(old_dentry
, new_dentry
);
2163 nfs_set_verifier(old_dentry
,
2164 nfs_save_change_attribute(new_dir
));
2165 } else if (error
== -ENOENT
)
2166 nfs_dentry_handle_enoent(old_dentry
);
2168 /* new dentry created? */
2173 EXPORT_SYMBOL_GPL(nfs_rename
);
2175 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
2176 static LIST_HEAD(nfs_access_lru_list
);
2177 static atomic_long_t nfs_access_nr_entries
;
2179 static unsigned long nfs_access_max_cachesize
= ULONG_MAX
;
2180 module_param(nfs_access_max_cachesize
, ulong
, 0644);
2181 MODULE_PARM_DESC(nfs_access_max_cachesize
, "NFS access maximum total cache length");
2183 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
2185 put_cred(entry
->cred
);
2186 kfree_rcu(entry
, rcu_head
);
2187 smp_mb__before_atomic();
2188 atomic_long_dec(&nfs_access_nr_entries
);
2189 smp_mb__after_atomic();
2192 static void nfs_access_free_list(struct list_head
*head
)
2194 struct nfs_access_entry
*cache
;
2196 while (!list_empty(head
)) {
2197 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
2198 list_del(&cache
->lru
);
2199 nfs_access_free_entry(cache
);
2203 static unsigned long
2204 nfs_do_access_cache_scan(unsigned int nr_to_scan
)
2207 struct nfs_inode
*nfsi
, *next
;
2208 struct nfs_access_entry
*cache
;
2211 spin_lock(&nfs_access_lru_lock
);
2212 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2213 struct inode
*inode
;
2215 if (nr_to_scan
-- == 0)
2217 inode
= &nfsi
->vfs_inode
;
2218 spin_lock(&inode
->i_lock
);
2219 if (list_empty(&nfsi
->access_cache_entry_lru
))
2220 goto remove_lru_entry
;
2221 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2222 struct nfs_access_entry
, lru
);
2223 list_move(&cache
->lru
, &head
);
2224 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2226 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2227 list_move_tail(&nfsi
->access_cache_inode_lru
,
2228 &nfs_access_lru_list
);
2231 list_del_init(&nfsi
->access_cache_inode_lru
);
2232 smp_mb__before_atomic();
2233 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2234 smp_mb__after_atomic();
2236 spin_unlock(&inode
->i_lock
);
2238 spin_unlock(&nfs_access_lru_lock
);
2239 nfs_access_free_list(&head
);
2244 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
2246 int nr_to_scan
= sc
->nr_to_scan
;
2247 gfp_t gfp_mask
= sc
->gfp_mask
;
2249 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2251 return nfs_do_access_cache_scan(nr_to_scan
);
2256 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2258 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2262 nfs_access_cache_enforce_limit(void)
2264 long nr_entries
= atomic_long_read(&nfs_access_nr_entries
);
2266 unsigned int nr_to_scan
;
2268 if (nr_entries
< 0 || nr_entries
<= nfs_access_max_cachesize
)
2271 diff
= nr_entries
- nfs_access_max_cachesize
;
2272 if (diff
< nr_to_scan
)
2274 nfs_do_access_cache_scan(nr_to_scan
);
2277 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2279 struct rb_root
*root_node
= &nfsi
->access_cache
;
2281 struct nfs_access_entry
*entry
;
2283 /* Unhook entries from the cache */
2284 while ((n
= rb_first(root_node
)) != NULL
) {
2285 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2286 rb_erase(n
, root_node
);
2287 list_move(&entry
->lru
, head
);
2289 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2292 void nfs_access_zap_cache(struct inode
*inode
)
2296 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2298 /* Remove from global LRU init */
2299 spin_lock(&nfs_access_lru_lock
);
2300 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2301 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2303 spin_lock(&inode
->i_lock
);
2304 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2305 spin_unlock(&inode
->i_lock
);
2306 spin_unlock(&nfs_access_lru_lock
);
2307 nfs_access_free_list(&head
);
2309 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2311 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, const struct cred
*cred
)
2313 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2316 struct nfs_access_entry
*entry
=
2317 rb_entry(n
, struct nfs_access_entry
, rb_node
);
2318 int cmp
= cred_fscmp(cred
, entry
->cred
);
2330 static int nfs_access_get_cached(struct inode
*inode
, const struct cred
*cred
, struct nfs_access_entry
*res
, bool may_block
)
2332 struct nfs_inode
*nfsi
= NFS_I(inode
);
2333 struct nfs_access_entry
*cache
;
2337 spin_lock(&inode
->i_lock
);
2339 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2341 cache
= nfs_access_search_rbtree(inode
, cred
);
2345 /* Found an entry, is our attribute cache valid? */
2346 if (!nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
))
2353 spin_unlock(&inode
->i_lock
);
2354 err
= __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2357 spin_lock(&inode
->i_lock
);
2360 res
->cred
= cache
->cred
;
2361 res
->mask
= cache
->mask
;
2362 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2365 spin_unlock(&inode
->i_lock
);
2368 spin_unlock(&inode
->i_lock
);
2369 nfs_access_zap_cache(inode
);
2373 static int nfs_access_get_cached_rcu(struct inode
*inode
, const struct cred
*cred
, struct nfs_access_entry
*res
)
2375 /* Only check the most recently returned cache entry,
2376 * but do it without locking.
