1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
12 * This file implements commit-related functionality of the LEB properties
16 #include <linux/crc16.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
21 static int dbg_populate_lsave(struct ubifs_info
*c
);
24 * first_dirty_cnode - find first dirty cnode.
25 * @c: UBIFS file-system description object
26 * @nnode: nnode at which to start
28 * This function returns the first dirty cnode or %NULL if there is not one.
30 static struct ubifs_cnode
*first_dirty_cnode(const struct ubifs_info
*c
, struct ubifs_nnode
*nnode
)
32 ubifs_assert(c
, nnode
);
36 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
37 struct ubifs_cnode
*cnode
;
39 cnode
= nnode
->nbranch
[i
].cnode
;
41 test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
42 if (cnode
->level
== 0)
44 nnode
= (struct ubifs_nnode
*)cnode
;
50 return (struct ubifs_cnode
*)nnode
;
55 * next_dirty_cnode - find next dirty cnode.
56 * @c: UBIFS file-system description object
57 * @cnode: cnode from which to begin searching
59 * This function returns the next dirty cnode or %NULL if there is not one.
61 static struct ubifs_cnode
*next_dirty_cnode(const struct ubifs_info
*c
, struct ubifs_cnode
*cnode
)
63 struct ubifs_nnode
*nnode
;
66 ubifs_assert(c
, cnode
);
67 nnode
= cnode
->parent
;
70 for (i
= cnode
->iip
+ 1; i
< UBIFS_LPT_FANOUT
; i
++) {
71 cnode
= nnode
->nbranch
[i
].cnode
;
72 if (cnode
&& test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
73 if (cnode
->level
== 0)
74 return cnode
; /* cnode is a pnode */
75 /* cnode is a nnode */
76 return first_dirty_cnode(c
, (struct ubifs_nnode
*)cnode
);
79 return (struct ubifs_cnode
*)nnode
;
83 * get_cnodes_to_commit - create list of dirty cnodes to commit.
84 * @c: UBIFS file-system description object
86 * This function returns the number of cnodes to commit.
88 static int get_cnodes_to_commit(struct ubifs_info
*c
)
90 struct ubifs_cnode
*cnode
, *cnext
;
96 if (!test_bit(DIRTY_CNODE
, &c
->nroot
->flags
))
99 c
->lpt_cnext
= first_dirty_cnode(c
, c
->nroot
);
100 cnode
= c
->lpt_cnext
;
105 ubifs_assert(c
, !test_bit(COW_CNODE
, &cnode
->flags
));
106 __set_bit(COW_CNODE
, &cnode
->flags
);
107 cnext
= next_dirty_cnode(c
, cnode
);
109 cnode
->cnext
= c
->lpt_cnext
;
112 cnode
->cnext
= cnext
;
116 dbg_cmt("committing %d cnodes", cnt
);
117 dbg_lp("committing %d cnodes", cnt
);
118 ubifs_assert(c
, cnt
== c
->dirty_nn_cnt
+ c
->dirty_pn_cnt
);
123 * upd_ltab - update LPT LEB properties.
124 * @c: UBIFS file-system description object
126 * @free: amount of free space
127 * @dirty: amount of dirty space to add
129 static void upd_ltab(struct ubifs_info
*c
, int lnum
, int free
, int dirty
)
131 dbg_lp("LEB %d free %d dirty %d to %d +%d",
132 lnum
, c
->ltab
[lnum
- c
->lpt_first
].free
,
133 c
->ltab
[lnum
- c
->lpt_first
].dirty
, free
, dirty
);
134 ubifs_assert(c
, lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
);
135 c
->ltab
[lnum
- c
->lpt_first
].free
= free
;
136 c
->ltab
[lnum
- c
->lpt_first
].dirty
+= dirty
;
140 * alloc_lpt_leb - allocate an LPT LEB that is empty.
141 * @c: UBIFS file-system description object
142 * @lnum: LEB number is passed and returned here
144 * This function finds the next empty LEB in the ltab starting from @lnum. If a
145 * an empty LEB is found it is returned in @lnum and the function returns %0.
146 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
147 * never to run out of space.
149 static int alloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
153 n
= *lnum
- c
->lpt_first
+ 1;
154 for (i
= n
; i
< c
->lpt_lebs
; i
++) {
155 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
157 if (c
->ltab
[i
].free
== c
->leb_size
) {
159 *lnum
= i
+ c
->lpt_first
;
164 for (i
= 0; i
< n
; i
++) {
165 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
167 if (c
->ltab
[i
].free
== c
->leb_size
) {
169 *lnum
= i
+ c
->lpt_first
;
177 * layout_cnodes - layout cnodes for commit.
178 * @c: UBIFS file-system description object
180 * This function returns %0 on success and a negative error code on failure.
182 static int layout_cnodes(struct ubifs_info
*c
)
184 int lnum
, offs
, len
, alen
, done_lsave
, done_ltab
, err
;
185 struct ubifs_cnode
*cnode
;
187 err
= dbg_chk_lpt_sz(c
, 0, 0);
190 cnode
= c
->lpt_cnext
;
193 lnum
= c
->nhead_lnum
;
194 offs
= c
->nhead_offs
;
195 /* Try to place lsave and ltab nicely */
196 done_lsave
= !c
->big_lpt
;
198 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
200 c
->lsave_lnum
= lnum
;
201 c
->lsave_offs
= offs
;
203 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
206 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
211 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
217 c
->dirty_nn_cnt
-= 1;
220 c
->dirty_pn_cnt
-= 1;
222 while (offs
+ len
> c
->leb_size
) {
223 alen
= ALIGN(offs
, c
->min_io_size
);
224 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
225 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
226 err
= alloc_lpt_leb(c
, &lnum
);
230 ubifs_assert(c
, lnum
>= c
->lpt_first
&&
231 lnum
<= c
->lpt_last
);
232 /* Try to place lsave and ltab nicely */
235 c
->lsave_lnum
= lnum
;
236 c
->lsave_offs
= offs
;
238 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
246 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
252 cnode
->parent
->nbranch
[cnode
->iip
].lnum
= lnum
;
253 cnode
->parent
->nbranch
[cnode
->iip
].offs
= offs
;
259 dbg_chk_lpt_sz(c
, 1, len
);
260 cnode
= cnode
->cnext
;
261 } while (cnode
&& cnode
!= c
->lpt_cnext
);
263 /* Make sure to place LPT's save table */
265 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
266 alen
= ALIGN(offs
, c
->min_io_size
);
267 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
268 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
269 err
= alloc_lpt_leb(c
, &lnum
);
273 ubifs_assert(c
, lnum
>= c
->lpt_first
&&
274 lnum
<= c
->lpt_last
);
277 c
->lsave_lnum
= lnum
;
278 c
->lsave_offs
= offs
;
280 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
283 /* Make sure to place LPT's own lprops table */
285 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
286 alen
= ALIGN(offs
, c
->min_io_size
);
287 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
288 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
289 err
= alloc_lpt_leb(c
, &lnum
);
293 ubifs_assert(c
, lnum
>= c
->lpt_first
&&
294 lnum
<= c
->lpt_last
);
299 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
302 alen
= ALIGN(offs
, c
->min_io_size
);
303 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
304 dbg_chk_lpt_sz(c
, 4, alen
- offs
);
305 err
= dbg_chk_lpt_sz(c
, 3, alen
);
311 ubifs_err(c
, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
312 lnum
, offs
, len
, done_ltab
, done_lsave
);
313 ubifs_dump_lpt_info(c
);
314 ubifs_dump_lpt_lebs(c
);
320 * realloc_lpt_leb - allocate an LPT LEB that is empty.
