1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements VFS file and inode operations for regular files, device
13 * nodes and symlinks as well as address space operations.
15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16 * the page is dirty and is used for optimization purposes - dirty pages are
17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18 * the budget for this page. The @PG_checked flag is set if full budgeting is
19 * required for the page e.g., when it corresponds to a file hole or it is
20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21 * it is OK to fail in this function, and the budget is released in
22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23 * information about how the page was budgeted, to make it possible to release
24 * the budget properly.
26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27 * implement. However, this is not true for 'ubifs_writepage()', which may be
28 * called with @i_mutex unlocked. For example, when flusher thread is doing
29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
34 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
37 * set as well. However, UBIFS disables readahead.
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
45 static int read_block(struct inode
*inode
, void *addr
, unsigned int block
,
46 struct ubifs_data_node
*dn
)
48 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
49 int err
, len
, out_len
;
53 data_key_init(c
, &key
, inode
->i_ino
, block
);
54 err
= ubifs_tnc_lookup(c
, &key
, dn
);
57 /* Not found, so it must be a hole */
58 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
62 ubifs_assert(c
, le64_to_cpu(dn
->ch
.sqnum
) >
63 ubifs_inode(inode
)->creat_sqnum
);
64 len
= le32_to_cpu(dn
->size
);
65 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
68 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
70 if (IS_ENCRYPTED(inode
)) {
71 err
= ubifs_decrypt(inode
, dn
, &dlen
, block
);
76 out_len
= UBIFS_BLOCK_SIZE
;
77 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
78 le16_to_cpu(dn
->compr_type
));
79 if (err
|| len
!= out_len
)
83 * Data length can be less than a full block, even for blocks that are
84 * not the last in the file (e.g., as a result of making a hole and
85 * appending data). Ensure that the remainder is zeroed out.
87 if (len
< UBIFS_BLOCK_SIZE
)
88 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
93 ubifs_err(c
, "bad data node (block %u, inode %lu)",
95 ubifs_dump_node(c
, dn
);
99 static int do_readpage(struct page
*page
)
103 unsigned int block
, beyond
;
104 struct ubifs_data_node
*dn
;
105 struct inode
*inode
= page
->mapping
->host
;
106 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
107 loff_t i_size
= i_size_read(inode
);
109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
111 ubifs_assert(c
, !PageChecked(page
));
112 ubifs_assert(c
, !PagePrivate(page
));
116 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
117 beyond
= (i_size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
118 if (block
>= beyond
) {
119 /* Reading beyond inode */
120 SetPageChecked(page
);
121 memset(addr
, 0, PAGE_SIZE
);
125 dn
= kmalloc(UBIFS_MAX_DATA_NODE_SZ
, GFP_NOFS
);
135 if (block
>= beyond
) {
136 /* Reading beyond inode */
138 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
140 ret
= read_block(inode
, addr
, block
, dn
);
145 } else if (block
+ 1 == beyond
) {
146 int dlen
= le32_to_cpu(dn
->size
);
147 int ilen
= i_size
& (UBIFS_BLOCK_SIZE
- 1);
149 if (ilen
&& ilen
< dlen
)
150 memset(addr
+ ilen
, 0, dlen
- ilen
);
153 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
156 addr
+= UBIFS_BLOCK_SIZE
;
159 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
160 if (err
== -ENOENT
) {
161 /* Not found, so it must be a hole */
162 SetPageChecked(page
);
166 ubifs_err(c
, "cannot read page %lu of inode %lu, error %d",
167 page
->index
, inode
->i_ino
, err
);
174 SetPageUptodate(page
);
175 ClearPageError(page
);
176 flush_dcache_page(page
);
182 ClearPageUptodate(page
);
184 flush_dcache_page(page
);
190 * release_new_page_budget - release budget of a new page.
191 * @c: UBIFS file-system description object
193 * This is a helper function which releases budget corresponding to the budget
194 * of one new page of data.
196 static void release_new_page_budget(struct ubifs_info
*c
)
198 struct ubifs_budget_req req
= { .recalculate
= 1, .new_page
= 1 };
200 ubifs_release_budget(c
, &req
);
204 * release_existing_page_budget - release budget of an existing page.
205 * @c: UBIFS file-system description object
207 * This is a helper function which releases budget corresponding to the budget
208 * of changing one one page of data which already exists on the flash media.
210 static void release_existing_page_budget(struct ubifs_info
*c
)
212 struct ubifs_budget_req req
= { .dd_growth
= c
->bi
.page_budget
};
214 ubifs_release_budget(c
, &req
);
217 static int write_begin_slow(struct address_space
*mapping
,
218 loff_t pos
, unsigned len
, struct page
**pagep
,
221 struct inode
*inode
= mapping
->host
;
222 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
223 pgoff_t index
= pos
>> PAGE_SHIFT
;
224 struct ubifs_budget_req req
= { .new_page
= 1 };
225 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
228 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
229 inode
->i_ino
, pos
, len
, inode
->i_size
);
232 * At the slow path we have to budget before locking the page, because
233 * budgeting may force write-back, which would wait on locked pages and
234 * deadlock if we had the page locked. At this point we do not know
235 * anything about the page, so assume that this is a new page which is
236 * written to a hole. This corresponds to largest budget. Later the
237 * budget will be amended if this is not true.
