1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
34 * The max size that a non-root user is allowed to grow the pipe. Can
35 * be set by root in /proc/sys/fs/pipe-max-size
37 unsigned int pipe_max_size
= 1048576;
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40 * matches default values.
42 unsigned long pipe_user_pages_hard
;
43 unsigned long pipe_user_pages_soft
= PIPE_DEF_BUFFERS
* INR_OPEN_CUR
;
46 * We use head and tail indices that aren't masked off, except at the point of
47 * dereference, but rather they're allowed to wrap naturally. This means there
48 * isn't a dead spot in the buffer, but the ring has to be a power of two and
50 * -- David Howells 2019-09-23.
52 * Reads with count = 0 should always return 0.
53 * -- Julian Bradfield 1999-06-07.
55 * FIFOs and Pipes now generate SIGIO for both readers and writers.
56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58 * pipe_read & write cleanup
59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
62 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
65 mutex_lock_nested(&pipe
->mutex
, subclass
);
68 void pipe_lock(struct pipe_inode_info
*pipe
)
71 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
75 EXPORT_SYMBOL(pipe_lock
);
77 void pipe_unlock(struct pipe_inode_info
*pipe
)
80 mutex_unlock(&pipe
->mutex
);
82 EXPORT_SYMBOL(pipe_unlock
);
84 static inline void __pipe_lock(struct pipe_inode_info
*pipe
)
86 mutex_lock_nested(&pipe
->mutex
, I_MUTEX_PARENT
);
89 static inline void __pipe_unlock(struct pipe_inode_info
*pipe
)
91 mutex_unlock(&pipe
->mutex
);
94 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
95 struct pipe_inode_info
*pipe2
)
97 BUG_ON(pipe1
== pipe2
);
100 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
101 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
103 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
104 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info
*pipe
)
115 * Pipes are system-local resources, so sleeping on them
116 * is considered a noninteractive wait:
118 prepare_to_wait(&pipe
->rd_wait
, &rdwait
, TASK_INTERRUPTIBLE
);
119 prepare_to_wait(&pipe
->wr_wait
, &wrwait
, TASK_INTERRUPTIBLE
);
122 finish_wait(&pipe
->rd_wait
, &rdwait
);
123 finish_wait(&pipe
->wr_wait
, &wrwait
);
127 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
128 struct pipe_buffer
*buf
)
130 struct page
*page
= buf
->page
;
133 * If nobody else uses this page, and we don't already have a
134 * temporary page, let's keep track of it as a one-deep
135 * allocation cache. (Otherwise just release our reference to it)
137 if (page_count(page
) == 1 && !pipe
->tmp_page
)
138 pipe
->tmp_page
= page
;
143 static int anon_pipe_buf_steal(struct pipe_inode_info
*pipe
,
144 struct pipe_buffer
*buf
)
146 struct page
*page
= buf
->page
;
148 if (page_count(page
) == 1) {
149 memcg_kmem_uncharge(page
, 0);
150 __SetPageLocked(page
);
157 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
158 * @pipe: the pipe that the buffer belongs to
159 * @buf: the buffer to attempt to steal
162 * This function attempts to steal the &struct page attached to
163 * @buf. If successful, this function returns 0 and returns with
164 * the page locked. The caller may then reuse the page for whatever
165 * he wishes; the typical use is insertion into a different file
168 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
169 struct pipe_buffer
*buf
)
171 struct page
*page
= buf
->page
;
174 * A reference of one is golden, that means that the owner of this
175 * page is the only one holding a reference to it. lock the page
178 if (page_count(page
) == 1) {
185 EXPORT_SYMBOL(generic_pipe_buf_steal
);
188 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
189 * @pipe: the pipe that the buffer belongs to
190 * @buf: the buffer to get a reference to
193 * This function grabs an extra reference to @buf. It's used in
194 * in the tee() system call, when we duplicate the buffers in one
197 bool generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
199 return try_get_page(buf
->page
);
201 EXPORT_SYMBOL(generic_pipe_buf_get
);
204 * generic_pipe_buf_confirm - verify contents of the pipe buffer
205 * @info: the pipe that the buffer belongs to
206 * @buf: the buffer to confirm
209 * This function does nothing, because the generic pipe code uses
210 * pages that are always good when inserted into the pipe.