2378 struct nfs_inode
*nfsi
= NFS_I(inode
);
2379 struct nfs_access_entry
*cache
;
2381 struct list_head
*lh
;
2384 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2386 lh
= rcu_dereference(nfsi
->access_cache_entry_lru
.prev
);
2387 cache
= list_entry(lh
, struct nfs_access_entry
, lru
);
2388 if (lh
== &nfsi
->access_cache_entry_lru
||
2389 cred_fscmp(cred
, cache
->cred
) != 0)
2393 if (nfs_check_cache_invalid(inode
, NFS_INO_INVALID_ACCESS
))
2395 res
->cred
= cache
->cred
;
2396 res
->mask
= cache
->mask
;
2403 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2405 struct nfs_inode
*nfsi
= NFS_I(inode
);
2406 struct rb_root
*root_node
= &nfsi
->access_cache
;
2407 struct rb_node
**p
= &root_node
->rb_node
;
2408 struct rb_node
*parent
= NULL
;
2409 struct nfs_access_entry
*entry
;
2412 spin_lock(&inode
->i_lock
);
2413 while (*p
!= NULL
) {
2415 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2416 cmp
= cred_fscmp(set
->cred
, entry
->cred
);
2419 p
= &parent
->rb_left
;
2421 p
= &parent
->rb_right
;
2425 rb_link_node(&set
->rb_node
, parent
, p
);
2426 rb_insert_color(&set
->rb_node
, root_node
);
2427 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2428 spin_unlock(&inode
->i_lock
);
2431 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2432 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2433 list_del(&entry
->lru
);
2434 spin_unlock(&inode
->i_lock
);
2435 nfs_access_free_entry(entry
);
2438 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2440 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2443 RB_CLEAR_NODE(&cache
->rb_node
);
2444 cache
->cred
= get_cred(set
->cred
);
2445 cache
->mask
= set
->mask
;
2447 /* The above field assignments must be visible
2448 * before this item appears on the lru. We cannot easily
2449 * use rcu_assign_pointer, so just force the memory barrier.