240 /* We are appending data, budget for inode change */
243 err
= ubifs_budget_space(c
, &req
);
247 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
248 if (unlikely(!page
)) {
249 ubifs_release_budget(c
, &req
);
253 if (!PageUptodate(page
)) {
254 if (!(pos
& ~PAGE_MASK
) && len
== PAGE_SIZE
)
255 SetPageChecked(page
);
257 err
= do_readpage(page
);
261 ubifs_release_budget(c
, &req
);
266 SetPageUptodate(page
);
267 ClearPageError(page
);
270 if (PagePrivate(page
))
272 * The page is dirty, which means it was budgeted twice:
273 * o first time the budget was allocated by the task which
274 * made the page dirty and set the PG_private flag;
275 * o and then we budgeted for it for the second time at the
276 * very beginning of this function.
278 * So what we have to do is to release the page budget we
281 release_new_page_budget(c
);
282 else if (!PageChecked(page
))
284 * We are changing a page which already exists on the media.
285 * This means that changing the page does not make the amount
286 * of indexing information larger, and this part of the budget
287 * which we have already acquired may be released.
289 ubifs_convert_page_budget(c
);
292 struct ubifs_inode
*ui
= ubifs_inode(inode
);
295 * 'ubifs_write_end()' is optimized from the fast-path part of
296 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
297 * if data is appended.
299 mutex_lock(&ui
->ui_mutex
);
302 * The inode is dirty already, so we may free the
303 * budget we allocated.
305 ubifs_release_dirty_inode_budget(c
, ui
);
313 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
314 * @c: UBIFS file-system description object
315 * @page: page to allocate budget for
316 * @ui: UBIFS inode object the page belongs to
317 * @appending: non-zero if the page is appended
319 * This is a helper function for 'ubifs_write_begin()' which allocates budget
320 * for the operation. The budget is allocated differently depending on whether
321 * this is appending, whether the page is dirty or not, and so on. This
322 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
323 * in case of success and %-ENOSPC in case of failure.
325 static int allocate_budget(struct ubifs_info
*c
, struct page
*page
,
326 struct ubifs_inode
*ui
, int appending
)
328 struct ubifs_budget_req req
= { .fast
= 1 };
330 if (PagePrivate(page
)) {
333 * The page is dirty and we are not appending, which
334 * means no budget is needed at all.
338 mutex_lock(&ui
->ui_mutex
);
341 * The page is dirty and we are appending, so the inode
342 * has to be marked as dirty. However, it is already
343 * dirty, so we do not need any budget. We may return,
344 * but @ui->ui_mutex hast to be left locked because we
345 * should prevent write-back from flushing the inode
346 * and freeing the budget. The lock will be released in
347 * 'ubifs_write_end()'.
352 * The page is dirty, we are appending, the inode is clean, so
353 * we need to budget the inode change.
357 if (PageChecked(page
))
359 * The page corresponds to a hole and does not
360 * exist on the media. So changing it makes
361 * make the amount of indexing information
362 * larger, and we have to budget for a new
368 * Not a hole, the change will not add any new
369 * indexing information, budget for page
372 req
.dirtied_page
= 1;
375 mutex_lock(&ui
->ui_mutex
);
378 * The inode is clean but we will have to mark
379 * it as dirty because we are appending. This
386 return ubifs_budget_space(c
, &req
);
390 * This function is called when a page of data is going to be written. Since
391 * the page of data will not necessarily go to the flash straight away, UBIFS
392 * has to reserve space on the media for it, which is done by means of
395 * This is the hot-path of the file-system and we are trying to optimize it as
396 * much as possible. For this reasons it is split on 2 parts - slow and fast.
398 * There many budgeting cases:
399 * o a new page is appended - we have to budget for a new page and for
400 * changing the inode; however, if the inode is already dirty, there is
401 * no need to budget for it;
402 * o an existing clean page is changed - we have budget for it; if the page
403 * does not exist on the media (a hole), we have to budget for a new
404 * page; otherwise, we may budget for changing an existing page; the
405 * difference between these cases is that changing an existing page does
406 * not introduce anything new to the FS indexing information, so it does
407 * not grow, and smaller budget is acquired in this case;
408 * o an existing dirty page is changed - no need to budget at all, because
409 * the page budget has been acquired by earlier, when the page has been
412 * UBIFS budgeting sub-system may force write-back if it thinks there is no
413 * space to reserve. This imposes some locking restrictions and makes it
414 * impossible to take into account the above cases, and makes it impossible to
415 * optimize budgeting.
417 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
418 * there is a plenty of flash space and the budget will be acquired quickly,
419 * without forcing write-back. The slow path does not make this assumption.
421 static int ubifs_write_begin(struct file
*file
, struct address_space
*mapping
,
422 loff_t pos
, unsigned len
, unsigned flags
,
423 struct page
**pagep
, void **fsdata
)
425 struct inode
*inode
= mapping
->host
;
426 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
427 struct ubifs_inode
*ui
= ubifs_inode(inode
);
428 pgoff_t index
= pos
>> PAGE_SHIFT
;
429 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
430 int skipped_read
= 0;
433 ubifs_assert(c
, ubifs_inode(inode
)->ui_size
== inode
->i_size
);
434 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
436 if (unlikely(c
->ro_error
))
439 /* Try out the fast-path part first */
440 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
444 if (!PageUptodate(page
)) {
445 /* The page is not loaded from the flash */
446 if (!(pos
& ~PAGE_MASK
) && len
== PAGE_SIZE
) {
448 * We change whole page so no need to load it. But we
449 * do not know whether this page exists on the media or
450 * not, so we assume the latter because it requires
451 * larger budget. The assumption is that it is better
452 * to budget a bit more than to read the page from the
453 * media. Thus, we are setting the @PG_checked flag
456 SetPageChecked(page
);
459 err
= do_readpage(page
);
467 SetPageUptodate(page
);
468 ClearPageError(page
);
471 err
= allocate_budget(c
, page
, ui
, appending
);
473 ubifs_assert(c
, err
== -ENOSPC
);
475 * If we skipped reading the page because we were going to
476 * write all of it, then it is not up to date.
