1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
31 int sysctl_unprivileged_userfaultfd __read_mostly
= 1;
33 static struct kmem_cache
*userfaultfd_ctx_cachep __read_mostly
;
35 enum userfaultfd_state
{
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
46 * fault_pending_wqh.lock
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
54 struct userfaultfd_ctx
{
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh
;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh
;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh
;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh
;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq
;
65 /* pseudo fd refcounting */
67 /* userfaultfd syscall flags */
69 /* features requested from the userspace */
70 unsigned int features
;
72 enum userfaultfd_state state
;
75 /* memory mappings are changing because of non-cooperative event */
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
81 struct userfaultfd_fork_ctx
{
82 struct userfaultfd_ctx
*orig
;
83 struct userfaultfd_ctx
*new;
84 struct list_head list
;
87 struct userfaultfd_unmap_ctx
{
88 struct userfaultfd_ctx
*ctx
;
91 struct list_head list
;
94 struct userfaultfd_wait_queue
{
96 wait_queue_entry_t wq
;
97 struct userfaultfd_ctx
*ctx
;
101 struct userfaultfd_wake_range
{
106 static int userfaultfd_wake_function(wait_queue_entry_t
*wq
, unsigned mode
,
107 int wake_flags
, void *key
)
109 struct userfaultfd_wake_range
*range
= key
;
111 struct userfaultfd_wait_queue
*uwq
;
112 unsigned long start
, len
;
114 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
116 /* len == 0 means wake all */
117 start
= range
->start
;
119 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
120 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
122 WRITE_ONCE(uwq
->waken
, true);
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
127 ret
= wake_up_state(wq
->private, mode
);
130 * Wake only once, autoremove behavior.
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
140 list_del_init(&wq
->entry
);
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * @ctx: [in] Pointer to the userfaultfd context.
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
153 refcount_inc(&ctx
->refcount
);
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * @ctx: [in] Pointer to userfaultfd context.
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
166 if (refcount_dec_and_test(&ctx
->refcount
)) {
167 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
168 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
169 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
170 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
171 VM_BUG_ON(spin_is_locked(&ctx
->event_wqh
.lock
));
172 VM_BUG_ON(waitqueue_active(&ctx
->event_wqh
));
173 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
174 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
176 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
180 static inline void msg_init(struct uffd_msg
*msg
)
182 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
187 memset(msg
, 0, sizeof(struct uffd_msg
));
190 static inline struct uffd_msg
userfault_msg(unsigned long address
,
192 unsigned long reason
,
193 unsigned int features
)
197 msg
.event
= UFFD_EVENT_PAGEFAULT
;
198 msg
.arg
.pagefault
.address
= address
;
199 if (flags
& FAULT_FLAG_WRITE
)
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
207 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
208 if (reason
& VM_UFFD_WP
)
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
216 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
217 if (features
& UFFD_FEATURE_THREAD_ID
)
218 msg
.arg
.pagefault
.feat
.ptid
= task_pid_vnr(current
);
222 #ifdef CONFIG_HUGETLB_PAGE
224 * Same functionality as userfaultfd_must_wait below with modifications for
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
228 struct vm_area_struct
*vma
,
229 unsigned long address
,
231 unsigned long reason
)
233 struct mm_struct
*mm
= ctx
->mm
;
237 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
239 ptep
= huge_pte_offset(mm
, address
, vma_mmu_pagesize(vma
));
245 pte
= huge_ptep_get(ptep
);
248 * Lockless access: we're in a wait_event so it's ok if it
251 if (huge_pte_none(pte
))
253 if (!huge_pte_write(pte
) && (reason
& VM_UFFD_WP
))
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
260 struct vm_area_struct
*vma
,
261 unsigned long address
,
263 unsigned long reason
)
265 return false; /* should never get here */
267 #endif /* CONFIG_HUGETLB_PAGE */
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
277 unsigned long address
,
279 unsigned long reason
)
281 struct mm_struct
*mm
= ctx
->mm
;
289 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
291 pgd
= pgd_offset(mm
, address
);
292 if (!pgd_present(*pgd
))
294 p4d
= p4d_offset(pgd
, address
);
295 if (!p4d_present(*p4d
))
297 pud
= pud_offset(p4d
, address
);
298 if (!pud_present(*pud
))
300 pmd
= pmd_offset(pud
, address
);
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
309 _pmd
= READ_ONCE(*pmd
);
314 if (!pmd_present(_pmd
))
317 if (pmd_trans_huge(_pmd
))
321 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
322 * and use the standard pte_offset_map() instead of parsing _pmd.
324 pte
= pte_offset_map(pmd
, address
);
326 * Lockless access: we're in a wait_event so it's ok if it
338 * The locking rules involved in returning VM_FAULT_RETRY depending on
339 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
340 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
341 * recommendation in __lock_page_or_retry is not an understatement.
343 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
344 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
347 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
348 * set, VM_FAULT_RETRY can still be returned if and only if there are
349 * fatal_signal_pending()s, and the mmap_sem must be released before
352 vm_fault_t
handle_userfault(struct vm_fault
*vmf
, unsigned long reason
)
354 struct mm_struct
*mm
= vmf
->vma
->vm_mm
;
355 struct userfaultfd_ctx
*ctx
;
356 struct userfaultfd_wait_queue uwq
;
357 vm_fault_t ret
= VM_FAULT_SIGBUS
;
358 bool must_wait
, return_to_userland
;
362 * We don't do userfault handling for the final child pid update.
364 * We also don't do userfault handling during
365 * coredumping. hugetlbfs has the special
366 * follow_hugetlb_page() to skip missing pages in the
367 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
368 * the no_page_table() helper in follow_page_mask(), but the
369 * shmem_vm_ops->fault method is invoked even during
370 * coredumping without mmap_sem and it ends up here.
372 if (current
->flags
& (PF_EXITING
|PF_DUMPCORE
))
376 * Coredumping runs without mmap_sem so we can only check that
377 * the mmap_sem is held, if PF_DUMPCORE was not set.