321 * @c: UBIFS file-system description object
322 * @lnum: LEB number is passed and returned here
324 * This function duplicates exactly the results of the function alloc_lpt_leb.
325 * It is used during end commit to reallocate the same LEB numbers that were
326 * allocated by alloc_lpt_leb during start commit.
328 * This function finds the next LEB that was allocated by the alloc_lpt_leb
329 * function starting from @lnum. If a LEB is found it is returned in @lnum and
330 * the function returns %0. Otherwise the function returns -ENOSPC.
331 * Note however, that LPT is designed never to run out of space.
333 static int realloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
337 n
= *lnum
- c
->lpt_first
+ 1;
338 for (i
= n
; i
< c
->lpt_lebs
; i
++)
339 if (c
->ltab
[i
].cmt
) {
341 *lnum
= i
+ c
->lpt_first
;
345 for (i
= 0; i
< n
; i
++)
346 if (c
->ltab
[i
].cmt
) {
348 *lnum
= i
+ c
->lpt_first
;
355 * write_cnodes - write cnodes for commit.
356 * @c: UBIFS file-system description object
358 * This function returns %0 on success and a negative error code on failure.
360 static int write_cnodes(struct ubifs_info
*c
)
362 int lnum
, offs
, len
, from
, err
, wlen
, alen
, done_ltab
, done_lsave
;
363 struct ubifs_cnode
*cnode
;
364 void *buf
= c
->lpt_buf
;
366 cnode
= c
->lpt_cnext
;
369 lnum
= c
->nhead_lnum
;
370 offs
= c
->nhead_offs
;
372 /* Ensure empty LEB is unmapped */
374 err
= ubifs_leb_unmap(c
, lnum
);
378 /* Try to place lsave and ltab nicely */
379 done_lsave
= !c
->big_lpt
;
381 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
383 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
385 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
388 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
390 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
392 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
395 /* Loop for each cnode */
401 while (offs
+ len
> c
->leb_size
) {
404 alen
= ALIGN(wlen
, c
->min_io_size
);
405 memset(buf
+ offs
, 0xff, alen
- wlen
);
406 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
,
411 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
412 err
= realloc_lpt_leb(c
, &lnum
);
416 ubifs_assert(c
, lnum
>= c
->lpt_first
&&
417 lnum
<= c
->lpt_last
);
418 err
= ubifs_leb_unmap(c
, lnum
);
421 /* Try to place lsave and ltab nicely */
424 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
426 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
431 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
433 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
439 ubifs_pack_nnode(c
, buf
+ offs
,
440 (struct ubifs_nnode
*)cnode
);
442 ubifs_pack_pnode(c
, buf
+ offs
,
443 (struct ubifs_pnode
*)cnode
);
445 * The reason for the barriers is the same as in case of TNC.
446 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
447 * 'dirty_cow_pnode()' are the functions for which this is
450 clear_bit(DIRTY_CNODE
, &cnode
->flags
);
451 smp_mb__before_atomic();
452 clear_bit(COW_CNODE
, &cnode
->flags
);
453 smp_mb__after_atomic();
455 dbg_chk_lpt_sz(c
, 1, len
);
456 cnode
= cnode
->cnext
;
457 } while (cnode
&& cnode
!= c
->lpt_cnext
);
459 /* Make sure to place LPT's save table */
461 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
463 alen
= ALIGN(wlen
, c
->min_io_size
);
464 memset(buf
+ offs
, 0xff, alen
- wlen
);
465 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
);
468 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
469 err
= realloc_lpt_leb(c
, &lnum
);
473 ubifs_assert(c
, lnum
>= c
->lpt_first
&&
474 lnum
<= c
->lpt_last
);
475 err
= ubifs_leb_unmap(c
, lnum
);
480 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
482 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
485 /* Make sure to place LPT's own lprops table */
487 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
489 alen
= ALIGN(wlen
, c
->min_io_size
);
490 memset(buf
+ offs
, 0xff, alen
- wlen
);
491 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
);
494 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
495 err
= realloc_lpt_leb(c
, &lnum
);
499 ubifs_assert(c
, lnum
>= c
->lpt_first
&&
500 lnum
<= c
->lpt_last
);
501 err
= ubifs_leb_unmap(c
, lnum
);
505 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
507 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
510 /* Write remaining data in buffer */
512 alen
= ALIGN(wlen
, c
->min_io_size
);
513 memset(buf
+ offs
, 0xff, alen
- wlen
);
514 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
);
518 dbg_chk_lpt_sz(c
, 4, alen
- wlen
);
519 err
= dbg_chk_lpt_sz(c
, 3, ALIGN(offs
, c
->min_io_size
));
523 c
->nhead_lnum
= lnum
;
524 c
->nhead_offs
= ALIGN(offs
, c
->min_io_size
);
526 dbg_lp("LPT root is at %d:%d", c
->lpt_lnum
, c
->lpt_offs
);
527 dbg_lp("LPT head is at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
528 dbg_lp("LPT ltab is at %d:%d", c
->ltab_lnum
, c
->ltab_offs
);
530 dbg_lp("LPT lsave is at %d:%d", c
->lsave_lnum
, c
->lsave_offs
);
535 ubifs_err(c
, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
536 lnum
, offs
, len
, done_ltab
, done_lsave
);
537 ubifs_dump_lpt_info(c
);
538 ubifs_dump_lpt_lebs(c
);
544 * next_pnode_to_dirty - find next pnode to dirty.