2452 nfs_access_add_rbtree(inode
, cache
);
2454 /* Update accounting */
2455 smp_mb__before_atomic();
2456 atomic_long_inc(&nfs_access_nr_entries
);
2457 smp_mb__after_atomic();
2459 /* Add inode to global LRU list */
2460 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2461 spin_lock(&nfs_access_lru_lock
);
2462 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2463 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2464 &nfs_access_lru_list
);
2465 spin_unlock(&nfs_access_lru_lock
);
2467 nfs_access_cache_enforce_limit();
2469 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2471 #define NFS_MAY_READ (NFS_ACCESS_READ)
2472 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2473 NFS_ACCESS_EXTEND | \
2475 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2477 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2478 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2479 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2481 nfs_access_calc_mask(u32 access_result
, umode_t umode
)
2485 if (access_result
& NFS_MAY_READ
)
2487 if (S_ISDIR(umode
)) {
2488 if ((access_result
& NFS_DIR_MAY_WRITE
) == NFS_DIR_MAY_WRITE
)
2490 if ((access_result
& NFS_MAY_LOOKUP
) == NFS_MAY_LOOKUP
)
2492 } else if (S_ISREG(umode
)) {
2493 if ((access_result
& NFS_FILE_MAY_WRITE
) == NFS_FILE_MAY_WRITE
)
2495 if ((access_result
& NFS_MAY_EXECUTE
) == NFS_MAY_EXECUTE
)
2497 } else if (access_result
& NFS_MAY_WRITE
)
2502 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2504 entry
->mask
= access_result
;
2506 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2508 static int nfs_do_access(struct inode
*inode
, const struct cred
*cred
, int mask
)
2510 struct nfs_access_entry cache
;
2511 bool may_block
= (mask
& MAY_NOT_BLOCK
) == 0;
2512 int cache_mask
= -1;
2515 trace_nfs_access_enter(inode
);
2517 status
= nfs_access_get_cached_rcu(inode
, cred
, &cache
);
2519 status
= nfs_access_get_cached(inode
, cred
, &cache
, may_block
);
2528 * Determine which access bits we want to ask for...
2530 cache
.mask
= NFS_ACCESS_READ
| NFS_ACCESS_MODIFY
| NFS_ACCESS_EXTEND
;
2531 if (S_ISDIR(inode
->i_mode
))
2532 cache
.mask
|= NFS_ACCESS_DELETE
| NFS_ACCESS_LOOKUP
;
2534 cache
.mask
|= NFS_ACCESS_EXECUTE
;
2536 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2538 if (status
== -ESTALE
) {
2539 nfs_zap_caches(inode
);
2540 if (!S_ISDIR(inode
->i_mode
))
2541 set_bit(NFS_INO_STALE
, &NFS_I(inode
)->flags
);
2545 nfs_access_add_cache(inode
, &cache
);
2547 cache_mask
= nfs_access_calc_mask(cache
.mask
, inode
->i_mode
);
2548 if ((mask
& ~cache_mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2551 trace_nfs_access_exit(inode
, mask
, cache_mask
, status
);
2555 static int nfs_open_permission_mask(int openflags
)
2559 if (openflags
& __FMODE_EXEC
) {
2560 /* ONLY check exec rights */
2563 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2565 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2572 int nfs_may_open(struct inode
*inode
, const struct cred
*cred
, int openflags
)
2574 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2576 EXPORT_SYMBOL_GPL(nfs_may_open
);
2578 static int nfs_execute_ok(struct inode
*inode
, int mask
)
2580 struct nfs_server
*server
= NFS_SERVER(inode
);
2583 if (S_ISDIR(inode
->i_mode
))
2585 if (nfs_check_cache_invalid(inode
, NFS_INO_INVALID_OTHER
)) {
2586 if (mask
& MAY_NOT_BLOCK
)
2588 ret
= __nfs_revalidate_inode(server
, inode
);
2590 if (ret
== 0 && !execute_ok(inode
))
2595 int nfs_permission(struct inode
*inode
, int mask
)
2597 const struct cred
*cred
= current_cred();
2600 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2602 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2604 /* Is this sys_access() ? */
2605 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2608 switch (inode
->i_mode
& S_IFMT
) {
2612 if ((mask
& MAY_OPEN
) &&
2613 nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
))
2618 * Optimize away all write operations, since the server
2619 * will check permissions when we perform the op.
2621 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2626 if (!NFS_PROTO(inode
)->access
)
2629 /* Always try fast lookups first */
2631 res
= nfs_do_access(inode
, cred
, mask
|MAY_NOT_BLOCK
);
2633 if (res
== -ECHILD
&& !(mask
& MAY_NOT_BLOCK
)) {
2634 /* Fast lookup failed, try the slow way */
2635 res
= nfs_do_access(inode
, cred
, mask
);
2638 if (!res
&& (mask
& MAY_EXEC
))
2639 res
= nfs_execute_ok(inode
, mask
);
2641 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2642 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2645 if (mask
& MAY_NOT_BLOCK
)
2648 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2650 res
= generic_permission(inode
, mask
);
2653 EXPORT_SYMBOL_GPL(nfs_permission
);
2657 * version-control: t
2658 * kept-new-versions: 5