379 WARN_ON_ONCE(!rwsem_is_locked(&mm
->mmap_sem
));
381 ctx
= vmf
->vma
->vm_userfaultfd_ctx
.ctx
;
385 BUG_ON(ctx
->mm
!= mm
);
387 VM_BUG_ON(reason
& ~(VM_UFFD_MISSING
|VM_UFFD_WP
));
388 VM_BUG_ON(!(reason
& VM_UFFD_MISSING
) ^ !!(reason
& VM_UFFD_WP
));
390 if (ctx
->features
& UFFD_FEATURE_SIGBUS
)
394 * If it's already released don't get it. This avoids to loop
395 * in __get_user_pages if userfaultfd_release waits on the
396 * caller of handle_userfault to release the mmap_sem.
398 if (unlikely(READ_ONCE(ctx
->released
))) {
400 * Don't return VM_FAULT_SIGBUS in this case, so a non
401 * cooperative manager can close the uffd after the
402 * last UFFDIO_COPY, without risking to trigger an
403 * involuntary SIGBUS if the process was starting the
404 * userfaultfd while the userfaultfd was still armed
405 * (but after the last UFFDIO_COPY). If the uffd
406 * wasn't already closed when the userfault reached
407 * this point, that would normally be solved by
408 * userfaultfd_must_wait returning 'false'.
410 * If we were to return VM_FAULT_SIGBUS here, the non
411 * cooperative manager would be instead forced to
412 * always call UFFDIO_UNREGISTER before it can safely
415 ret
= VM_FAULT_NOPAGE
;
420 * Check that we can return VM_FAULT_RETRY.
422 * NOTE: it should become possible to return VM_FAULT_RETRY
423 * even if FAULT_FLAG_TRIED is set without leading to gup()
424 * -EBUSY failures, if the userfaultfd is to be extended for
425 * VM_UFFD_WP tracking and we intend to arm the userfault
426 * without first stopping userland access to the memory. For
427 * VM_UFFD_MISSING userfaults this is enough for now.
429 if (unlikely(!(vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
431 * Validate the invariant that nowait must allow retry
432 * to be sure not to return SIGBUS erroneously on
433 * nowait invocations.
435 BUG_ON(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
436 #ifdef CONFIG_DEBUG_VM
437 if (printk_ratelimit()) {
439 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
448 * Handle nowait, not much to do other than tell it to retry
451 ret
= VM_FAULT_RETRY
;
452 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
455 /* take the reference before dropping the mmap_sem */
456 userfaultfd_ctx_get(ctx
);
458 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
459 uwq
.wq
.private = current
;
460 uwq
.msg
= userfault_msg(vmf
->address
, vmf
->flags
, reason
,
466 (vmf
->flags
& (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
)) ==
467 (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
);
468 blocking_state
= return_to_userland
? TASK_INTERRUPTIBLE
:
471 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
473 * After the __add_wait_queue the uwq is visible to userland
474 * through poll/read().
476 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
478 * The smp_mb() after __set_current_state prevents the reads
479 * following the spin_unlock to happen before the list_add in
482 set_current_state(blocking_state
);
483 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
485 if (!is_vm_hugetlb_page(vmf
->vma
))
486 must_wait
= userfaultfd_must_wait(ctx
, vmf
->address
, vmf
->flags
,
489 must_wait
= userfaultfd_huge_must_wait(ctx
, vmf
->vma
,
492 up_read(&mm
->mmap_sem
);
494 if (likely(must_wait
&& !READ_ONCE(ctx
->released
) &&
495 (return_to_userland
? !signal_pending(current
) :
496 !fatal_signal_pending(current
)))) {
497 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
499 ret
|= VM_FAULT_MAJOR
;
502 * False wakeups can orginate even from rwsem before
503 * up_read() however userfaults will wait either for a
504 * targeted wakeup on the specific uwq waitqueue from
505 * wake_userfault() or for signals or for uffd
508 while (!READ_ONCE(uwq
.waken
)) {
510 * This needs the full smp_store_mb()
511 * guarantee as the state write must be
512 * visible to other CPUs before reading
513 * uwq.waken from other CPUs.
515 set_current_state(blocking_state
);
516 if (READ_ONCE(uwq
.waken
) ||
517 READ_ONCE(ctx
->released
) ||
518 (return_to_userland
? signal_pending(current
) :
519 fatal_signal_pending(current
)))
525 __set_current_state(TASK_RUNNING
);
527 if (return_to_userland
) {
528 if (signal_pending(current
) &&
529 !fatal_signal_pending(current
)) {
531 * If we got a SIGSTOP or SIGCONT and this is
532 * a normal userland page fault, just let
533 * userland return so the signal will be
534 * handled and gdb debugging works. The page
535 * fault code immediately after we return from
536 * this function is going to release the
537 * mmap_sem and it's not depending on it
538 * (unlike gup would if we were not to return
541 * If a fatal signal is pending we still take
542 * the streamlined VM_FAULT_RETRY failure path
543 * and there's no need to retake the mmap_sem
546 down_read(&mm
->mmap_sem
);
547 ret
= VM_FAULT_NOPAGE
;
552 * Here we race with the list_del; list_add in
553 * userfaultfd_ctx_read(), however because we don't ever run
554 * list_del_init() to refile across the two lists, the prev
555 * and next pointers will never point to self. list_add also
556 * would never let any of the two pointers to point to
557 * self. So list_empty_careful won't risk to see both pointers
558 * pointing to self at any time during the list refile. The
559 * only case where list_del_init() is called is the full
560 * removal in the wake function and there we don't re-list_add
561 * and it's fine not to block on the spinlock. The uwq on this
562 * kernel stack can be released after the list_del_init.
564 if (!list_empty_careful(&uwq
.wq
.entry
)) {
565 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
567 * No need of list_del_init(), the uwq on the stack
568 * will be freed shortly anyway.