545 * @c: UBIFS file-system description object
548 * This function returns the next pnode to dirty or %NULL if there are no more
549 * pnodes. Note that pnodes that have never been written (lnum == 0) are
552 static struct ubifs_pnode
*next_pnode_to_dirty(struct ubifs_info
*c
,
553 struct ubifs_pnode
*pnode
)
555 struct ubifs_nnode
*nnode
;
558 /* Try to go right */
559 nnode
= pnode
->parent
;
560 for (iip
= pnode
->iip
+ 1; iip
< UBIFS_LPT_FANOUT
; iip
++) {
561 if (nnode
->nbranch
[iip
].lnum
)
562 return ubifs_get_pnode(c
, nnode
, iip
);
565 /* Go up while can't go right */
567 iip
= nnode
->iip
+ 1;
568 nnode
= nnode
->parent
;
571 for (; iip
< UBIFS_LPT_FANOUT
; iip
++) {
572 if (nnode
->nbranch
[iip
].lnum
)
575 } while (iip
>= UBIFS_LPT_FANOUT
);
578 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
580 return (void *)nnode
;
582 /* Go down to level 1 */
583 while (nnode
->level
> 1) {
584 for (iip
= 0; iip
< UBIFS_LPT_FANOUT
; iip
++) {
585 if (nnode
->nbranch
[iip
].lnum
)
588 if (iip
>= UBIFS_LPT_FANOUT
) {
590 * Should not happen, but we need to keep going
595 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
597 return (void *)nnode
;
600 for (iip
= 0; iip
< UBIFS_LPT_FANOUT
; iip
++)
601 if (nnode
->nbranch
[iip
].lnum
)
603 if (iip
>= UBIFS_LPT_FANOUT
)
604 /* Should not happen, but we need to keep going if it does */
606 return ubifs_get_pnode(c
, nnode
, iip
);
610 * add_pnode_dirt - add dirty space to LPT LEB properties.
611 * @c: UBIFS file-system description object
612 * @pnode: pnode for which to add dirt
614 static void add_pnode_dirt(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
616 ubifs_add_lpt_dirt(c
, pnode
->parent
->nbranch
[pnode
->iip
].lnum
,
621 * do_make_pnode_dirty - mark a pnode dirty.
622 * @c: UBIFS file-system description object
623 * @pnode: pnode to mark dirty
625 static void do_make_pnode_dirty(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
627 /* Assumes cnext list is empty i.e. not called during commit */
628 if (!test_and_set_bit(DIRTY_CNODE
, &pnode
->flags
)) {
629 struct ubifs_nnode
*nnode
;
631 c
->dirty_pn_cnt
+= 1;
632 add_pnode_dirt(c
, pnode
);
633 /* Mark parent and ancestors dirty too */
634 nnode
= pnode
->parent
;
636 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
637 c
->dirty_nn_cnt
+= 1;
638 ubifs_add_nnode_dirt(c
, nnode
);
639 nnode
= nnode
->parent
;
647 * make_tree_dirty - mark the entire LEB properties tree dirty.
648 * @c: UBIFS file-system description object
650 * This function is used by the "small" LPT model to cause the entire LEB
651 * properties tree to be written. The "small" LPT model does not use LPT
652 * garbage collection because it is more efficient to write the entire tree
653 * (because it is small).
655 * This function returns %0 on success and a negative error code on failure.
657 static int make_tree_dirty(struct ubifs_info
*c
)
659 struct ubifs_pnode
*pnode
;
661 pnode
= ubifs_pnode_lookup(c
, 0);
663 return PTR_ERR(pnode
);
666 do_make_pnode_dirty(c
, pnode
);
667 pnode
= next_pnode_to_dirty(c
, pnode
);
669 return PTR_ERR(pnode
);
675 * need_write_all - determine if the LPT area is running out of free space.
676 * @c: UBIFS file-system description object
678 * This function returns %1 if the LPT area is running out of free space and %0
681 static int need_write_all(struct ubifs_info
*c
)
686 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
687 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
688 free
+= c
->leb_size
- c
->nhead_offs
;
689 else if (c
->ltab
[i
].free
== c
->leb_size
)
691 else if (c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
694 /* Less than twice the size left */
695 if (free
<= c
->lpt_sz
* 2)
701 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
702 * @c: UBIFS file-system description object
704 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
705 * free space and so may be reused as soon as the next commit is completed.
706 * This function is called during start commit to mark LPT LEBs for trivial GC.
708 static void lpt_tgc_start(struct ubifs_info
*c
)
712 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
713 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
715 if (c
->ltab
[i
].dirty
> 0 &&
716 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
) {
718 c
->ltab
[i
].free
= c
->leb_size
;
719 c
->ltab
[i
].dirty
= 0;
720 dbg_lp("LEB %d", i
+ c
->lpt_first
);
726 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
727 * @c: UBIFS file-system description object
729 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
730 * free space and so may be reused as soon as the next commit is completed.
731 * This function is called after the commit is completed (master node has been
732 * written) and un-maps LPT LEBs that were marked for trivial GC.
734 static int lpt_tgc_end(struct ubifs_info
*c
)
738 for (i
= 0; i
< c
->lpt_lebs
; i
++)
739 if (c
->ltab
[i
].tgc
) {
740 err
= ubifs_leb_unmap(c
, i
+ c
->lpt_first
);
744 dbg_lp("LEB %d", i
+ c
->lpt_first
);
750 * populate_lsave - fill the lsave array with important LEB numbers.
751 * @c: the UBIFS file-system description object
753 * This function is only called for the "big" model. It records a small number
754 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
755 * most important to least important): empty, freeable, freeable index, dirty
756 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
757 * their pnodes into memory. That will stop us from having to scan the LPT
758 * straight away. For the "small" model we assume that scanning the LPT is no
761 static void populate_lsave(struct ubifs_info
*c
)
763 struct ubifs_lprops
*lprops
;
764 struct ubifs_lpt_heap
*heap
;
767 ubifs_assert(c
, c
->big_lpt
);
768 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
769 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
770 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
773 if (dbg_populate_lsave(c
))
776 list_for_each_entry(lprops
, &c
->empty_list
, list
) {
777 c
->lsave
[cnt
++] = lprops
->lnum
;
778 if (cnt
>= c
->lsave_cnt
)
781 list_for_each_entry(lprops
, &c
->freeable_list
, list
) {
782 c
->lsave
[cnt
++] = lprops
->lnum
;
783 if (cnt
>= c
->lsave_cnt
)
786 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
) {
787 c
->lsave
[cnt
++] = lprops
->lnum
;
788 if (cnt
>= c
->lsave_cnt
)
791 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
792 for (i
= 0; i
< heap
->cnt
; i
++) {
793 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
794 if (cnt
>= c
->lsave_cnt
)
797 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
798 for (i
= 0; i
< heap
->cnt
; i
++) {
799 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
800 if (cnt
>= c
->lsave_cnt
)
803 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
804 for (i
= 0; i
< heap
->cnt
; i
++) {
805 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
806 if (cnt
>= c
->lsave_cnt
)
809 /* Fill it up completely */
810 while (cnt
< c
->lsave_cnt
)
811 c
->lsave
[cnt
++] = c
->main_first
;
815 * nnode_lookup - lookup a nnode in the LPT.