212 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
213 struct pipe_buffer
*buf
)
217 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
220 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
221 * @pipe: the pipe that the buffer belongs to
222 * @buf: the buffer to put a reference to
225 * This function releases a reference to @buf.
227 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
228 struct pipe_buffer
*buf
)
232 EXPORT_SYMBOL(generic_pipe_buf_release
);
234 /* New data written to a pipe may be appended to a buffer with this type. */
235 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
236 .confirm
= generic_pipe_buf_confirm
,
237 .release
= anon_pipe_buf_release
,
238 .steal
= anon_pipe_buf_steal
,
239 .get
= generic_pipe_buf_get
,
242 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops
= {
243 .confirm
= generic_pipe_buf_confirm
,
244 .release
= anon_pipe_buf_release
,
245 .steal
= anon_pipe_buf_steal
,
246 .get
= generic_pipe_buf_get
,
249 static const struct pipe_buf_operations packet_pipe_buf_ops
= {
250 .confirm
= generic_pipe_buf_confirm
,
251 .release
= anon_pipe_buf_release
,
252 .steal
= anon_pipe_buf_steal
,
253 .get
= generic_pipe_buf_get
,
257 * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
258 * @buf: the buffer to mark
261 * This function ensures that no future writes will be merged into the
262 * given &struct pipe_buffer. This is necessary when multiple pipe buffers
263 * share the same backing page.
265 void pipe_buf_mark_unmergeable(struct pipe_buffer
*buf
)
267 if (buf
->ops
== &anon_pipe_buf_ops
)
268 buf
->ops
= &anon_pipe_buf_nomerge_ops
;
271 static bool pipe_buf_can_merge(struct pipe_buffer
*buf
)
273 return buf
->ops
== &anon_pipe_buf_ops
;
276 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
277 static inline bool pipe_readable(const struct pipe_inode_info
*pipe
)
279 unsigned int head
= READ_ONCE(pipe
->head
);
280 unsigned int tail
= READ_ONCE(pipe
->tail
);
281 unsigned int writers
= READ_ONCE(pipe
->writers
);
283 return !pipe_empty(head
, tail
) || !writers
;
287 pipe_read(struct kiocb
*iocb
, struct iov_iter
*to
)
289 size_t total_len
= iov_iter_count(to
);
290 struct file
*filp
= iocb
->ki_filp
;
291 struct pipe_inode_info
*pipe
= filp
->private_data
;
292 bool was_full
, wake_next_reader
= false;
295 /* Null read succeeds. */
296 if (unlikely(total_len
== 0))
303 * We only wake up writers if the pipe was full when we started
304 * reading in order to avoid unnecessary wakeups.
306 * But when we do wake up writers, we do so using a sync wakeup
307 * (WF_SYNC), because we want them to get going and generate more
310 was_full
= pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
);
312 unsigned int head
= pipe
->head
;
313 unsigned int tail
= pipe
->tail
;
314 unsigned int mask
= pipe
->ring_size
- 1;
316 if (!pipe_empty(head
, tail
)) {
317 struct pipe_buffer
*buf
= &pipe
->bufs
[tail
& mask
];
318 size_t chars
= buf
->len
;
322 if (chars
> total_len
)
325 error
= pipe_buf_confirm(pipe
, buf
);
332 written
= copy_page_to_iter(buf
->page
, buf
->offset
, chars
, to
);
333 if (unlikely(written
< chars
)) {
339 buf
->offset
+= chars
;
342 /* Was it a packet buffer? Clean up and exit */
343 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
349 pipe_buf_release(pipe
, buf
);
350 spin_lock_irq(&pipe
->rd_wait
.lock
);
353 spin_unlock_irq(&pipe
->rd_wait
.lock
);
357 break; /* common path: read succeeded */
358 if (!pipe_empty(head
, tail
)) /* More to do? */
366 if (filp
->f_flags
& O_NONBLOCK
) {
373 * We only get here if we didn't actually read anything.