570 list_del(&uwq
.wq
.entry
);
571 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
575 * ctx may go away after this if the userfault pseudo fd is
578 userfaultfd_ctx_put(ctx
);
584 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx
*ctx
,
585 struct userfaultfd_wait_queue
*ewq
)
587 struct userfaultfd_ctx
*release_new_ctx
;
589 if (WARN_ON_ONCE(current
->flags
& PF_EXITING
))
593 init_waitqueue_entry(&ewq
->wq
, current
);
594 release_new_ctx
= NULL
;
596 spin_lock_irq(&ctx
->event_wqh
.lock
);
598 * After the __add_wait_queue the uwq is visible to userland
599 * through poll/read().
601 __add_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
603 set_current_state(TASK_KILLABLE
);
604 if (ewq
->msg
.event
== 0)
606 if (READ_ONCE(ctx
->released
) ||
607 fatal_signal_pending(current
)) {
609 * &ewq->wq may be queued in fork_event, but
610 * __remove_wait_queue ignores the head
611 * parameter. It would be a problem if it
614 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
615 if (ewq
->msg
.event
== UFFD_EVENT_FORK
) {
616 struct userfaultfd_ctx
*new;
618 new = (struct userfaultfd_ctx
*)
620 ewq
->msg
.arg
.reserved
.reserved1
;
621 release_new_ctx
= new;
626 spin_unlock_irq(&ctx
->event_wqh
.lock
);
628 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
631 spin_lock_irq(&ctx
->event_wqh
.lock
);
633 __set_current_state(TASK_RUNNING
);
634 spin_unlock_irq(&ctx
->event_wqh
.lock
);
636 if (release_new_ctx
) {
637 struct vm_area_struct
*vma
;
638 struct mm_struct
*mm
= release_new_ctx
->mm
;
640 /* the various vma->vm_userfaultfd_ctx still points to it */
641 down_write(&mm
->mmap_sem
);
642 /* no task can run (and in turn coredump) yet */
643 VM_WARN_ON(!mmget_still_valid(mm
));
644 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
645 if (vma
->vm_userfaultfd_ctx
.ctx
== release_new_ctx
) {
646 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
647 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
649 up_write(&mm
->mmap_sem
);
651 userfaultfd_ctx_put(release_new_ctx
);
655 * ctx may go away after this if the userfault pseudo fd is
659 WRITE_ONCE(ctx
->mmap_changing
, false);
660 userfaultfd_ctx_put(ctx
);
663 static void userfaultfd_event_complete(struct userfaultfd_ctx
*ctx
,
664 struct userfaultfd_wait_queue
*ewq
)
667 wake_up_locked(&ctx
->event_wqh
);
668 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
671 int dup_userfaultfd(struct vm_area_struct
*vma
, struct list_head
*fcs
)
673 struct userfaultfd_ctx
*ctx
= NULL
, *octx
;
674 struct userfaultfd_fork_ctx
*fctx
;
676 octx
= vma
->vm_userfaultfd_ctx
.ctx
;
677 if (!octx
|| !(octx
->features
& UFFD_FEATURE_EVENT_FORK
)) {
678 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
679 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
683 list_for_each_entry(fctx
, fcs
, list
)
684 if (fctx
->orig
== octx
) {
690 fctx
= kmalloc(sizeof(*fctx
), GFP_KERNEL
);
694 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
700 refcount_set(&ctx
->refcount
, 1);
701 ctx
->flags
= octx
->flags
;
702 ctx
->state
= UFFD_STATE_RUNNING
;
703 ctx
->features
= octx
->features
;
704 ctx
->released
= false;
705 ctx
->mmap_changing
= false;
706 ctx
->mm
= vma
->vm_mm
;
709 userfaultfd_ctx_get(octx
);
710 WRITE_ONCE(octx
->mmap_changing
, true);
713 list_add_tail(&fctx
->list
, fcs
);
716 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
720 static void dup_fctx(struct userfaultfd_fork_ctx
*fctx
)
722 struct userfaultfd_ctx
*ctx
= fctx
->orig
;
723 struct userfaultfd_wait_queue ewq
;
727 ewq
.msg
.event
= UFFD_EVENT_FORK
;
728 ewq
.msg
.arg
.reserved
.reserved1
= (unsigned long)fctx
->new;
730 userfaultfd_event_wait_completion(ctx
, &ewq
);
733 void dup_userfaultfd_complete(struct list_head
*fcs
)
735 struct userfaultfd_fork_ctx
*fctx
, *n
;
737 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
739 list_del(&fctx
->list
);
744 void mremap_userfaultfd_prep(struct vm_area_struct
*vma
,
745 struct vm_userfaultfd_ctx
*vm_ctx
)
747 struct userfaultfd_ctx
*ctx
;
749 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
754 if (ctx
->features
& UFFD_FEATURE_EVENT_REMAP
) {
756 userfaultfd_ctx_get(ctx
);
757 WRITE_ONCE(ctx
->mmap_changing
, true);
759 /* Drop uffd context if remap feature not enabled */
760 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
761 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
765 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx
*vm_ctx
,
766 unsigned long from
, unsigned long to
,
769 struct userfaultfd_ctx
*ctx
= vm_ctx
->ctx
;
770 struct userfaultfd_wait_queue ewq
;
775 if (to
& ~PAGE_MASK
) {
776 userfaultfd_ctx_put(ctx
);
782 ewq
.msg
.event
= UFFD_EVENT_REMAP
;
783 ewq
.msg
.arg
.remap
.from
= from
;
784 ewq
.msg
.arg
.remap
.to
= to
;
785 ewq
.msg
.arg
.remap
.len
= len
;
787 userfaultfd_event_wait_completion(ctx
, &ewq
);
790 bool userfaultfd_remove(struct vm_area_struct
*vma
,
791 unsigned long start
, unsigned long end
)
793 struct mm_struct
*mm
= vma
->vm_mm
;