479 ClearPageChecked(page
);
480 ClearPageUptodate(page
);
483 * Budgeting failed which means it would have to force
484 * write-back but didn't, because we set the @fast flag in the
485 * request. Write-back cannot be done now, while we have the
486 * page locked, because it would deadlock. Unlock and free
487 * everything and fall-back to slow-path.
490 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
491 mutex_unlock(&ui
->ui_mutex
);
496 return write_begin_slow(mapping
, pos
, len
, pagep
, flags
);
500 * Whee, we acquired budgeting quickly - without involving
501 * garbage-collection, committing or forcing write-back. We return
502 * with @ui->ui_mutex locked if we are appending pages, and unlocked
503 * otherwise. This is an optimization (slightly hacky though).
511 * cancel_budget - cancel budget.
512 * @c: UBIFS file-system description object
513 * @page: page to cancel budget for
514 * @ui: UBIFS inode object the page belongs to
515 * @appending: non-zero if the page is appended
517 * This is a helper function for a page write operation. It unlocks the
518 * @ui->ui_mutex in case of appending.
520 static void cancel_budget(struct ubifs_info
*c
, struct page
*page
,
521 struct ubifs_inode
*ui
, int appending
)
525 ubifs_release_dirty_inode_budget(c
, ui
);
526 mutex_unlock(&ui
->ui_mutex
);
528 if (!PagePrivate(page
)) {
529 if (PageChecked(page
))
530 release_new_page_budget(c
);
532 release_existing_page_budget(c
);
536 static int ubifs_write_end(struct file
*file
, struct address_space
*mapping
,
537 loff_t pos
, unsigned len
, unsigned copied
,
538 struct page
*page
, void *fsdata
)
540 struct inode
*inode
= mapping
->host
;
541 struct ubifs_inode
*ui
= ubifs_inode(inode
);
542 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
543 loff_t end_pos
= pos
+ len
;
544 int appending
= !!(end_pos
> inode
->i_size
);
546 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
547 inode
->i_ino
, pos
, page
->index
, len
, copied
, inode
->i_size
);
549 if (unlikely(copied
< len
&& len
== PAGE_SIZE
)) {
551 * VFS copied less data to the page that it intended and
552 * declared in its '->write_begin()' call via the @len
553 * argument. If the page was not up-to-date, and @len was
554 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
555 * not load it from the media (for optimization reasons). This
556 * means that part of the page contains garbage. So read the
559 dbg_gen("copied %d instead of %d, read page and repeat",
561 cancel_budget(c
, page
, ui
, appending
);
562 ClearPageChecked(page
);
565 * Return 0 to force VFS to repeat the whole operation, or the
566 * error code if 'do_readpage()' fails.
568 copied
= do_readpage(page
);
572 if (!PagePrivate(page
)) {
573 SetPagePrivate(page
);
574 atomic_long_inc(&c
->dirty_pg_cnt
);
575 __set_page_dirty_nobuffers(page
);
579 i_size_write(inode
, end_pos
);
580 ui
->ui_size
= end_pos
;
582 * Note, we do not set @I_DIRTY_PAGES (which means that the
583 * inode has dirty pages), this has been done in
584 * '__set_page_dirty_nobuffers()'.
586 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
587 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
588 mutex_unlock(&ui
->ui_mutex
);
598 * populate_page - copy data nodes into a page for bulk-read.
599 * @c: UBIFS file-system description object
601 * @bu: bulk-read information
602 * @n: next zbranch slot
604 * This function returns %0 on success and a negative error code on failure.
606 static int populate_page(struct ubifs_info
*c
, struct page
*page
,
607 struct bu_info
*bu
, int *n
)
609 int i
= 0, nn
= *n
, offs
= bu
->zbranch
[0].offs
, hole
= 0, read
= 0;
610 struct inode
*inode
= page
->mapping
->host
;
611 loff_t i_size
= i_size_read(inode
);
612 unsigned int page_block
;
616 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
617 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
619 addr
= zaddr
= kmap(page
);
621 end_index
= (i_size
- 1) >> PAGE_SHIFT
;
622 if (!i_size
|| page
->index
> end_index
) {
624 memset(addr
, 0, PAGE_SIZE
);
628 page_block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
630 int err
, len
, out_len
, dlen
;
634 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
635 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) == page_block
) {
636 struct ubifs_data_node
*dn
;
638 dn
= bu
->buf
+ (bu
->zbranch
[nn
].offs
- offs
);
640 ubifs_assert(c
, le64_to_cpu(dn
->ch
.sqnum
) >
641 ubifs_inode(inode
)->creat_sqnum
);
643 len
= le32_to_cpu(dn
->size
);
644 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
647 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
648 out_len
= UBIFS_BLOCK_SIZE
;
650 if (IS_ENCRYPTED(inode
)) {
651 err
= ubifs_decrypt(inode
, dn
, &dlen
, page_block
);
656 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
657 le16_to_cpu(dn
->compr_type
));
658 if (err
|| len
!= out_len
)
661 if (len
< UBIFS_BLOCK_SIZE
)
662 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
665 read
= (i
<< UBIFS_BLOCK_SHIFT
) + len
;
666 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) < page_block
) {
671 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
673 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
675 addr
+= UBIFS_BLOCK_SIZE
;
679 if (end_index
== page
->index
) {
680 int len
= i_size
& (PAGE_SIZE
- 1);
682 if (len
&& len
< read
)
683 memset(zaddr
+ len
, 0, read
- len
);
688 SetPageChecked(page
);
692 SetPageUptodate(page
);
693 ClearPageError(page
);
694 flush_dcache_page(page
);
700 ClearPageUptodate(page
);
702 flush_dcache_page(page
);
704 ubifs_err(c
, "bad data node (block %u, inode %lu)",
705 page_block
, inode
->i_ino
);
710 * ubifs_do_bulk_read - do bulk-read.