375 * However, we could have seen (and removed) a zero-sized
376 * pipe buffer, and might have made space in the buffers
379 * You can't make zero-sized pipe buffers by doing an empty
380 * write (not even in packet mode), but they can happen if
381 * the writer gets an EFAULT when trying to fill a buffer
382 * that already got allocated and inserted in the buffer
385 * So we still need to wake up any pending writers in the
386 * _very_ unlikely case that the pipe was full, but we got
389 if (unlikely(was_full
)) {
390 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
);
391 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
395 * But because we didn't read anything, at this point we can
396 * just return directly with -ERESTARTSYS if we're interrupted,
397 * since we've done any required wakeups and there's no need
398 * to mark anything accessed. And we've dropped the lock.
400 if (wait_event_interruptible_exclusive(pipe
->rd_wait
, pipe_readable(pipe
)) < 0)
404 was_full
= pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
);
405 wake_next_reader
= true;
407 if (pipe_empty(pipe
->head
, pipe
->tail
))
408 wake_next_reader
= false;
412 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
);
413 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
415 if (wake_next_reader
)
416 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
);
422 static inline int is_packetized(struct file
*file
)
424 return (file
->f_flags
& O_DIRECT
) != 0;
427 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
428 static inline bool pipe_writable(const struct pipe_inode_info
*pipe
)
430 unsigned int head
= READ_ONCE(pipe
->head
);
431 unsigned int tail
= READ_ONCE(pipe
->tail
);
432 unsigned int max_usage
= READ_ONCE(pipe
->max_usage
);
434 return !pipe_full(head
, tail
, max_usage
) ||
435 !READ_ONCE(pipe
->readers
);
439 pipe_write(struct kiocb
*iocb
, struct iov_iter
*from
)
441 struct file
*filp
= iocb
->ki_filp
;
442 struct pipe_inode_info
*pipe
= filp
->private_data
;
445 size_t total_len
= iov_iter_count(from
);
447 bool was_empty
= false;
448 bool wake_next_writer
= false;
450 /* Null write succeeds. */
451 if (unlikely(total_len
== 0))
456 if (!pipe
->readers
) {
457 send_sig(SIGPIPE
, current
, 0);
463 * Only wake up if the pipe started out empty, since
464 * otherwise there should be no readers waiting.
466 * If it wasn't empty we try to merge new data into
469 * That naturally merges small writes, but it also
470 * page-aligs the rest of the writes for large writes
471 * spanning multiple pages.
474 was_empty
= pipe_empty(head
, pipe
->tail
);
475 chars
= total_len
& (PAGE_SIZE
-1);
476 if (chars
&& !was_empty
) {
477 unsigned int mask
= pipe
->ring_size
- 1;
478 struct pipe_buffer
*buf
= &pipe
->bufs
[(head
- 1) & mask
];
479 int offset
= buf
->offset
+ buf
->len
;
481 if (pipe_buf_can_merge(buf
) && offset
+ chars
<= PAGE_SIZE
) {
482 ret
= pipe_buf_confirm(pipe
, buf
);
486 ret
= copy_page_from_iter(buf
->page
, offset
, chars
, from
);
487 if (unlikely(ret
< chars
)) {
493 if (!iov_iter_count(from
))
499 if (!pipe
->readers
) {
500 send_sig(SIGPIPE
, current
, 0);
507 if (!pipe_full(head
, pipe
->tail
, pipe
->max_usage
)) {
508 unsigned int mask
= pipe
->ring_size
- 1;
509 struct pipe_buffer
*buf
= &pipe
->bufs
[head
& mask
];
510 struct page
*page
= pipe
->tmp_page
;
514 page
= alloc_page(GFP_HIGHUSER
| __GFP_ACCOUNT
);
515 if (unlikely(!page
)) {
516 ret
= ret
? : -ENOMEM
;
519 pipe
->tmp_page
= page
;
522 /* Allocate a slot in the ring in advance and attach an
523 * empty buffer. If we fault or otherwise fail to use
524 * it, either the reader will consume it or it'll still
525 * be there for the next write.
