1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
7 * Defines functions of journalling api
9 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kthread.h>
17 #include <linux/time.h>
18 #include <linux/random.h>
19 #include <linux/delay.h>
21 #include <cluster/masklog.h>
26 #include "blockcheck.h"
29 #include "extent_map.h"
30 #include "heartbeat.h"
33 #include "localalloc.h"
42 #include "buffer_head_io.h"
43 #include "ocfs2_trace.h"
45 DEFINE_SPINLOCK(trans_inc_lock
);
47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
49 static int ocfs2_force_read_journal(struct inode
*inode
);
50 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
51 int node_num
, int slot_num
);
52 static int __ocfs2_recovery_thread(void *arg
);
53 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
54 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
56 int dirty
, int replayed
);
57 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
59 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
61 enum ocfs2_orphan_reco_type orphan_reco_type
);
62 static int ocfs2_commit_thread(void *arg
);
63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
65 struct ocfs2_dinode
*la_dinode
,
66 struct ocfs2_dinode
*tl_dinode
,
67 struct ocfs2_quota_recovery
*qrec
,
68 enum ocfs2_orphan_reco_type orphan_reco_type
);
70 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
72 return __ocfs2_wait_on_mount(osb
, 0);
75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
77 return __ocfs2_wait_on_mount(osb
, 1);
81 * This replay_map is to track online/offline slots, so we could recover
82 * offline slots during recovery and mount
85 enum ocfs2_replay_state
{
86 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
87 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
88 REPLAY_DONE
/* Replay was already queued */
91 struct ocfs2_replay_map
{
92 unsigned int rm_slots
;
93 enum ocfs2_replay_state rm_state
;
94 unsigned char rm_replay_slots
[0];
97 static void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
102 /* If we've already queued the replay, we don't have any more to do */
103 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
106 osb
->replay_map
->rm_state
= state
;
109 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
111 struct ocfs2_replay_map
*replay_map
;
114 /* If replay map is already set, we don't do it again */
118 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
119 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
126 spin_lock(&osb
->osb_lock
);
128 replay_map
->rm_slots
= osb
->max_slots
;
129 replay_map
->rm_state
= REPLAY_UNNEEDED
;
131 /* set rm_replay_slots for offline slot(s) */
132 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
133 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
134 replay_map
->rm_replay_slots
[i
] = 1;
137 osb
->replay_map
= replay_map
;
138 spin_unlock(&osb
->osb_lock
);
142 static void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
,
143 enum ocfs2_orphan_reco_type orphan_reco_type
)
145 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
151 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
154 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
155 if (replay_map
->rm_replay_slots
[i
])
156 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
159 replay_map
->rm_state
= REPLAY_DONE
;
162 static void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
164 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
166 if (!osb
->replay_map
)
170 osb
->replay_map
= NULL
;
173 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
175 struct ocfs2_recovery_map
*rm
;
177 mutex_init(&osb
->recovery_lock
);
178 osb
->disable_recovery
= 0;
179 osb
->recovery_thread_task
= NULL
;
180 init_waitqueue_head(&osb
->recovery_event
);
182 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
183 osb
->max_slots
* sizeof(unsigned int),
190 rm
->rm_entries
= (unsigned int *)((char *)rm
+
191 sizeof(struct ocfs2_recovery_map
));
192 osb
->recovery_map
= rm
;
197 /* we can't grab the goofy sem lock from inside wait_event, so we use
198 * memory barriers to make sure that we'll see the null task before
200 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
203 return osb
->recovery_thread_task
!= NULL
;
206 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
208 struct ocfs2_recovery_map
*rm
;
210 /* disable any new recovery threads and wait for any currently
211 * running ones to exit. Do this before setting the vol_state. */
212 mutex_lock(&osb
->recovery_lock
);
213 osb
->disable_recovery
= 1;
214 mutex_unlock(&osb
->recovery_lock
);
215 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
217 /* At this point, we know that no more recovery threads can be
218 * launched, so wait for any recovery completion work to
221 flush_workqueue(osb
->ocfs2_wq
);
224 * Now that recovery is shut down, and the osb is about to be
225 * freed, the osb_lock is not taken here.
227 rm
= osb
->recovery_map
;
228 /* XXX: Should we bug if there are dirty entries? */
233 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
234 unsigned int node_num
)
237 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
239 assert_spin_locked(&osb
->osb_lock
);
241 for (i
= 0; i
< rm
->rm_used
; i
++) {
242 if (rm
->rm_entries
[i
] == node_num
)
249 /* Behaves like test-and-set. Returns the previous value */
250 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
251 unsigned int node_num
)
253 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
255 spin_lock(&osb
->osb_lock
);
256 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
257 spin_unlock(&osb
->osb_lock
);
261 /* XXX: Can this be exploited? Not from o2dlm... */
262 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
264 rm
->rm_entries
[rm
->rm_used
] = node_num
;
266 spin_unlock(&osb
->osb_lock
);
271 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
272 unsigned int node_num
)
275 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
277 spin_lock(&osb
->osb_lock
);
279 for (i
= 0; i
< rm
->rm_used
; i
++) {
280 if (rm
->rm_entries
[i
] == node_num
)
284 if (i
< rm
->rm_used
) {
285 /* XXX: be careful with the pointer math */
286 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
287 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
291 spin_unlock(&osb
->osb_lock
);
294 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
297 unsigned int flushed
;
298 struct ocfs2_journal
*journal
= NULL
;
300 journal
= osb
->journal
;
302 /* Flush all pending commits and checkpoint the journal. */
303 down_write(&journal
->j_trans_barrier
);
305 flushed
= atomic_read(&journal
->j_num_trans
);
306 trace_ocfs2_commit_cache_begin(flushed
);
308 up_write(&journal
->j_trans_barrier
);
312 jbd2_journal_lock_updates(journal
->j_journal
);
313 status
= jbd2_journal_flush(journal
->j_journal
);
314 jbd2_journal_unlock_updates(journal
->j_journal
);
316 up_write(&journal
->j_trans_barrier
);
321 ocfs2_inc_trans_id(journal
);
323 flushed
= atomic_read(&journal
->j_num_trans
);
324 atomic_set(&journal
->j_num_trans
, 0);
325 up_write(&journal
->j_trans_barrier
);
327 trace_ocfs2_commit_cache_end(journal
->j_trans_id
, flushed
);
329 ocfs2_wake_downconvert_thread(osb
);
330 wake_up(&journal
->j_checkpointed
);
335 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
337 journal_t
*journal
= osb
->journal
->j_journal
;
340 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
342 if (ocfs2_is_hard_readonly(osb
))
343 return ERR_PTR(-EROFS
);
345 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
346 BUG_ON(max_buffs
<= 0);
348 /* Nested transaction? Just return the handle... */
349 if (journal_current_handle())
350 return jbd2_journal_start(journal
, max_buffs
);
352 sb_start_intwrite(osb
->sb
);
354 down_read(&osb
->journal
->j_trans_barrier
);
356 handle
= jbd2_journal_start(journal
, max_buffs
);
357 if (IS_ERR(handle
)) {
358 up_read(&osb
->journal
->j_trans_barrier
);
359 sb_end_intwrite(osb
->sb
);
361 mlog_errno(PTR_ERR(handle
));
363 if (is_journal_aborted(journal
)) {
364 ocfs2_abort(osb
->sb
, "Detected aborted journal\n");
365 handle
= ERR_PTR(-EROFS
);
368 if (!ocfs2_mount_local(osb
))
369 atomic_inc(&(osb
->journal
->j_num_trans
));
375 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
379 struct ocfs2_journal
*journal
= osb
->journal
;
383 nested
= handle
->h_ref
> 1;
384 ret
= jbd2_journal_stop(handle
);
389 up_read(&journal
->j_trans_barrier
);
390 sb_end_intwrite(osb
->sb
);
397 * 'nblocks' is what you want to add to the current transaction.