794 struct userfaultfd_ctx
*ctx
;
795 struct userfaultfd_wait_queue ewq
;
797 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
798 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_REMOVE
))
801 userfaultfd_ctx_get(ctx
);
802 WRITE_ONCE(ctx
->mmap_changing
, true);
803 up_read(&mm
->mmap_sem
);
807 ewq
.msg
.event
= UFFD_EVENT_REMOVE
;
808 ewq
.msg
.arg
.remove
.start
= start
;
809 ewq
.msg
.arg
.remove
.end
= end
;
811 userfaultfd_event_wait_completion(ctx
, &ewq
);
816 static bool has_unmap_ctx(struct userfaultfd_ctx
*ctx
, struct list_head
*unmaps
,
817 unsigned long start
, unsigned long end
)
819 struct userfaultfd_unmap_ctx
*unmap_ctx
;
821 list_for_each_entry(unmap_ctx
, unmaps
, list
)
822 if (unmap_ctx
->ctx
== ctx
&& unmap_ctx
->start
== start
&&
823 unmap_ctx
->end
== end
)
829 int userfaultfd_unmap_prep(struct vm_area_struct
*vma
,
830 unsigned long start
, unsigned long end
,
831 struct list_head
*unmaps
)
833 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
834 struct userfaultfd_unmap_ctx
*unmap_ctx
;
835 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
837 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_UNMAP
) ||
838 has_unmap_ctx(ctx
, unmaps
, start
, end
))
841 unmap_ctx
= kzalloc(sizeof(*unmap_ctx
), GFP_KERNEL
);
845 userfaultfd_ctx_get(ctx
);
846 WRITE_ONCE(ctx
->mmap_changing
, true);
847 unmap_ctx
->ctx
= ctx
;
848 unmap_ctx
->start
= start
;
849 unmap_ctx
->end
= end
;
850 list_add_tail(&unmap_ctx
->list
, unmaps
);
856 void userfaultfd_unmap_complete(struct mm_struct
*mm
, struct list_head
*uf
)
858 struct userfaultfd_unmap_ctx
*ctx
, *n
;
859 struct userfaultfd_wait_queue ewq
;
861 list_for_each_entry_safe(ctx
, n
, uf
, list
) {
864 ewq
.msg
.event
= UFFD_EVENT_UNMAP
;
865 ewq
.msg
.arg
.remove
.start
= ctx
->start
;
866 ewq
.msg
.arg
.remove
.end
= ctx
->end
;
868 userfaultfd_event_wait_completion(ctx
->ctx
, &ewq
);
870 list_del(&ctx
->list
);
875 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
877 struct userfaultfd_ctx
*ctx
= file
->private_data
;
878 struct mm_struct
*mm
= ctx
->mm
;
879 struct vm_area_struct
*vma
, *prev
;
880 /* len == 0 means wake all */
881 struct userfaultfd_wake_range range
= { .len
= 0, };
882 unsigned long new_flags
;
885 WRITE_ONCE(ctx
->released
, true);
887 if (!mmget_not_zero(mm
))
891 * Flush page faults out of all CPUs. NOTE: all page faults
892 * must be retried without returning VM_FAULT_SIGBUS if
893 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
894 * changes while handle_userfault released the mmap_sem. So
895 * it's critical that released is set to true (above), before
896 * taking the mmap_sem for writing.
898 down_write(&mm
->mmap_sem
);
899 still_valid
= mmget_still_valid(mm
);
901 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
903 BUG_ON(!!vma
->vm_userfaultfd_ctx
.ctx
^
904 !!(vma
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
905 if (vma
->vm_userfaultfd_ctx
.ctx
!= ctx
) {
909 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
911 prev
= vma_merge(mm
, prev
, vma
->vm_start
, vma
->vm_end
,
912 new_flags
, vma
->anon_vma
,
913 vma
->vm_file
, vma
->vm_pgoff
,
921 vma
->vm_flags
= new_flags
;
922 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
924 up_write(&mm
->mmap_sem
);
928 * After no new page faults can wait on this fault_*wqh, flush
929 * the last page faults that may have been already waiting on
932 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
933 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
934 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, &range
);
935 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
937 /* Flush pending events that may still wait on event_wqh */
938 wake_up_all(&ctx
->event_wqh
);
940 wake_up_poll(&ctx
->fd_wqh
, EPOLLHUP
);
941 userfaultfd_ctx_put(ctx
);
945 /* fault_pending_wqh.lock must be hold by the caller */
946 static inline struct userfaultfd_wait_queue
*find_userfault_in(
947 wait_queue_head_t
*wqh
)
949 wait_queue_entry_t
*wq
;
950 struct userfaultfd_wait_queue
*uwq
;
952 lockdep_assert_held(&wqh
->lock
);
955 if (!waitqueue_active(wqh
))
957 /* walk in reverse to provide FIFO behavior to read userfaults */
958 wq
= list_last_entry(&wqh
->head
, typeof(*wq
), entry
);
959 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
964 static inline struct userfaultfd_wait_queue
*find_userfault(
965 struct userfaultfd_ctx
*ctx
)
967 return find_userfault_in(&ctx
->fault_pending_wqh
);
970 static inline struct userfaultfd_wait_queue
*find_userfault_evt(
971 struct userfaultfd_ctx
*ctx
)
973 return find_userfault_in(&ctx
->event_wqh
);
976 static __poll_t
userfaultfd_poll(struct file
*file
, poll_table
*wait
)
978 struct userfaultfd_ctx
*ctx
= file
->private_data
;
981 poll_wait(file
, &ctx
->fd_wqh
, wait
);
983 switch (ctx
->state
) {
984 case UFFD_STATE_WAIT_API
:
986 case UFFD_STATE_RUNNING
:
988 * poll() never guarantees that read won't block.
989 * userfaults can be waken before they're read().