711 * @c: UBIFS file-system description object
712 * @bu: bulk-read information
713 * @page1: first page to read
715 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
717 static int ubifs_do_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
,
720 pgoff_t offset
= page1
->index
, end_index
;
721 struct address_space
*mapping
= page1
->mapping
;
722 struct inode
*inode
= mapping
->host
;
723 struct ubifs_inode
*ui
= ubifs_inode(inode
);
724 int err
, page_idx
, page_cnt
, ret
= 0, n
= 0;
725 int allocate
= bu
->buf
? 0 : 1;
727 gfp_t ra_gfp_mask
= readahead_gfp_mask(mapping
) & ~__GFP_FS
;
729 err
= ubifs_tnc_get_bu_keys(c
, bu
);
734 /* Turn off bulk-read at the end of the file */
735 ui
->read_in_a_row
= 1;
739 page_cnt
= bu
->blk_cnt
>> UBIFS_BLOCKS_PER_PAGE_SHIFT
;
742 * This happens when there are multiple blocks per page and the
743 * blocks for the first page we are looking for, are not
744 * together. If all the pages were like this, bulk-read would
745 * reduce performance, so we turn it off for a while.
753 * Allocate bulk-read buffer depending on how many data
754 * nodes we are going to read.
756 bu
->buf_len
= bu
->zbranch
[bu
->cnt
- 1].offs
+
757 bu
->zbranch
[bu
->cnt
- 1].len
-
759 ubifs_assert(c
, bu
->buf_len
> 0);
760 ubifs_assert(c
, bu
->buf_len
<= c
->leb_size
);
761 bu
->buf
= kmalloc(bu
->buf_len
, GFP_NOFS
| __GFP_NOWARN
);
766 err
= ubifs_tnc_bulk_read(c
, bu
);
771 err
= populate_page(c
, page1
, bu
, &n
);
778 isize
= i_size_read(inode
);
781 end_index
= ((isize
- 1) >> PAGE_SHIFT
);
783 for (page_idx
= 1; page_idx
< page_cnt
; page_idx
++) {
784 pgoff_t page_offset
= offset
+ page_idx
;
787 if (page_offset
> end_index
)
789 page
= pagecache_get_page(mapping
, page_offset
,
790 FGP_LOCK
|FGP_ACCESSED
|FGP_CREAT
|FGP_NOWAIT
,
794 if (!PageUptodate(page
))
795 err
= populate_page(c
, page
, bu
, &n
);
802 ui
->last_page_read
= offset
+ page_idx
- 1;
810 ubifs_warn(c
, "ignoring error %d and skipping bulk-read", err
);
814 ui
->read_in_a_row
= ui
->bulk_read
= 0;
819 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
820 * @page: page from which to start bulk-read.
822 * Some flash media are capable of reading sequentially at faster rates. UBIFS
823 * bulk-read facility is designed to take advantage of that, by reading in one
824 * go consecutive data nodes that are also located consecutively in the same
825 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
827 static int ubifs_bulk_read(struct page
*page
)
829 struct inode
*inode
= page
->mapping
->host
;
830 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
831 struct ubifs_inode
*ui
= ubifs_inode(inode
);
832 pgoff_t index
= page
->index
, last_page_read
= ui
->last_page_read
;
834 int err
= 0, allocated
= 0;
836 ui
->last_page_read
= index
;
841 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
842 * so don't bother if we cannot lock the mutex.
844 if (!mutex_trylock(&ui
->ui_mutex
))
847 if (index
!= last_page_read
+ 1) {
848 /* Turn off bulk-read if we stop reading sequentially */
849 ui
->read_in_a_row
= 1;
855 if (!ui
->bulk_read
) {
856 ui
->read_in_a_row
+= 1;
857 if (ui
->read_in_a_row
< 3)
859 /* Three reads in a row, so switch on bulk-read */
864 * If possible, try to use pre-allocated bulk-read information, which
865 * is protected by @c->bu_mutex.