399 * This might call jbd2_journal_restart() which will commit dirty buffers
400 * and then restart the transaction. Before calling
401 * ocfs2_extend_trans(), any changed blocks should have been
402 * dirtied. After calling it, all blocks which need to be changed must
403 * go through another set of journal_access/journal_dirty calls.
405 * WARNING: This will not release any semaphores or disk locks taken
406 * during the transaction, so make sure they were taken *before*
407 * start_trans or we'll have ordering deadlocks.
409 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
410 * good because transaction ids haven't yet been recorded on the
411 * cluster locks associated with this handle.
413 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
415 int status
, old_nblocks
;
423 old_nblocks
= jbd2_handle_buffer_credits(handle
);
425 trace_ocfs2_extend_trans(old_nblocks
, nblocks
);
427 #ifdef CONFIG_OCFS2_DEBUG_FS
430 status
= jbd2_journal_extend(handle
, nblocks
, 0);
438 trace_ocfs2_extend_trans_restart(old_nblocks
+ nblocks
);
439 status
= jbd2_journal_restart(handle
,
440 old_nblocks
+ nblocks
);
453 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
454 * If that fails, restart the transaction & regain write access for the
455 * buffer head which is used for metadata modifications.
456 * Taken from Ext4: extend_or_restart_transaction()
458 int ocfs2_allocate_extend_trans(handle_t
*handle
, int thresh
)
460 int status
, old_nblks
;
464 old_nblks
= jbd2_handle_buffer_credits(handle
);
465 trace_ocfs2_allocate_extend_trans(old_nblks
, thresh
);
467 if (old_nblks
< thresh
)
470 status
= jbd2_journal_extend(handle
, OCFS2_MAX_TRANS_DATA
, 0);
477 status
= jbd2_journal_restart(handle
, OCFS2_MAX_TRANS_DATA
);
487 struct ocfs2_triggers
{
488 struct jbd2_buffer_trigger_type ot_triggers
;
492 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
494 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
497 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
498 struct buffer_head
*bh
,
499 void *data
, size_t size
)
501 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
504 * We aren't guaranteed to have the superblock here, so we
505 * must unconditionally compute the ecc data.
506 * __ocfs2_journal_access() will only set the triggers if
507 * metaecc is enabled.
509 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
513 * Quota blocks have their own trigger because the struct ocfs2_block_check
514 * offset depends on the blocksize.
516 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
517 struct buffer_head
*bh
,
518 void *data
, size_t size
)
520 struct ocfs2_disk_dqtrailer
*dqt
=
521 ocfs2_block_dqtrailer(size
, data
);
524 * We aren't guaranteed to have the superblock here, so we
525 * must unconditionally compute the ecc data.
526 * __ocfs2_journal_access() will only set the triggers if
527 * metaecc is enabled.
529 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
533 * Directory blocks also have their own trigger because the
534 * struct ocfs2_block_check offset depends on the blocksize.
536 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
537 struct buffer_head
*bh
,
538 void *data
, size_t size
)
540 struct ocfs2_dir_block_trailer
*trailer
=
541 ocfs2_dir_trailer_from_size(size
, data
);
544 * We aren't guaranteed to have the superblock here, so we
545 * must unconditionally compute the ecc data.
546 * __ocfs2_journal_access() will only set the triggers if
547 * metaecc is enabled.
549 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
552 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
553 struct buffer_head
*bh
)
556 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
557 "bh->b_blocknr = %llu\n",
559 (unsigned long long)bh
->b_blocknr
);
561 ocfs2_error(bh
->b_bdev
->bd_super
,
562 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
565 static struct ocfs2_triggers di_triggers
= {
567 .t_frozen
= ocfs2_frozen_trigger
,
568 .t_abort
= ocfs2_abort_trigger
,
570 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
573 static struct ocfs2_triggers eb_triggers
= {
575 .t_frozen
= ocfs2_frozen_trigger
,
576 .t_abort
= ocfs2_abort_trigger
,
578 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
581 static struct ocfs2_triggers rb_triggers
= {
583 .t_frozen
= ocfs2_frozen_trigger
,
584 .t_abort
= ocfs2_abort_trigger
,
586 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
589 static struct ocfs2_triggers gd_triggers
= {
591 .t_frozen
= ocfs2_frozen_trigger
,
592 .t_abort
= ocfs2_abort_trigger
,
594 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
597 static struct ocfs2_triggers db_triggers
= {
599 .t_frozen
= ocfs2_db_frozen_trigger
,
600 .t_abort
= ocfs2_abort_trigger
,
604 static struct ocfs2_triggers xb_triggers
= {
606 .t_frozen
= ocfs2_frozen_trigger
,
607 .t_abort
= ocfs2_abort_trigger
,
609 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
612 static struct ocfs2_triggers dq_triggers
= {
614 .t_frozen
= ocfs2_dq_frozen_trigger
,
615 .t_abort
= ocfs2_abort_trigger
,
619 static struct ocfs2_triggers dr_triggers
= {
621 .t_frozen
= ocfs2_frozen_trigger
,
622 .t_abort
= ocfs2_abort_trigger
,
624 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
627 static struct ocfs2_triggers dl_triggers
= {
629 .t_frozen
= ocfs2_frozen_trigger
,
630 .t_abort
= ocfs2_abort_trigger
,
632 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
635 static int __ocfs2_journal_access(handle_t
*handle
,
636 struct ocfs2_caching_info
*ci
,
637 struct buffer_head
*bh
,
638 struct ocfs2_triggers
*triggers
,
642 struct ocfs2_super
*osb
=
643 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
645 BUG_ON(!ci
|| !ci
->ci_ops
);
649 trace_ocfs2_journal_access(
650 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
651 (unsigned long long)bh
->b_blocknr
, type
, bh
->b_size
);
653 /* we can safely remove this assertion after testing. */
654 if (!buffer_uptodate(bh
)) {
655 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
656 mlog(ML_ERROR
, "b_blocknr=%llu, b_state=0x%lx\n",
657 (unsigned long long)bh
->b_blocknr
, bh
->b_state
);
661 * A previous transaction with a couple of buffer heads fail
662 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
663 * For current transaction, the bh is just among those error
664 * bhs which previous transaction handle. We can't just clear
665 * its BH_Write_EIO and reuse directly, since other bhs are
666 * not written to disk yet and that will cause metadata
667 * inconsistency. So we should set fs read-only to avoid
670 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
)) {
672 return ocfs2_error(osb
->sb
, "A previous attempt to "
673 "write this buffer head failed\n");
678 /* Set the current transaction information on the ci so
679 * that the locking code knows whether it can drop it's locks
680 * on this ci or not. We're protected from the commit
681 * thread updating the current transaction id until