527 spin_lock_irq(&pipe
->rd_wait
.lock
);
530 if (pipe_full(head
, pipe
->tail
, pipe
->max_usage
)) {
531 spin_unlock_irq(&pipe
->rd_wait
.lock
);
535 pipe
->head
= head
+ 1;
536 spin_unlock_irq(&pipe
->rd_wait
.lock
);
538 /* Insert it into the buffer array */
539 buf
= &pipe
->bufs
[head
& mask
];
541 buf
->ops
= &anon_pipe_buf_ops
;
545 if (is_packetized(filp
)) {
546 buf
->ops
= &packet_pipe_buf_ops
;
547 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
549 pipe
->tmp_page
= NULL
;
551 copied
= copy_page_from_iter(page
, 0, PAGE_SIZE
, from
);
552 if (unlikely(copied
< PAGE_SIZE
&& iov_iter_count(from
))) {
561 if (!iov_iter_count(from
))
565 if (!pipe_full(head
, pipe
->tail
, pipe
->max_usage
))
568 /* Wait for buffer space to become available. */
569 if (filp
->f_flags
& O_NONBLOCK
) {
574 if (signal_pending(current
)) {
581 * We're going to release the pipe lock and wait for more
582 * space. We wake up any readers if necessary, and then
583 * after waiting we need to re-check whether the pipe
584 * become empty while we dropped the lock.
588 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
);
589 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
591 wait_event_interruptible_exclusive(pipe
->wr_wait
, pipe_writable(pipe
));
593 was_empty
= pipe_empty(pipe
->head
, pipe
->tail
);
594 wake_next_writer
= true;
597 if (pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
))
598 wake_next_writer
= false;
602 * If we do do a wakeup event, we do a 'sync' wakeup, because we
603 * want the reader to start processing things asap, rather than
604 * leave the data pending.
606 * This is particularly important for small writes, because of
607 * how (for example) the GNU make jobserver uses small writes to
608 * wake up pending jobs
611 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
);
612 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
614 if (wake_next_writer
)
615 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
);
616 if (ret
> 0 && sb_start_write_trylock(file_inode(filp
)->i_sb
)) {
617 int err
= file_update_time(filp
);
620 sb_end_write(file_inode(filp
)->i_sb
);
625 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
627 struct pipe_inode_info
*pipe
= filp
->private_data
;
628 int count
, head
, tail
, mask
;
636 mask
= pipe
->ring_size
- 1;
638 while (tail
!= head
) {
639 count
+= pipe
->bufs
[tail
& mask
].len
;
644 return put_user(count
, (int __user
*)arg
);
650 /* No kernel lock held - fine */
652 pipe_poll(struct file
*filp
, poll_table
*wait
)
655 struct pipe_inode_info
*pipe
= filp
->private_data
;
656 unsigned int head
, tail
;
659 * Reading pipe state only -- no need for acquiring the semaphore.
661 * But because this is racy, the code has to add the
662 * entry to the poll table _first_ ..
664 if (filp
->f_mode
& FMODE_READ
)
665 poll_wait(filp
, &pipe
->rd_wait
, wait
);
666 if (filp
->f_mode
& FMODE_WRITE
)
667 poll_wait(filp
, &pipe
->wr_wait
, wait
);
670 * .. and only then can you do the racy tests. That way,
671 * if something changes and you got it wrong, the poll
672 * table entry will wake you up and fix it.
674 head
= READ_ONCE(pipe
->head
);
675 tail
= READ_ONCE(pipe
->tail
);
678 if (filp
->f_mode
& FMODE_READ
) {
679 if (!pipe_empty(head
, tail
))
680 mask
|= EPOLLIN
| EPOLLRDNORM
;
681 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
685 if (filp
->f_mode
& FMODE_WRITE
) {
686 if (!pipe_full(head
, tail
, pipe
->max_usage
))
687 mask
|= EPOLLOUT
| EPOLLWRNORM
;
689 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
690 * behave exactly like pipes for poll().