867 if (mutex_trylock(&c
->bu_mutex
))
870 bu
= kmalloc(sizeof(struct bu_info
), GFP_NOFS
| __GFP_NOWARN
);
878 bu
->buf_len
= c
->max_bu_buf_len
;
879 data_key_init(c
, &bu
->key
, inode
->i_ino
,
880 page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
);
881 err
= ubifs_do_bulk_read(c
, bu
, page
);
884 mutex_unlock(&c
->bu_mutex
);
889 mutex_unlock(&ui
->ui_mutex
);
893 static int ubifs_readpage(struct file
*file
, struct page
*page
)
895 if (ubifs_bulk_read(page
))
902 static int do_writepage(struct page
*page
, int len
)
904 int err
= 0, i
, blen
;
908 struct inode
*inode
= page
->mapping
->host
;
909 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
912 struct ubifs_inode
*ui
= ubifs_inode(inode
);
913 spin_lock(&ui
->ui_lock
);
914 ubifs_assert(c
, page
->index
<= ui
->synced_i_size
>> PAGE_SHIFT
);
915 spin_unlock(&ui
->ui_lock
);
918 /* Update radix tree tags */
919 set_page_writeback(page
);
922 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
925 blen
= min_t(int, len
, UBIFS_BLOCK_SIZE
);
926 data_key_init(c
, &key
, inode
->i_ino
, block
);
927 err
= ubifs_jnl_write_data(c
, inode
, &key
, addr
, blen
);
930 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
938 ubifs_err(c
, "cannot write page %lu of inode %lu, error %d",
939 page
->index
, inode
->i_ino
, err
);
940 ubifs_ro_mode(c
, err
);
943 ubifs_assert(c
, PagePrivate(page
));
944 if (PageChecked(page
))
945 release_new_page_budget(c
);
947 release_existing_page_budget(c
);
949 atomic_long_dec(&c
->dirty_pg_cnt
);
950 ClearPagePrivate(page
);
951 ClearPageChecked(page
);
955 end_page_writeback(page
);
960 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
961 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
962 * situation when a we have an inode with size 0, then a megabyte of data is
963 * appended to the inode, then write-back starts and flushes some amount of the
964 * dirty pages, the journal becomes full, commit happens and finishes, and then
965 * an unclean reboot happens. When the file system is mounted next time, the
966 * inode size would still be 0, but there would be many pages which are beyond
967 * the inode size, they would be indexed and consume flash space. Because the
968 * journal has been committed, the replay would not be able to detect this
969 * situation and correct the inode size. This means UBIFS would have to scan
970 * whole index and correct all inode sizes, which is long an unacceptable.
972 * To prevent situations like this, UBIFS writes pages back only if they are
973 * within the last synchronized inode size, i.e. the size which has been
974 * written to the flash media last time. Otherwise, UBIFS forces inode
975 * write-back, thus making sure the on-flash inode contains current inode size,
976 * and then keeps writing pages back.
978 * Some locking issues explanation. 'ubifs_writepage()' first is called with
979 * the page locked, and it locks @ui_mutex. However, write-back does take inode
980 * @i_mutex, which means other VFS operations may be run on this inode at the
981 * same time. And the problematic one is truncation to smaller size, from where
982 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
983 * then drops the truncated pages. And while dropping the pages, it takes the
984 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
985 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
986 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
988 * XXX(truncate): with the new truncate sequence this is not true anymore,
989 * and the calls to truncate_setsize can be move around freely. They should
990 * be moved to the very end of the truncate sequence.
992 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
993 * inode size. How do we do this if @inode->i_size may became smaller while we
994 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
995 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
996 * internally and updates it under @ui_mutex.
998 * Q: why we do not worry that if we race with truncation, we may end up with a
999 * situation when the inode is truncated while we are in the middle of
1000 * 'do_writepage()', so we do write beyond inode size?
1001 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1002 * on the page lock and it would not write the truncated inode node to the
1003 * journal before we have finished.
1005 static int ubifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1007 struct inode
*inode
= page
->mapping
->host
;
1008 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1009 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1010 loff_t i_size
= i_size_read(inode
), synced_i_size
;
1011 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
1012 int err
, len
= i_size
& (PAGE_SIZE
- 1);
1015 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1016 inode
->i_ino
, page
->index
, page
->flags
);
1017 ubifs_assert(c
, PagePrivate(page
));
1019 /* Is the page fully outside @i_size? (truncate in progress) */
1020 if (page
->index
> end_index
|| (page
->index
== end_index
&& !len
)) {
1025 spin_lock(&ui
->ui_lock
);
1026 synced_i_size
= ui
->synced_i_size
;
1027 spin_unlock(&ui
->ui_lock
);
1029 /* Is the page fully inside @i_size? */
1030 if (page
->index
< end_index
) {
1031 if (page
->index
>= synced_i_size
>> PAGE_SHIFT
) {
1032 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1036 * The inode has been written, but the write-buffer has
1037 * not been synchronized, so in case of an unclean
1038 * reboot we may end up with some pages beyond inode
1039 * size, but they would be in the journal (because
1040 * commit flushes write buffers) and recovery would deal
1044 return do_writepage(page
, PAGE_SIZE
);
1048 * The page straddles @i_size. It must be zeroed out on each and every
1049 * writepage invocation because it may be mmapped. "A file is mapped
1050 * in multiples of the page size. For a file that is not a multiple of
1051 * the page size, the remaining memory is zeroed when mapped, and
1052 * writes to that region are not written out to the file."
1054 kaddr
= kmap_atomic(page
);
1055 memset(kaddr
+ len
, 0, PAGE_SIZE
- len
);
1056 flush_dcache_page(page
);
1057 kunmap_atomic(kaddr
);
1059 if (i_size
> synced_i_size
) {
1060 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1065 return do_writepage(page
, len
);
1073 * do_attr_changes - change inode attributes.
1074 * @inode: inode to change attributes for
1075 * @attr: describes attributes to change
1077 static void do_attr_changes(struct inode
*inode
, const struct iattr
*attr
)
1079 if (attr
->ia_valid
& ATTR_UID
)
1080 inode
->i_uid
= attr
->ia_uid
;
1081 if (attr
->ia_valid
& ATTR_GID
)
1082 inode
->i_gid
= attr
->ia_gid
;
1083 if (attr
->ia_valid
& ATTR_ATIME
)
1084 inode
->i_atime
= attr
->ia_atime
;
1085 if (attr
->ia_valid
& ATTR_MTIME
)
1086 inode
->i_mtime
= attr
->ia_mtime
;
1087 if (attr
->ia_valid
& ATTR_CTIME
)
1088 inode
->i_ctime
= attr
->ia_ctime
;
1089 if (attr
->ia_valid
& ATTR_MODE
) {
1090 umode_t mode
= attr
->ia_mode
;
1092 if (!in_group_p(inode
->i_gid
) && !capable(CAP_FSETID
))
1094 inode
->i_mode
= mode
;
1099 * do_truncation - truncate an inode.