682 * ocfs2_commit_trans() because ocfs2_start_trans() took
683 * j_trans_barrier for us. */
684 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
686 ocfs2_metadata_cache_io_lock(ci
);
688 case OCFS2_JOURNAL_ACCESS_CREATE
:
689 case OCFS2_JOURNAL_ACCESS_WRITE
:
690 status
= jbd2_journal_get_write_access(handle
, bh
);
693 case OCFS2_JOURNAL_ACCESS_UNDO
:
694 status
= jbd2_journal_get_undo_access(handle
, bh
);
699 mlog(ML_ERROR
, "Unknown access type!\n");
701 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
702 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
703 ocfs2_metadata_cache_io_unlock(ci
);
706 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
712 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
713 struct buffer_head
*bh
, int type
)
715 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
718 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
719 struct buffer_head
*bh
, int type
)
721 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
724 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
725 struct buffer_head
*bh
, int type
)
727 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
731 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
732 struct buffer_head
*bh
, int type
)
734 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
737 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
738 struct buffer_head
*bh
, int type
)
740 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
743 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
744 struct buffer_head
*bh
, int type
)
746 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
749 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
750 struct buffer_head
*bh
, int type
)
752 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
755 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
756 struct buffer_head
*bh
, int type
)
758 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
761 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
762 struct buffer_head
*bh
, int type
)
764 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
767 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
768 struct buffer_head
*bh
, int type
)
770 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
773 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
777 trace_ocfs2_journal_dirty((unsigned long long)bh
->b_blocknr
);
779 status
= jbd2_journal_dirty_metadata(handle
, bh
);
782 if (!is_handle_aborted(handle
)) {
783 journal_t
*journal
= handle
->h_transaction
->t_journal
;
784 struct super_block
*sb
= bh
->b_bdev
->bd_super
;
786 mlog(ML_ERROR
, "jbd2_journal_dirty_metadata failed. "
787 "Aborting transaction and journal.\n");
788 handle
->h_err
= status
;
789 jbd2_journal_abort_handle(handle
);
790 jbd2_journal_abort(journal
, status
);
791 ocfs2_abort(sb
, "Journal already aborted.\n");
796 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
798 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
800 journal_t
*journal
= osb
->journal
->j_journal
;
801 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
803 if (osb
->osb_commit_interval
)
804 commit_interval
= osb
->osb_commit_interval
;
806 write_lock(&journal
->j_state_lock
);
807 journal
->j_commit_interval
= commit_interval
;
808 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
809 journal
->j_flags
|= JBD2_BARRIER
;
811 journal
->j_flags
&= ~JBD2_BARRIER
;
812 write_unlock(&journal
->j_state_lock
);
815 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
818 struct inode
*inode
= NULL
; /* the journal inode */
819 journal_t
*j_journal
= NULL
;
820 struct ocfs2_dinode
*di
= NULL
;
821 struct buffer_head
*bh
= NULL
;
822 struct ocfs2_super
*osb
;
827 osb
= journal
->j_osb
;
829 /* already have the inode for our journal */
830 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
837 if (is_bad_inode(inode
)) {
838 mlog(ML_ERROR
, "access error (bad inode)\n");
845 SET_INODE_JOURNAL(inode
);
846 OCFS2_I(inode
)->ip_open_count
++;
848 /* Skip recovery waits here - journal inode metadata never
849 * changes in a live cluster so it can be considered an
850 * exception to the rule. */
851 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
853 if (status
!= -ERESTARTSYS
)
854 mlog(ML_ERROR
, "Could not get lock on journal!\n");
859 di
= (struct ocfs2_dinode
*)bh
->b_data
;
861 if (i_size_read(inode
) < OCFS2_MIN_JOURNAL_SIZE
) {
862 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
868 trace_ocfs2_journal_init(i_size_read(inode
),
869 (unsigned long long)inode
->i_blocks
,
870 OCFS2_I(inode
)->ip_clusters
);
872 /* call the kernels journal init function now */
873 j_journal
= jbd2_journal_init_inode(inode
);
874 if (j_journal
== NULL
) {
875 mlog(ML_ERROR
, "Linux journal layer error\n");
880 trace_ocfs2_journal_init_maxlen(j_journal
->j_maxlen
);
882 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
883 OCFS2_JOURNAL_DIRTY_FL
);
885 journal
->j_journal
= j_journal
;
886 journal
->j_inode
= inode
;
889 ocfs2_set_journal_params(osb
);
891 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
897 ocfs2_inode_unlock(inode
, 1);
900 OCFS2_I(inode
)->ip_open_count
--;
908 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
910 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
913 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
915 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
918 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
919 int dirty
, int replayed
)
923 struct ocfs2_journal
*journal
= osb
->journal
;
924 struct buffer_head
*bh
= journal
->j_bh
;
925 struct ocfs2_dinode
*fe
;
927 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
929 /* The journal bh on the osb always comes from ocfs2_journal_init()
930 * and was validated there inside ocfs2_inode_lock_full(). It's a
931 * code bug if we mess it up. */
932 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
934 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
936 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
938 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
939 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
942 ocfs2_bump_recovery_generation(fe
);
944 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
945 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
953 * If the journal has been kmalloc'd it needs to be freed after this
956 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
958 struct ocfs2_journal
*journal
= NULL
;
960 struct inode
*inode
= NULL
;
961 int num_running_trans
= 0;
965 journal
= osb
->journal
;
969 inode
= journal
->j_inode
;
971 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
974 /* need to inc inode use count - jbd2_journal_destroy will iput. */
978 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
979 trace_ocfs2_journal_shutdown(num_running_trans
);
981 /* Do a commit_cache here. It will flush our journal, *and*
982 * release any locks that are still held.