699 static void put_pipe_info(struct inode
*inode
, struct pipe_inode_info
*pipe
)
703 spin_lock(&inode
->i_lock
);
704 if (!--pipe
->files
) {
705 inode
->i_pipe
= NULL
;
708 spin_unlock(&inode
->i_lock
);
711 free_pipe_info(pipe
);
715 pipe_release(struct inode
*inode
, struct file
*file
)
717 struct pipe_inode_info
*pipe
= file
->private_data
;
720 if (file
->f_mode
& FMODE_READ
)
722 if (file
->f_mode
& FMODE_WRITE
)
725 if (pipe
->readers
|| pipe
->writers
) {
726 wake_up_interruptible_sync_poll(&pipe
->rd_wait
, EPOLLIN
| EPOLLRDNORM
| EPOLLERR
| EPOLLHUP
);
727 wake_up_interruptible_sync_poll(&pipe
->wr_wait
, EPOLLOUT
| EPOLLWRNORM
| EPOLLERR
| EPOLLHUP
);
728 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
729 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
733 put_pipe_info(inode
, pipe
);
738 pipe_fasync(int fd
, struct file
*filp
, int on
)
740 struct pipe_inode_info
*pipe
= filp
->private_data
;
744 if (filp
->f_mode
& FMODE_READ
)
745 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
746 if ((filp
->f_mode
& FMODE_WRITE
) && retval
>= 0) {
747 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
748 if (retval
< 0 && (filp
->f_mode
& FMODE_READ
))
749 /* this can happen only if on == T */
750 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
756 static unsigned long account_pipe_buffers(struct user_struct
*user
,
757 unsigned long old
, unsigned long new)
759 return atomic_long_add_return(new - old
, &user
->pipe_bufs
);
762 static bool too_many_pipe_buffers_soft(unsigned long user_bufs
)
764 unsigned long soft_limit
= READ_ONCE(pipe_user_pages_soft
);
766 return soft_limit
&& user_bufs
> soft_limit
;
769 static bool too_many_pipe_buffers_hard(unsigned long user_bufs
)
771 unsigned long hard_limit
= READ_ONCE(pipe_user_pages_hard
);
773 return hard_limit
&& user_bufs
> hard_limit
;
776 static bool is_unprivileged_user(void)
778 return !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
);
781 struct pipe_inode_info
*alloc_pipe_info(void)
783 struct pipe_inode_info
*pipe
;
784 unsigned long pipe_bufs
= PIPE_DEF_BUFFERS
;
785 struct user_struct
*user
= get_current_user();
786 unsigned long user_bufs
;
787 unsigned int max_size
= READ_ONCE(pipe_max_size
);
789 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL_ACCOUNT
);
793 if (pipe_bufs
* PAGE_SIZE
> max_size
&& !capable(CAP_SYS_RESOURCE
))
794 pipe_bufs
= max_size
>> PAGE_SHIFT
;
796 user_bufs
= account_pipe_buffers(user
, 0, pipe_bufs
);
798 if (too_many_pipe_buffers_soft(user_bufs
) && is_unprivileged_user()) {
799 user_bufs
= account_pipe_buffers(user
, pipe_bufs
, 1);
803 if (too_many_pipe_buffers_hard(user_bufs
) && is_unprivileged_user())
804 goto out_revert_acct
;
806 pipe
->bufs
= kcalloc(pipe_bufs
, sizeof(struct pipe_buffer
),
810 init_waitqueue_head(&pipe
->rd_wait
);
811 init_waitqueue_head(&pipe
->wr_wait
);
812 pipe
->r_counter
= pipe
->w_counter
= 1;
813 pipe
->max_usage
= pipe_bufs
;
814 pipe
->ring_size
= pipe_bufs
;
816 mutex_init(&pipe
->mutex
);
821 (void) account_pipe_buffers(user
, pipe_bufs
, 0);
828 void free_pipe_info(struct pipe_inode_info
*pipe
)
832 (void) account_pipe_buffers(pipe
->user
, pipe
->ring_size
, 0);
833 free_uid(pipe
->user
);
834 for (i
= 0; i
< pipe
->ring_size
; i
++) {
835 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
837 pipe_buf_release(pipe
, buf
);
840 __free_page(pipe
->tmp_page
);
845 static struct vfsmount
*pipe_mnt __read_mostly
;
848 * pipefs_dname() is called from d_path().