991 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
994 * lockless access to see if there are pending faults
995 * __pollwait last action is the add_wait_queue but
996 * the spin_unlock would allow the waitqueue_active to
997 * pass above the actual list_add inside
998 * add_wait_queue critical section. So use a full
999 * memory barrier to serialize the list_add write of
1000 * add_wait_queue() with the waitqueue_active read
1005 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1007 else if (waitqueue_active(&ctx
->event_wqh
))
1017 static const struct file_operations userfaultfd_fops
;
1019 static int resolve_userfault_fork(struct userfaultfd_ctx
*ctx
,
1020 struct userfaultfd_ctx
*new,
1021 struct uffd_msg
*msg
)
1025 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, new,
1026 O_RDWR
| (new->flags
& UFFD_SHARED_FCNTL_FLAGS
));
1030 msg
->arg
.reserved
.reserved1
= 0;
1031 msg
->arg
.fork
.ufd
= fd
;
1035 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
1036 struct uffd_msg
*msg
)
1039 DECLARE_WAITQUEUE(wait
, current
);
1040 struct userfaultfd_wait_queue
*uwq
;
1042 * Handling fork event requires sleeping operations, so
1043 * we drop the event_wqh lock, then do these ops, then
1044 * lock it back and wake up the waiter. While the lock is
1045 * dropped the ewq may go away so we keep track of it
1048 LIST_HEAD(fork_event
);
1049 struct userfaultfd_ctx
*fork_nctx
= NULL
;
1051 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1052 spin_lock_irq(&ctx
->fd_wqh
.lock
);
1053 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
1055 set_current_state(TASK_INTERRUPTIBLE
);
1056 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1057 uwq
= find_userfault(ctx
);
1060 * Use a seqcount to repeat the lockless check
1061 * in wake_userfault() to avoid missing
1062 * wakeups because during the refile both
1063 * waitqueue could become empty if this is the
1066 write_seqcount_begin(&ctx
->refile_seq
);
1069 * The fault_pending_wqh.lock prevents the uwq
1070 * to disappear from under us.
1072 * Refile this userfault from
1073 * fault_pending_wqh to fault_wqh, it's not
1074 * pending anymore after we read it.
1076 * Use list_del() by hand (as
1077 * userfaultfd_wake_function also uses
1078 * list_del_init() by hand) to be sure nobody
1079 * changes __remove_wait_queue() to use
1080 * list_del_init() in turn breaking the
1081 * !list_empty_careful() check in
1082 * handle_userfault(). The uwq->wq.head list
1083 * must never be empty at any time during the
1084 * refile, or the waitqueue could disappear
1085 * from under us. The "wait_queue_head_t"
1086 * parameter of __remove_wait_queue() is unused
1089 list_del(&uwq
->wq
.entry
);
1090 add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
1092 write_seqcount_end(&ctx
->refile_seq
);
1094 /* careful to always initialize msg if ret == 0 */
1096 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1100 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1102 spin_lock(&ctx
->event_wqh
.lock
);
1103 uwq
= find_userfault_evt(ctx
);
1107 if (uwq
->msg
.event
== UFFD_EVENT_FORK
) {
1108 fork_nctx
= (struct userfaultfd_ctx
*)
1110 uwq
->msg
.arg
.reserved
.reserved1
;
1111 list_move(&uwq
->wq
.entry
, &fork_event
);
1113 * fork_nctx can be freed as soon as
1114 * we drop the lock, unless we take a
1117 userfaultfd_ctx_get(fork_nctx
);
1118 spin_unlock(&ctx
->event_wqh
.lock
);
1123 userfaultfd_event_complete(ctx
, uwq
);
1124 spin_unlock(&ctx
->event_wqh
.lock
);
1128 spin_unlock(&ctx
->event_wqh
.lock
);
1130 if (signal_pending(current
)) {
1138 spin_unlock_irq(&ctx
->fd_wqh
.lock
);
1140 spin_lock_irq(&ctx
->fd_wqh
.lock
);
1142 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
1143 __set_current_state(TASK_RUNNING
);
1144 spin_unlock_irq(&ctx
->fd_wqh
.lock
);
1146 if (!ret
&& msg
->event
== UFFD_EVENT_FORK
) {
1147 ret
= resolve_userfault_fork(ctx
, fork_nctx
, msg
);
1148 spin_lock_irq(&ctx
->event_wqh
.lock
);
1149 if (!list_empty(&fork_event
)) {
1151 * The fork thread didn't abort, so we can
1152 * drop the temporary refcount.
1154 userfaultfd_ctx_put(fork_nctx
);
1156 uwq
= list_first_entry(&fork_event
,
1160 * If fork_event list wasn't empty and in turn
1161 * the event wasn't already released by fork
1162 * (the event is allocated on fork kernel
1163 * stack), put the event back to its place in
1164 * the event_wq. fork_event head will be freed
1165 * as soon as we return so the event cannot
1166 * stay queued there no matter the current
1169 list_del(&uwq
->wq
.entry
);
1170 __add_wait_queue(&ctx
->event_wqh
, &uwq
->wq
);
1173 * Leave the event in the waitqueue and report
1174 * error to userland if we failed to resolve
1175 * the userfault fork.
1178 userfaultfd_event_complete(ctx
, uwq
);
1181 * Here the fork thread aborted and the
1182 * refcount from the fork thread on fork_nctx
1183 * has already been released. We still hold
1184 * the reference we took before releasing the
1185 * lock above. If resolve_userfault_fork
1186 * failed we've to drop it because the
1187 * fork_nctx has to be freed in such case. If
1188 * it succeeded we'll hold it because the new
1189 * uffd references it.
1192 userfaultfd_ctx_put(fork_nctx
);
1194 spin_unlock_irq(&ctx
->event_wqh
.lock
);
1200 static ssize_t
userfaultfd_read(struct file
*file
, char __user
*buf
,
1201 size_t count
, loff_t
*ppos
)
1203 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1204 ssize_t _ret
, ret
= 0;
1205 struct uffd_msg msg
;
1206 int no_wait
= file
->f_flags
& O_NONBLOCK
;
1208 if (ctx
->state
== UFFD_STATE_WAIT_API
)
1212 if (count
< sizeof(msg
))
1213 return ret
? ret
: -EINVAL
;
1214 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
);
1216 return ret
? ret
: _ret
;
1217 if (copy_to_user((__u64 __user
*) buf
, &msg
, sizeof(msg
)))
1218 return ret
? ret
: -EFAULT
;
1221 count
-= sizeof(msg
);
1223 * Allow to read more than one fault at time but only
1224 * block if waiting for the very first one.