983 * set the SHUTDOWN flag and release the trans lock.
984 * the commit thread will take the trans lock for us below. */
985 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
987 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
988 * drop the trans_lock (which we want to hold until we
989 * completely destroy the journal. */
990 if (osb
->commit_task
) {
991 /* Wait for the commit thread */
992 trace_ocfs2_journal_shutdown_wait(osb
->commit_task
);
993 kthread_stop(osb
->commit_task
);
994 osb
->commit_task
= NULL
;
997 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
999 if (ocfs2_mount_local(osb
)) {
1000 jbd2_journal_lock_updates(journal
->j_journal
);
1001 status
= jbd2_journal_flush(journal
->j_journal
);
1002 jbd2_journal_unlock_updates(journal
->j_journal
);
1007 /* Shutdown the kernel journal system */
1008 if (!jbd2_journal_destroy(journal
->j_journal
) && !status
) {
1010 * Do not toggle if flush was unsuccessful otherwise
1011 * will leave dirty metadata in a "clean" journal
1013 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
1017 journal
->j_journal
= NULL
;
1019 OCFS2_I(inode
)->ip_open_count
--;
1021 /* unlock our journal */
1022 ocfs2_inode_unlock(inode
, 1);
1024 brelse(journal
->j_bh
);
1025 journal
->j_bh
= NULL
;
1027 journal
->j_state
= OCFS2_JOURNAL_FREE
;
1029 // up_write(&journal->j_trans_barrier);
1034 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1040 olderr
= jbd2_journal_errno(journal
);
1042 mlog(ML_ERROR
, "File system error %d recorded in "
1043 "journal %u.\n", olderr
, slot
);
1044 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1047 jbd2_journal_ack_err(journal
);
1048 jbd2_journal_clear_err(journal
);
1052 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1055 struct ocfs2_super
*osb
;
1059 osb
= journal
->j_osb
;
1061 status
= jbd2_journal_load(journal
->j_journal
);
1063 mlog(ML_ERROR
, "Failed to load journal!\n");
1067 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1070 jbd2_journal_lock_updates(journal
->j_journal
);
1071 status
= jbd2_journal_flush(journal
->j_journal
);
1072 jbd2_journal_unlock_updates(journal
->j_journal
);
1077 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1083 /* Launch the commit thread */
1085 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1086 "ocfs2cmt-%s", osb
->uuid_str
);
1087 if (IS_ERR(osb
->commit_task
)) {
1088 status
= PTR_ERR(osb
->commit_task
);
1089 osb
->commit_task
= NULL
;
1090 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1091 "error=%d", status
);
1095 osb
->commit_task
= NULL
;
1102 /* 'full' flag tells us whether we clear out all blocks or if we just
1103 * mark the journal clean */
1104 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1110 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1116 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1124 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1127 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1129 spin_lock(&osb
->osb_lock
);
1130 empty
= (rm
->rm_used
== 0);
1131 spin_unlock(&osb
->osb_lock
);
1136 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1138 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1142 * JBD Might read a cached version of another nodes journal file. We
1143 * don't want this as this file changes often and we get no
1144 * notification on those changes. The only way to be sure that we've
1145 * got the most up to date version of those blocks then is to force
1146 * read them off disk. Just searching through the buffer cache won't
1147 * work as there may be pages backing this file which are still marked
1148 * up to date. We know things can't change on this file underneath us
1149 * as we have the lock by now :)
1151 static int ocfs2_force_read_journal(struct inode
*inode
)
1155 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1156 struct buffer_head
*bh
= NULL
;
1157 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1159 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
1161 while (v_blkno
< num_blocks
) {
1162 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1163 &p_blkno
, &p_blocks
, NULL
);
1169 for (i
= 0; i
< p_blocks
; i
++, p_blkno
++) {
1170 bh
= __find_get_block(osb
->sb
->s_bdev
, p_blkno
,
1171 osb
->sb
->s_blocksize
);
1172 /* block not cached. */
1178 /* We are reading journal data which should not
1179 * be put in the uptodate cache.
1181 status
= ocfs2_read_blocks_sync(osb
, p_blkno
, 1, &bh
);
1191 v_blkno
+= p_blocks
;
1198 struct ocfs2_la_recovery_item
{
1199 struct list_head lri_list
;
1201 struct ocfs2_dinode
*lri_la_dinode
;
1202 struct ocfs2_dinode
*lri_tl_dinode
;
1203 struct ocfs2_quota_recovery
*lri_qrec
;
1204 enum ocfs2_orphan_reco_type lri_orphan_reco_type
;
1207 /* Does the second half of the recovery process. By this point, the
1208 * node is marked clean and can actually be considered recovered,
1209 * hence it's no longer in the recovery map, but there's still some
1210 * cleanup we can do which shouldn't happen within the recovery thread
1211 * as locking in that context becomes very difficult if we are to take
1212 * recovering nodes into account.
1214 * NOTE: This function can and will sleep on recovery of other nodes
1215 * during cluster locking, just like any other ocfs2 process.