850 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
852 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
853 d_inode(dentry
)->i_ino
);
856 static const struct dentry_operations pipefs_dentry_operations
= {
857 .d_dname
= pipefs_dname
,
860 static struct inode
* get_pipe_inode(void)
862 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
863 struct pipe_inode_info
*pipe
;
868 inode
->i_ino
= get_next_ino();
870 pipe
= alloc_pipe_info();
874 inode
->i_pipe
= pipe
;
876 pipe
->readers
= pipe
->writers
= 1;
877 inode
->i_fop
= &pipefifo_fops
;
880 * Mark the inode dirty from the very beginning,
881 * that way it will never be moved to the dirty
882 * list because "mark_inode_dirty()" will think
883 * that it already _is_ on the dirty list.
885 inode
->i_state
= I_DIRTY
;
886 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
887 inode
->i_uid
= current_fsuid();
888 inode
->i_gid
= current_fsgid();
889 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
900 int create_pipe_files(struct file
**res
, int flags
)
902 struct inode
*inode
= get_pipe_inode();
908 f
= alloc_file_pseudo(inode
, pipe_mnt
, "",
909 O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
)),
912 free_pipe_info(inode
->i_pipe
);
917 f
->private_data
= inode
->i_pipe
;
919 res
[0] = alloc_file_clone(f
, O_RDONLY
| (flags
& O_NONBLOCK
),
921 if (IS_ERR(res
[0])) {
922 put_pipe_info(inode
, inode
->i_pipe
);
924 return PTR_ERR(res
[0]);
926 res
[0]->private_data
= inode
->i_pipe
;
928 stream_open(inode
, res
[0]);
929 stream_open(inode
, res
[1]);
933 static int __do_pipe_flags(int *fd
, struct file
**files
, int flags
)
938 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
))
941 error
= create_pipe_files(files
, flags
);
945 error
= get_unused_fd_flags(flags
);
950 error
= get_unused_fd_flags(flags
);
955 audit_fd_pair(fdr
, fdw
);
968 int do_pipe_flags(int *fd
, int flags
)
970 struct file
*files
[2];
971 int error
= __do_pipe_flags(fd
, files
, flags
);
973 fd_install(fd
[0], files
[0]);
974 fd_install(fd
[1], files
[1]);
980 * sys_pipe() is the normal C calling standard for creating
981 * a pipe. It's not the way Unix traditionally does this, though.
983 static int do_pipe2(int __user
*fildes
, int flags
)
985 struct file
*files
[2];
989 error
= __do_pipe_flags(fd
, files
, flags
);
991 if (unlikely(copy_to_user(fildes
, fd
, sizeof(fd
)))) {
994 put_unused_fd(fd
[0]);
995 put_unused_fd(fd
[1]);
998 fd_install(fd
[0], files
[0]);
999 fd_install(fd
[1], files
[1]);
1005 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
1007 return do_pipe2(fildes
, flags
);
1010 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
1012 return do_pipe2(fildes
, 0);
1015 static int wait_for_partner(struct pipe_inode_info
*pipe
, unsigned int *cnt
)
1019 while (cur
== *cnt
) {
1021 if (signal_pending(current
))
1024 return cur
== *cnt
? -ERESTARTSYS
: 0;
1027 static void wake_up_partner(struct pipe_inode_info
*pipe
)
1029 wake_up_interruptible(&pipe
->rd_wait
);
1030 wake_up_interruptible(&pipe
->wr_wait
);
1033 static int fifo_open(struct inode
*inode
, struct file
*filp
)
1035 struct pipe_inode_info
*pipe
;
1036 bool is_pipe
= inode
->i_sb
->s_magic
== PIPEFS_MAGIC
;
1039 filp
->f_version
= 0;
1041 spin_lock(&inode
->i_lock
);
1042 if (inode
->i_pipe
) {
1043 pipe
= inode
->i_pipe
;
1045 spin_unlock(&inode
->i_lock
);
1047 spin_unlock(&inode
->i_lock
);
1048 pipe
= alloc_pipe_info();
1052 spin_lock(&inode
->i_lock
);
1053 if (unlikely(inode
->i_pipe
)) {
1054 inode
->i_pipe
->files
++;
1055 spin_unlock(&inode
->i_lock
);
1056 free_pipe_info(pipe
);
1057 pipe
= inode
->i_pipe
;
1059 inode
->i_pipe
= pipe
;
1060 spin_unlock(&inode
->i_lock
);
1063 filp
->private_data
= pipe
;
1064 /* OK, we have a pipe and it's pinned down */
1068 /* We can only do regular read/write on fifos */
1069 stream_open(inode
, filp
);
1071 switch (filp
->f_mode
& (FMODE_READ
| FMODE_WRITE
)) {
1075 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1076 * opened, even when there is no process writing the FIFO.