816 * @c: UBIFS file-system description object
819 * This function returns a pointer to the nnode on success or a negative
820 * error code on failure.
822 static struct ubifs_nnode
*nnode_lookup(struct ubifs_info
*c
, int i
)
825 struct ubifs_nnode
*nnode
;
828 err
= ubifs_read_nnode(c
, NULL
, 0);
834 iip
= i
& (UBIFS_LPT_FANOUT
- 1);
835 i
>>= UBIFS_LPT_FANOUT_SHIFT
;
838 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
846 * make_nnode_dirty - find a nnode and, if found, make it dirty.
847 * @c: UBIFS file-system description object
848 * @node_num: nnode number of nnode to make dirty
849 * @lnum: LEB number where nnode was written
850 * @offs: offset where nnode was written
852 * This function is used by LPT garbage collection. LPT garbage collection is
853 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
854 * simply involves marking all the nodes in the LEB being garbage-collected as
855 * dirty. The dirty nodes are written next commit, after which the LEB is free
858 * This function returns %0 on success and a negative error code on failure.
860 static int make_nnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
863 struct ubifs_nnode
*nnode
;
865 nnode
= nnode_lookup(c
, node_num
);
867 return PTR_ERR(nnode
);
869 struct ubifs_nbranch
*branch
;
871 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
872 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
873 return 0; /* nnode is obsolete */
874 } else if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
875 return 0; /* nnode is obsolete */
876 /* Assumes cnext list is empty i.e. not called during commit */
877 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
878 c
->dirty_nn_cnt
+= 1;
879 ubifs_add_nnode_dirt(c
, nnode
);
880 /* Mark parent and ancestors dirty too */
881 nnode
= nnode
->parent
;
883 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
884 c
->dirty_nn_cnt
+= 1;
885 ubifs_add_nnode_dirt(c
, nnode
);
886 nnode
= nnode
->parent
;
895 * make_pnode_dirty - find a pnode and, if found, make it dirty.
896 * @c: UBIFS file-system description object
897 * @node_num: pnode number of pnode to make dirty
898 * @lnum: LEB number where pnode was written
899 * @offs: offset where pnode was written
901 * This function is used by LPT garbage collection. LPT garbage collection is
902 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
903 * simply involves marking all the nodes in the LEB being garbage-collected as
904 * dirty. The dirty nodes are written next commit, after which the LEB is free
907 * This function returns %0 on success and a negative error code on failure.
909 static int make_pnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
912 struct ubifs_pnode
*pnode
;
913 struct ubifs_nbranch
*branch
;
915 pnode
= ubifs_pnode_lookup(c
, node_num
);
917 return PTR_ERR(pnode
);
918 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
919 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
921 do_make_pnode_dirty(c
, pnode
);
926 * make_ltab_dirty - make ltab node dirty.
927 * @c: UBIFS file-system description object
928 * @lnum: LEB number where ltab was written
929 * @offs: offset where ltab was written
931 * This function is used by LPT garbage collection. LPT garbage collection is
932 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
933 * simply involves marking all the nodes in the LEB being garbage-collected as
934 * dirty. The dirty nodes are written next commit, after which the LEB is free
937 * This function returns %0 on success and a negative error code on failure.
939 static int make_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
941 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
942 return 0; /* This ltab node is obsolete */
943 if (!(c
->lpt_drty_flgs
& LTAB_DIRTY
)) {
944 c
->lpt_drty_flgs
|= LTAB_DIRTY
;
945 ubifs_add_lpt_dirt(c
, c
->ltab_lnum
, c
->ltab_sz
);
951 * make_lsave_dirty - make lsave node dirty.
952 * @c: UBIFS file-system description object
953 * @lnum: LEB number where lsave was written
954 * @offs: offset where lsave was written
956 * This function is used by LPT garbage collection. LPT garbage collection is
957 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
958 * simply involves marking all the nodes in the LEB being garbage-collected as
959 * dirty. The dirty nodes are written next commit, after which the LEB is free
962 * This function returns %0 on success and a negative error code on failure.
964 static int make_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
966 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
967 return 0; /* This lsave node is obsolete */
968 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
969 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
970 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
976 * make_node_dirty - make node dirty.
977 * @c: UBIFS file-system description object
978 * @node_type: LPT node type
979 * @node_num: node number
980 * @lnum: LEB number where node was written
981 * @offs: offset where node was written
983 * This function is used by LPT garbage collection. LPT garbage collection is
984 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
985 * simply involves marking all the nodes in the LEB being garbage-collected as
986 * dirty. The dirty nodes are written next commit, after which the LEB is free
989 * This function returns %0 on success and a negative error code on failure.
991 static int make_node_dirty(struct ubifs_info
*c
, int node_type
, int node_num
,
995 case UBIFS_LPT_NNODE
:
996 return make_nnode_dirty(c
, node_num
, lnum
, offs
);
997 case UBIFS_LPT_PNODE
:
998 return make_pnode_dirty(c
, node_num
, lnum
, offs
);
1000 return make_ltab_dirty(c
, lnum
, offs
);
1001 case UBIFS_LPT_LSAVE
:
1002 return make_lsave_dirty(c
, lnum
, offs
);
1008 * get_lpt_node_len - return the length of a node based on its type.
1009 * @c: UBIFS file-system description object
1010 * @node_type: LPT node type
1012 static int get_lpt_node_len(const struct ubifs_info
*c
, int node_type
)
1014 switch (node_type
) {
1015 case UBIFS_LPT_NNODE
:
1017 case UBIFS_LPT_PNODE
:
1019 case UBIFS_LPT_LTAB
:
1021 case UBIFS_LPT_LSAVE
:
1028 * get_pad_len - return the length of padding in a buffer.