1100 * @c: UBIFS file-system description object
1101 * @inode: inode to truncate
1102 * @attr: inode attribute changes description
1104 * This function implements VFS '->setattr()' call when the inode is truncated
1105 * to a smaller size. Returns zero in case of success and a negative error code
1106 * in case of failure.
1108 static int do_truncation(struct ubifs_info
*c
, struct inode
*inode
,
1109 const struct iattr
*attr
)
1112 struct ubifs_budget_req req
;
1113 loff_t old_size
= inode
->i_size
, new_size
= attr
->ia_size
;
1114 int offset
= new_size
& (UBIFS_BLOCK_SIZE
- 1), budgeted
= 1;
1115 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1117 dbg_gen("ino %lu, size %lld -> %lld", inode
->i_ino
, old_size
, new_size
);
1118 memset(&req
, 0, sizeof(struct ubifs_budget_req
));
1121 * If this is truncation to a smaller size, and we do not truncate on a
1122 * block boundary, budget for changing one data block, because the last
1123 * block will be re-written.
1125 if (new_size
& (UBIFS_BLOCK_SIZE
- 1))
1126 req
.dirtied_page
= 1;
1128 req
.dirtied_ino
= 1;
1129 /* A funny way to budget for truncation node */
1130 req
.dirtied_ino_d
= UBIFS_TRUN_NODE_SZ
;
1131 err
= ubifs_budget_space(c
, &req
);
1134 * Treat truncations to zero as deletion and always allow them,
1135 * just like we do for '->unlink()'.
1137 if (new_size
|| err
!= -ENOSPC
)
1142 truncate_setsize(inode
, new_size
);
1145 pgoff_t index
= new_size
>> PAGE_SHIFT
;
1148 page
= find_lock_page(inode
->i_mapping
, index
);
1150 if (PageDirty(page
)) {
1152 * 'ubifs_jnl_truncate()' will try to truncate
1153 * the last data node, but it contains
1154 * out-of-date data because the page is dirty.
1155 * Write the page now, so that
1156 * 'ubifs_jnl_truncate()' will see an already
1157 * truncated (and up to date) data node.
1159 ubifs_assert(c
, PagePrivate(page
));
1161 clear_page_dirty_for_io(page
);
1162 if (UBIFS_BLOCKS_PER_PAGE_SHIFT
)
1165 err
= do_writepage(page
, offset
);
1170 * We could now tell 'ubifs_jnl_truncate()' not
1171 * to read the last block.
1175 * We could 'kmap()' the page and pass the data
1176 * to 'ubifs_jnl_truncate()' to save it from
1177 * having to read it.
1185 mutex_lock(&ui
->ui_mutex
);
1186 ui
->ui_size
= inode
->i_size
;
1187 /* Truncation changes inode [mc]time */
1188 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1189 /* Other attributes may be changed at the same time as well */
1190 do_attr_changes(inode
, attr
);
1191 err
= ubifs_jnl_truncate(c
, inode
, old_size
, new_size
);
1192 mutex_unlock(&ui
->ui_mutex
);
1196 ubifs_release_budget(c
, &req
);
1198 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
1205 * do_setattr - change inode attributes.
1206 * @c: UBIFS file-system description object
1207 * @inode: inode to change attributes for
1208 * @attr: inode attribute changes description
1210 * This function implements VFS '->setattr()' call for all cases except
1211 * truncations to smaller size. Returns zero in case of success and a negative
1212 * error code in case of failure.
1214 static int do_setattr(struct ubifs_info
*c
, struct inode
*inode
,
1215 const struct iattr
*attr
)
1218 loff_t new_size
= attr
->ia_size
;
1219 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1220 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1221 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1223 err
= ubifs_budget_space(c
, &req
);
1227 if (attr
->ia_valid
& ATTR_SIZE
) {
1228 dbg_gen("size %lld -> %lld", inode
->i_size
, new_size
);
1229 truncate_setsize(inode
, new_size
);
1232 mutex_lock(&ui
->ui_mutex
);
1233 if (attr
->ia_valid
& ATTR_SIZE
) {
1234 /* Truncation changes inode [mc]time */
1235 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1236 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1237 ui
->ui_size
= inode
->i_size
;
1240 do_attr_changes(inode
, attr
);
1242 release
= ui
->dirty
;
1243 if (attr
->ia_valid
& ATTR_SIZE
)
1245 * Inode length changed, so we have to make sure
1246 * @I_DIRTY_DATASYNC is set.