1217 void ocfs2_complete_recovery(struct work_struct
*work
)
1220 struct ocfs2_journal
*journal
=
1221 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1222 struct ocfs2_super
*osb
= journal
->j_osb
;
1223 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1224 struct ocfs2_la_recovery_item
*item
, *n
;
1225 struct ocfs2_quota_recovery
*qrec
;
1226 enum ocfs2_orphan_reco_type orphan_reco_type
;
1227 LIST_HEAD(tmp_la_list
);
1229 trace_ocfs2_complete_recovery(
1230 (unsigned long long)OCFS2_I(journal
->j_inode
)->ip_blkno
);
1232 spin_lock(&journal
->j_lock
);
1233 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1234 spin_unlock(&journal
->j_lock
);
1236 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1237 list_del_init(&item
->lri_list
);
1239 ocfs2_wait_on_quotas(osb
);
1241 la_dinode
= item
->lri_la_dinode
;
1242 tl_dinode
= item
->lri_tl_dinode
;
1243 qrec
= item
->lri_qrec
;
1244 orphan_reco_type
= item
->lri_orphan_reco_type
;
1246 trace_ocfs2_complete_recovery_slot(item
->lri_slot
,
1247 la_dinode
? le64_to_cpu(la_dinode
->i_blkno
) : 0,
1248 tl_dinode
? le64_to_cpu(tl_dinode
->i_blkno
) : 0,
1252 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1261 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1269 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
,
1275 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1279 /* Recovery info is already freed now */
1285 trace_ocfs2_complete_recovery_end(ret
);
1288 /* NOTE: This function always eats your references to la_dinode and
1289 * tl_dinode, either manually on error, or by passing them to
1290 * ocfs2_complete_recovery */
1291 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1293 struct ocfs2_dinode
*la_dinode
,
1294 struct ocfs2_dinode
*tl_dinode
,
1295 struct ocfs2_quota_recovery
*qrec
,
1296 enum ocfs2_orphan_reco_type orphan_reco_type
)
1298 struct ocfs2_la_recovery_item
*item
;
1300 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1302 /* Though we wish to avoid it, we are in fact safe in
1303 * skipping local alloc cleanup as fsck.ocfs2 is more
1304 * than capable of reclaiming unused space. */
1309 ocfs2_free_quota_recovery(qrec
);
1311 mlog_errno(-ENOMEM
);
1315 INIT_LIST_HEAD(&item
->lri_list
);
1316 item
->lri_la_dinode
= la_dinode
;
1317 item
->lri_slot
= slot_num
;
1318 item
->lri_tl_dinode
= tl_dinode
;
1319 item
->lri_qrec
= qrec
;
1320 item
->lri_orphan_reco_type
= orphan_reco_type
;
1322 spin_lock(&journal
->j_lock
);
1323 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1324 queue_work(journal
->j_osb
->ocfs2_wq
, &journal
->j_recovery_work
);
1325 spin_unlock(&journal
->j_lock
);
1328 /* Called by the mount code to queue recovery the last part of
1329 * recovery for it's own and offline slot(s). */
1330 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1332 struct ocfs2_journal
*journal
= osb
->journal
;
1334 if (ocfs2_is_hard_readonly(osb
))
1337 /* No need to queue up our truncate_log as regular cleanup will catch
1339 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1340 osb
->local_alloc_copy
, NULL
, NULL
,
1341 ORPHAN_NEED_TRUNCATE
);
1342 ocfs2_schedule_truncate_log_flush(osb
, 0);
1344 osb
->local_alloc_copy
= NULL
;
1346 /* queue to recover orphan slots for all offline slots */
1347 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1348 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1349 ocfs2_free_replay_slots(osb
);
1352 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1354 if (osb
->quota_rec
) {
1355 ocfs2_queue_recovery_completion(osb
->journal
,
1360 ORPHAN_NEED_TRUNCATE
);
1361 osb
->quota_rec
= NULL
;
1365 static int __ocfs2_recovery_thread(void *arg
)
1367 int status
, node_num
, slot_num
;
1368 struct ocfs2_super
*osb
= arg
;
1369 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1370 int *rm_quota
= NULL
;
1371 int rm_quota_used
= 0, i
;
1372 struct ocfs2_quota_recovery
*qrec
;
1374 /* Whether the quota supported. */
1375 int quota_enabled
= OCFS2_HAS_RO_COMPAT_FEATURE(osb
->sb
,
1376 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)
1377 || OCFS2_HAS_RO_COMPAT_FEATURE(osb
->sb
,
1378 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
);
1380 status
= ocfs2_wait_on_mount(osb
);
1385 if (quota_enabled
) {
1386 rm_quota
= kcalloc(osb
->max_slots
, sizeof(int), GFP_NOFS
);
1393 status
= ocfs2_super_lock(osb
, 1);
1399 status
= ocfs2_compute_replay_slots(osb
);
1403 /* queue recovery for our own slot */
1404 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1405 NULL
, NULL
, ORPHAN_NO_NEED_TRUNCATE
);
1407 spin_lock(&osb
->osb_lock
);
1408 while (rm
->rm_used
) {
1409 /* It's always safe to remove entry zero, as we won't
1410 * clear it until ocfs2_recover_node() has succeeded. */
1411 node_num
= rm
->rm_entries
[0];
1412 spin_unlock(&osb
->osb_lock
);
1413 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1414 trace_ocfs2_recovery_thread_node(node_num
, slot_num
);
1415 if (slot_num
== -ENOENT
) {
1420 /* It is a bit subtle with quota recovery. We cannot do it
1421 * immediately because we have to obtain cluster locks from
1422 * quota files and we also don't want to just skip it because
1423 * then quota usage would be out of sync until some node takes
1424 * the slot. So we remember which nodes need quota recovery
1425 * and when everything else is done, we recover quotas. */
1426 if (quota_enabled
) {
1427 for (i
= 0; i
< rm_quota_used
1428 && rm_quota
[i
] != slot_num
; i
++)
1431 if (i
== rm_quota_used
)
1432 rm_quota
[rm_quota_used
++] = slot_num
;
1435 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1438 ocfs2_recovery_map_clear(osb
, node_num
);
1441 "Error %d recovering node %d on device (%u,%u)!\n",
1443 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1444 mlog(ML_ERROR
, "Volume requires unmount.\n");
1447 spin_lock(&osb
->osb_lock
);
1449 spin_unlock(&osb
->osb_lock
);
1450 trace_ocfs2_recovery_thread_end(status
);
1452 /* Refresh all journal recovery generations from disk */
1453 status
= ocfs2_check_journals_nolocks(osb
);
1454 status
= (status
== -EROFS
) ? 0 : status
;
1458 /* Now it is right time to recover quotas... We have to do this under
1459 * superblock lock so that no one can start using the slot (and crash)
1460 * before we recover it */
1461 if (quota_enabled
) {
1462 for (i
= 0; i
< rm_quota_used
; i
++) {
1463 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1465 status
= PTR_ERR(qrec
);
1469 ocfs2_queue_recovery_completion(osb
->journal
,
1472 ORPHAN_NEED_TRUNCATE
);
1476 ocfs2_super_unlock(osb
, 1);
1478 /* queue recovery for offline slots */
1479 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1482 mutex_lock(&osb
->recovery_lock
);
1483 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1484 mutex_unlock(&osb
->recovery_lock
);
1488 ocfs2_free_replay_slots(osb
);
1489 osb
->recovery_thread_task
= NULL
;
1490 mb(); /* sync with ocfs2_recovery_thread_running */
1491 wake_up(&osb
->recovery_event
);
1493 mutex_unlock(&osb
->recovery_lock
);
1498 /* no one is callint kthread_stop() for us so the kthread() api
1499 * requires that we call do_exit(). And it isn't exported, but
1500 * complete_and_exit() seems to be a minimal wrapper around it. */
1501 complete_and_exit(NULL
, status
);
1504 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1506 mutex_lock(&osb
->recovery_lock
);
1508 trace_ocfs2_recovery_thread(node_num
, osb
->node_num
,
1509 osb
->disable_recovery
, osb
->recovery_thread_task
,
1510 osb
->disable_recovery
?