1029 * @c: UBIFS file-system description object
1031 * @len: length of buffer
1033 static int get_pad_len(const struct ubifs_info
*c
, uint8_t *buf
, int len
)
1037 if (c
->min_io_size
== 1)
1039 offs
= c
->leb_size
- len
;
1040 pad_len
= ALIGN(offs
, c
->min_io_size
) - offs
;
1045 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1046 * @c: UBIFS file-system description object
1048 * @node_num: node number is returned here
1050 static int get_lpt_node_type(const struct ubifs_info
*c
, uint8_t *buf
,
1053 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1054 int pos
= 0, node_type
;
1056 node_type
= ubifs_unpack_bits(c
, &addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1057 *node_num
= ubifs_unpack_bits(c
, &addr
, &pos
, c
->pcnt_bits
);
1062 * is_a_node - determine if a buffer contains a node.
1063 * @c: UBIFS file-system description object
1065 * @len: length of buffer
1067 * This function returns %1 if the buffer contains a node or %0 if it does not.
1069 static int is_a_node(const struct ubifs_info
*c
, uint8_t *buf
, int len
)
1071 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1072 int pos
= 0, node_type
, node_len
;
1073 uint16_t crc
, calc_crc
;
1075 if (len
< UBIFS_LPT_CRC_BYTES
+ (UBIFS_LPT_TYPE_BITS
+ 7) / 8)
1077 node_type
= ubifs_unpack_bits(c
, &addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1078 if (node_type
== UBIFS_LPT_NOT_A_NODE
)
1080 node_len
= get_lpt_node_len(c
, node_type
);
1081 if (!node_len
|| node_len
> len
)
1085 crc
= ubifs_unpack_bits(c
, &addr
, &pos
, UBIFS_LPT_CRC_BITS
);
1086 calc_crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
1087 node_len
- UBIFS_LPT_CRC_BYTES
);
1088 if (crc
!= calc_crc
)
1094 * lpt_gc_lnum - garbage collect a LPT LEB.
1095 * @c: UBIFS file-system description object
1096 * @lnum: LEB number to garbage collect
1098 * LPT garbage collection is used only for the "big" LPT model
1099 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1100 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1101 * next commit, after which the LEB is free to be reused.
1103 * This function returns %0 on success and a negative error code on failure.
1105 static int lpt_gc_lnum(struct ubifs_info
*c
, int lnum
)
1107 int err
, len
= c
->leb_size
, node_type
, node_num
, node_len
, offs
;
1108 void *buf
= c
->lpt_buf
;
1110 dbg_lp("LEB %d", lnum
);
1112 err
= ubifs_leb_read(c
, lnum
, buf
, 0, c
->leb_size
, 1);
1117 if (!is_a_node(c
, buf
, len
)) {
1120 pad_len
= get_pad_len(c
, buf
, len
);
1128 node_type
= get_lpt_node_type(c
, buf
, &node_num
);
1129 node_len
= get_lpt_node_len(c
, node_type
);
1130 offs
= c
->leb_size
- len
;
1131 ubifs_assert(c
, node_len
!= 0);
1132 mutex_lock(&c
->lp_mutex
);
1133 err
= make_node_dirty(c
, node_type
, node_num
, lnum
, offs
);
1134 mutex_unlock(&c
->lp_mutex
);
1144 * lpt_gc - LPT garbage collection.
1145 * @c: UBIFS file-system description object
1147 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1148 * Returns %0 on success and a negative error code on failure.
1150 static int lpt_gc(struct ubifs_info
*c
)
1152 int i
, lnum
= -1, dirty
= 0;
1154 mutex_lock(&c
->lp_mutex
);
1155 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1156 ubifs_assert(c
, !c
->ltab
[i
].tgc
);
1157 if (i
+ c
->lpt_first
== c
->nhead_lnum
||
1158 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
1160 if (c
->ltab
[i
].dirty
> dirty
) {
1161 dirty
= c
->ltab
[i
].dirty
;
1162 lnum
= i
+ c
->lpt_first
;
1165 mutex_unlock(&c
->lp_mutex
);
1168 return lpt_gc_lnum(c
, lnum
);
1172 * ubifs_lpt_start_commit - UBIFS commit starts.
1173 * @c: the UBIFS file-system description object
1175 * This function has to be called when UBIFS starts the commit operation.
1176 * This function "freezes" all currently dirty LEB properties and does not
1177 * change them anymore. Further changes are saved and tracked separately
1178 * because they are not part of this commit. This function returns zero in case
1179 * of success and a negative error code in case of failure.
1181 int ubifs_lpt_start_commit(struct ubifs_info
*c
)
1187 mutex_lock(&c
->lp_mutex
);
1188 err
= dbg_chk_lpt_free_spc(c
);
1191 err
= dbg_check_ltab(c
);
1195 if (c
->check_lpt_free
) {
1197 * We ensure there is enough free space in
1198 * ubifs_lpt_post_commit() by marking nodes dirty. That
1199 * information is lost when we unmount, so we also need
1200 * to check free space once after mounting also.
1202 c
->check_lpt_free
= 0;
1203 while (need_write_all(c
)) {
1204 mutex_unlock(&c
->lp_mutex
);
1208 mutex_lock(&c
->lp_mutex
);
1214 if (!c
->dirty_pn_cnt
) {
1215 dbg_cmt("no cnodes to commit");
1220 if (!c
->big_lpt
&& need_write_all(c
)) {
1221 /* If needed, write everything */
1222 err
= make_tree_dirty(c
);
1231 cnt
= get_cnodes_to_commit(c
);
1232 ubifs_assert(c
, cnt
!= 0);
1234 err
= layout_cnodes(c
);
1238 err
= ubifs_lpt_calc_hash(c
, c
->mst_node
->hash_lpt
);
1242 /* Copy the LPT's own lprops for end commit to write */
1243 memcpy(c
->ltab_cmt
, c
->ltab
,
1244 sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
1245 c
->lpt_drty_flgs
&= ~(LTAB_DIRTY
| LSAVE_DIRTY
);
1248 mutex_unlock(&c
->lp_mutex
);
1253 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1254 * @c: UBIFS file-system description object
1256 static void free_obsolete_cnodes(struct ubifs_info
*c
)
1258 struct ubifs_cnode
*cnode
, *cnext
;
1260 cnext
= c
->lpt_cnext
;
1265 cnext
= cnode
->cnext
;
1266 if (test_bit(OBSOLETE_CNODE
, &cnode
->flags
))
1269 cnode
->cnext
= NULL
;
1270 } while (cnext
!= c
->lpt_cnext
);
1271 c
->lpt_cnext
= NULL
;
1275 * ubifs_lpt_end_commit - finish the commit operation.