1248 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
1250 mark_inode_dirty_sync(inode
);
1251 mutex_unlock(&ui
->ui_mutex
);
1254 ubifs_release_budget(c
, &req
);
1256 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1260 int ubifs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1263 struct inode
*inode
= d_inode(dentry
);
1264 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1266 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1267 inode
->i_ino
, inode
->i_mode
, attr
->ia_valid
);
1268 err
= setattr_prepare(dentry
, attr
);
1272 err
= dbg_check_synced_i_size(c
, inode
);
1276 err
= fscrypt_prepare_setattr(dentry
, attr
);
1280 if ((attr
->ia_valid
& ATTR_SIZE
) && attr
->ia_size
< inode
->i_size
)
1281 /* Truncation to a smaller size */
1282 err
= do_truncation(c
, inode
, attr
);
1284 err
= do_setattr(c
, inode
, attr
);
1289 static void ubifs_invalidatepage(struct page
*page
, unsigned int offset
,
1290 unsigned int length
)
1292 struct inode
*inode
= page
->mapping
->host
;
1293 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1295 ubifs_assert(c
, PagePrivate(page
));
1296 if (offset
|| length
< PAGE_SIZE
)
1297 /* Partial page remains dirty */
1300 if (PageChecked(page
))
1301 release_new_page_budget(c
);
1303 release_existing_page_budget(c
);
1305 atomic_long_dec(&c
->dirty_pg_cnt
);
1306 ClearPagePrivate(page
);
1307 ClearPageChecked(page
);
1310 int ubifs_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1312 struct inode
*inode
= file
->f_mapping
->host
;
1313 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1316 dbg_gen("syncing inode %lu", inode
->i_ino
);
1320 * For some really strange reasons VFS does not filter out
1321 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1325 err
= file_write_and_wait_range(file
, start
, end
);
1330 /* Synchronize the inode unless this is a 'datasync()' call. */
1331 if (!datasync
|| (inode
->i_state
& I_DIRTY_DATASYNC
)) {
1332 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1338 * Nodes related to this inode may still sit in a write-buffer. Flush
1341 err
= ubifs_sync_wbufs_by_inode(c
, inode
);
1343 inode_unlock(inode
);
1348 * mctime_update_needed - check if mtime or ctime update is needed.
1349 * @inode: the inode to do the check for
1350 * @now: current time
1352 * This helper function checks if the inode mtime/ctime should be updated or
1353 * not. If current values of the time-stamps are within the UBIFS inode time
1354 * granularity, they are not updated. This is an optimization.
1356 static inline int mctime_update_needed(const struct inode
*inode
,
1357 const struct timespec64
*now
)
1359 if (!timespec64_equal(&inode
->i_mtime
, now
) ||
1360 !timespec64_equal(&inode
->i_ctime
, now
))
1366 * ubifs_update_time - update time of inode.
1367 * @inode: inode to update
1369 * This function updates time of the inode.
1371 int ubifs_update_time(struct inode
*inode
, struct timespec64
*time
,
1374 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1375 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1376 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1377 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1378 int iflags
= I_DIRTY_TIME
;
1381 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
))
1382 return generic_update_time(inode
, time
, flags
);
1384 err
= ubifs_budget_space(c
, &req
);
1388 mutex_lock(&ui
->ui_mutex
);
1389 if (flags
& S_ATIME
)
1390 inode
->i_atime
= *time
;
1391 if (flags
& S_CTIME
)
1392 inode
->i_ctime
= *time
;
1393 if (flags
& S_MTIME
)
1394 inode
->i_mtime
= *time
;
1396 if (!(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1397 iflags
|= I_DIRTY_SYNC
;
1399 release
= ui
->dirty
;
1400 __mark_inode_dirty(inode
, iflags
);
1401 mutex_unlock(&ui
->ui_mutex
);
1403 ubifs_release_budget(c
, &req
);
1408 * update_mctime - update mtime and ctime of an inode.
1409 * @inode: inode to update
1411 * This function updates mtime and ctime of the inode if it is not equivalent to
1412 * current time. Returns zero in case of success and a negative error code in
1415 static int update_mctime(struct inode
*inode
)
1417 struct timespec64 now
= current_time(inode
);
1418 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1419 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1421 if (mctime_update_needed(inode
, &now
)) {
1423 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1424 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1426 err
= ubifs_budget_space(c
, &req
);
1430 mutex_lock(&ui
->ui_mutex
);
1431 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1432 release
= ui
->dirty
;
1433 mark_inode_dirty_sync(inode
);
1434 mutex_unlock(&ui
->ui_mutex
);
1436 ubifs_release_budget(c
, &req
);
1442 static ssize_t
ubifs_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1444 int err
= update_mctime(file_inode(iocb
->ki_filp
));
1448 return generic_file_write_iter(iocb
, from
);
1451 static int ubifs_set_page_dirty(struct page
*page
)
1454 struct inode
*inode
= page
->mapping
->host
;
1455 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1457 ret
= __set_page_dirty_nobuffers(page
);
1459 * An attempt to dirty a page without budgeting for it - should not
1462 ubifs_assert(c
, ret
== 0);
1466 #ifdef CONFIG_MIGRATION
1467 static int ubifs_migrate_page(struct address_space
*mapping
,
1468 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
1472 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, 0);
1473 if (rc
!= MIGRATEPAGE_SUCCESS
)
1476 if (PagePrivate(page
)) {
1477 ClearPagePrivate(page
);
1478 SetPagePrivate(newpage
);
1481 if (mode
!= MIGRATE_SYNC_NO_COPY
)
1482 migrate_page_copy(newpage
, page
);
1484 migrate_page_states(newpage
, page
);
1485 return MIGRATEPAGE_SUCCESS
;
1489 static int ubifs_releasepage(struct page
*page
, gfp_t unused_gfp_flags
)
1491 struct inode
*inode
= page
->mapping
->host
;
1492 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1495 * An attempt to release a dirty page without budgeting for it - should
1498 if (PageWriteback(page
))
1500 ubifs_assert(c
, PagePrivate(page
));
1502 ClearPagePrivate(page
);
1503 ClearPageChecked(page
);
1508 * mmap()d file has taken write protection fault and is being made writable.
1509 * UBIFS must ensure page is budgeted for.