1511 -1 : ocfs2_recovery_map_set(osb
, node_num
));
1513 if (osb
->disable_recovery
)
1516 if (osb
->recovery_thread_task
)
1519 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1520 "ocfs2rec-%s", osb
->uuid_str
);
1521 if (IS_ERR(osb
->recovery_thread_task
)) {
1522 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1523 osb
->recovery_thread_task
= NULL
;
1527 mutex_unlock(&osb
->recovery_lock
);
1528 wake_up(&osb
->recovery_event
);
1531 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1533 struct buffer_head
**bh
,
1534 struct inode
**ret_inode
)
1536 int status
= -EACCES
;
1537 struct inode
*inode
= NULL
;
1539 BUG_ON(slot_num
>= osb
->max_slots
);
1541 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1543 if (!inode
|| is_bad_inode(inode
)) {
1547 SET_INODE_JOURNAL(inode
);
1549 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1559 if (status
|| !ret_inode
)
1567 /* Does the actual journal replay and marks the journal inode as
1568 * clean. Will only replay if the journal inode is marked dirty. */
1569 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1576 struct inode
*inode
= NULL
;
1577 struct ocfs2_dinode
*fe
;
1578 journal_t
*journal
= NULL
;
1579 struct buffer_head
*bh
= NULL
;
1582 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1588 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1589 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1594 * As the fs recovery is asynchronous, there is a small chance that
1595 * another node mounted (and recovered) the slot before the recovery
1596 * thread could get the lock. To handle that, we dirty read the journal
1597 * inode for that slot to get the recovery generation. If it is
1598 * different than what we expected, the slot has been recovered.
1599 * If not, it needs recovery.
1601 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1602 trace_ocfs2_replay_journal_recovered(slot_num
,
1603 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1604 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1609 /* Continue with recovery as the journal has not yet been recovered */
1611 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1613 trace_ocfs2_replay_journal_lock_err(status
);
1614 if (status
!= -ERESTARTSYS
)
1615 mlog(ML_ERROR
, "Could not lock journal!\n");
1620 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1622 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1623 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1625 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1626 trace_ocfs2_replay_journal_skip(node_num
);
1627 /* Refresh recovery generation for the slot */
1628 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1632 /* we need to run complete recovery for offline orphan slots */
1633 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1635 printk(KERN_NOTICE
"ocfs2: Begin replay journal (node %d, slot %d) on "\
1636 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1637 MINOR(osb
->sb
->s_dev
));
1639 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1641 status
= ocfs2_force_read_journal(inode
);
1647 journal
= jbd2_journal_init_inode(inode
);
1648 if (journal
== NULL
) {
1649 mlog(ML_ERROR
, "Linux journal layer error\n");
1654 status
= jbd2_journal_load(journal
);
1659 jbd2_journal_destroy(journal
);
1663 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1665 /* wipe the journal */
1666 jbd2_journal_lock_updates(journal
);
1667 status
= jbd2_journal_flush(journal
);
1668 jbd2_journal_unlock_updates(journal
);
1672 /* This will mark the node clean */
1673 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1674 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1675 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1677 /* Increment recovery generation to indicate successful recovery */
1678 ocfs2_bump_recovery_generation(fe
);
1679 osb
->slot_recovery_generations
[slot_num
] =
1680 ocfs2_get_recovery_generation(fe
);
1682 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1683 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1690 jbd2_journal_destroy(journal
);
1692 printk(KERN_NOTICE
"ocfs2: End replay journal (node %d, slot %d) on "\
1693 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1694 MINOR(osb
->sb
->s_dev
));
1696 /* drop the lock on this nodes journal */
1698 ocfs2_inode_unlock(inode
, 1);
1707 * Do the most important parts of node recovery:
1708 * - Replay it's journal
1709 * - Stamp a clean local allocator file
1710 * - Stamp a clean truncate log
1711 * - Mark the node clean
1713 * If this function completes without error, a node in OCFS2 can be
1714 * said to have been safely recovered. As a result, failure during the
1715 * second part of a nodes recovery process (local alloc recovery) is
1716 * far less concerning.
1718 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1719 int node_num
, int slot_num
)
1722 struct ocfs2_dinode
*la_copy
= NULL
;
1723 struct ocfs2_dinode
*tl_copy
= NULL
;
1725 trace_ocfs2_recover_node(node_num
, slot_num
, osb
->node_num
);
1727 /* Should not ever be called to recover ourselves -- in that
1728 * case we should've called ocfs2_journal_load instead. */
1729 BUG_ON(osb
->node_num
== node_num
);
1731 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1733 if (status
== -EBUSY
) {
1734 trace_ocfs2_recover_node_skip(slot_num
, node_num
);
1742 /* Stamp a clean local alloc file AFTER recovering the journal... */
1743 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1749 /* An error from begin_truncate_log_recovery is not
1750 * serious enough to warrant halting the rest of
1752 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1756 /* Likewise, this would be a strange but ultimately not so
1757 * harmful place to get an error... */
1758 status
= ocfs2_clear_slot(osb
, slot_num
);
1762 /* This will kfree the memory pointed to by la_copy and tl_copy */
1763 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1764 tl_copy
, NULL
, ORPHAN_NEED_TRUNCATE
);
1772 /* Test node liveness by trylocking his journal. If we get the lock,
1773 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1774 * still alive (we couldn't get the lock) and < 0 on error. */
1775 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1779 struct inode
*inode
= NULL
;
1781 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1783 if (inode
== NULL
) {
1784 mlog(ML_ERROR
, "access error\n");
1788 if (is_bad_inode(inode
)) {
1789 mlog(ML_ERROR
, "access error (bad inode)\n");
1795 SET_INODE_JOURNAL(inode
);
1797 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1798 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1800 if (status
!= -EAGAIN
)
1805 ocfs2_inode_unlock(inode
, 1);
1812 /* Call this underneath ocfs2_super_lock. It also assumes that the
1813 * slot info struct has been updated from disk. */
1814 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1816 unsigned int node_num
;
1819 struct buffer_head
*bh
= NULL
;
1820 struct ocfs2_dinode
*di
;
1822 /* This is called with the super block cluster lock, so we
1823 * know that the slot map can't change underneath us. */
1825 for (i
= 0; i
< osb
->max_slots
; i
++) {
1826 /* Read journal inode to get the recovery generation */
1827 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1832 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1833 gen
= ocfs2_get_recovery_generation(di
);
1837 spin_lock(&osb
->osb_lock
);
1838 osb
->slot_recovery_generations
[i
] = gen
;
1840 trace_ocfs2_mark_dead_nodes(i
,
1841 osb
->slot_recovery_generations
[i
]);
1843 if (i
== osb
->slot_num
) {
1844 spin_unlock(&osb
->osb_lock
);
1848 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1849 if (status
== -ENOENT
) {
1850 spin_unlock(&osb
->osb_lock
);
1854 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1855 spin_unlock(&osb
->osb_lock
);
1858 spin_unlock(&osb
->osb_lock
);
1860 /* Ok, we have a slot occupied by another node which
1861 * is not in the recovery map. We trylock his journal
1862 * file here to test if he's alive. */
1863 status
= ocfs2_trylock_journal(osb
, i
);
1865 /* Since we're called from mount, we know that
1866 * the recovery thread can't race us on
1867 * setting / checking the recovery bits. */
1868 ocfs2_recovery_thread(osb
, node_num
);
1869 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1881 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1882 * randomness to the timeout to minimize multple nodes firing the timer at the
1885 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1889 get_random_bytes(&time
, sizeof(time
));
1890 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1891 return msecs_to_jiffies(time
);
1895 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1896 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1897 * is done to catch any orphans that are left over in orphan directories.