1226 no_wait
= O_NONBLOCK
;
1230 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
1231 struct userfaultfd_wake_range
*range
)
1233 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
1234 /* wake all in the range and autoremove */
1235 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1236 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
1238 if (waitqueue_active(&ctx
->fault_wqh
))
1239 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, range
);
1240 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
1243 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
1244 struct userfaultfd_wake_range
*range
)
1250 * To be sure waitqueue_active() is not reordered by the CPU
1251 * before the pagetable update, use an explicit SMP memory
1252 * barrier here. PT lock release or up_read(mmap_sem) still
1253 * have release semantics that can allow the
1254 * waitqueue_active() to be reordered before the pte update.
1259 * Use waitqueue_active because it's very frequent to
1260 * change the address space atomically even if there are no
1261 * userfaults yet. So we take the spinlock only when we're
1262 * sure we've userfaults to wake.
1265 seq
= read_seqcount_begin(&ctx
->refile_seq
);
1266 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
1267 waitqueue_active(&ctx
->fault_wqh
);
1269 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
1271 __wake_userfault(ctx
, range
);
1274 static __always_inline
int validate_range(struct mm_struct
*mm
,
1275 __u64
*start
, __u64 len
)
1277 __u64 task_size
= mm
->task_size
;
1279 *start
= untagged_addr(*start
);
1281 if (*start
& ~PAGE_MASK
)
1283 if (len
& ~PAGE_MASK
)
1287 if (*start
< mmap_min_addr
)
1289 if (*start
>= task_size
)
1291 if (len
> task_size
- *start
)
1296 static inline bool vma_can_userfault(struct vm_area_struct
*vma
)
1298 return vma_is_anonymous(vma
) || is_vm_hugetlb_page(vma
) ||
1302 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
1305 struct mm_struct
*mm
= ctx
->mm
;
1306 struct vm_area_struct
*vma
, *prev
, *cur
;
1308 struct uffdio_register uffdio_register
;
1309 struct uffdio_register __user
*user_uffdio_register
;
1310 unsigned long vm_flags
, new_flags
;
1313 unsigned long start
, end
, vma_end
;
1315 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
1318 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
1319 sizeof(uffdio_register
)-sizeof(__u64
)))
1323 if (!uffdio_register
.mode
)
1325 if (uffdio_register
.mode
& ~(UFFDIO_REGISTER_MODE_MISSING
|
1326 UFFDIO_REGISTER_MODE_WP
))
1329 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
1330 vm_flags
|= VM_UFFD_MISSING
;
1331 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
1332 vm_flags
|= VM_UFFD_WP
;
1334 * FIXME: remove the below error constraint by
1335 * implementing the wprotect tracking mode.
1341 ret
= validate_range(mm
, &uffdio_register
.range
.start
,
1342 uffdio_register
.range
.len
);
1346 start
= uffdio_register
.range
.start
;
1347 end
= start
+ uffdio_register
.range
.len
;
1350 if (!mmget_not_zero(mm
))
1353 down_write(&mm
->mmap_sem
);
1354 if (!mmget_still_valid(mm
))
1356 vma
= find_vma_prev(mm
, start
, &prev
);
1360 /* check that there's at least one vma in the range */
1362 if (vma
->vm_start
>= end
)
1366 * If the first vma contains huge pages, make sure start address
1367 * is aligned to huge page size.
1369 if (is_vm_hugetlb_page(vma
)) {
1370 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1372 if (start
& (vma_hpagesize
- 1))
1377 * Search for not compatible vmas.
1380 basic_ioctls
= false;
1381 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1384 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1385 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1387 /* check not compatible vmas */
1389 if (!vma_can_userfault(cur
))
1393 * UFFDIO_COPY will fill file holes even without
1394 * PROT_WRITE. This check enforces that if this is a
1395 * MAP_SHARED, the process has write permission to the backing
1396 * file. If VM_MAYWRITE is set it also enforces that on a
1397 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1398 * F_WRITE_SEAL can be taken until the vma is destroyed.
1401 if (unlikely(!(cur
->vm_flags
& VM_MAYWRITE
)))
1405 * If this vma contains ending address, and huge pages
1408 if (is_vm_hugetlb_page(cur
) && end
<= cur
->vm_end
&&
1409 end
> cur
->vm_start
) {
1410 unsigned long vma_hpagesize
= vma_kernel_pagesize(cur
);
1414 if (end
& (vma_hpagesize
- 1))
1419 * Check that this vma isn't already owned by a
1420 * different userfaultfd. We can't allow more than one
1421 * userfaultfd to own a single vma simultaneously or we
1422 * wouldn't know which one to deliver the userfaults to.
1425 if (cur
->vm_userfaultfd_ctx
.ctx
&&
1426 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
1430 * Note vmas containing huge pages
1432 if (is_vm_hugetlb_page(cur
))
1433 basic_ioctls
= true;
1439 if (vma
->vm_start
< start
)
1446 BUG_ON(!vma_can_userfault(vma
));
1447 BUG_ON(vma
->vm_userfaultfd_ctx
.ctx
&&
1448 vma
->vm_userfaultfd_ctx
.ctx
!= ctx
);
1449 WARN_ON(!(vma
->vm_flags
& VM_MAYWRITE
));
1452 * Nothing to do: this vma is already registered into this
1453 * userfaultfd and with the right tracking mode too.