1511 static vm_fault_t
ubifs_vm_page_mkwrite(struct vm_fault
*vmf
)
1513 struct page
*page
= vmf
->page
;
1514 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1515 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1516 struct timespec64 now
= current_time(inode
);
1517 struct ubifs_budget_req req
= { .new_page
= 1 };
1518 int err
, update_time
;
1520 dbg_gen("ino %lu, pg %lu, i_size %lld", inode
->i_ino
, page
->index
,
1521 i_size_read(inode
));
1522 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
1524 if (unlikely(c
->ro_error
))
1525 return VM_FAULT_SIGBUS
; /* -EROFS */
1528 * We have not locked @page so far so we may budget for changing the
1529 * page. Note, we cannot do this after we locked the page, because
1530 * budgeting may cause write-back which would cause deadlock.
1532 * At the moment we do not know whether the page is dirty or not, so we
1533 * assume that it is not and budget for a new page. We could look at
1534 * the @PG_private flag and figure this out, but we may race with write
1535 * back and the page state may change by the time we lock it, so this
1536 * would need additional care. We do not bother with this at the
1537 * moment, although it might be good idea to do. Instead, we allocate
1538 * budget for a new page and amend it later on if the page was in fact
1541 * The budgeting-related logic of this function is similar to what we
1542 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1543 * for more comments.
1545 update_time
= mctime_update_needed(inode
, &now
);
1548 * We have to change inode time stamp which requires extra
1551 req
.dirtied_ino
= 1;
1553 err
= ubifs_budget_space(c
, &req
);
1554 if (unlikely(err
)) {
1556 ubifs_warn(c
, "out of space for mmapped file (inode number %lu)",
1558 return VM_FAULT_SIGBUS
;
1562 if (unlikely(page
->mapping
!= inode
->i_mapping
||
1563 page_offset(page
) > i_size_read(inode
))) {
1564 /* Page got truncated out from underneath us */
1568 if (PagePrivate(page
))
1569 release_new_page_budget(c
);
1571 if (!PageChecked(page
))
1572 ubifs_convert_page_budget(c
);
1573 SetPagePrivate(page
);
1574 atomic_long_inc(&c
->dirty_pg_cnt
);
1575 __set_page_dirty_nobuffers(page
);
1580 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1582 mutex_lock(&ui
->ui_mutex
);
1583 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1584 release
= ui
->dirty
;
1585 mark_inode_dirty_sync(inode
);
1586 mutex_unlock(&ui
->ui_mutex
);
1588 ubifs_release_dirty_inode_budget(c
, ui
);
1591 wait_for_stable_page(page
);
1592 return VM_FAULT_LOCKED
;
1596 ubifs_release_budget(c
, &req
);
1597 return VM_FAULT_SIGBUS
;
1600 static const struct vm_operations_struct ubifs_file_vm_ops
= {
1601 .fault
= filemap_fault
,
1602 .map_pages
= filemap_map_pages
,
1603 .page_mkwrite
= ubifs_vm_page_mkwrite
,
1606 static int ubifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1610 err
= generic_file_mmap(file
, vma
);
1613 vma
->vm_ops
= &ubifs_file_vm_ops
;
1615 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
))
1616 file_accessed(file
);
1621 static const char *ubifs_get_link(struct dentry
*dentry
,
1622 struct inode
*inode
,
1623 struct delayed_call
*done
)
1625 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1627 if (!IS_ENCRYPTED(inode
))
1631 return ERR_PTR(-ECHILD
);
1633 return fscrypt_get_symlink(inode
, ui
->data
, ui
->data_len
, done
);
1636 const struct address_space_operations ubifs_file_address_operations
= {
1637 .readpage
= ubifs_readpage
,
1638 .writepage
= ubifs_writepage
,
1639 .write_begin
= ubifs_write_begin
,
1640 .write_end
= ubifs_write_end
,
1641 .invalidatepage
= ubifs_invalidatepage
,
1642 .set_page_dirty
= ubifs_set_page_dirty
,
1643 #ifdef CONFIG_MIGRATION
1644 .migratepage
= ubifs_migrate_page
,
1646 .releasepage
= ubifs_releasepage
,
1649 const struct inode_operations ubifs_file_inode_operations
= {
1650 .setattr
= ubifs_setattr
,
1651 .getattr
= ubifs_getattr
,
1652 #ifdef CONFIG_UBIFS_FS_XATTR
1653 .listxattr
= ubifs_listxattr
,
1655 .update_time
= ubifs_update_time
,
1658 const struct inode_operations ubifs_symlink_inode_operations
= {
1659 .get_link
= ubifs_get_link
,
1660 .setattr
= ubifs_setattr
,
1661 .getattr
= ubifs_getattr
,
1662 #ifdef CONFIG_UBIFS_FS_XATTR
1663 .listxattr
= ubifs_listxattr
,
1665 .update_time
= ubifs_update_time
,
1668 const struct file_operations ubifs_file_operations
= {
1669 .llseek
= generic_file_llseek
,
1670 .read_iter
= generic_file_read_iter
,
1671 .write_iter
= ubifs_write_iter
,
1672 .mmap
= ubifs_file_mmap
,
1673 .fsync
= ubifs_fsync
,
1674 .unlocked_ioctl
= ubifs_ioctl
,
1675 .splice_read
= generic_file_splice_read
,
1676 .splice_write
= iter_file_splice_write
,
1677 .open
= fscrypt_file_open
,
1678 #ifdef CONFIG_COMPAT
1679 .compat_ioctl
= ubifs_compat_ioctl
,