1276 * @c: the UBIFS file-system description object
1278 * This function has to be called when the commit operation finishes. It
1279 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1280 * the media. Returns zero in case of success and a negative error code in case
1283 int ubifs_lpt_end_commit(struct ubifs_info
*c
)
1292 err
= write_cnodes(c
);
1296 mutex_lock(&c
->lp_mutex
);
1297 free_obsolete_cnodes(c
);
1298 mutex_unlock(&c
->lp_mutex
);
1304 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1305 * @c: UBIFS file-system description object
1307 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1308 * commit for the "big" LPT model.
1310 int ubifs_lpt_post_commit(struct ubifs_info
*c
)
1314 mutex_lock(&c
->lp_mutex
);
1315 err
= lpt_tgc_end(c
);
1319 while (need_write_all(c
)) {
1320 mutex_unlock(&c
->lp_mutex
);
1324 mutex_lock(&c
->lp_mutex
);
1327 mutex_unlock(&c
->lp_mutex
);
1332 * first_nnode - find the first nnode in memory.
1333 * @c: UBIFS file-system description object
1334 * @hght: height of tree where nnode found is returned here
1336 * This function returns a pointer to the nnode found or %NULL if no nnode is
1337 * found. This function is a helper to 'ubifs_lpt_free()'.
1339 static struct ubifs_nnode
*first_nnode(struct ubifs_info
*c
, int *hght
)
1341 struct ubifs_nnode
*nnode
;
1348 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1350 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1351 if (nnode
->nbranch
[i
].nnode
) {
1353 nnode
= nnode
->nbranch
[i
].nnode
;
1365 * next_nnode - find the next nnode in memory.
1366 * @c: UBIFS file-system description object
1367 * @nnode: nnode from which to start.
1368 * @hght: height of tree where nnode is, is passed and returned here
1370 * This function returns a pointer to the nnode found or %NULL if no nnode is
1371 * found. This function is a helper to 'ubifs_lpt_free()'.
1373 static struct ubifs_nnode
*next_nnode(struct ubifs_info
*c
,
1374 struct ubifs_nnode
*nnode
, int *hght
)
1376 struct ubifs_nnode
*parent
;
1377 int iip
, h
, i
, found
;
1379 parent
= nnode
->parent
;
1382 if (nnode
->iip
== UBIFS_LPT_FANOUT
- 1) {
1386 for (iip
= nnode
->iip
+ 1; iip
< UBIFS_LPT_FANOUT
; iip
++) {
1387 nnode
= parent
->nbranch
[iip
].nnode
;
1395 for (h
= *hght
+ 1; h
< c
->lpt_hght
; h
++) {
1397 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1398 if (nnode
->nbranch
[i
].nnode
) {
1400 nnode
= nnode
->nbranch
[i
].nnode
;
1412 * ubifs_lpt_free - free resources owned by the LPT.
1413 * @c: UBIFS file-system description object
1414 * @wr_only: free only resources used for writing
1416 void ubifs_lpt_free(struct ubifs_info
*c
, int wr_only
)
1418 struct ubifs_nnode
*nnode
;
1421 /* Free write-only things first */
1423 free_obsolete_cnodes(c
); /* Leftover from a failed commit */
1435 /* Now free the rest */
1437 nnode
= first_nnode(c
, &hght
);
1439 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++)
1440 kfree(nnode
->nbranch
[i
].nnode
);
1441 nnode
= next_nnode(c
, nnode
, &hght
);
1443 for (i
= 0; i
< LPROPS_HEAP_CNT
; i
++)
1444 kfree(c
->lpt_heap
[i
].arr
);
1445 kfree(c
->dirty_idx
.arr
);
1448 kfree(c
->lpt_nod_buf
);
1452 * Everything below is related to debugging.
1456 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1458 * @len: buffer length
1460 static int dbg_is_all_ff(uint8_t *buf
, int len
)
1464 for (i
= 0; i
< len
; i
++)
1471 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1472 * @c: the UBIFS file-system description object
1473 * @lnum: LEB number where nnode was written
1474 * @offs: offset where nnode was written
1476 static int dbg_is_nnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1478 struct ubifs_nnode
*nnode
;
1481 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1482 nnode
= first_nnode(c
, &hght
);
1483 for (; nnode
; nnode
= next_nnode(c
, nnode
, &hght
)) {
1484 struct ubifs_nbranch
*branch
;
1487 if (nnode
->parent
) {
1488 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
1489 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1491 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1495 if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
1497 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1506 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1507 * @c: the UBIFS file-system description object
1508 * @lnum: LEB number where pnode was written
1509 * @offs: offset where pnode was written
1511 static int dbg_is_pnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1515 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1516 for (i
= 0; i
< cnt
; i
++) {
1517 struct ubifs_pnode
*pnode
;
1518 struct ubifs_nbranch
*branch
;
1521 pnode
= ubifs_pnode_lookup(c
, i
);
1523 return PTR_ERR(pnode
);
1524 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
1525 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1527 if (test_bit(DIRTY_CNODE
, &pnode
->flags
))
1535 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1536 * @c: the UBIFS file-system description object
1537 * @lnum: LEB number where ltab node was written
1538 * @offs: offset where ltab node was written
1540 static int dbg_is_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1542 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
1544 return (c
->lpt_drty_flgs
& LTAB_DIRTY
) != 0;
1548 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1549 * @c: the UBIFS file-system description object
1550 * @lnum: LEB number where lsave node was written
1551 * @offs: offset where lsave node was written
1553 static int dbg_is_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1555 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
1557 return (c
->lpt_drty_flgs
& LSAVE_DIRTY
) != 0;
1561 * dbg_is_node_dirty - determine if a node is dirty.
1562 * @c: the UBIFS file-system description object
1563 * @node_type: node type
1564 * @lnum: LEB number where node was written
1565 * @offs: offset where node was written
1567 static int dbg_is_node_dirty(struct ubifs_info
*c
, int node_type
, int lnum
,
1570 switch (node_type
) {
1571 case UBIFS_LPT_NNODE
:
1572 return dbg_is_nnode_dirty(c
, lnum
, offs
);
1573 case UBIFS_LPT_PNODE
:
1574 return dbg_is_pnode_dirty(c
, lnum
, offs
);
1575 case UBIFS_LPT_LTAB
:
1576 return dbg_is_ltab_dirty(c
, lnum
, offs
);
1577 case UBIFS_LPT_LSAVE
:
1578 return dbg_is_lsave_dirty(c
, lnum
, offs
);
1584 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1585 * @c: the UBIFS file-system description object
1586 * @lnum: LEB number where node was written
1588 * This function returns %0 on success and a negative error code on failure.