1455 if (vma
->vm_userfaultfd_ctx
.ctx
== ctx
&&
1456 (vma
->vm_flags
& vm_flags
) == vm_flags
)
1459 if (vma
->vm_start
> start
)
1460 start
= vma
->vm_start
;
1461 vma_end
= min(end
, vma
->vm_end
);
1463 new_flags
= (vma
->vm_flags
&
1464 ~(VM_UFFD_MISSING
|VM_UFFD_WP
)) | vm_flags
;
1465 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1466 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1468 ((struct vm_userfaultfd_ctx
){ ctx
}));
1473 if (vma
->vm_start
< start
) {
1474 ret
= split_vma(mm
, vma
, start
, 1);
1478 if (vma
->vm_end
> end
) {
1479 ret
= split_vma(mm
, vma
, end
, 0);
1485 * In the vma_merge() successful mprotect-like case 8:
1486 * the next vma was merged into the current one and
1487 * the current one has not been updated yet.
1489 vma
->vm_flags
= new_flags
;
1490 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
1494 start
= vma
->vm_end
;
1496 } while (vma
&& vma
->vm_start
< end
);
1498 up_write(&mm
->mmap_sem
);
1502 * Now that we scanned all vmas we can already tell
1503 * userland which ioctls methods are guaranteed to
1504 * succeed on this range.
1506 if (put_user(basic_ioctls
? UFFD_API_RANGE_IOCTLS_BASIC
:
1507 UFFD_API_RANGE_IOCTLS
,
1508 &user_uffdio_register
->ioctls
))
1515 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
1518 struct mm_struct
*mm
= ctx
->mm
;
1519 struct vm_area_struct
*vma
, *prev
, *cur
;
1521 struct uffdio_range uffdio_unregister
;
1522 unsigned long new_flags
;
1524 unsigned long start
, end
, vma_end
;
1525 const void __user
*buf
= (void __user
*)arg
;
1528 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
1531 ret
= validate_range(mm
, &uffdio_unregister
.start
,
1532 uffdio_unregister
.len
);
1536 start
= uffdio_unregister
.start
;
1537 end
= start
+ uffdio_unregister
.len
;
1540 if (!mmget_not_zero(mm
))
1543 down_write(&mm
->mmap_sem
);
1544 if (!mmget_still_valid(mm
))
1546 vma
= find_vma_prev(mm
, start
, &prev
);
1550 /* check that there's at least one vma in the range */
1552 if (vma
->vm_start
>= end
)
1556 * If the first vma contains huge pages, make sure start address
1557 * is aligned to huge page size.
1559 if (is_vm_hugetlb_page(vma
)) {
1560 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1562 if (start
& (vma_hpagesize
- 1))
1567 * Search for not compatible vmas.
1571 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1574 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1575 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1578 * Check not compatible vmas, not strictly required
1579 * here as not compatible vmas cannot have an
1580 * userfaultfd_ctx registered on them, but this
1581 * provides for more strict behavior to notice
1582 * unregistration errors.
1584 if (!vma_can_userfault(cur
))
1591 if (vma
->vm_start
< start
)
1598 BUG_ON(!vma_can_userfault(vma
));
1601 * Nothing to do: this vma is already registered into this
1602 * userfaultfd and with the right tracking mode too.
1604 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1607 WARN_ON(!(vma
->vm_flags
& VM_MAYWRITE
));
1609 if (vma
->vm_start
> start
)
1610 start
= vma
->vm_start
;
1611 vma_end
= min(end
, vma
->vm_end
);
1613 if (userfaultfd_missing(vma
)) {
1615 * Wake any concurrent pending userfault while
1616 * we unregister, so they will not hang
1617 * permanently and it avoids userland to call
1618 * UFFDIO_WAKE explicitly.
1620 struct userfaultfd_wake_range range
;
1621 range
.start
= start
;
1622 range
.len
= vma_end
- start
;
1623 wake_userfault(vma
->vm_userfaultfd_ctx
.ctx
, &range
);
1626 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
1627 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1628 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1635 if (vma
->vm_start
< start
) {
1636 ret
= split_vma(mm
, vma
, start
, 1);
1640 if (vma
->vm_end
> end
) {
1641 ret
= split_vma(mm
, vma
, end
, 0);
1647 * In the vma_merge() successful mprotect-like case 8:
1648 * the next vma was merged into the current one and
1649 * the current one has not been updated yet.
1651 vma
->vm_flags
= new_flags
;
1652 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
1656 start
= vma
->vm_end
;
1658 } while (vma
&& vma
->vm_start
< end
);
1660 up_write(&mm
->mmap_sem
);
1667 * userfaultfd_wake may be used in combination with the
1668 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1670 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1674 struct uffdio_range uffdio_wake
;
1675 struct userfaultfd_wake_range range
;
1676 const void __user
*buf
= (void __user
*)arg
;
1679 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1682 ret
= validate_range(ctx
->mm
, &uffdio_wake
.start
, uffdio_wake
.len
);
1686 range
.start
= uffdio_wake
.start
;
1687 range
.len
= uffdio_wake
.len
;
1690 * len == 0 means wake all and we don't want to wake all here,
1691 * so check it again to be sure.
1693 VM_BUG_ON(!range
.len
);
1695 wake_userfault(ctx
, &range
);
1702 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1706 struct uffdio_copy uffdio_copy
;
1707 struct uffdio_copy __user
*user_uffdio_copy
;
1708 struct userfaultfd_wake_range range
;
1710 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1713 if (READ_ONCE(ctx
->mmap_changing
))
1717 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1718 /* don't copy "copy" last field */
1719 sizeof(uffdio_copy
)-sizeof(__s64
)))
1722 ret
= validate_range(ctx
->mm
, &uffdio_copy
.dst
, uffdio_copy
.len
);
1726 * double check for wraparound just in case. copy_from_user()
1727 * will later check uffdio_copy.src + uffdio_copy.len to fit
1728 * in the userland range.