1079 if (pipe
->readers
++ == 0)
1080 wake_up_partner(pipe
);
1082 if (!is_pipe
&& !pipe
->writers
) {
1083 if ((filp
->f_flags
& O_NONBLOCK
)) {
1084 /* suppress EPOLLHUP until we have
1086 filp
->f_version
= pipe
->w_counter
;
1088 if (wait_for_partner(pipe
, &pipe
->w_counter
))
1097 * POSIX.1 says that O_NONBLOCK means return -1 with
1098 * errno=ENXIO when there is no process reading the FIFO.
1101 if (!is_pipe
&& (filp
->f_flags
& O_NONBLOCK
) && !pipe
->readers
)
1105 if (!pipe
->writers
++)
1106 wake_up_partner(pipe
);
1108 if (!is_pipe
&& !pipe
->readers
) {
1109 if (wait_for_partner(pipe
, &pipe
->r_counter
))
1114 case FMODE_READ
| FMODE_WRITE
:
1117 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1118 * This implementation will NEVER block on a O_RDWR open, since
1119 * the process can at least talk to itself.
1126 if (pipe
->readers
== 1 || pipe
->writers
== 1)
1127 wake_up_partner(pipe
);
1136 __pipe_unlock(pipe
);
1140 if (!--pipe
->readers
)
1141 wake_up_interruptible(&pipe
->wr_wait
);
1146 if (!--pipe
->writers
)
1147 wake_up_interruptible(&pipe
->rd_wait
);
1152 __pipe_unlock(pipe
);
1154 put_pipe_info(inode
, pipe
);
1158 const struct file_operations pipefifo_fops
= {
1160 .llseek
= no_llseek
,
1161 .read_iter
= pipe_read
,
1162 .write_iter
= pipe_write
,
1164 .unlocked_ioctl
= pipe_ioctl
,
1165 .release
= pipe_release
,
1166 .fasync
= pipe_fasync
,
1170 * Currently we rely on the pipe array holding a power-of-2 number
1171 * of pages. Returns 0 on error.
1173 unsigned int round_pipe_size(unsigned long size
)
1175 if (size
> (1U << 31))
1178 /* Minimum pipe size, as required by POSIX */
1179 if (size
< PAGE_SIZE
)
1182 return roundup_pow_of_two(size
);
1186 * Allocate a new array of pipe buffers and copy the info over. Returns the
1187 * pipe size if successful, or return -ERROR on error.
1189 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long arg
)
1191 struct pipe_buffer
*bufs
;
1192 unsigned int size
, nr_slots
, head
, tail
, mask
, n
;
1193 unsigned long user_bufs
;
1196 size
= round_pipe_size(arg
);
1197 nr_slots
= size
>> PAGE_SHIFT
;
1203 * If trying to increase the pipe capacity, check that an
1204 * unprivileged user is not trying to exceed various limits
1205 * (soft limit check here, hard limit check just below).
1206 * Decreasing the pipe capacity is always permitted, even
1207 * if the user is currently over a limit.