1590 static int dbg_check_ltab_lnum(struct ubifs_info
*c
, int lnum
)
1592 int err
, len
= c
->leb_size
, dirty
= 0, node_type
, node_num
, node_len
;
1596 if (!dbg_is_chk_lprops(c
))
1599 buf
= p
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
1601 ubifs_err(c
, "cannot allocate memory for ltab checking");
1605 dbg_lp("LEB %d", lnum
);
1607 err
= ubifs_leb_read(c
, lnum
, buf
, 0, c
->leb_size
, 1);
1612 if (!is_a_node(c
, p
, len
)) {
1615 pad_len
= get_pad_len(c
, p
, len
);
1622 if (!dbg_is_all_ff(p
, len
)) {
1623 ubifs_err(c
, "invalid empty space in LEB %d at %d",
1624 lnum
, c
->leb_size
- len
);
1627 i
= lnum
- c
->lpt_first
;
1628 if (len
!= c
->ltab
[i
].free
) {
1629 ubifs_err(c
, "invalid free space in LEB %d (free %d, expected %d)",
1630 lnum
, len
, c
->ltab
[i
].free
);
1633 if (dirty
!= c
->ltab
[i
].dirty
) {
1634 ubifs_err(c
, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1635 lnum
, dirty
, c
->ltab
[i
].dirty
);
1640 node_type
= get_lpt_node_type(c
, p
, &node_num
);
1641 node_len
= get_lpt_node_len(c
, node_type
);
1642 ret
= dbg_is_node_dirty(c
, node_type
, lnum
, c
->leb_size
- len
);
1656 * dbg_check_ltab - check the free and dirty space in the ltab.
1657 * @c: the UBIFS file-system description object
1659 * This function returns %0 on success and a negative error code on failure.
1661 int dbg_check_ltab(struct ubifs_info
*c
)
1663 int lnum
, err
, i
, cnt
;
1665 if (!dbg_is_chk_lprops(c
))
1668 /* Bring the entire tree into memory */
1669 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1670 for (i
= 0; i
< cnt
; i
++) {
1671 struct ubifs_pnode
*pnode
;
1673 pnode
= ubifs_pnode_lookup(c
, i
);
1675 return PTR_ERR(pnode
);
1680 err
= dbg_check_lpt_nodes(c
, (struct ubifs_cnode
*)c
->nroot
, 0, 0);
1684 /* Check each LEB */
1685 for (lnum
= c
->lpt_first
; lnum
<= c
->lpt_last
; lnum
++) {
1686 err
= dbg_check_ltab_lnum(c
, lnum
);
1688 ubifs_err(c
, "failed at LEB %d", lnum
);
1693 dbg_lp("succeeded");
1698 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1699 * @c: the UBIFS file-system description object
1701 * This function returns %0 on success and a negative error code on failure.
1703 int dbg_chk_lpt_free_spc(struct ubifs_info
*c
)
1708 if (!dbg_is_chk_lprops(c
))
1711 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1712 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
1714 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
1715 free
+= c
->leb_size
- c
->nhead_offs
;
1716 else if (c
->ltab
[i
].free
== c
->leb_size
)
1717 free
+= c
->leb_size
;
1719 if (free
< c
->lpt_sz
) {
1720 ubifs_err(c
, "LPT space error: free %lld lpt_sz %lld",
1722 ubifs_dump_lpt_info(c
);
1723 ubifs_dump_lpt_lebs(c
);
1731 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1732 * @c: the UBIFS file-system description object
1733 * @action: what to do
1734 * @len: length written
1736 * This function returns %0 on success and a negative error code on failure.
1737 * The @action argument may be one of:
1738 * o %0 - LPT debugging checking starts, initialize debugging variables;
1739 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1740 * o %2 - switched to a different LEB and wasted @len bytes;
1741 * o %3 - check that we've written the right number of bytes.
1742 * o %4 - wasted @len bytes;
1744 int dbg_chk_lpt_sz(struct ubifs_info
*c
, int action
, int len
)
1746 struct ubifs_debug_info
*d
= c
->dbg
;
1747 long long chk_lpt_sz
, lpt_sz
;
1750 if (!dbg_is_chk_lprops(c
))
1757 d
->chk_lpt_lebs
= 0;
1758 d
->chk_lpt_wastage
= 0;
1759 if (c
->dirty_pn_cnt
> c
->pnode_cnt
) {
1760 ubifs_err(c
, "dirty pnodes %d exceed max %d",
1761 c
->dirty_pn_cnt
, c
->pnode_cnt
);
1764 if (c
->dirty_nn_cnt
> c
->nnode_cnt
) {
1765 ubifs_err(c
, "dirty nnodes %d exceed max %d",
1766 c
->dirty_nn_cnt
, c
->nnode_cnt
);
1771 d
->chk_lpt_sz
+= len
;
1774 d
->chk_lpt_sz
+= len
;
1775 d
->chk_lpt_wastage
+= len
;
1776 d
->chk_lpt_lebs
+= 1;
1779 chk_lpt_sz
= c
->leb_size
;
1780 chk_lpt_sz
*= d
->chk_lpt_lebs
;
1781 chk_lpt_sz
+= len
- c
->nhead_offs
;
1782 if (d
->chk_lpt_sz
!= chk_lpt_sz
) {
1783 ubifs_err(c
, "LPT wrote %lld but space used was %lld",
1784 d
->chk_lpt_sz
, chk_lpt_sz
);
1787 if (d
->chk_lpt_sz
> c
->lpt_sz
) {
1788 ubifs_err(c
, "LPT wrote %lld but lpt_sz is %lld",
1789 d
->chk_lpt_sz
, c
->lpt_sz
);
1792 if (d
->chk_lpt_sz2
&& d
->chk_lpt_sz
!= d
->chk_lpt_sz2
) {
1793 ubifs_err(c
, "LPT layout size %lld but wrote %lld",
1794 d
->chk_lpt_sz
, d
->chk_lpt_sz2
);
1797 if (d
->chk_lpt_sz2
&& d
->new_nhead_offs
!= len
) {
1798 ubifs_err(c
, "LPT new nhead offs: expected %d was %d",
1799 d
->new_nhead_offs
, len
);
1802 lpt_sz
= (long long)c
->pnode_cnt
* c
->pnode_sz
;
1803 lpt_sz
+= (long long)c
->nnode_cnt
* c
->nnode_sz
;
1804 lpt_sz
+= c
->ltab_sz
;
1806 lpt_sz
+= c
->lsave_sz
;
1807 if (d
->chk_lpt_sz
- d
->chk_lpt_wastage
> lpt_sz
) {
1808 ubifs_err(c
, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1809 d
->chk_lpt_sz
, d
->chk_lpt_wastage
, lpt_sz
);
1813 ubifs_dump_lpt_info(c
);
1814 ubifs_dump_lpt_lebs(c
);
1817 d
->chk_lpt_sz2
= d
->chk_lpt_sz
;
1819 d
->chk_lpt_wastage
= 0;
1820 d
->chk_lpt_lebs
= 0;
1821 d
->new_nhead_offs
= len
;
1824 d
->chk_lpt_sz
+= len
;
1825 d
->chk_lpt_wastage
+= len
;
1833 * dump_lpt_leb - dump an LPT LEB.