1899 * It scans all slots, even ones that are in use. It does so to handle the
1900 * case described below:
1902 * Node 1 has an inode it was using. The dentry went away due to memory
1903 * pressure. Node 1 closes the inode, but it's on the free list. The node
1904 * has the open lock.
1905 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1906 * but node 1 has no dentry and doesn't get the message. It trylocks the
1907 * open lock, sees that another node has a PR, and does nothing.
1908 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1909 * open lock, sees the PR still, and does nothing.
1910 * Basically, we have to trigger an orphan iput on node 1. The only way
1911 * for this to happen is if node 1 runs node 2's orphan dir.
1913 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1914 * seconds. It gets an EX lock on os_lockres and checks sequence number
1915 * stored in LVB. If the sequence number has changed, it means some other
1916 * node has done the scan. This node skips the scan and tracks the
1917 * sequence number. If the sequence number didn't change, it means a scan
1918 * hasn't happened. The node queues a scan and increments the
1919 * sequence number in the LVB.
1921 static void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1923 struct ocfs2_orphan_scan
*os
;
1927 os
= &osb
->osb_orphan_scan
;
1929 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1932 trace_ocfs2_queue_orphan_scan_begin(os
->os_count
, os
->os_seqno
,
1933 atomic_read(&os
->os_state
));
1935 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1937 if (status
!= -EAGAIN
)
1942 /* Do no queue the tasks if the volume is being umounted */
1943 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1946 if (os
->os_seqno
!= seqno
) {
1947 os
->os_seqno
= seqno
;
1951 for (i
= 0; i
< osb
->max_slots
; i
++)
1952 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1953 NULL
, ORPHAN_NO_NEED_TRUNCATE
);
1955 * We queued a recovery on orphan slots, increment the sequence
1956 * number and update LVB so other node will skip the scan for a while
1960 os
->os_scantime
= ktime_get_seconds();
1962 ocfs2_orphan_scan_unlock(osb
, seqno
);
1964 trace_ocfs2_queue_orphan_scan_end(os
->os_count
, os
->os_seqno
,
1965 atomic_read(&os
->os_state
));
1969 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1970 static void ocfs2_orphan_scan_work(struct work_struct
*work
)
1972 struct ocfs2_orphan_scan
*os
;
1973 struct ocfs2_super
*osb
;
1975 os
= container_of(work
, struct ocfs2_orphan_scan
,
1976 os_orphan_scan_work
.work
);
1979 mutex_lock(&os
->os_lock
);
1980 ocfs2_queue_orphan_scan(osb
);
1981 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1982 queue_delayed_work(osb
->ocfs2_wq
, &os
->os_orphan_scan_work
,
1983 ocfs2_orphan_scan_timeout());
1984 mutex_unlock(&os
->os_lock
);
1987 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1989 struct ocfs2_orphan_scan
*os
;
1991 os
= &osb
->osb_orphan_scan
;
1992 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1993 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1994 mutex_lock(&os
->os_lock
);
1995 cancel_delayed_work(&os
->os_orphan_scan_work
);
1996 mutex_unlock(&os
->os_lock
);
2000 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
2002 struct ocfs2_orphan_scan
*os
;
2004 os
= &osb
->osb_orphan_scan
;
2008 mutex_init(&os
->os_lock
);
2009 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
2012 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
2014 struct ocfs2_orphan_scan
*os
;
2016 os
= &osb
->osb_orphan_scan
;
2017 os
->os_scantime
= ktime_get_seconds();
2018 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
2019 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
2021 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
2022 queue_delayed_work(osb
->ocfs2_wq
, &os
->os_orphan_scan_work
,
2023 ocfs2_orphan_scan_timeout());
2027 struct ocfs2_orphan_filldir_priv
{
2028 struct dir_context ctx
;
2030 struct ocfs2_super
*osb
;
2031 enum ocfs2_orphan_reco_type orphan_reco_type
;
2034 static int ocfs2_orphan_filldir(struct dir_context
*ctx
, const char *name
,
2035 int name_len
, loff_t pos
, u64 ino
,
2038 struct ocfs2_orphan_filldir_priv
*p
=
2039 container_of(ctx
, struct ocfs2_orphan_filldir_priv
, ctx
);
2042 if (name_len
== 1 && !strncmp(".", name
, 1))
2044 if (name_len
== 2 && !strncmp("..", name
, 2))
2047 /* do not include dio entry in case of orphan scan */
2048 if ((p
->orphan_reco_type
== ORPHAN_NO_NEED_TRUNCATE
) &&
2049 (!strncmp(name
, OCFS2_DIO_ORPHAN_PREFIX
,
2050 OCFS2_DIO_ORPHAN_PREFIX_LEN
)))
2053 /* Skip bad inodes so that recovery can continue */
2054 iter
= ocfs2_iget(p
->osb
, ino
,
2055 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
2059 if (!strncmp(name
, OCFS2_DIO_ORPHAN_PREFIX
,
2060 OCFS2_DIO_ORPHAN_PREFIX_LEN
))
2061 OCFS2_I(iter
)->ip_flags
|= OCFS2_INODE_DIO_ORPHAN_ENTRY
;
2063 /* Skip inodes which are already added to recover list, since dio may
2064 * happen concurrently with unlink/rename */
2065 if (OCFS2_I(iter
)->ip_next_orphan
) {
2070 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2071 /* No locking is required for the next_orphan queue as there
2072 * is only ever a single process doing orphan recovery. */
2073 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2079 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2081 struct inode
**head
,
2082 enum ocfs2_orphan_reco_type orphan_reco_type
)
2085 struct inode
*orphan_dir_inode
= NULL
;
2086 struct ocfs2_orphan_filldir_priv priv
= {
2087 .ctx
.actor
= ocfs2_orphan_filldir
,
2090 .orphan_reco_type
= orphan_reco_type
2093 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2094 ORPHAN_DIR_SYSTEM_INODE
,
2096 if (!orphan_dir_inode
) {
2102 inode_lock(orphan_dir_inode
);
2103 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2109 status
= ocfs2_dir_foreach(orphan_dir_inode
, &priv
.ctx
);
2118 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2120 inode_unlock(orphan_dir_inode
);
2121 iput(orphan_dir_inode
);
2125 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2130 spin_lock(&osb
->osb_lock
);
2131 ret
= !osb
->osb_orphan_wipes
[slot
];
2132 spin_unlock(&osb
->osb_lock
);
2136 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2139 spin_lock(&osb
->osb_lock
);
2140 /* Mark ourselves such that new processes in delete_inode()
2141 * know to quit early. */
2142 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2143 while (osb
->osb_orphan_wipes
[slot
]) {
2144 /* If any processes are already in the middle of an
2145 * orphan wipe on this dir, then we need to wait for
2147 spin_unlock(&osb
->osb_lock
);
2148 wait_event_interruptible(osb
->osb_wipe_event
,
2149 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2150 spin_lock(&osb
->osb_lock
);
2152 spin_unlock(&osb
->osb_lock
);
2155 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2158 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2162 * Orphan recovery. Each mounted node has it's own orphan dir which we
2163 * must run during recovery. Our strategy here is to build a list of
2164 * the inodes in the orphan dir and iget/iput them. The VFS does
2165 * (most) of the rest of the work.