1731 if (uffdio_copy
.src
+ uffdio_copy
.len
<= uffdio_copy
.src
)
1733 if (uffdio_copy
.mode
& ~UFFDIO_COPY_MODE_DONTWAKE
)
1735 if (mmget_not_zero(ctx
->mm
)) {
1736 ret
= mcopy_atomic(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.src
,
1737 uffdio_copy
.len
, &ctx
->mmap_changing
);
1742 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1747 /* len == 0 would wake all */
1749 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1750 range
.start
= uffdio_copy
.dst
;
1751 wake_userfault(ctx
, &range
);
1753 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1758 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1762 struct uffdio_zeropage uffdio_zeropage
;
1763 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1764 struct userfaultfd_wake_range range
;
1766 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1769 if (READ_ONCE(ctx
->mmap_changing
))
1773 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1774 /* don't copy "zeropage" last field */
1775 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1778 ret
= validate_range(ctx
->mm
, &uffdio_zeropage
.range
.start
,
1779 uffdio_zeropage
.range
.len
);
1783 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1786 if (mmget_not_zero(ctx
->mm
)) {
1787 ret
= mfill_zeropage(ctx
->mm
, uffdio_zeropage
.range
.start
,
1788 uffdio_zeropage
.range
.len
,
1789 &ctx
->mmap_changing
);
1794 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1798 /* len == 0 would wake all */
1801 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1802 range
.start
= uffdio_zeropage
.range
.start
;
1803 wake_userfault(ctx
, &range
);
1805 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1810 static inline unsigned int uffd_ctx_features(__u64 user_features
)
1813 * For the current set of features the bits just coincide
1815 return (unsigned int)user_features
;
1819 * userland asks for a certain API version and we return which bits
1820 * and ioctl commands are implemented in this kernel for such API
1821 * version or -EINVAL if unknown.
1823 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1826 struct uffdio_api uffdio_api
;
1827 void __user
*buf
= (void __user
*)arg
;
1832 if (ctx
->state
!= UFFD_STATE_WAIT_API
)
1835 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1837 features
= uffdio_api
.features
;
1839 if (uffdio_api
.api
!= UFFD_API
|| (features
& ~UFFD_API_FEATURES
))
1842 if ((features
& UFFD_FEATURE_EVENT_FORK
) && !capable(CAP_SYS_PTRACE
))
1844 /* report all available features and ioctls to userland */
1845 uffdio_api
.features
= UFFD_API_FEATURES
;
1846 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1848 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1850 ctx
->state
= UFFD_STATE_RUNNING
;
1851 /* only enable the requested features for this uffd context */
1852 ctx
->features
= uffd_ctx_features(features
);
1857 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1858 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1863 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1867 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1869 if (cmd
!= UFFDIO_API
&& ctx
->state
== UFFD_STATE_WAIT_API
)
1874 ret
= userfaultfd_api(ctx
, arg
);
1876 case UFFDIO_REGISTER
:
1877 ret
= userfaultfd_register(ctx
, arg
);
1879 case UFFDIO_UNREGISTER
:
1880 ret
= userfaultfd_unregister(ctx
, arg
);
1883 ret
= userfaultfd_wake(ctx
, arg
);
1886 ret
= userfaultfd_copy(ctx
, arg
);
1888 case UFFDIO_ZEROPAGE
:
1889 ret
= userfaultfd_zeropage(ctx
, arg
);
1895 #ifdef CONFIG_PROC_FS
1896 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1898 struct userfaultfd_ctx
*ctx
= f
->private_data
;
1899 wait_queue_entry_t
*wq
;
1900 unsigned long pending
= 0, total
= 0;
1902 spin_lock_irq(&ctx
->fault_pending_wqh
.lock
);
1903 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.head
, entry
) {
1907 list_for_each_entry(wq
, &ctx
->fault_wqh
.head
, entry
) {
1910 spin_unlock_irq(&ctx
->fault_pending_wqh
.lock
);
1913 * If more protocols will be added, there will be all shown
1914 * separated by a space. Like this:
1915 * protocols: aa:... bb:...
1917 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1918 pending
, total
, UFFD_API
, ctx
->features
,
1919 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
1923 static const struct file_operations userfaultfd_fops
= {
1924 #ifdef CONFIG_PROC_FS
1925 .show_fdinfo
= userfaultfd_show_fdinfo
,
1927 .release
= userfaultfd_release
,
1928 .poll
= userfaultfd_poll
,
1929 .read
= userfaultfd_read
,
1930 .unlocked_ioctl
= userfaultfd_ioctl
,
1931 .compat_ioctl
= compat_ptr_ioctl
,
1932 .llseek
= noop_llseek
,
1935 static void init_once_userfaultfd_ctx(void *mem
)
1937 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
1939 init_waitqueue_head(&ctx
->fault_pending_wqh
);
1940 init_waitqueue_head(&ctx
->fault_wqh
);
1941 init_waitqueue_head(&ctx
->event_wqh
);
1942 init_waitqueue_head(&ctx
->fd_wqh
);
1943 seqcount_init(&ctx
->refile_seq
);
1946 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
1948 struct userfaultfd_ctx
*ctx
;
1951 if (!sysctl_unprivileged_userfaultfd
&& !capable(CAP_SYS_PTRACE
))
1954 BUG_ON(!current
->mm
);
1956 /* Check the UFFD_* constants for consistency. */
1957 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
1958 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
1960 if (flags
& ~UFFD_SHARED_FCNTL_FLAGS
)
1963 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
1967 refcount_set(&ctx
->refcount
, 1);
1970 ctx
->state
= UFFD_STATE_WAIT_API
;
1971 ctx
->released
= false;
1972 ctx
->mmap_changing
= false;
1973 ctx
->mm
= current
->mm
;
1974 /* prevent the mm struct to be freed */
1977 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, ctx
,
1978 O_RDWR
| (flags
& UFFD_SHARED_FCNTL_FLAGS
));
1981 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
1986 static int __init
userfaultfd_init(void)
1988 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
1989 sizeof(struct userfaultfd_ctx
),
1991 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1992 init_once_userfaultfd_ctx
);
1995 __initcall(userfaultfd_init
);