1834 * @c: UBIFS file-system description object
1835 * @lnum: LEB number to dump
1837 * This function dumps an LEB from LPT area. Nodes in this area are very
1838 * different to nodes in the main area (e.g., they do not have common headers,
1839 * they do not have 8-byte alignments, etc), so we have a separate function to
1840 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1842 static void dump_lpt_leb(const struct ubifs_info
*c
, int lnum
)
1844 int err
, len
= c
->leb_size
, node_type
, node_num
, node_len
, offs
;
1847 pr_err("(pid %d) start dumping LEB %d\n", current
->pid
, lnum
);
1848 buf
= p
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
1850 ubifs_err(c
, "cannot allocate memory to dump LPT");
1854 err
= ubifs_leb_read(c
, lnum
, buf
, 0, c
->leb_size
, 1);
1859 offs
= c
->leb_size
- len
;
1860 if (!is_a_node(c
, p
, len
)) {
1863 pad_len
= get_pad_len(c
, p
, len
);
1865 pr_err("LEB %d:%d, pad %d bytes\n",
1866 lnum
, offs
, pad_len
);
1872 pr_err("LEB %d:%d, free %d bytes\n",
1877 node_type
= get_lpt_node_type(c
, p
, &node_num
);
1878 switch (node_type
) {
1879 case UBIFS_LPT_PNODE
:
1881 node_len
= c
->pnode_sz
;
1883 pr_err("LEB %d:%d, pnode num %d\n",
1884 lnum
, offs
, node_num
);
1886 pr_err("LEB %d:%d, pnode\n", lnum
, offs
);
1889 case UBIFS_LPT_NNODE
:
1892 struct ubifs_nnode nnode
;
1894 node_len
= c
->nnode_sz
;
1896 pr_err("LEB %d:%d, nnode num %d, ",
1897 lnum
, offs
, node_num
);
1899 pr_err("LEB %d:%d, nnode, ",
1901 err
= ubifs_unpack_nnode(c
, p
, &nnode
);
1903 pr_err("failed to unpack_node, error %d\n",
1907 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1908 pr_cont("%d:%d", nnode
.nbranch
[i
].lnum
,
1909 nnode
.nbranch
[i
].offs
);
1910 if (i
!= UBIFS_LPT_FANOUT
- 1)
1916 case UBIFS_LPT_LTAB
:
1917 node_len
= c
->ltab_sz
;
1918 pr_err("LEB %d:%d, ltab\n", lnum
, offs
);
1920 case UBIFS_LPT_LSAVE
:
1921 node_len
= c
->lsave_sz
;
1922 pr_err("LEB %d:%d, lsave len\n", lnum
, offs
);
1925 ubifs_err(c
, "LPT node type %d not recognized", node_type
);
1933 pr_err("(pid %d) finish dumping LEB %d\n", current
->pid
, lnum
);
1940 * ubifs_dump_lpt_lebs - dump LPT lebs.
1941 * @c: UBIFS file-system description object
1943 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1946 void ubifs_dump_lpt_lebs(const struct ubifs_info
*c
)
1950 pr_err("(pid %d) start dumping all LPT LEBs\n", current
->pid
);
1951 for (i
= 0; i
< c
->lpt_lebs
; i
++)
1952 dump_lpt_leb(c
, i
+ c
->lpt_first
);
1953 pr_err("(pid %d) finish dumping all LPT LEBs\n", current
->pid
);
1957 * dbg_populate_lsave - debugging version of 'populate_lsave()'
1958 * @c: UBIFS file-system description object
1960 * This is a debugging version for 'populate_lsave()' which populates lsave
1961 * with random LEBs instead of useful LEBs, which is good for test coverage.
1962 * Returns zero if lsave has not been populated (this debugging feature is
1963 * disabled) an non-zero if lsave has been populated.
1965 static int dbg_populate_lsave(struct ubifs_info
*c
)
1967 struct ubifs_lprops
*lprops
;
1968 struct ubifs_lpt_heap
*heap
;
1971 if (!dbg_is_chk_gen(c
))
1973 if (prandom_u32() & 3)
1976 for (i
= 0; i
< c
->lsave_cnt
; i
++)
1977 c
->lsave
[i
] = c
->main_first
;
1979 list_for_each_entry(lprops
, &c
->empty_list
, list
)
1980 c
->lsave
[prandom_u32() % c
->lsave_cnt
] = lprops
->lnum
;
1981 list_for_each_entry(lprops
, &c
->freeable_list
, list
)
1982 c
->lsave
[prandom_u32() % c
->lsave_cnt
] = lprops
->lnum
;
1983 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
)
1984 c
->lsave
[prandom_u32() % c
->lsave_cnt
] = lprops
->lnum
;
1986 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
1987 for (i
= 0; i
< heap
->cnt
; i
++)
1988 c
->lsave
[prandom_u32() % c
->lsave_cnt
] = heap
->arr
[i
]->lnum
;
1989 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
1990 for (i
= 0; i
< heap
->cnt
; i
++)
1991 c
->lsave
[prandom_u32() % c
->lsave_cnt
] = heap
->arr
[i
]->lnum
;
1992 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
1993 for (i
= 0; i
< heap
->cnt
; i
++)
1994 c
->lsave
[prandom_u32() % c
->lsave_cnt
] = heap
->arr
[i
]->lnum
;