1209 if (nr_slots
> pipe
->ring_size
&&
1210 size
> pipe_max_size
&& !capable(CAP_SYS_RESOURCE
))
1213 user_bufs
= account_pipe_buffers(pipe
->user
, pipe
->ring_size
, nr_slots
);
1215 if (nr_slots
> pipe
->ring_size
&&
1216 (too_many_pipe_buffers_hard(user_bufs
) ||
1217 too_many_pipe_buffers_soft(user_bufs
)) &&
1218 is_unprivileged_user()) {
1220 goto out_revert_acct
;
1224 * We can shrink the pipe, if arg is greater than the ring occupancy.
1225 * Since we don't expect a lot of shrink+grow operations, just free and
1226 * allocate again like we would do for growing. If the pipe currently
1227 * contains more buffers than arg, then return busy.
1229 mask
= pipe
->ring_size
- 1;
1232 n
= pipe_occupancy(pipe
->head
, pipe
->tail
);
1235 goto out_revert_acct
;
1238 bufs
= kcalloc(nr_slots
, sizeof(*bufs
),
1239 GFP_KERNEL_ACCOUNT
| __GFP_NOWARN
);
1240 if (unlikely(!bufs
)) {
1242 goto out_revert_acct
;
1246 * The pipe array wraps around, so just start the new one at zero
1247 * and adjust the indices.
1250 unsigned int h
= head
& mask
;
1251 unsigned int t
= tail
& mask
;
1253 memcpy(bufs
, pipe
->bufs
+ t
,
1254 n
* sizeof(struct pipe_buffer
));
1256 unsigned int tsize
= pipe
->ring_size
- t
;
1258 memcpy(bufs
+ tsize
, pipe
->bufs
,
1259 h
* sizeof(struct pipe_buffer
));
1260 memcpy(bufs
, pipe
->bufs
+ t
,
1261 tsize
* sizeof(struct pipe_buffer
));
1270 pipe
->ring_size
= nr_slots
;
1271 pipe
->max_usage
= nr_slots
;
1274 wake_up_interruptible_all(&pipe
->rd_wait
);
1275 wake_up_interruptible_all(&pipe
->wr_wait
);
1276 return pipe
->max_usage
* PAGE_SIZE
;
1279 (void) account_pipe_buffers(pipe
->user
, nr_slots
, pipe
->ring_size
);
1284 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1285 * location, so checking ->i_pipe is not enough to verify that this is a
1288 struct pipe_inode_info
*get_pipe_info(struct file
*file
)
1290 return file
->f_op
== &pipefifo_fops
? file
->private_data
: NULL
;
1293 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1295 struct pipe_inode_info
*pipe
;
1298 pipe
= get_pipe_info(file
);
1306 ret
= pipe_set_size(pipe
, arg
);
1309 ret
= pipe
->max_usage
* PAGE_SIZE
;
1316 __pipe_unlock(pipe
);
1320 static const struct super_operations pipefs_ops
= {
1321 .destroy_inode
= free_inode_nonrcu
,
1322 .statfs
= simple_statfs
,
1326 * pipefs should _never_ be mounted by userland - too much of security hassle,
1327 * no real gain from having the whole whorehouse mounted. So we don't need
1328 * any operations on the root directory. However, we need a non-trivial
1329 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1332 static int pipefs_init_fs_context(struct fs_context
*fc
)
1334 struct pseudo_fs_context
*ctx
= init_pseudo(fc
, PIPEFS_MAGIC
);
1337 ctx
->ops
= &pipefs_ops
;
1338 ctx
->dops
= &pipefs_dentry_operations
;
1342 static struct file_system_type pipe_fs_type
= {
1344 .init_fs_context
= pipefs_init_fs_context
,
1345 .kill_sb
= kill_anon_super
,
1348 static int __init
init_pipe_fs(void)
1350 int err
= register_filesystem(&pipe_fs_type
);
1353 pipe_mnt
= kern_mount(&pipe_fs_type
);
1354 if (IS_ERR(pipe_mnt
)) {
1355 err
= PTR_ERR(pipe_mnt
);
1356 unregister_filesystem(&pipe_fs_type
);
1362 fs_initcall(init_pipe_fs
);