2167 * Orphan recovery can happen at any time, not just mount so we have a
2168 * couple of extra considerations.
2170 * - We grab as many inodes as we can under the orphan dir lock -
2171 * doing iget() outside the orphan dir risks getting a reference on
2173 * - We must be sure not to deadlock with other processes on the
2174 * system wanting to run delete_inode(). This can happen when they go
2175 * to lock the orphan dir and the orphan recovery process attempts to
2176 * iget() inside the orphan dir lock. This can be avoided by
2177 * advertising our state to ocfs2_delete_inode().
2179 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2181 enum ocfs2_orphan_reco_type orphan_reco_type
)
2184 struct inode
*inode
= NULL
;
2186 struct ocfs2_inode_info
*oi
;
2187 struct buffer_head
*di_bh
= NULL
;
2188 struct ocfs2_dinode
*di
= NULL
;
2190 trace_ocfs2_recover_orphans(slot
);
2192 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2193 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
, orphan_reco_type
);
2194 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2196 /* Error here should be noted, but we want to continue with as
2197 * many queued inodes as we've got. */
2202 oi
= OCFS2_I(inode
);
2203 trace_ocfs2_recover_orphans_iput(
2204 (unsigned long long)oi
->ip_blkno
);
2206 iter
= oi
->ip_next_orphan
;
2207 oi
->ip_next_orphan
= NULL
;
2209 if (oi
->ip_flags
& OCFS2_INODE_DIO_ORPHAN_ENTRY
) {
2211 ret
= ocfs2_rw_lock(inode
, 1);
2217 * We need to take and drop the inode lock to
2218 * force read inode from disk.
2220 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2226 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2228 if (di
->i_flags
& cpu_to_le32(OCFS2_DIO_ORPHANED_FL
)) {
2229 ret
= ocfs2_truncate_file(inode
, di_bh
,
2230 i_size_read(inode
));
2237 ret
= ocfs2_del_inode_from_orphan(osb
, inode
,
2243 ocfs2_inode_unlock(inode
, 1);
2247 ocfs2_rw_unlock(inode
, 1);
2249 inode_unlock(inode
);
2251 /* clear dio flag in ocfs2_inode_info */
2252 oi
->ip_flags
&= ~OCFS2_INODE_DIO_ORPHAN_ENTRY
;
2254 spin_lock(&oi
->ip_lock
);
2255 /* Set the proper information to get us going into
2256 * ocfs2_delete_inode. */
2257 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2258 spin_unlock(&oi
->ip_lock
);
2268 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2270 /* This check is good because ocfs2 will wait on our recovery
2271 * thread before changing it to something other than MOUNTED
2273 wait_event(osb
->osb_mount_event
,
2274 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2275 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2276 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2278 /* If there's an error on mount, then we may never get to the
2279 * MOUNTED flag, but this is set right before
2280 * dismount_volume() so we can trust it. */
2281 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2282 trace_ocfs2_wait_on_mount(VOLUME_DISABLED
);
2283 mlog(0, "mount error, exiting!\n");
2290 static int ocfs2_commit_thread(void *arg
)
2293 struct ocfs2_super
*osb
= arg
;
2294 struct ocfs2_journal
*journal
= osb
->journal
;
2296 /* we can trust j_num_trans here because _should_stop() is only set in
2297 * shutdown and nobody other than ourselves should be able to start
2298 * transactions. committing on shutdown might take a few iterations
2299 * as final transactions put deleted inodes on the list */
2300 while (!(kthread_should_stop() &&
2301 atomic_read(&journal
->j_num_trans
) == 0)) {
2303 wait_event_interruptible(osb
->checkpoint_event
,
2304 atomic_read(&journal
->j_num_trans
)
2305 || kthread_should_stop());
2307 status
= ocfs2_commit_cache(osb
);
2309 static unsigned long abort_warn_time
;
2311 /* Warn about this once per minute */
2312 if (printk_timed_ratelimit(&abort_warn_time
, 60*HZ
))
2313 mlog(ML_ERROR
, "status = %d, journal is "
2314 "already aborted.\n", status
);
2316 * After ocfs2_commit_cache() fails, j_num_trans has a
2317 * non-zero value. Sleep here to avoid a busy-wait
2320 msleep_interruptible(1000);
2323 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2325 "commit_thread: %u transactions pending on "
2327 atomic_read(&journal
->j_num_trans
));
2334 /* Reads all the journal inodes without taking any cluster locks. Used
2335 * for hard readonly access to determine whether any journal requires
2336 * recovery. Also used to refresh the recovery generation numbers after
2337 * a journal has been recovered by another node.
2339 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2343 struct buffer_head
*di_bh
= NULL
;
2344 struct ocfs2_dinode
*di
;
2345 int journal_dirty
= 0;
2347 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2348 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2354 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2356 osb
->slot_recovery_generations
[slot
] =
2357 ocfs2_get_recovery_generation(di
);
2359 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2360 OCFS2_JOURNAL_DIRTY_FL
)